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Abstract

Social cognitive theory (SCT) is among themost influential

theories of behavior change and has been used as the

conceptual basis of health behavior interventions for

smoking cessation, weight management, and other

health behaviors. SCT and other behavior theories were

developed primarily to explain differences between indi-

viduals, but explanatory theories of within-person behav-

ioral variability are increasingly needed as new technolo-

gies allow for intensive longitudinal measures and inter-

ventions adapted from these inputs. These within-person

explanatory theoretical applications can be modeled as

dynamical systems. SCT constructs, such as reciprocal

determinism, are inherently dynamical in nature, but SCT

has not been modeled as a dynamical system. This paper

describes the development of a dynamical system model

of SCT using fluid analogies and control systems princi-

ples drawn from engineering. Simulations of this model

were performed to assess if the model performed as

predicted based on theory and empirical studies of SCT.

This initial model generates precise and testable quanti-

tative predictions for future intensive longitudinal re-

search. Dynamic modeling approaches provide a rigorous

method for advancing health behavior theory develop-

ment and refinement and for guiding the development of

more potent and efficient interventions.
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SOCIAL COGNITIVE THEORY

Social cognitive theory (SCT) is among the most in-
fluential theories of human behavior [1] and has been
used as the basis for many health behavior interven-
tions [2–4]. SCT has served as the theoretical basis for
most eHealth diet and physical activity interventions
[5]. A recent review of mobile health interventions
found that SCT or one of its variants served as the
basis for all of the smoking cessation interventions that
reported a theoretical basis, and was the predom-
inant theoretical basis for weight management
interventions [6].

SCT has a long history rooted in learning theory
and the role of respondent and operant conditioning
in shaping behavior. The seminal work of Bandura
and Walters [7] on social learning theory expanded
learning theory by incorporating observational or vi-
carious learning. Social learning theory, however, did
not include self-beliefs or perceptions of the individual
that could influence behavior, leading to the introduc-
tion of self-efficacy [8]. SCT grew from self-efficacy
theory as cognitive, self-regulatory, and self-reflective
processes became central to Bandura’s thinking [9].
Core to SCT is the concept of reciprocal determinism
or triadic reciprocity in which behavior, personal fac-
tors, and environment interact and dynamically shape
one another. Self-efficacy, the perceived capability to
do what is required to perform a given behavior under
varying conditions, plays a core role as a personal
factor that influences behavior and that is influenced
by behavior and the environment [8].

DYNAMIC COMPUTATIONAL MODELING OF HEALTH

BEHAVIOR THEORIES

Conceptual and statistical models of SCT—Health behav-
ior theories such as SCT are conceptual models of the
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Implications
Researchers: Using this initial computational dy-
namic model social cognitive theory (SCT) as a
guide, researchers can test interrelations of SCT
constructs that go beyond covariation and specify
how much and in which ways SCT constructs
influence one another.

Practitioners: Based on these theory-derived SCT
equations, interventionists can generate hypotheti-
cal estimates of how much of a change in various
SCT constructs is necessary to produce a clinically
meaningful change in behavior.

Policymakers: These theory-derived SCT equa-
tions can generate hypothetical estimates of how
policies targeting specific SCT parameters might
impact behavior.
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hypothesized influences on behavior and their interre-
lations. These conceptual models are often tested via
statistical models such as structural equation modeling
(SEM) which estimate latent constructs via measured
variables. For example, Anderson-Bill and colleagues
[10] conducted a large, cross-sectional SEM study of a
web-based weight management intervention and
showed that perceived social support and self-
regulatory skills were associated with physical activity
and nutrition behavior. A similar cross-sectional SEM
analysis of dietary intake in adolescent girls found that
self-efficacy was positively associated with healthy eat-
ing but that behavioral intentions were not associated
with dietary intake [11]. In a study of risky sexual
behavior, Safren et al. [12] used cross-sectional SEM
to assess the influence of SCT constructs on condom
use and found that self-efficacy was associated with
outcome expectancies and that vicarious learning
was associated with condom use, but that these associ-
ations were only found in non-depressed participants.
Statistical modeling of cross-sectional data can provide
information on the relative association among theoret-
ical constructs, but longitudinal data are necessary to
provide information on temporal directionality and
potential causality among these constructs. Rimal
[13], in one of the few longitudinal SEM studies of
SCT, modeled self-reported exercise behavior, exer-
cise knowledge, and exercise self-efficacy at baseline
and years 2 and 6 post-baseline, and found a reciprocal
relationship in which self-efficacy and knowledge pre-
dicted subsequent exercise behavior and vice versa.
More recently, Dishman and colleagues [14] used la-
tent growthmodeling to examine the influences of self-
efficacy and perceived social support at grade 6 on
physical activity at grade 8. They found that self-
efficacy was directly related to physical activity and
that self-efficacy and perceived social support indirect-
ly influenced the relationship between perceived bar-
riers and physical activity.

Application of computational models to health behavior
theories—In contrast to conceptual and statistical model-
ing approaches for representing and testing health
behavior theories, dynamic computational modeling
can more precisely represent dynamic feedback sys-
tems hypothesized by these theories (e.g., reciprocal
determinism) and can generate more precise theoreti-
cal predictions [6]. For example, the statistical model-
ing research described above generally concluded that
the results were supportive of SCT. These conclusions
were based on some, but not all, SCT constructs hav-
ing significant associations as hypothesized, and the
full model accounting for modest to moderate vari-
ance (i.e., < 30 %) in self-reported behavior, often
assessed at the same time (i.e., cross-sectional, not
longitudinal). In contrast, a dynamic computational
model of health behavior would test precise predic-
tions of the behavior of interest at a specific future time
point based on specific unit changes in the theoretical
mediators. Failure to predict not only the direction but
also the magnitude and timing of the behavior change
would necessitate a revision of the model. Therefore,

dynamic computational modeling provides a compre-
hensive analytic technique for testing theories of hu-
man behavior [6, 15–17]. Furthermore, this level of
predictive precision facilitates the development of in-
tensively adaptive interventions (IAIs) that adjust treat-
ment over time based on real-time inputs [18] by
identifying potential tipping points in the model and
the doses of intervention required to produce the de-
sired outcome.
Behavior has long been considered amenable to dy-
namical or control systems computational approaches
[19–21]. Carver and Scheier [22] have argued that
dynamical regulatory systems are critical to under-
standing behavior, and Bandura describes SCT in dy-
namic and self-regulatory terms [23]. Advances in
technology, particularly in ecological momentary as-
sessment [24] and passive sensor technologies [25] are
beginning to provide the intensive longitudinal data
necessary to model and test dynamic computational
models. Recently, Navarro-Barrientos, Rivera, and
Collins [16] developed a control system fluid analogy
model for the theory of planned behavior (TPB), and
Orr and colleagues [26] proposed a parallel constraint
dynamical model of its precursor, the theory of rea-
soned action (TRA).

Purpose—Following from this work on TRA/TPB
dynamic models, we sought to develop a dynamic
computational model of SCT. TRA and TPB have
well-defined graphical representations of the theoreti-
cal constructs and their interdependencies [27] that,
along with SEM studies based on this complete con-
ceptual model, provided the basis for translating TRA/
TBP conceptual and statistical models to a control
systems computational dynamic model [16]. In con-
trast, SCT is a theory that has been described primarily
in narrative form and has been refined, revised, and
augmented over decades of writings by Bandura and
others [28]. In 2004, Bandura offered a graphical sche-
matic of SCT [29], shown in Fig. 1, that illustrates self-
efficacy directly influencing behavior and also indi-
rectly influencing behavior via its effects on outcome
expectancies, goals, and sociocultural factors such as
facilitators and impediments. This schematic has been
used as the conceptual basis for previous SEM studies
[e.g., 11], but we believe that it is a simplified and
incomplete conceptual model of SCTwhen compared
to the narrative descriptions of SCT elucidated over
decades. For example, SCT specifies a number of
factors such as social persuasion and observational
learning that influence self-efficacy [8], but the sche-
matic shows no influences on self-efficacy. SCT also
postulates that outcome expectancy is influenced by
many more factors than just self-efficacy, including the
direct and observational experiences of outcomes over
time [30], but these additional influences on outcome
expectancy are not represented in the schematic. Per-
haps most importantly, reciprocal determinism, a core
aspect of SCT, postulates feedback loops between the
intrapersonal constructs of SCT and the behavior and
the environment [23], but the Bandura schematic rep-
resents only linear influences with none of these
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dynamic influences core to SCT. Therefore, in addi-
tion to the potential added precision of a computation-
al dynamic model of SCT, we also sought to provide a
more complete and comprehensive conceptual sche-
matic of SCT that could guide future statistical model-
ing as well.

DEVELOPMENT AND DESCRIPTION OF A CONTROL SYSTEM

MODEL OF SOCIAL COGNITIVE THEORY

Model development methods—To develop an initial dy-
namical systemmodel of SCT, we reviewed the classic
works on social cognitive theory [e.g., 9] and the liter-
ature on the statistical modeling of SCT described
above. Since, to our knowledge, this is the first effort
to produce a dynamic computational model of SCT,
we adhered as closely as possible to Bandura’s theo-
retical writings, from the early work in social learning
theory [31] through his more recent writings on social
cognitive theory [32]. However, a lack of specificity of
some associations between constructs, especially over
time, required us to iterate the graphical representation
of the dynamical system based on our understanding
and interpretation of SCT and on the results of model
simulations. For model parameters unspecified by
SCT (e.g., magnitude, timing, or speed of change),
iterative adjustments were made based on consistency
of simulation outputs to theory as judged by the au-
thors. The resulting graphical representation and pa-
rameters adjusted via simulations were then used as
the basis for a set of differential equations that repre-
sented the influences of these SCT constructs on be-
havior over time.
The goal of this effort was to propose a more com-

plete conceptual model of SCT and generate a com-
putational model of SCT that represents SCT con-
structs as state variables and the relations among them

as state transitions via differential equations. To aid in
interpreting these equations, we graphically represent
the influences among SCT constructs via the control
systems fluid analogy which conceptualizes core con-
structs such as self-efficacy as “inventories” or “reser-
voirs” with levels that increase or decrease over time
based on inflows and outflows [15–17]. These inven-
tories represent the amount of a given theoretical con-
struct that an individual or his/her environment pos-
sesses at any given time, and the inflows and outflows
from these inventories represent the influences on
these constructs over time. This fluid analogy model
has similarities to the stock and flow models of system
dynamics [33] and has been used to explicate other
theories as a dynamic computational model [16]. Ex-
plicitly specifying SCT constructs and their corre-
sponding hypothetical differential equations in a
graphical control system representation has the poten-
tial not only to improve the explanatory and predictive
power of the theory but also has relevant implications
for how theory-based interventions are developed and
optimized [34]. To examine the behavior of the pro-
posed SCT model, simulations were performed to
determine if the model performed as expected based
on theoretical hypotheses and prior statistical model-
ing results.
The initial model derived from the narrative SCT

descriptions was simulated in a number of scenarios. A
comparison of the simulation results to empirical and
logical constraints revealed the need to modify some
influences among variables. For example, self-efficacy
is generally found to be more predictive of behavior
than outcome expectancies [e.g., 35] so the parameters
in the model were adjusted to reflect a larger effect
from self-efficacy than outcome expectancies on be-
havior over time. These simulations also revealed a
number of inconsistent or illogical outcomes of the
model under certain conditions that required

Fig. 1 | Conceptual schematic of SCT from Bandura (2004)
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additional iterations to better specify the values of
parameters not previously specified by theory such
as “inventory capacities” (i.e., the size of each construct
“container” and the speed with which it fills) and
input/output transformations. These simulations and
successive iterative revisions to the model resulted in
the proposed model and the fluid analogy described
below. Given the number of inputs and parameters in
the model, there are an exceedingly large numbers of
simulations that could be performed for various pa-
rameter values across all possible combinations of
inputs; therefore, we limited the simulations and iter-
ative revisions of the model to simulations that varied
one or two inputs over time. The full set of parameter
specifications and additional simulations not reported
in this paper are available at http://csel.asu.edu/SCT.
While the fluid analogy schematic and the differential
equations that underlie this schematic were developed
in an interactive, incrementalmanner, we describe first
the details of the model from the fluid analogy sche-
matic, then the differential equations that underlie
the model.
Description of the resulting SCT fluid analogy model—

Figure 2 represents the resulting fluid analogy control
system of social cognitive theory (SCT) that depicts
how the various components of SCT interact with each
other over time to increase or decrease behavior. Be-
havior (η4) is an observable state variable depicted as a
fluid inventory that represents the frequency and/or
duration (i.e., amount) of the behavior as a function of
time. For specific behaviors, the behavior inventory
could be characterized by different metrics (e.g., fre-
quency and duration of smoking, caloric intake). For
this generic model intended for applicability across
behaviors, the behavior inventory simply represents
the amount of behavior. The model represents a con-
tinuous process, but could be used to test aggregated
timeframes (i.e., aggregate frequency × duration of
behavior within any given day).
Self-efficacy (SE) (η3), a state variable representing
confidence in one’s ability to perform a given
behavior, is a core construct of SCT [8] and is
depicted as an inventory of varying levels that
differs not only between individuals and specific
behaviors but also fluctuates within an individual
over time. SE influences the likelihood of engag-
ing in the associated behavior and is influenced
by the modeled variables that increase or de-
crease self-efficacy at any given time. The follow-
ing are the SCT variables that are theorized to
increase or decrease the SE value (i.e., the
amount of SE depicted analogously as the vol-
ume of fluid in a reservoir).

1. Perceived barriers and obstacles (ξ5) to engaging in
any given behavior deplete self-efficacy (SE) [8].
For example, SE to engage in physical activity can
be depleted due to perceived environmental bar-
riers such as insufficient time, bad weather, and/or
limited access to exercise facilities or safe walking
paths. These perceived barriers are often

conceptualized in SCTas slowly changing variables
such as limited safe walking areas in a neighbor-
hood; however, perception of these variables can
vary substantially from day to day [36].

2. Perceived social support and verbal persuasion
from others (ξ3) increase the inventory of SE [8].
For instance, the availability of others who are
willing to engage in physical activity with the indi-
vidual or who verbally support increased physical
activity of the individual increase SE to engage in
physical activity. We represent perceived social
support and verbal persuasion as an inflow that
increases self-efficacy, but like many other inputs
in the model, one could represent the opposite, the
lack of social support and verbal dissuasion as an
outflow instead. For model simplicity, when a con-
struct could have positive (inflow or input) or neg-
ative (outflow or output) influences, we represented
this graphically as an inflow. Representing these
influences as inflows or outflows is irrelevant to
the underlying differential equation since these
equations treat inflows and outflows as positive or
negative functions regardless of how they are
graphically represented.

3. Observed behavior (vicarious learning) (ξ2) of
others successfully performing the behavior in-
creases SE [8]. Observational or vicarious learning
is central to Bandura’s social learning theory, a
precursor to SCT, and influences not only self-
efficacy for engaging in the behavior, but also out-
come expectancies as the individual observes the
result of others performing the behavior. There is
considerable literature on the factors that influence
the strength of vicarious learning [37], but for sim-
plicity, we represent observed behavior here as a
single input.

4. An array of physical, mental, and emotional intra-
personal states (ξ6) either add or deplete the inven-
tory of self-efficacy (SE) at any given time [8]. These
intrapersonal factors are treated as a single input or
inflow in this model, but a more complex model
could represent these various intrapersonal factors
as multiple inflows (positive) and outflows
(negative).

5. Prior experience engaging in the behavior (β34) is a
gain parameter representing the critical learning
feedback loop that adds or depletes SE to subse-
quently engage in the behavior. This is a positive
feedback loop in which successfully engaging in the
behavior increases self-efficacy to engage in the
behavior, which subsequently increases the likeli-
hood of engaging in the behavior [8]. Conversely,
failure to successfully engage in the desired behav-
ior depletes self-efficacy, which subsequently de-
creases the likelihood of engaging in the behavior
in the future. It is important to note that “success”
and “failure” are defined differently between indi-
viduals and within individuals over time, and the
β34 parameter adjusts the influence of behavior on
self-efficacy to account for this inter- and intra-
person variability.
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6. Self-management or self-regulatory skills (η1) con-
tribute to self-efficacy [38]. This set of skills involves
a class of activities such as self-monitoring, goal
setting, self-reinforcement, and related methods
by which the individual increases the potential like-
lihood for engaging in a given behavior. Self-
management skills influence both self-efficacy and
outcome expectancies. SCT is philosophically an
agentic system in which the individual is the “con-
troller,” and these self-regulatory skills are central
to that perspective. Inputs into the self-
management inventory include formal skill train-
ing, planned observational learning, and verbal
persuasion from self or others (ξ1), all tools
commonly used in health behavior interven-
tions to improve self-management skills. SEM
studies have modeled self-efficacy as directly
influencing self-management or self-regulatory
skills [e.g., 10], but we have modeled this
influence as occurring indirectly through the
effects of self-efficacy on behavior (i.e. the
effect of trial and error experience of these
self-management skills on the likelihood of
engaging in the behavior to subsequently in-
fluence self-management skills (β14)). These
self-management or self-regulatory inputs are
potentially complex and deserve their own
control system model (system within a

system), but for simplicity of this model, we
have restricted this complexity by representing
self-management or self-regulatory skills as a
single state variable.

Outcome expectancies (η2) is another important
construct in SCT that contributes to the likelihood of
any given behavior [39]. Outcome expectancies are
the outcomes an individual expects from engaging in
the behavior based on prior experience, observational
learning, and/or self-management. Behaviors are
followed by positive and/or negative consequences,
some proximal and some distal, or lack of conse-
quences. For example, engaging in physical activity
could result, short term, in feeling fatigued or less
stressed. Social reinforcement may ensue from engag-
ing in physical activity. Over the longer term, physical
activity may lead to improved fitness and health or,
conversely, to injury. These behavioral outcomes (η5)
produce a positive feedback loop to outcome expec-
tancies (β25). Experiencing and/or expecting positive
outcomes from engaging in the behavior will lead to
an increased likelihood of subsequently engaging in
the behavior. Experiencing and/or expecting negative
outcomes will lead to a decreased likelihood of subse-
quently engaging in the behavior. This positive feed-
back loop is consistent with operant conditioning prin-
ciples, and since operant conditioning also can occur

Fig. 2 | Control system model of social cognitive theory
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outside of conscious awareness [40], a direct feedback
loop from behavioral outcomes back to behavior that
has no influence on outcome expectancies is also in-
cluded in the model.
Based on this feedback loop from behavioral out-

comes to outcome expectancy to behavior, individuals
should be expected to engage in differing rates of
behavior depending on outcome valence (e.g., rein-
forcing, punishing) and the schedule of reinforcement
or punishment (e.g., fixed, intermittent). These behav-
ioral outcomes for any given behavior are greatly
influenced by the environmental context in which
the behavior occurs (ξ7). These dynamic changes in
environmental context cause the same behavior that
is not reinforced or even punished in one context to be
reinforced in a different context [41]. Conceptually,
the input of environmental context into behavioral
outcomes also represents the various factors that
influence operant conditioning including the mag-
nitude (i.e., size or amount), latency (i.e., imme-
diate or delayed), and schedules (i.e. fixed or
intermittent) of reinforcement that can vary
across different environmental contexts. As with
other aspects of the SCT model presented here,
this “system within a system” is much more com-
plex than the single “environmental context” in-
put presented for simplicity.
The second input into outcome expectancies is ob-

servational or vicarious learning (ξ2). Observing the
consequences of the behavior experienced by others
adds to or depletes the outcome expectancy inventory
for that behavior [39]. For example, observing an
individual receiving or experiencing positive attention
from others for engaging in physical activity increases
the outcome expectancies of the individual engaging
in these behaviors. This observational input is core to
Bandura’s social learning theory, a precursor to SCT.
The third component that influences outcome expec-
tancies is self-regulatory or self-management skills
(β21) [42]. This set of skills influences the potential
successful outcomes attained through engaging in the
behavior (i.e., outcome expectancies). In the physical
activity example, the individual may decide, based on
the information within the SCT system (e.g., social
information/persuasion, observation, self-efficacy, out-
come expectancies) to set a goal of at least 30 min of
exercise every day. The individual can set up a mon-
itoring program to record the frequency and duration
of exercise, set incremental goals, assess status at
reaching these goals, and self-reward when the goals
are met.
Finally, “cue to action” (η6) directly influences be-

havior [31]. In SCT, self-efficacy and outcome expec-
tancies are often conceptualized as predispositions for
engaging in any given behavior that is then triggered
by a cue to action. Given that there are multiple inter-
nal and external cues for action at any time-point, we
have represented cue to action as an inventory with
both external (e.g., friend asks you to take a walk) or
internal (e.g., getting tired or stiff from sitting) inputs.
These cues can occur naturally (e.g., good weather for

a walk) or artificially (e.g., alarm reminder on phone to
go for a walk) in the environment.
Although treated as separate inputs in this model, it

is important to note that cue to action (η6) and envi-
ronmental context (ξ7) are closely linked. Cue to action
is often a discriminative stimulus that signals if a given
behavior is more or less likely to be reinforced and has
evocative effects on behavior [43]. Therefore, although
cue to action and environmental context are treated
separately in this model, cues to action are typically
formed from the pairing of specific environmental
contexts that predict behavioral outcomes.
To account for random variability of observations,

all state variables are combined additively with ran-
dom variables—referred to as disturbances (ζi).
Disturbances represent any uncontrolled factors
that influence the inventories and can be thought of
as unexplained variance. The inputs of SE, OE, and
cues to action are postulated to substantially influence
the likelihood of engaging in a behavior, but unac-
counted for are factors other than these three inputs
that also may directly influence the likelihood that the
individual will engage in a given behavior.
It is important in understanding the fluid analogy

graphic representation that engaging in the behavior
does not result in a depletion of SE, OE, or cue to
action. A more useful heuristic is to envision grada-
tions of switches within the inventory that signal when
these variables have met certain thresholds, each of
which is associated with an increasing level of the
frequency/duration of behavior.
Mathematical model of SCT—The process for building

the mathematical model parallels the work previously
described by Navarro-Barrientos, Rivera, and Collins
[16]. Six inventories (state variables) are considered,
and their levels are represented by the variables
η1,…,η6. Seven exogenous signals (inputs) are repre-
sented by ξ1,…,ξ7. From each inventory, there are a
number of inflow resistances represented by the coef-
ficients γ11,…,γ68, and outflow resistances represented
by β21,…,β54. These resistances can be thought of as
the fraction of each inventory or input that leave the
previous instance and then feeds the next inventory. In
the absence of an empirical basis for these inflow and
outflow resistance parameters, we refined these pa-
rameters based on numerous simulations of the model
such that the simulations were consistent with theory
and SEM findings.
Parameters that represent the transient time re-

sponse of each inventory and flow were also specified.
Time constants for each inventory τ1,…,τ6 represent
the capacity of the inventory and allow for exponential
decay (or growth) of the inventory to accommodate
various learning curves. Time delays (θ1,…,θ19) for
each flow signal are used. Unmeasured disturbances
(which may reflect unmodeled dynamics) are also rep-
resented as ζ1,…,ζ6. As with the resistance parameters
above, in the absence of direct empirical data for
specifying these parameters, we set and iterated these
parameters via simulations until the model functioned
as per theory and empirical data regarding SCT, but all
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of these parameters should be considered as prelimi-
nary hypotheses that require testing and refinement.
In the process of specifying the parameters, we
established mathematical relationships such that the
sum of all the inflows (increases) minus all the outflows
(reductions) for each inventory balance out and results
in an accumulationwith the rate controlled by the time
constant τ times the rate of change (derivative) in the
level of the inventory. The differential equations de-
scribing the dynamics of the state variables
(inventories) are as follows:

τ1
dη1

d t
¼ γ11ξ1 t−θ1ð Þ þ β14η4 t−θ16ð Þ−η1 tð Þ

þ ζ1 tð Þ ð1Þ

τ2
dη2

d t
¼ γ22ξ2 t−θ4ð Þ þ β21η1 t−θ2ð Þ

þ β25η5 t−θ14ð Þ−η2 tð Þ þ ζ2 tð Þ ð2Þ

τ3
dη3

d t
¼ γ32ξ2 t−θ5ð Þ þ γ33ξ3 t−θ7ð Þ−γ35ξ5 t−θ9ð Þ

þ γ36ξ6 t−θ10ð Þ þ β31η1 t−θ3ð Þ þ β34η4 t−θ13ð Þ

− t−θ13ð Þ−η3 tð Þ þ ζ3 tð Þ

ð3Þ

τ4
dη4

d t
¼ β42η2 t−θ6ð Þ þ β43η3 t−θ8ð Þ

þ β45η5 t−θ19ð Þ þ β46η6 t−θ17ð Þ−η4 tð Þ

þ ζ4 tð Þ

ð4Þ

τ5
dη5

d t
¼ γ57ξ7 t−θ15ð Þ þ β54η4 t−θ12ð Þ−η5 tð Þ

þ ζ5 tð Þ

ð5Þ

τ6
dη6

d t
¼ γ64ξ4 t−θ11ð Þ þ γ68ξ8 t−θ18ð Þ−η6 tð Þ

þ ζ6 tð Þ ð6Þ

Although this initial model is a series of first-order
linear differential equations, higher-order differential
equations may need to be developed to capture under-
damped (i.e., oscillatory) dynamics and forms of auto-
regulation in each inventory. This is further explained
in Navarro-Barrientos, Rivera, and Collins [16].
Derivation of a statistical model of SCT—In prior work,

Rivera and colleagues [16] utilized path diagrams from
the theory of planned behavior (TPB) to construct a
dynamical system model and fluid analogy diagram.
Since one of the purposes of this project was also to
provide a more complete graphical schematic of SCT
for statistical modeling, we worked in reverse and used
the developed control systems model to generate a

path diagram. Figure 3 represents the resulting system
of differential equations depicted as a path diagram for
those interested in statistical modeling efforts based on
this more complete schematic model of SCT.

MODEL SIMULATION OF SCTMODEL APPLIED TO PHYSICAL

ACTIVITY

To illustrate the utility of the model, a few of the many
scenarios considered in refining this model are
depicted showing the dynamic response of the system
to different input variations. For illustrative purposes,
the inputs are assumed normalizedwith a range from 0
to 10. The variables were arbitrarily scaled to have
values in the range from 0 to 100. Any change in this
assumption (i.e., a different metric for expressing the
results of a self-reportmeasure) would be compensated
for by the scaling parameters (γ).
For the simulations, unmeasured disturbances

(ζi) were considered Gaussian:

ζi kð ÞeN 0;σi
2

� �
with σi

2 ¼ 0 : 01; i ¼ 1;…; 6

Gaussian distributions are commonly assumed to
describe random measurement errors, incorporating
the definition of finite means and standard deviations.
This assumption is a common starting point for signal
analysis that can be later improved or refined as re-
quired. Two inputs, intrapersonal states (ξ6) and envi-
ronmental context (ξ7 ) were generated as
autoregressive signals computed as:

ξn kð Þ ¼ ϕnξn k−1ð Þ þ an kð Þ; an kð ÞeN 0; σn
2

� �
; n ¼ 6; 7

& For scenario 1: ϕ6=0.6, ϕ7=0.8, σ6
2=σ7

2=100.
& For scenarios 2 and 3: ϕ6=0.6, ϕ7=0.8, σ6

2=0.25,
σ7

2=2.25.

The first scenario, depicted in Fig. 4, is generated
both from theory and empirical data showing that
increases in self-efficacy produce increases in behavior.
Given partial correlations from SEM studies, both
direct and indirect, of approximately 0.5 between
self-efficacy and behavior [e.g., 10], we assumed for
the simulation that 25 % of the variance in behavior
should be due to self-efficacy changes. The simulation
shown in Fig. 4 shows how changes in social persua-
sion and observational learning, as one might antici-
pate would occur from an intervention, results in a
change in self-efficacy and a subsequent lagged and
attenuated change in behavior that is consistent with
25 % of the variance in behavior accounted for by
changes in self-efficacy. Additionally, outcome expec-
tancy also increases, albeit modestly, as self-efficacy
increases, consistent with the modest partial correla-
tions observed in SEM trials between self-efficacy and
outcome expectancy [11]. This dynamical system
model of SCT does not posit a direct relationship
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between self-efficacy and outcome expectancies, but
instead posits that outcome expectancy is influenced
indirectly by the effects of self-efficacy on behavior and
subsequently on behavioral outcomes. This is in con-
trast to the conceptual schematic of SCT described by
Bandura [29], but we believe that it is more consistent
with the principle of reciprocal determinism to postu-
late that the influence of self-efficacy on outcome ex-
pectancies is indirect and mediated by behavioral
outcomes.
In addition to simulating how changes in self-

efficacy affected changes in the other inventories in
the model to compare to SEM results, we ran numer-
ous additional simulations to ensure that the model
performed as expected as various inputs were manip-
ulated. Although describing all of these additional
simulations is beyond the scope of this paper (see
http://csel.asu.edu/SCT for additional simulations),
we report two additional simulations below involving
the effects of a change in cue to action on the model in
the context of either low or high self-efficacy. To
simulate low self-efficacy, we held skills training
(ξ1=3), observed behavior (ξ2=5), and perceived
social support (ξ3=5) at a constant low level. Per-
ceived barriers were maintained at a higher value
(ξ5=10). Within this context, the input of internal
cues are simulated to occur beginning at day 10
(ξ4=5) and ending at day 12 (see Fig. 5). The
result of the applied signals on the inventories

is a small increase of behavior that subsides when
the cue to action is subsequently depleted.
Figure 6 illustrates a similar activity for cue to action

at day 10 but within the context of high self-efficacy.
Skills training, observed behavior, and perceived so-
cial support are kept at high levels (ξ1=10, ξ2=10,
ξ3=10) and perceived barriers are decreased to a low
level (ξ5=2). The result is a considerable increase of the
behavior inventory. In both scenarios, variations in the
other inventories (self-management skills, outcome
expectancy, and behavioral outcomes) can be
observed resulting from the three feedback loops
in the system. The simulations represented in Figs. 5
and 6 represent the role of self-efficacy in attenuating
the impact of a cue to action on behavior. The model
behaves consistent with theory with weaker ef-
fects of cues under conditions of low self-
efficacy and stronger effects under conditions of
high self-efficacy.

DISCUSSION AND IMPLICATIONS

Although the predominantly narrative nature of SCT
and the lack of specificity for some of the interrelations
between constructs, especially over time, presented
challenges in determining how best to represent SCT
from a dynamic systems perspective, social cognitive
theory (SCT) is inherently a dynamical system that is

Fig. 3 | Path diagram of SCT based on fluid analogy in Fig. 1
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amenable to representation as a computational dy-
namicmodel. Despite its prominence as the theoretical
basis for many health behavior interventions, the pro-
cess of generating and simulating this model highlight-
ed the lack of precision in the theoretical description of
the relations among SCT constructs. First, while some
relations are clearly articulated in current theory (e.g.,
self-efficacy increases the likelihood of engaging in the
behavior), other relationships are less clear (e.g., do
self-management skills influence self-efficacy and/or
vice versa, and is this association direct or indirect
via the influence of self-efficacy on behavior?). Second,
while SCT describes the presence and direction of the
relations between constructs, it does not specify the
magnitude or nature of these relations, at least not
sufficiently to guide the generation of initial differential
equations for a dynamic system model without con-
siderable extrapolation from the theory. Third, like
most other health behavior theories, SCTwas devised
primarily to explain the differences between individ-
uals, but not necessarily changes within individuals
over time [44]; therefore, SCT provides little guidance
on the time lagged effects of one construct on another
or if these effects are linear (remain constant over time)
or nonlinear (vary over time). Clearly, one advantage

of subjecting any health behavior theory to computa-
tional dynamic modeling is that the process results in
an improvement in theoretical specificity and oppor-
tunities to postulate intervention strategies that target
this within-person process more explicitly.
It is important to note that the additional theoretical

specificity required to create this model was based on
the authors’ understanding and interpretation of SCT.
While we strove to be consistent with the theory and
existing data on SCT construct relationships, some of
the specificity in this model was based not on explicitly
stated SCT hypotheses but on what the theory, or its
precursors, might lead one to hypothesize. Adhering
to SEM analyses of SCT to specify the model also was
challenging, especially since we believe the Bandura
schematic [29] was a simplified and thus an incomplete
conceptual schematic of SCT. The SEM studies
reviewed measured only a subset of SCT constructs,
found different associations and magnitudes of associ-
ation, and were often generated from cross-sectional,
not longitudinal data. For example, SEMs that includ-
ed both self-efficacy and outcome expectancies typi-
cally found a small to moderate potential influence of
self-efficacy on outcome expectancies [10, 11], but for
system modeling of intensive longitudinal data over

Fig. 4 | Simulated scenario of changing self-efficacy inputs and effects on behavior
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time, it seemed more plausible that this influence of
self-efficacy on outcome expectancies was not direct or
immediate but instead the result of self-efficacy
resulting in increased likelihood of engaging in the
behavior and more positive behavioral outcomes that
subsequently influenced outcome expectancies. This
example is but one of a number of ways in which this
influence, and other SCT influences identified by the-
ory and SEM studies, could be modeled as a dynam-
ical system. The intent of this effort was not to produce
the definitive dynamical system model of SCT but
instead to propose an initial model that could serve
as a roadmap for further testing and revision of
the model.
The process of developing a fluid analogy system

model for SCT and testing this model via a variety of
simulations led to some key insights that require fur-
ther study. First, SCT posits that self-efficacy and

behavior form a positive feedback loop which suggests
that, over time, self-efficacy should move toward the
extremes, all other factors being equal. Consequently,
self-efficacy assessed over time should be represented
by a bimodal distribution, but self-efficacy scores are
typically normally distributed [45]. This suggests that
the other inputs into self-efficacy have a greater influ-
ence than the positive feedback loop from behavior,
that the distribution within an individual over time is
different from the distribution across individuals, and/
or that self-efficacy is more stable and less influenced
by behavior than the theory suggests.
The simulations described in this paper illustrate the

potential impact of manipulating various inputs (e.g.,
observational learning) to target specific theoretical
mechanisms (e.g., self-efficacy) to change behavior
and the attenuated impacts that might be expected as
these manipulations flow through the model. This

Fig. 5 | Simulated scenario of cue to action under low self-efficacy condition
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illustrates an important advantage of dynamical sys-
temmodeling of SCTor other behavioral theories that
such a model allows interventionists to simulate the
impact of an intervention that targets specific inputs,
including the intensity and duration of intervention
dose needed to produce the desired outcome. Similar
implications, as well as practical steps utilizing compu-
tational modeling to advance health behavior theories
and interventions, were described recently by the In-
ternational Workshop on New Computationally-
Enabled Theoretical Models to Support Health Be-
havior Change and Maintenance [46].
While simulations provide useful iterative feedback

on how the model performs on various scenarios,
testing the model with actual data is a critical next step.
As noted earlier, measurement technologies are ad-
vancing rapidly and provide the intensive longitudinal
data on behavior and predictors of behavior needed to

test and revise these models and the theories they
represent. SCT, like many health behavior models,
represent a large number of constructs that need to
be measured regularly over time to test the full model.
Therefore, it may be prudent to test components of the
model when data on all components of the model are
not available. It also may be useful to start from an
historical perspective of SCT and model some of the
primary learning processes (e.g., stimulus control, re-
inforcement, extinction) that have considerable
laboratory-based data that can be utilized, and then
expand to model social learning processes (e.g., vicar-
ious or observational learning) followed by an expan-
sion to SCTcognitive constructs as needed to improve
the model. Modeling these primary learning processes
on which SCT is based also better integrates this work
with similar modeling efforts in behavioral neurosci-
ence [e.g., 47]. While models are intended to simplify

Fig. 6 | Simulation scenario of cue to action under high self-efficacy condition
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complex systems and although we chose to represent
some complex subsystems as single inputs in this
model, the result of this effort to provide a complete
dynamic model of SCT resulted in a rather complex
model. Only by testing various components of the
model with actual data will we be able to determine
if this complexity is necessary or if the model can be
further simplified and streamlined.We believe that this
model provides a reasonable starting point for testing
various aspects of SCT and that representing SCTas a
control system offers a computational robustness and
rigor that is critically needed for health behavior the-
ory testing and intervention development.
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