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Abstract

This progress report describes the development of a front tracking method for the
solution of the governing equations of motion for two-phase micromixing of incom-
pressible, viscous, liquid-liquid solvent extraction processes. The ability to compute
the detailed local interfacial structure of the mixture allows characterization of the sta-
tistical properties of the two-phase mixture in terms of droplets, filaments, and other
structures which emerge as a dispersed phase embedded into a continuous phase.
Such a statistical picture provides the information needed for building a consistent
coarsened model applicable to the entire mixing device. Coarsening is an undertaking
for a future mathematical development and is outside the scope of the present work.

We present here a method for accurate simulation of the micromixing dynamics
of an aqueous and an organic phase exposed to intense centrifugal force and shearing
stress. The onset of mixing is the result of the combination of the classical Rayleigh-
Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a
sector of the annular mixing zone of a centrifugal contactor is used for the mathe-
matical domain. The domain is small enough to allow for resolution of the individual
interfacial structures and large enough to allow for an analysis of their statistical
distribution of sizes and shapes.

A set of accurate algorithms for this application requires an advanced front track-
ing approach constrained by the incompressibility condition. This research is aimed
at designing and implementing these algorithms. We demonstrate verification and
convergence results for one-phase and unmixed, two-phase flows. In addition we
report on preliminary results for mixed, two-phase flow for realistic operating flow
parameters.
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Front Tracking for Micromixing in Solvent Extraction 1

1 Introduction

Mixing of multiple phases, as a problem in computational continuum physics, has
both practical and basic scientific interest. We consider here two-phase mixtures
of immiscible, incompressible, viscous liquids with non-vanishing interfacial tension.
The main purpose of this report is to specify the computational framework we apply
for the associated fluid flow problem, and to demonstrate verification and validation
results.

A variety of methods have been proposed for solving the equations of motion for
two-phase fluid flow, which generally are second-order accurate in space over the the
smooth regions of the flow, i.e., away from the interface between the phases. In
contrast, the interfacial discontinuity is a challenge for preserving consistent second-
order accuracy. The algorithm proposed here is second-order accurate in some of its
substeps but first-order near the interfacial region.

In solvent extraction, two immiscible liquids are put in intimate contact and vigor-
ously agitated. We are interested in the combined use of centrifugal and shear forces
for mixing two incompressible liquid phases. An initially stationary interface between
the phases can be greatly stretched as the fluids are mixed by these two forces.

It is unknown, both experimentally and theoretically, to what extent the specific

interfacial area varies with physical properties and force strength.

The present work is aimed at shedding light into basic questions of the dynamic of
mixing in this system, such as: what parameters regulate phase connectivity? What
is the fully developed regime, if any? How extensive can the interfacial area be? Can
volume fraction be preserved? These and other questions can only be entertained
with a powerful simulation capability able to investigate the microflow length and
time scales. This work is a step toward developing this capability.

In this report various efforts are organized in a progressive fashion. In Section 2,
the mathematical problem is described. Section 3 presents a review of possible solu-
tion methods and a description of the algorithm proposed here, that is, a combination
of the Front Tracking and Immersed Boundary methods. In Section 4, convergence
and order of accuracy for our method are demonstrated for one-phase flows in both
Cartesian and cylindrical coordinates. In Section 5, we focus on a one-phase version
of a related problem, namely the Taylor-Couette flow in a high speed, turbulent flow
regime. Accuracy and convergence specific to this flow and its geometry is considered
by way of calculations of the transition from laminar flow to Taylor-Couette vortices.
In addition, growth rates of perturbations slightly above the critical Taylor number
are presented. Section 6 demonstrates verification of solutions for laminar two-phase
flows. Section 7 presents a preliminary study of two-phase Couette mixing flow in a
turbulent regime for an annular sector. The detailed equations used and overall code
programming structure are presented in the Appendix subsections.
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2 Discontinuous equations of motion

The incompressible Navier-Stokes equations (NSE) for a homogeneous, Newtonian
fluid phase (α) describe a relationship between the velocity vα(xα, t) and the hy-
drodynamic pressure pα(xα, t) fields at any spatial point xα in the bulk of a three-
dimensional, bounded domain Ωα(t) occupied by the fluid phase at the instant t,
namely

ρα ∂tvα + ρα divx(vα ⊗ vα) = divx T α + bα in Ωα(t), and (2.1a)

divx vα = 0 in Ωα(t), (2.1b)

where T α(xα, t) is the Cauchy stress tensor and bα(xα, t) is the body force on the fluid
evaluated at xα ∈ Ωα(t). A fluid with homogeneous Newtonian behavior is character-
ized by its constitutive equation for the stress T α(xα, t) := −pαI+µα

(
∇x vα+∇x v

T
α

)
.

Equation (2.1b) is the reduced form of the principle of mass conservation for an iso-
choric flow. Equation (2.1a) is the momentum balance for the fluid when incompress-
ibility holds. In a two-phase system, another set of equations similar to (2.1) are
needed for the β phase where the immiscibility condition prompts Ωα ∩ Ωβ = ∅.

The mass density ρα and the dynamic viscosity µα are constants provided by
experimental measurements. The typical body force is the result of the gravitational
acceleration on the mass of the phase.

When two immiscible fluid phases (α and β) are put into contact, an inhomoge-
neous, three-dimensional, interfacial region between the two fluids is formed. A clas-
sical continuum approximation of this region is made by the Gibbs’ dividing surface,
i.e., the region is approximated by a mathematical surface S(t) = CloΩα ∩ CloΩβ,
that is, the intersection of the closure of the domains occupied by the fluid phases.
This is a justified approximation for the application of this work where water is in
contact with an organic liquid (in this case a mixture of dodecane and tri-n-butyl-
phosphate) and the thickness of the interfacial region is predicted to be on the order
of 1 nm (Ye et al., 2010).

The equations (2.1) hold for each fluid phase up to the interfacial surface where a
discontinuity in mass density ρ and dynamic viscosity µ exists (ρα 6= ρβ and µα 6= µβ).
The intrinsic motion of the interface is governed by a momentum and mass balance
on S, also referred to as pointwise jump conditions, respectively

divS T+ JT · nK = 0 on S(t), and (2.2a)

J
(
v − ẋ

)
· nK = 0 on S(t), (2.2b)

where these equations hold for the particular case of no mass transport between
phases, and in the absence of any mass density excess associated to the interface. If
these two conditions do not hold, then (2.2) are incomplete. The tangential surface

Oak Ridge National Laboratory Technical Report ORNL/TM-2012/28 — pp. 1–55



Front Tracking for Micromixing in Solvent Extraction 3

stress tensor, T, defines the interfacial state of stress while the interface velocity
is denoted by ẋ. The notation J·K represents the jump across the interface of the
quantity inside the brackets, that is, J·K := (·)α − (·)β with n denoting the local unit
normal vector on S pointing into α, that is, n := n−→

βα
.

Therefore, these bracket terms couple the intrinsic motion of the interface with
the neighboring phases. An interface with no intrinsic viscosity can be described
by a constitutive stress restriction of the form, T := σI with a constant interfacial
tension σ. Therefore in (2.2a), the surface divergence of the interfacial stress tensor
for an inviscid interface results in the familiar surface curvature term

divS(σI) = 2Hσn,

where H is the local mean curvature of S.
Modulo initial and boundary conditions, the governing equations (2.1) as applied

within each continuous, homogeneous phase, coupled with the interfacial balances
(2.2), describe the motion of immiscible, viscous phases in intimate contact by virtue
of their interfaces. The rigorous derivation of the governing equations for the motion
of fluid phases in contact through a Newtonian interface was first made by Scriven
(1960) in the so called Eulerian form.

A comment on (2.2b) is in order. Note that only the jump in the normal compo-
nent of the velocity of the fluid relative to the interface surface velocity must vanish.
This enforces no mass transfer between the phases and allows for slip of one phase past
another, that is, the tangential component of the relative velocity is not constrained.
This may be of significance when the fluids are non-Newtonian, high-molecular-weight
polymers. If there exists slip between phases, an additional model of this phenomenon
must be proposed. Therefore if no slip exists, (2.2b) should be replaced by

J
(
v − ẋ

)
K = 0 on S(t),

which incorporates the continuity of the phase velocities vα and vβ on S.
Calculation of the three-dimensional, time evolution of S and the accompanying

fields, vα,vβ, pα, pβ, and ẋ, is a formidable computational task in systems involving
vigorous mixing. Here the topological changes subjected by S, lead to a dispersion
with many filaments, drops, and other disconnected surface elements and phase sub-
regions as it is typically visualized in flow mixing experiments. Hence S could be a
highly disconnected set. A central computational difficulty is how to apply the inter-
facial momentum balance (2.2a) on S, while resolving topological transitions which
often lead to the formation of contact points, lines, surfaces, and cusps. This difficulty
is exacerbated when three-dimensional vigorous mixing is present.

In order to make (2.1)–(2.2) tractable computationally, an approximation is intro-
duced by considering the mass density and dynamic viscosity as varying in time and

Oak Ridge National Laboratory Technical Report ORNL/TM-2012/28 — pp. 1–55
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space across the union of the domains occupied by the phases, while the divergence
of the interfacial stress term is incorporated in the momentum balance as a source
term in a distribution sense. This approximation is elaborated next and comments
are made on the associated adverse effects.

2.1 Reformulated equations of motion

The interfacial equations (2.2) can be absorbed into (2.1) to obtain equations defined
over an entire fixed domain, Ω := Ωα(t)∪Ωβ(t), by prescribing a variable mass density
and dynamic viscosity in space and time so that a fluid phase is identified by the value
of these quantities on each side of the surface S(t). Hence

ρ ∂tv + ρ divx(v ⊗ v) = divx T + b+ f in Ω, and (2.3a)

divx v = 0 in Ω, (2.3b)

where

ρ(x, t) :=

{
ρα ∀ x ∈ Ωα(t),

ρβ ∀ x ∈ Ωβ(t),
v(x, t) :=





vα ∀ x ∈ CloΩα(t),

vβ ∀ x ∈ CloΩβ(t),

ẋ = vα = vβ ∀ x ∈ S(t),

(2.4a)

T (x, t) :=

{
T α ∀ x ∈ Ωα(t),

T β ∀ x ∈ Ωβ(t),
b(x, t) :=

{
bα ∀ x ∈ Ωα(t),

bβ ∀ x ∈ Ωβ(t),
(2.4b)

and

f(x, t) :=

∫

Ω(t)

divS(σI) δ(x− xS) ds. (2.5)

The apparent appeal of this reformulation is that the equations of change, specified
on Ω, are reduced in number. In addition, it provides a easier way to reason about
how to develop approximate solution strategies based on classical partial differential
equations defined on a fixed domain. Therefore conventional solution methods based
on the partition of fixed domains (meshing) can be designed, in principle. The basic
idea is to solve the problem on a fixed domain with an embedded, moving surface
S(t) wherein the source force f is applied. This can be done in two different ways,
namely, the interface can be either explicitly tracked or implicitly captured (sec. 3).

The proof that (2.3)–(2.5) is a valid mathematical statement of equivalence to
(2.1)–(2.2) hinges in the definition of the continuous velocity field in (2.4), and the
source force (2.5). In the latter, the convolution of the interfacial stress divergence
with a delta function centered on S, applies a force impulse on the interface which
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reproduces the jump condition (2.2a). Hence, f(x, t) = 0 ∀ x /∈ S(t). Note that the
traction jump in (2.2a), that is, JT ·nK, is taken into account via the definition of the
discontinuous Cauchy stress tensor in (2.4) and (2.3a) and in a weak sense.

In summary, problem (2.3)–(2.5) is an equivalent statement of the discontinu-
ous equations of motion presented in the previous section. However, there exists an
obvious difficulty when building any numerical solution scheme based on the above
equations, namely, evaluating (2.5) with sufficient accuracy. In practical computa-
tions, a variety of ways exist for approximating this integral and for defining S. The
particular case wherein a fixed domain is swept by S, produces numerical artifacts
called spurious currents which are artificial flow recirculations near the interface due to
insufficient accuracy when balancing pressure gradients and interfacial tension (Jamet
et al., 2002; Popinet and Zaleski, 1999; Scardovelli and Zaleski, 1999). The adverse
effects range from uncontrollable instabilities to difficulties in accurately computing
gradients near the interface. In dispersed mixing flows, this can be a significant
drawback since it limits the calculation of volume fraction and interfacial area in the
long-time regimes.

2.2 Continuous approximation of the equations of motion

Most numerical solution methods for (2.3)–(2.5) replace the original discontinuous
interface model by a continuous approximation. This entails proposing a particular
form of continuous fields for ρ, µ, b, and a volume integral approximate for the source
force f area integral. To achieve this objective, the balance equations become

ρ ∂tv + ρ divx(v ⊗ v) = divx T + b+ f in Ω, and (2.6a)

divx v = 0 in Ω, (2.6b)

where

ρ(x, t) :=





ρα ∀ x ∈ Ωα(t) | (x− xS) · n > ε,

ρβ ∀ x ∈ Ωβ(t) | (x− xS) · n < ε,

ϕρ(ρα, ρβ,x) ∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε,

(2.7a)

µ(x, t) :=





µα ∀ x ∈ Ωα(t) | (x− xS) · n > ε,

µβ ∀ x ∈ Ωβ(t) | (x− xS) · n < ε,

ϕµ(µα, µβ,x) ∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε,

(2.7b)

Oak Ridge National Laboratory Technical Report ORNL/TM-2012/28 — pp. 1–55



6 Zhou, Ray, Lim, Wang, de Almeida, Glimm, Li, and Jiao

b(x, t) :=





bα ∀ x ∈ Ωα(t) | (x− xS) · n > ε,

bβ ∀ x ∈ Ωβ(t) | (x− xS) · n < ε,

ϕ
b
(bα, bβ,x) ∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε.

(2.7c)

v(x, t) :=





vα ∀ x ∈ CloΩα(t),

vβ ∀ x ∈ CloΩβ(t),

ẋ = vα = vβ ∀ x ∈ S(t),

(2.7d)

All continuous fields in (2.7), with the exception of the velocity field, interpolate the
value of the field in the bulk of the β phase to the α phase within a thin region of
thickness ε > 0. If x is a point near S, xS is the point on S colinear to x along n(xS),
thus (x− xS) · n =

∥∥x− xS

∥∥ ∀ x. The interpolants ϕρ, ϕµ, and ϕb are constructed
from an analytical function within the interpolation region around S.

The accuracy of this continuum approximation depends on the preservation of the
incompressibility of the fluid and its dynamical viscosity in the region of thickness ε.
From mass conservation in the thin region around the interface one obtains

divx v = −
Dt ϕρ

ϕρ

∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε, (2.8)

where Dt(·) is the material time derivative. Therefore in view of (2.6b) a sufficient
condition for maintaining incompressibility in the thin region around the interface is
to build the interpolant ϕρ(·) such that Dt ϕρ = 0 on all points in the interpolation
region, that is,

∂tϕρ +∇x ϕρ · v = 0 ∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε (2.9)

for all times.
Note that the flow is isochoric everywhere but it does not imply incompressibility

of the fluid in the thin region near the interface unless the interpolant ϕρ is compatible
through (2.9). An argument similar to (2.9) must hold for the dynamic viscosity field
wherein the material derivative must vanish to recover the original constant value.
That is, ϕµ should be build with the condition that Dt ϕµ = 0 for all points in the
interpolation interfacial region, hence

∂tϕµ +∇x ϕµ · v = 0 ∀ x ∈ Ω | −ε ≤ (x− xS) · n ≤ ε. (2.10)

The interpolant for the body force ϕb can be obtained from ϕρ for the typical gravi-
tational force.

The interpolants ϕρ and ϕµ are called compatible if they satisfy (2.9) and (2.10)
for all times.

Oak Ridge National Laboratory Technical Report ORNL/TM-2012/28 — pp. 1–55
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The continuous approximation (2.6)–(2.7) induces a segregated solution approach
for evolving the explicit representation of the interface S(t0) given at a particular
instant in time, t0. The equations are solved for v(x, t0) and p(x, t0) using a previous
value for the mass density, dynamic viscosity, body force, interfacial force, and velocity
fields; in addition to boundary conditions. Once the new velocity and pressure fields
are computed, the interface is updated according to

dtxS = v
(
xS , t0

)
∀ xS ∈ S(t0). (2.11)

The new locus of S(t1) produces the fields ρ(x, t1), µ(x, t1), b(x, t1), and f(x, t1) by
virtue of (2.7) and (2.5) which can be used, in the next iteration, to solve for the new
velocity and pressure fields at the new time instant t1.

There are various ways to proceed with the interface update (2.11) which requires
extensive geometric operations. The next sections elaborate on existing approaches
and the current method we are developing.

3 Approximate solution methods

This section elaborates on some details of the numerical algorithms used in our
method to solve the approximation described in Section 2.2. As stated earlier, the ap-
proach uses an explicit time evolution of the interface sweeping the domain occupied
by the fluid phases. The approach consists of a loop over two main tasks:

• Calculation of the velocity and pressure fields in a fixed domain with given
continuous mass density, viscosity fields, and interfacial momentum source.

• Update of the position of the interface with the newly computed interfacial
velocity field, and update of the mass density and dynamic viscosity fields.

The first task entails the standard calculation of the solution of the Navier-Stokes
equations with variable mass density, dynamic viscosity, interfacial force, and body
force fields. These fields only vary appreciably near the interface. However accounting
of this variation is critical for the correct evolution of the interface. The description
of this first step is the subject of Section 3.1

The second task consists of an explicit time-step for advancing the position of the
interface. This is a complex task when using a front-tracking method to represent and
evolve a mathematical surface. This task must accommodate various algorithms for
reconstructing the interface as it evolves and changes its topology. The description
of this task is presented in the remaining subsections.
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3.1 Solution of the equations of motions on a fixed domain

Various numerical methods can be used effectively to solve the continuous equations
(2.6)–(2.7) for fixed Ωα(t0) and Ωβ(t0). If initial values for the fields ρ(x, t0), µ(x, t0),
f(x, t0), and b(x, t0) are given, and initial and boundary conditions for v(x, t0) ap-
plied, an approximate solution can be computed for v(x, t1) and p(x, t1) by solving
(2.6) on the fixed phase domains.

In this work we applied a projection method with a fractional step using an inter-
mediate velocity. Since the pioneering work of Chorin (1968, 1969), many high-order
projection methods were derived by Bell et al. (1989, 1991), Kim and Moin (1985), and
Kan (1986). All projection methods have three steps: First, one obtains an intermedi-
ate velocity field v∗ by solving a convection-diffusion equation with proper boundary
conditions. Then a (Hodge) projection is performed to enforce the divergence-free
condition (incompressibility) for the velocity field. This step is implemented by solv-
ing an elliptic equation. Lastly, the pressure is updated via a Poisson equation (Brown
et al., 2001). Additional information is provided later in this report in Section 3.4.

3.2 Numerical description of fluid interfaces

Many methods have been proposed to represent and evolve an interface between
two immiscible fluids. Of these, the volume of fluid (VOF), the level set, and front-
tracking methods are the most popular. A complete review is beyond the scope of this
report. Readers are referred to the papers of Hirt and Nichols (1981), Sethian (1996),
Glimm et al. (1998a, 2000), Tryggvason et al. (2001), Scardovelli and Zaleski (1999).
When compared to the front capturing methods (VOF and level set), front tracking
preserves a more accurate interface representation with less numerical dissipation.
In addition, the implicit methods suffer from the drawback that they are unable to
capture interface details near or below the resolution of the underlying grid. For those
physics problems such as fluid mixing which needs an accurate representation of the
interface, front tracking is a better choice in our opinion. A comparison of these three
methods (Du et al., 2006) concluded that the front tracking to be more accurate and
faster to converge for a number of benchmark problems.

We use front tracking methods to simulate multiphase flows, based on the front
tracking code FronTier. This is a robust library for the geometrical manipulation of
a mathematical surface coupled with multiple partial differential equations. It has
been employed in a variety of multiphase simulations (Du et al., 2006; Glimm et al.,
1998b, 2000) for problems dominated by a geometrically complex dynamic interface.
For example, extensive simulation studies of the Rayleigh-Taylor instability (Lim
et al., 2010; Liu et al., 2006, 2007) delivered agreement with experiments in the
overall growth rate as defined by the mixing growth parameter.
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The FronTier package provides algorithms for geometric construction and recon-
struction of a surface embedded in the surrounding three-dimensional space. Surface
normal, curvature, area, enclosed volume, and statistical information of disconnected
surfaces are calculated robustly with higher order accuracy. These geometric opera-
tions are necessary for enabling the evolution of fluid interfaces in practical simula-
tions.

Topological bifurcations of an interface occur frequently in many applications
and require special front tracking methods. Our FronTier package uses a triangular
representation of a surface. That is, a three-dimensional triangular surface mesh is
used. Triangles on the interface must be allowed to reconnect with each other after
crossing when dynamically convected by the surrounding fluid flow. Three methods
are implemented in FronTier to handle topological transitions. The grid free method
(GF) (Glimm et al., 1998b) is accurate but is prone to logical errors. A grid based
method (GB) (Glimm et al., 2000) is robust but suffers from excessive interpolation
and smoothing errors. The most advanced, the locally grid-based (LGB) method
(Du et al., 2006), combines the advantages of the GF and GB methods. It identifies
degenerated triangles on the propagated surface, isolates them, and preserves the
intersections of the surface with the grid cell edges to allow for a GB reconstruction
locally near the defective region. Triangles neighboring this region are removed giving
rise to a gap between the pristine interface and the reconstructed part. The major
geometry task is to re-seal this gap.

We recently (Bo et al., 2011) improved the LGB reconstruction. The essential
feature of the improvement is to reduce the size of the GB region, which previously was
the smallest rectangular solid containing a tangled set; and in the case of overlaps, the
smallest rectangular solid containing the overlap, etc. In order to keep the triangular
mesh topologically valid, we impose two constraints on the triangular mesh: (1) an
edge of a triangle connects with at most one triangle; (2) an non-boundary vertex has
only one associated list of triangles formed by linking successively adjacent triangles.

To parallelize the improved LGB algorithm we construct ghost cells, typically a
few layers thick, so that after ghost cell communications, each processor utilizes only
local information to reconstruct the interface contained within its local cells. If the
span of the tangling is too large for the ghost cells, we collect the cells containing the
tangled region onto one processor for resolution. Because such situations occur very
rarely, this fall back strategy does not affect the efficiency.

3.3 Brief survey of methods for fluid flows with interfaces

In recent decades, a large effort has been devoted to interface-resolving methods
for the solution of the multiphase, incompressible Navier-Stokes equations. The Im-
mersed Boundary Method (IB), Immersed Interface Method (IIM), Embedded Bound-
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ary Method (EBM) and the Ghost Fluid Method (GFM) are the most popular meth-
ods for solving this class of fluid flow problems.

The IB method, introduced by Peskin (1977) to model blood flow in a human
heart, uses a discrete delta function to spread the singular force on the interface to
a Cartesian grid by means of a numerical width multiple of the grid spacing. This
approach was extended (Unverdi and Tryggvason, 1992) to treat three-dimensional,
multi-phase incompressible fluid flows including complex topological changes. Suss-
man et al. (1994) replaced the front tracking description of the interface (Unverdi
and Tryggvason, 1992) with a level set description (see review articles in Mittal and
Iaccarino, 2005; Peskin, 2002).

The IB method has been successfully applied to many fluid and biological prob-
lems. It is first-order due to the smoothing of the interface. The numerical solution
is continuous at the interface even if the actual interface conditions imply that the
solution should be discontinuous.

The IIM, introduced by LeVeque and Li (1994), uses a regular Cartesian grid with
an interface represented by marker points. Instead of using a discrete delta functions
and/or Heaviside functions, the velocity and pressure jump conditions at the interface
are preserved and coupled into the finite difference scheme resulting in a high-order
numerical method. This method was initially implemented in one-dimensional and
two-dimensional elliptic equations with discontinuous coefficients and singular source
terms. The IIM was then generalized to many types of equations with jump conditions
at the interface, and a review of this body of work is found elsewhere (Li and Ito,
2006; Li, 2003).

Recently (Tan et al., 2008, 2009) the IIM was generalized to apply to the in-
compressible Navier-Stokes equation with discontinuous viscosity, using the jump
conditions of Ito and Li (2006); Lai and Li (2001). However, the method does not
allow discontinuities in the density for the Navier-Stokes solutions. It is second-order
accurate in the absence of density discontinuities. With density discontinuities, which
must be smeared over some length scale, as in the IB method, the method is first-order
accurate. The IIM relies on a local coordinate system which is quite complicated and
whose generalization to three or more fluid phases appears to be difficult.

The GFM is a sharp interface method which preserves the jump conditions and
uses them to construct ghost fluid states for updating each phase independently.
As with the IB method, it is a first-order method but it differs from the IB in its
treatment of the interface. It was used for a Poisson’s equation (Liu et al., 2000) and
for a multi-phase incompressible flow (Kang et al., 2000).

The GFM could be used to treat three-dimensional, multi-phase incompressible
fluid flow, including the effect of viscosity, surface tension and gravity, eliminating the
numerical smearing prevalent in the discrete delta function formulation of the IBM.
The GFM is relatively simple to implement. The sharp interface allows complete
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physics including a discontinuous density. Unlike the IIM, it involves linear systems
with symmetric matrices of coefficients which can be solved by many fast solvers. The
GFM is only first-order accurate because of a simplification used in the jump condi-
tions when constructing the ghost states (details in Fedkiw et al., 1999; Terashima
and Tryggvason, 2009; Tryggvason et al., 2001).

The EBM uses a Cartesian grid as the computational domain with the irregular
boundary embedded in the grid. The states are calculated at grid cell centers even if
they are outside of the boundary. It is proved both theoretically and numerically that
this method is second-order accurate. The EBM was first introduced for a Poisson’s
equation on an irregular domain in Johansen and Colella (1998). It was general-
ized to parabolic equations with a moving boundary (McCorquodale et al., 2001),
three-dimensional elliptic and parabolic equations (Schwartz et al., 2006), hyperbolic
conservation laws (Colella et al., 2006), and compressible (Kupiainen and Sjogreen,
2009) and incompressible (Barad et al., 2009) single-phase, Navier-Stokes equations
on irregular domains.

The EBM was extended to a two-sided interface, as opposed to a one-sided bound-
ary (Wang et al., 2010), with application to two-phase flows. The EBM incorporates
the jump conditions for elliptic and parabolic equations with additional states de-
fined not only at the cell center, but also at the interface patch center, to yield a
second-order accurate algorithm for both the interface problem and for the irregular
boundary problem in a unified framework. It is also easily generalized to three or
more phases through additional jump conditions and states. The difficulty in obtain-
ing second-order accuracy, especially in the case of a large density discontinuity at
the interface, is associated with the projection step.

3.4 Front tracking with the immersed boundary method

We use the front tracking method referred in Section 3.2 combined with the IB method
referred in Section 3.3, similar to Unverdi and Tryggvason (1992). With the interface
represented by a triangular mesh, the interpolant (2.7) for mass density and viscosity
is built with the aid of a Heaviside function (Liu et al., 2000)

H(φ) =





0, φ < −ε,
1

2
+

φ

2ε
+

1

2π
sin

(
πφ

ε

)
, −ε ≤ φ ≤ ε,

1, φ > ε .

(3.1)
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where φ := (x−xS) ·n−→
βα

is the distance to the interface in the direction of the surface
normal. We compute the density and viscosity close to the interface as

ρ(φ) = ρβ + (ρα − ρβ)H(φ), (3.2)

µ(φ) = µβ + (µα − µβ)H(φ). (3.3)

For approximating the evaluation of the volume interfacial force (2.5) we use a
discrete delta function formulation defined in (Kim and Peskin, 2007). That is, for
each grid cell in Ω, Iijk, the interfacial force per unit of volume given by the IB method
at the cell center equals to

F ijk =
∑

l

D(xijk − x(l))f (l), (3.4)

where xijk and x(l) are the position of the grid cell center and the centroid of the front
triangular element with index l, respectively. The discrete delta function in (2.5) is
approximated by D(·), above, and

f (l) := 2H(l)σn(l)∆s(l) (3.5)

is the interfacial force on the lth interface triangle, H(l) is the mean curvature of the
interface at the centroid of the corresponding triangle, n(l) is the unit normal of the
triangle, and ∆s(l) is the surface area of the associated triangle.

Here the mean curvature for each triangle H(l) is the average of the mean curva-
tures on the three vertices which are calculated by a polynomial fitting given by Jiao
and Zha (2008) with a second-order accuracy. In the cylindrical coordinate system,
used for our tests and simulations, a coordinate transformation on the points positions
was made as an input to the algorithm (Jiao and Zha, 2008) that calculates the mean
curvature in Cartesian coordinates. As the transformation for point position is exact,
the order of accuracy for computing the mean curvature in cylindrical coordinates
was preserved.

Specificaly, in a rectangular Cartesian coordinate system, for each surface point
x0 on S, a local coordinate system u, v, w is established based on the approximated
unit normal n(x0) vector. The local coordinate system prompts the orthogonal trans-
formation matrix

Q :=
[
t1 t2 m

]

where t1 and t2 are the unit vectors, in the global coordinate system x, y, z, along
the positive direction of the u and v axes while m := t1 × t2 is the unit vector along
the positive w direction. In the local coordinate system, a set of points

{
(ui, vi,Wi)

}
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around x0 are generated via a polynomial interpolation from a Taylor series expansion
with degree of fitting d as

W ≈
d∑

p=0

j+k=p∑

j,k≥0

cjk
uj vk

j!k!
.

The coefficients cjk are solved for by evaluating W at the points Wi := W (ui, vi) and
creating a weighted least squares problem. A robust QR factorization with safeguard
is used to solve the problem and from the gradient and Hessian of W ,

∇W :=

(
Wu

Wv

)
, H :=

(
Wuu Wuv

Wvu Wvv

)
, (3.6)

respectively, the local unit normal n̂ and mean curvature H can be computed. The
normal unit vector in the global retangular Cartesian coordinate system is computed
by the transformation n = Q · n̂ while the mean curvature H is an invariant of the
curvature tensor therefore independent of the coordinate system.

For the cylindrical coordinate system used in this work, a set of points
{
(ri, θi, zi)

}

is selected around the point x0 := (r0, θ0, z0), and transformed into the x, y, z coordi-
nate system

xi = ri cos θi, yi = ri sin θi, zi = zi,

which are used as the input points for the polynomial fitting of W . Hence by trans-
forming the normal vector (nx, ny, nz), obtained from a high-order interpolation of
W, in cylindrical coordinates (nr, nθ, nz) via

nθ = −nx sin θ0 + ny cos θ0,

nr = nx cos θ0 + ny sin θ0, and

nz = nz,

the accuracy of the surface normal and mean curvature calculation is preserved.
In this work the particular discrete delta function used to compute the volumetric

interfacial force (3.4) has the following form

D(xijk − x(l)) =
δh
(xijk

1 −x
(l)
1

h1

)
δh
(xijk

2 −x
(l)
2

h2

)
δh
(xijk

3 −x
(l)
3

h3

)

V (Iijk)
(3.7)

where V (Iijk) is the volume of cell Iijk and the function δh is given by (Kim and
Peskin, 2007):

δh(r) =





3− 2|r|+
√

1 + 4|r| − 4r2

8
, if |r| < 1,

5− 2|r| −
√

−7 + 12|r| − 4r2

8
, if 1 6 |r| < 2,

0, if 2 6 |r|.

(3.8)
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When implementing formula (3.4), we select a triangle on the interface, choose
the cells within a radius of three cell diameters around the triangle, and distribute
the interfacial force onto the cells using the discrete delta function (3.7). In this way
the interfacial force is approximated by a volume integral

∫

Ω

2Hσn δ(x− xS) dv =

∫

S

2Hσn ds =

∫

Ω

F ijk dv. (3.9)

The Courant-Friedrichs-Lewy (CFL) condition related to interfacial tension from
Brackbill et al. (1992) is implemented as a requirement of stability

∆t1 <

[
〈ρ〉(∆ℓ)3

2πσ

]1/2
, (3.10)

where 〈ρ〉 is the average density, ∆ℓ is the smallest cell edge and σ is the interfacial
tension coefficient. Together with the convective time step restriction

∆t2 ≤
1

|u|max

∆x
+ |v|max

∆y
+ |w|max

∆z

(3.11)

where |u|max, |v|max and |w|max are the maximum Cartesian velocity components
magnitude, the final time step follows

∆t = CCFL ×min{∆t1,∆t2},

where CCFL is the CFL number (less than 1).
For solving the incompressible Navier-Stokes equations with a variable density

and viscosity given by the IB method, we follow the projection method advanced in
Bell et al. (1989, 1991), which is second-order accurate in velocity for single-phase
incompressible fluid flow and known as PMI (Brown et al., 2001). This method is
only first-order accurate in pressure, however the alternate method used here, PMII,
is second-order accurate in pressure provided appropriate boundary conditions are
used.

We use a second-order Godunov scheme to solve the nonlinear advection term.
This algorithm generates a source term in the diffusion equation. These two steps
are solved in a coupled manner to achieve higher order time accuracy. The implicit
second-order time integration Crank-Nicholson scheme is used to solve the diffusion
equation. The Laplacian equation in the projection step is solved by a standard five-
point discretization. Both the linear systems formed in the diffusion and projection
step are sparse matrices, solved in parallel using PETSc (Balay et al., 2008).

We use the GMRES linear solver for the diffusion step and the BiCGSL linear
solver for the projection step to obtain a faster convergence rate. However, the
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BiCGSL algorithm is not theoretically stable and occasionally it does not converge,
in which case we use GMRES instead after a large residual has been observed for the
iterative linear solver.

A comment about the calculation of the Cauchy stress tensor is in order. The
continuous approximation of the governing equations of motion (2.6)–(2.7) calls for
a continuously varying dynamical viscosity. This requires the deviatoric part of the
stress tensor to be computed as µ(x, t)

(
∇x v +∇x v

T
)
. Therefore this term is differ-

entiated by the divergence operator in the momentum balance equations.
With the velocity field computed from the incompressible Navier-Stokes equations

(2.6)–(2.7), we obtain the velocity of the interface points by interpolation from velocity
data given at regular grid points. As we propagate the interface, the new positions of
the interface points are calculated by solving the ODE (2.11) using the forward Euler
method.

4 Verification of one-phase flow by the method of

manufactured solutions

In this section we consider the order of accuracy of the projection method (Sec. 3.1) for
solving the incompressible Navier-Stokes equations. As mentioned in Section 3.4, the
method tested here uses PMII which is a second-order projection method for single-
phase, incompressible fluid flow. We use initial and boundary data and associated
source terms for which the exact solution is known. This method is applied in 2D and
3D Cartesian coordinates and in 3D cylindrical coordinates. The exact solution and
data for the 2D solution we use here were employed previously (Brown et al., 2001).
The 3D exact solution comes from Ethier and Steinman (1994) and a modification is
needed for the case of 3D cylindrical coordinates.

4.1 Time-dependent solutions in 2D Cartesian coordinates

With the domain Ω = [0, 1]×[0, 1] and parameters ρ = 1 and µ = 1, the Navier-Stokes
equations are augmented with a forcing term so that the functions

u =cos
(
2π

(
x− ω(t)

))
(3y2 − 2y) (4.1)

v =2π sin
(
2π

(
x− ω(t)

))
y2 (y − 1) (4.2)

p =−
ω′(t)

2π
sin

(
2π

(
x− ω(t)

))(
sin(2πy)− 2πy + π

)

− cos
(
2π

(
x− ω(t)

)) (
−2 sin(2πy) + 2πy)− π

)
, (4.3)
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with ω(t) = 1 + sin(2πt2), become an exact solution (Brown et al., 2001). The
boundary condition for the x direction is periodic and Dirichlet for the y direction.

The required source terms are derived by substituting (4.1)–(4.3) into (A.35)–
(A.37). The formulas for the source terms, derived using Maple with C code generated
directly from symbolic computation, are too long to be inserted here. A uniform time
step of ∆t = 0.4h was used, corresponding to a CFL number of 0.4. The errors are
calculated in both L1 and L∞ norms at time 0.5 for N ×N grids with N equal to 10,
20, 40 and 80. The errors and order of accuracy for the u and v component of the
velocity field and the pressure p are shown in Tables 4.1–4.3. The results are very
close to the theoretically predicted second-order accuracy.

Table 4.1: Verification of convergence rate of the u-component of the velocity for
2D NSE in Cartesian coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.02505001 NA 0.05749996 NA
20× 20 0.00596152 2.0711 0.02271585 1.3399
40× 40 0.00138930 2.1013 0.00620064 1.8732
80× 80 0.00033850 2.0371 0.00159809 1.9561

Table 4.2: Verification of convergence rate of the v-component of the velocity for
2D NSE in Cartesian coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.02187048 NA 0.04523046 NA
20× 20 0.00706664 1.8890 0.01307569 1.6299
40× 40 0.00179580 1.9671 0.00334820 1.9764
80× 80 0.00045103 1.9879 0.00084932 1.9933

4.2 Time-dependent solutions in 3D Cartesian coordinates

We set the domain Ω = [−1, 1]× [−1, 1]× [−1, 1], and choose parameters ρ = 1 and
µ = 1. The Navier-Stokes equations are augmented with a forcing term in order to
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Table 4.3: Verification of convergence rate of the pressure p for 2D NSE in Cartesian
coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.20987610 NA 0.91315993 NA
20× 20 0.04786609 2.1325 0.29326793 1.6391
40× 40 0.00970739 2.3018 0.06626968 2.1458
80× 80 0.00219919 2.1421 0.01504217 2.1393

the solution be (Ethier and Steinman, 1994):

u =− a
[
eax sin(ay + dz) + eaz cos(ax+ dy)

]
e−d2t (4.4)

v =− a
[
eay sin(az + dx) + eax cos(ay + dz)

]
e−d2t (4.5)

w =− a
[
eaz sin(ax+ dy) + eay cos(az + dx)

]
e−d2t (4.6)

p =−
a2

2

[
e2ax + e2ay + e2az + 2 sin(ax+ dy) cos(az + dx)ea(y+z)

+ 2 sin(ay + dz) cos(ax+ dy)ea(z+x)

+ 2 sin(az + dx) cos(ay + dz)ea(x+y)
]
e−2d2t . (4.7)

We set a = 1 and d = 1, with Dirichlet boundary conditions on all six boundaries.
As in the 2D test, we derive the source term using Maple from (A.38)–(A.41). The

maximum flow speed of the solution is about 10, so a uniform time step of ∆t = 0.05h
is used, corresponding to a CFL number of 0.5 to make the algorithm stable. The
errors are calculated in both L1 and L∞ norms at time 0.2 for N ×N ×N grids with
N equal to 10, 20, 40 and 80. In Table 4.4, we omit the v and w velocity components
as their convergence rates are similar to that of the u velocity component.

Table 4.4: Verification of convergence rate of u-component velocity for 3D NSE in
Cartesian coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.04540364 NA 0.01354348 NA
20× 20 0.01177651 1.9469 0.00373252 1.8594
40× 40 0.00299105 1.9772 0.00127001 1.5553
80× 80 0.00075277 1.9904 0.00038637 1.7168
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Table 4.5: Verification of convergence rate of pressure p for 3D NSE in Cartesian
coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.56668074 NA 0.57665525 NA
20× 20 0.14954512 1.9220 0.53674946 0.1035
40× 40 0.03779002 1.9845 0.34788539 0.6256
80× 80 0.00947893 1.9952 0.19797179 0.8133

We observe in Table 4.5 that the L∞ norm error of pressure p is only first-order
accurate when using Dirichlet boundary condition for all boundaries. The normal
mode analysis of Brown et al. (2001) for second-order accuracy in pressure requires
the boundary conditions to be periodic except in one direction. Since the 3-D exact
solution we used does not satisfy this requirement, the obtained reduced order of
accuracy in the L∞ norm appears to be justified; this is not a verified assertion.

4.3 Time-dependent solutions in 3D cylindrical coordinates

To generalize the second-order projection method (Bell et al., 1989, 1991) to cylin-
drical coordinates, we treat the terms which are multiplied by ρ as the convection
terms and those multiplied by µ as diffusion terms. First, we use a second-order
Gudonov-type scheme to discretize the advection term; the result becomes a source
term when solving the diffusion equation using the Crank-Nicholson scheme. For the
projection step, an ordinary central difference discretization is used for the Poisson
equation with a pure Neumann boundary condition. Finally, we update the pressure
and the velocity to obtain a second-order accurate velocity field and a first-order
accurate pressure when non-periodic boundary conditions are used.

The manufactured solution in cylindrical coordinate is

uθ(r, θ, z) =
1

12

(
−r2 sin θ + r2 cos θ − z2 sin θ + z2 cos θ

)
e−t (4.8)

uz(r, θ, z) = −
1

6
zr
(
cos θ + sin θ

)
e−t (4.9)

ur(r, θ, z) = −
1

12

(
r2 cos θ + r2 sin θ + z2 cos θ + z2 sin θ

)
e−t (4.10)

p(r, θ, z) =
1

12
(r2 + z2)e−t . (4.11)

We set the computational domain to be θ ∈ [0, 2π], z ∈ [−1, 1], r ∈ [1, 2] and the
other parameters as in the 3D manufactured solution in Cartesian coordinates. The
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source term was derived by substituting the exact solution into the incompressible
Navier-Stokes equations in cylindrical coordinates (A.42)–(A.45). The results, sum-
marized in Tables 4.6–4.9, are very close to the theoretically predicted convergence
rates.

Table 4.6: Verification of convergence rate of uθ for 3D NSE in cylindrical coordi-
nates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.21461366 NA 0.03974838 NA
20× 20 0.05242220 2.0335 0.01018509 1.9643
40× 40 0.01297461 2.0145 0.00256724 1.9882
80× 80 0.00323912 2.0020 0.00064171 2.0002

Table 4.7: Verification of convergence rate of uz for 3D NSE in cylindrical coordi-
nates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.01729539 NA 0.00352590 NA
20× 20 0.00483825 1.8378 0.00135969 1.3747
40× 40 0.00123408 1.9710 0.00035601 1.9333
80× 80 0.00031296 2.0020 0.00011209 1.6673

Again we see here that the convergence rate of L∞ norm error for pressure is
first-order accurate rather than second-order when we refine the mesh because of the
Dirichlet boundary condition on all six boundaries; not a verified assertion.

5 Verification and validation of one-phase annular

Couette flow

The Taylor-Couette flow regime occurs in the annulus between differentially rotating
concentric cylinders, most often with the inner cylinder rotating and the outer cylinder
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Table 4.8: Verification of convergence rate of ur for 3D NSE in cylindrical coordi-
nates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.01569499 NA 0.00346419 NA
20× 20 0.00427474 1.8764 0.00144748 1.2590
40× 40 0.00109416 1.9660 0.00053794 1.4280
80× 80 0.00028311 1.9504 0.00017048 1.6553

Table 4.9: Verification of convergence rate of p for 3D NSE in cylindrical coordinates.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 7.41387743 NA 0.76635043 NA
20× 20 1.78645195 2.0531 0.19345287 1.9860
40× 40 0.43545378 2.0365 0.05218918 1.8902
80× 80 0.10759368 2.0169 0.02173881 1.2535

fixed. The flow becomes unstable when the rotation rate exceeds a critical value
(fig. 5.1) (Lueptow, 2009) and a secondary motion in the form of vortices appears in
the cross section of the primary flow. The critical rotation rate is different depending
on whether the inner or the outer cylinder is moving. Since the pioneering work of
Taylor (1923), in which linear stability analysis was used to predict the appearance of
Taylor vortices, the Taylor-Couette flow has been studied extensively, theoretically,
experimentally and computationally.

Taylor-Couette flow is important not only because of its applications, such as
the design of a viscometer, fluid mixture apparatus, and in biology; it also has been
studied to observe flow patterns during the transition from laminar to turbulent flow.
With increasing Reynolds number, the flow undergoes a series of transitions from
circular Couette flow, to axially periodic Taylor vortex flow, to a state with time-
dependent waves imposed on the vortices (wavy Taylor vortex flow) and to chaotic
and turbulent Taylor vortex flow. A visualization of Taylor vortex flow is displayed
in Figure 5.1 (Lueptow, 2009).

Two-phase Couette flow also has multiple applications, including liquid-gas oxy-
genators, and, as considered here, liquid-liquid extraction. However in various practi-
cal liquid-liquid systems of industrial interest the mass density and dynamic viscosity
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Fig. 5.1: Left: Schematic diagram of counter-rotating axisymmetric vortices of
Taylor-Couette flow ( c©2000, Mike Minbiole and Richard M. Lueptow). Right:
Axisymmetric Taylor vortices visualized using titanium dioxide-coated mica flakes
( c©2002, Alp Akonur and Richard M. Lueptow)

differences combined with fast cylinder rotation produce an extremely complex flow
pattern of mixing that has received far less attention than the one-phase Taylor vortex
flow counterpart; we return to this topic in Section 7.

Section 5.1 develops the analytic solution for the annular Couette flow used for
code verification. Section 5.2 presents simulation results for the transition from circu-
lar Couette flow regime to the Taylor-Couette flow regime. The critical value for this
transition is predicted from 3-D simulations as demonstrated in Section 5.3, while
fully turbulent flow is studied in Section 5.4.

The dimensionless parameters which characterize the system are: the radii ratio
η = Ri/Ro of the inner to the outer cylinders respectively; the cylinder height to the

gap width aspect ratio Γ :=
Lz

Ro −Ri

, where the gap width between cylinders is also

denoted d := Ro − Ri; the Reynolds number Re; and the Taylor number T . The
definitions for the last two parameters vary in the literature, here we use

Re :=
ΩiRi(Ro −Ri)

ν
, and (5.1)

T := 4Re2
(
1− η

1 + η

)
, (5.2)

where Ωi is the rotation speed of the inner cylinder and ν is the kinematic viscosity
of the fluid.
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5.1 Steady-state 1-D Couette flow in an annular sector

For a sub-critical Reynolds number, Couette flow is laminar. Under this assump-
tion, the Navier-Stokes equations simplify to one-dimensional flow. In cylindrical
coordinates, we derived an exact solution for an infinite cylinder (Γ = ∞),

vθ = C1r +
C2

r
(5.3)

vz = 0; (5.4)

vr = 0; (5.5)

P = ρ
[C2

1(r
2 −R2

i )

2
+ 2C1C2 ln

r

Ri

−
C2

2

2

( 1
r2

−
1

R2
i

)]
+ P0 , (5.6)

with

C1 =
ΩiR

2
i

R2
i −R2

o

C2 = −C1R
2
o

P0 = P (Ri) .

This solution was used as a verification and convergence rate test for the numerical
solution method of the three-dimensional Navier-Stokes equations. For this purpose,
we used periodic boundary conditions in the z and θ directions and no slip conditions
on the boundaries in the r direction. We set the computational domain to be θ ∈
[0, 0.628] rad, z ∈ [0, 0.628] cm, r ∈ [2.538, 3.166] cm, and Ωi = 0.05 rad/s (0.48
RPM). A time-dependent, three-dimensional simulation was performed using ρ =
1.0 g/cm3 and ν = 0.0089 cm2/s which resulted in Re = 9.0. The initial velocity
and pressure fields for the simulation were enforced using the foregoing exact solution
fields. The simulation results obtained for a small Re compared well with the exact
solution (5.3)–(5.6) obtained for Re = 0. Errors were calculated in both L1 and L∞

norms at time 1 s (0.008 rotations) for N ×N ×N grids with N equal to 10, 20, 40
and 80. As uz = 0 within round off error, we omit analysis of this variable and display
convergence results for uθ, ur and the pressure p in Tables 5.1–5.3. All convergence
results confirm a second-order accurate solution algorithm.

5.2 Transition from 1-D to 3-D Taylor vortices

A qualitative demonstration of the existence of the vortex transition is made in this
section at the Reynolds number Re = 2686. The simulation parameters were Ri =
2.538 cm, Ro = 3.166 cm, η = Ri/Ro = 0.8, Ωi = 15 rad/s (or 38.07 cm/s, or
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Table 5.1: Verification of the convergence rate of uθ for 1D Couette flow.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 8.9689427e-06 NA 4.2889586e-05 NA
20× 20 2.3392513e-06 1.9445 1.2213023e-05 1.8122
40× 40 5.8993089e-07 1.9874 3.2289907e-06 1.9193
80× 80 1.4774364e-07 1.9974 8.2839859e-07 1.9627

Table 5.2: Verification of the convergence rate of ur for 1D Couette flow.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 3.2098794e-06 NA 1.3955543e-05 NA
20× 20 2.3019156e-07 3.8016 3.2426953e-06 2.1056
40× 40 1.4560125e-08 3.9827 4.0839172e-07 2.9892
80× 80 9.1318711e-10 3.9950 5.0681518e-08 3.0104

Table 5.3: Verification of the convergence rate of p for 1D Couette flow.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 4.0876435e-06 NA 2.2784380e-05 NA
20× 20 7.9287009e-07 2.3661 4.6255377e-06 2.3004
40× 40 1.9027897e-07 2.0590 1.2303281e-06 1.9106
80× 80 4.6547912e-08 2.0313 3.2019695e-07 1.9420
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143.2 RPM), ρ = 1.0 g/cm3, ν = 0.0089 cm2/s and

Re =
ΩiRi(Ro −Ri)

ν
= 2686.3, T = 4Re2

(
1− η

1 + η

)
= 3.2× 106.

The critical Reynolds number for the transition to vortex flow is 94.7 (Prima and
Swinney, 1985), so this simulation is well above the transition point. The computa-
tional domain is θ ∈ [0, 0.628] rad, z ∈ [0, 1.256] cm, r ∈ [2.538, 3.166] cm. We used
periodic boundary conditions for both the θ and z directions and a no slip boundary
condition for the velocity in the r direction. The initialization of the velocity and
pressure fields were as in (5.3)–(5.6), that is, the unperturbed laminar solution for
one-phase Couette flow. A simulation up to t = 2s was performed (about 5 rotations
of the inner cylinder). The grid size for this simulation is 40×80×40. Streamlines of
the vr and vz velocity component fields indicate the formation of the Taylor vortices
(fig. 5.2) which is consistent with the linear stability theory.

Fig. 5.2: Computed velocity streamlines in the r–z plane of a Taylor vortex flow at
Re = 2686.3 (i.e. T = 3.2× 106).

5.3 Verifying the Couette flow perturbation growth rate

The axisymmetric linear stability analysis of 3-D small perturbations (Sec. A.2) im-
posed on a 1-D Couette base flow predicts the minimum Reynolds number for the
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growth of the disturbances for any wave number. The analysis also predicts the
growth rate to be time dependent. Therefore in this section we present a verification
of the growth of the disturbances (by means of numerical analysis) through a direct
time-dependent, 3-D simulation of the evolution of the initial 1-D Couette flow field.

Using (5.3)–(5.6) as the initial conditions for a 3-D flow simulation in the same
annular sector of the previous section (Sec. 5.2), we calculate the growth rate

K(t) :=

√
〈vr〉2 + 〈vz〉2∣∣〈vθ〉

∣∣ ,

≈

√
(u′)2 + (w′)2∣∣V + v′

∣∣ ,

≈

[
eβt

eiλz
√

u2(r) + w2(r)∣∣V + v′
∣∣

]
,

lnK(t) ≈βt+ C(r, θ, z).

where C is a constant, in time, according to the linear stability analysis assumption
(A.21). Thus the slope β of the graph of lnK versus t gives the growth rate of the
fundamental mode for each Reynolds number (figs. 5.3 and 5.4).

As indicated in figures 5.3 and 5.4, K has two flat sections and one linearly
growing section; the slope is calculated in the interval 10−6 < K < 10−4. The linearly
growing section is associated to an exponential growth of the instability eβt from
linear stability analysis. The first flat section results from the initialization of the
instability, which is seeded by numerical grid effects, and not by a perturbation at
the maximally growing wave length. The results confirm that at a higher Reynolds
number the flow disturbances grow faster. The second flat section corresponds to the
approach to the steady state flow with Taylor vortices.

Figure 5.5 shows the growth rate β as a function of Reynolds number. The growth
rate for supercritical disturbances grows with the Reynolds number Re. As β → 0
then Re → Rc and by virtue of a first order Taylor expansion we know from linear
stability analysis that β(Re) = c0(Re − Rc) when Re − Rc is small. Thus from a
linear fitting to the slope of β(Re) we compute c0 and find Rc setting β = 0 (inset of
fig. 5.5). We obtain the value Rc = 95.35, which is very close to the theoretical value
of Rc = 94.7 (Prima and Swinney, 1985).

5.4 Turbulent Taylor-Couette flow: verification and valida-
tion

In this section a comparison of flow simulation with and without turbulence modeling
is made against experimental results and direct numerical simulation of the Navier-
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Fig. 5.3: Computed instability growth lnK at Re = 125 for a Taylor-Couette flow.

Fig. 5.4: Computed instability growth lnK at Re = 200 for a Taylor-Couette flow.
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Fig. 5.5: Calculated growth rate vs. Reynolds number for a Taylor-Couette flow.
Critical Reynolds number Rc = 95.35 found by extrapolation.

Stokes equations for the Taylor-Couette flow at Re = 8000. The same geometry as in
the previous Section 5.3 was used. Our results are compared against the experimental
results of Smith and Townsend (1983), and the direct numerical simulation (DNS)
results of Dong (2007). The governing equations of the turbulence modeling (large
eddy simulation, LES) subgrid scale model used are presented in the Appendix A.4.

The dimensionless values of the parameters in our simulation are Lz = π, Ri = 1,
Ro = 2, density ρ = 1 and dynamic viscosity µ = 1/8000. The Reynolds number
in this case is Re = U1(Ro − Ri)ρ/µ = 8000. Periodic boundary conditions are
imposed in the axial and azimuthal direction with no-slip boundary conditions at the
inner and outer cylinder. The initialization is a uniform velocity field U = 0.5. The
simulation was not terminated until a statistically-stationary state was achieved and
at this stage, data was collected for a period of 250 dimensionless time units. We used
three sets of meshes 64× 32× 32, 64× 64× 32 and 128× 64× 32, in the coordinate
directions: θ, z, r.

Figure 5.6 compares the mean angular momentum 〈uθ r〉/U1Ri with experimental
values (Re = 8698) which are available only for the region near the inner cylinder.
The most refined mesh agrees with the experimental data for the region near the
inner cylinder (Smith and Townsend, 1983). Figure 5.6 also shows the agreement of
our results with DNS (Dong, 2007) as the mesh is refined.
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Fig. 5.6: Mean angular momentum 〈vθ r〉/U1Ri for a turbulent (LES model) single-
phase Couette flow.

Similarly, in Figure 5.7, the profile of the mean azimuthal velocity 〈uθ〉/U1 agrees
with that of the DNS simulation upon mesh refinement. The results using the subgrid
scale model show slightly improved convergence. Results in both figures compare well
with DNS (Dong, 2007) and with the experimental result of Smith and Townsend
(1983). This verification and validation test evaluates positively the implementation
of our fluid flow solver.

6 Verification of two-phase annular Couette flow

Two-phase Couette flow also undergoes a transition from 1-D circular flow to 3-D
toroidal flow wherein secondary vortices appear in both phases. If the Reynolds
number is large enough, as in practical applications of mixing, the flow regime is
dramatically different than one-phase vortex flow. For the particular case of two im-
miscible liquids, vortices disappear and an intricate interfacial shape evolves (Sec. 7).

When the flow is circular 1-D in the presence of gravity pointing in the axial direc-
tion, the incompressible Navier-Stokes equations in cylindrical coordinates simplify
to a one, non-zero velocity component in the azimuthal direction. In addition, if the
pressure gradient is only a function of the radial direction, an exact solution can be
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Fig. 5.7: Mean azimuthal velocity 〈vθ〉/U1 for a turbulent (LES model) single-phase
Couette flow.

constructed for the velocity and pressure unknowns as function of the radius and axial
coordinates.

Denoting µ1 and µ2 the kinematic viscosity of fluid 1 and fluid 2, respectively,
and RI the radial position of the interface, the following constants of integration are
obtained

B1 =
−ΩiR

2
I

1−R2
Ii + µ12R2

Io − µ12

(6.1)

A1 = Ωi −
B1

R2
i

, (6.2)

B2 = µ12B1, (6.3)

and

A2 = −µ12
B1

R2
o

. (6.4)

where µ12 = µ1/µ2, RIi = RI/Ri, RIo = RI/Ro. Then in the fluid phase 1, r ≤ RI,
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the azimuthal velocity and pressure fields are

vθ,1(r) = A1r +
B1

r
, (6.5)

P1(r, z) = ρ1

[
A2

1

2
(r2 −R2

i ) + 2A1B1 ln
r

Ri

−
B2

1

2

( 1

r2
−

1

R2
i

)]

− ρ1g(z − z0) + P0, (6.6)

and in the fluid phase 2, r ≥ RI,

vθ,2(r) = A2r +
B2

r
, (6.7)

P2(r, z) = ρ1

[
A2

1

2
(R2

I −R2
i ) + 2A1B1 ln

RI

Ri

−
B2

1

2

( 1

R2
I

−
1

R2
i

)]

+ ρ2

[
A2

2

2
(r2 −R2

I ) + 2A2B2 ln
r

RI

−
B2

2

2

( 1

r2
−

1

R2
I

)]

− ρ1g(z − z0)−
σ

RI

+ P0. (6.8)

where

C1 =
ΩiR

2
i

R2
i −R2

o

, C2 = −C1R
2
o . (6.9)

The pressure jump across the interface is computed by subtracting (6.8) from (6.6)

P1(RI, z)− P2(RI, z) =
σ

RI

.

The above expressions are used as a verification and convergence rate test for our
front tracking solution method as described next. Periodic boundary conditions in the
z and θ directions are enforced in conjunction with no slip boundary conditions on the
r-direction boundaries. The computational annular sector domain is θ ∈ [0, 0.628] rad,
z ∈ [0, 0.628] cm and r ∈ [2.538, 3.166] cm, and the following values were selected

ρ1 = 0.811 g/cm3, ρ2 = 1.03 g/cm3,

µ1 = 57.6 g/cm s (5760 cP), µ2 = 36.72 g/cm s (3672 cP).

with the angular speed of the inner cylinder is Ωi = 0.22367 rad/s (2.1249 RPM)
which results in the Reynolds number Re = 0.01 to approximate a zero inertial flow.
The gravity g is neglected and the interface position at r = 2.9 cm is used as the
initial condition.

In addition, three different values of interfacial tension coefficients were used in
various tests, namely, σ = 0, σ = 0.001, and σ = 10 dyn/cm. Relative errors of
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the interface position, velocity field uθ, and pressure field p were calculated using
reference values in both L1 and L∞ norms for N × N × N grids with N equal to
10, 20 and 40. In the calculation of relative errors, the exact position of the interface
was used, i.e., RI = 2.9 cm, the speed of the inner cylinder was chosen as the velocity
scale, Ωi Ri = 0.56768 cm/s, and for the reference pressure, the maximum pressure
difference ∆p in the computation domain was used; this value is different for each of
the three test cases. The CFL number was adjusted (reduced) for this two-phase flow
test case.

6.1 Couette flow with no interfacial tension (σ = 0)

Without interfacial tension the pressure is continuous. The errors are computed at
time t = 28.1 s (1 revolution) when the reference pressure is ∆p = 0.023257 dyn/cm2.
Results for 3D simulations are collected in tables 6.1, 6.2, and 6.3.

Table 6.1: Solution verification and calculation of the convergence rate of the in-
terface position for 1D, two-phase Couette flow without interfacial tension, σ = 0.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 2.6857e-8 NA 2.6866e-8 NA
20× 20 3.1387e-9 3.0971 3.2010e-9 3.0692
40× 40 2.9334e-11 6.7413 7.9670e-11 5.3283

Table 6.2: Solution verification and calculation of the convergence rate of uθ for 1D,
two-phase Couette flow without interfacial tension, σ = 0.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0025184 NA 0.013839 NA
20× 20 0.0011825 1.0907 0.0089610 0.6270
40× 40 0.0005298 1.1583 0.0025929 1.7891

6.2 Couette flow with perturbed interfacial tension (σ = 0.001 dyn/cm)

Similarly, for this test with perturbed interfacial tension, errors are computed from
3D simulations at time t = 28.1 s (1 revolution) and with the reference pressure
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Table 6.3: Solution verification and calculation of the convergence rate of p for 1D,
two-phase Couette flow without interfacial tension, σ = 0.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0044984 NA 0.019847 NA
20× 20 0.0013152 1.7741 0.0064381 1.6242
40× 40 0.0004539 1.5348 0.0020022 1.6850

∆p = 0.022912 dyn/cm2. The results displayed in tables 6.4, 6.5, and 6.6 are similar
to the case with no interfacial tension except for the pressure calculation which does
not converge with mesh refinement in the L∞ norm. With a small, non-zero interfacial
tension, the analytical solution for pressure becomes discontinuous and this cannot be
accommodated by the numerical solution method which approximates the pressure
jump with a continuous field.

Table 6.4: Solution verification and calculation of the convergence rate of the in-
terface position for 1D, two-phase Couette flow with perturbed interfacial tension,
σ = 0.001 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 2.6941e-8 NA 2.6951e-8 NA
20× 20 3.1471e-9 3.0977 3.2094e-9 3.0699
40× 40 2.4069e-11 7.0307 3.2086e-11 6.6442

Table 6.5: Solution verification and calculation of the convergence rate of uθ for 1D,
two-phase Couette flow with perturbed interfacial tension, σ = 0.001 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0025184 NA 0.013839 NA
20× 20 0.0011825 1.0907 0.0089610 0.6270
40× 40 0.0005298 1.1583 0.0025929 1.7891
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Table 6.6: Solution verification and calculation of the convergence rate of p for 1D,
two-phase Couette flow with perturbed interfacial tension, σ = 0.001 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0041033 NA 0.020524 NA
20× 20 0.0013926 1.5590 0.006899 1.5729
40× 40 0.0005164 1.4312 0.002690 1.3588

6.3 Couette flow with interfacial tension (σ = 10 dyn/cm)

In this test for a larger interfacial tension, 3D calculations of the error at time t =
28.1 s (1 revolution) and the reference pressure ∆p = 3.448276 dyn/cm were obtained.
We demonstrate by numerical experiment that the algorithm is first-order accurate

Table 6.7: Solution verification and calculation of the convergence rate of the inter-
face position for 1D, two-phase Couette flow with interfacial tension, σ = 10 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 8.2300e-7 NA 8.2364e-7 NA
20× 20 9.2962e-8 3.1462 9.3070e-8 3.1456
40× 40 9.3184e-9 3.3185 9.3199e-9 3.3199

Table 6.8: Solution verification and calculation of the convergence rate of uθ for 1D,
two-phase Couette flow with interfacial tension, σ = 10 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0025164 NA 0.0138301 NA
20× 20 0.0011822 1.0899 0.0089558 0.6269
40× 40 0.0005297 1.1582 0.0025923 1.7886

for the interface position and velocity field as well as for pressure in an L1 error norm.
For the σ = 10 dyn/cm interfacial tension case, the L∞ error for pressure does not
converge using the continuous surface tension model, which is consistent with the
description of IB method in Sections 3.3–3.4.
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Table 6.9: Solution verification and calculation of the convergence rate of p for 1D,
two-phase Couette flow with interfacial tension, σ = 10 dyn/cm.

L1 error Order in L1 norm L∞ error Order in L∞ norm
10× 10 0.0382376 NA 0.2708899 NA
20× 20 0.0323036 0.2433 0.4541237 -0.7454
40× 40 0.0062075 2.3796 0.1725304 1.3962

For future reference and studies, the linear stability theory for two-fluid Taylor-
Couette flow can be found in (Baier, 1999; Baier and Graham, 1998, 2000). The
two fluids are assumed to be stratified in these analyses. Numerical simulations of
stratified two-phase Taylor-Couette flow were given in (Vedantam et al., 2006).

7 Two-phase Couette mixing in a 3-D annular sec-

tor

At a high Reynolds number, a two-phase Couette flow of two immiscible liquid phases
with distinct mass density and viscosity will not remain stratified. The phases fully
mix by combined shear and centrifugal forces. When the inner cylinder rotates, the
heavier fluid is propelled outwards in the direction of the outer cylinder wherein high
shear stresses promote vigorous mixing and dispersion formation.

The detailed simulation of a two-phase, liquid-liquid interface evolution in the
Couette annulus is a first step towards a fundamental understanding of the micromix-
ing length-scale flow in many annular devices. Here focus is directed to the annular
mixing region in a centrifugal contactor. To keep the computational effort at a rea-
sonable cost, a sector of the annulus is selected for analysis by means of periodic
boundary conditions in the axial and azimuthal directions. This truncation of the
annulus requires the neglect of gravity because of axial periodicity (fig. 7.1). When
comparing to a realistic device, this assumption is only plausible in the bulk of the
mixing zone where the centrifugal force imparted in the fluid surpasses gravity sub-
stantially.

In this study, an interface is positioned within the annulus at a given radial position
RI. Accordingly, a heavy liquid (aqueous phase) is assigned to the inner annular
region delimited by the interface. A lighter (organic phase), more viscous liquid is
placed in the complement outer region of the annulus. This arrangement is unstable
with respect to the centrifugal acceleration in the radial outward pointing direction.
The initial velocity and pressure fields are set as zero in the fluid (“cold start”),
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Fig. 7.1: Annular sector of a centrifugal contactor used for the computation domain.
On the left is the complete flow domain in a centrifugal contactor. On the center is
the smallest computational sector used in this study with one gap length ℓ in each
direction of the cylindrical coordinates. On the right is a sector with twice the gap
length in the axial direction and three times the gap in the azimuth angle direction
when evaluated at the average radius.
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and the inner cylinder speed is set at 1500 rpm. An alternative initial condition can
use the analytical Couette flow fields (6.5)–(6.8). The usage of these different initial
conditions is necessary for exploring the onset of chaos as the motion approaches a
statistically fully developed regime. Geometrical parameters and physical properties
used in this research are collected in Table 7.1.

Table 7.1: Geometric parameters and physical properties for 3D simulation of two-
phase flow in an annular sector.

Ri 2.538 cm
Ro 3.166 cm

ℓ = Ro −Ri 0.628 cm
η = Ri/Ro 0.8

Ωi 157 radians/s (1500 RPM)
µorg 0.016 g/cm · s
µaqu 0.0102 g/cm · s
ρorg 0.811 g/cm3

ρaqu 1.03 g/cm3

Reorg :=
ΩiRiℓ
νorg

1.27× 104

Reaqu := ΩiRiℓ
νaqu

2.53× 104

σ 10 dyn/cm

The interfacial tension between phases ranges from 10–25 dyn/cm for the intended
application. Preliminary results have been obtained for the lower end of the interfacial
tension range (fig. 7.2). Here the extension of the domain in the azimuthal direction is
5 ℓ and in the axial direction is 3 ℓ. An initial, long wavelength, spatial perturbation
is added to the position of the interface (fig. 7.2, top-left image). With the motion
of the inner cylinder, the aqueous phase moves from the inside region to the outside
by centrifugal acceleration displacing the organic phase. The outside annular region
applies the greatest shear stress on the fluid therefore promoting mixing of the phases.
The deformation of the interface in this application is a challenging phenomenon for
scientific modeling since it is driven by the combination of a Kelvin-Helmholtz shear
instability and a Rayleigh-Taylor fingering instability. The radially, inward-moving,
organic phase is shaped as mushroom caps, similarly for the aqueous phase moving
in the opposite direction (fig. 7.2). The caps penetrate the opposing fluid phase and
are sheared by the velocity gradient across the annular gap (fig. 7.2, right column at
47 ms starting from a “cold start”).

By virtue of incompressibility the volume ratio of the organic to aqueous phase
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(φO/A := VO

VA
= 0.82) is an invariant; so is each individual phase volume. Therefore the

stretching and break up of the interface must preserve the initial volume of each phase
for truly incompressible fluids. In this work, the volume-conserving constraint hinges
upon the interpolant (3.1) as applied to the mass density and dynamic viscosity
fields (3.2)–(3.3). This interpolant it is not necessarily compatible in the sense of
(2.9)–(2.10). However we monitor our calculations for the departure from a true
incompressible fluid behavior (fig. 7.3) which is insignificant for the initial stages of
mixing.

A quantity of great interest is the growth of the interface area with time. The
principal objective of mixing is to increase the interfacial area to a maximum. Here we
compute this quantity which demonstrate exponential growth while preserving volume
(fig. 7.3). These results are preliminary and mixing has not reached a statistically fully
developed regime. This is the subject of current and future developments. Evolution
of the mixing flow to a point where the interfacial area reaches a mean value is a
challenging problem not addressed by previous researchers.

Fig. 7.3: Growth of interfacial area and conservation of volume for an initial stage
of micromixing (fig. 7.2). Calculations performed on 2048 cores for 100 hours at the
Center for Advanced Modeling and Simulation of the Idaho National Laboratory.
Spatial mesh 128××256× 512 in the r × θ × z directions.
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8 Summary and outlook

Immiscible, liquid-liquid mixing in solvent extraction processes is vigorous and there-
fore complex. The central objective is to promote chemical transport from one liquid
phase to the other via the creation of an extensive interfacial area. This work is
prompted by the need to predict, at the micrometer length scale, the interfacial area
by evolving a mathematical surface in space and time with precision never done before
in this application area.

Accomplishment of this task will enable the development of coarsening theories
for modeling the macroscopic transport of chemical species at the contactor device
scale used in solvent extraction. This undertaking is not part of the current scope of
work.

A front tracking approach has been taken in this work for solving the two-phase,
microfluidics equations of motion for Newtonian fluids. Progressive verification and
validation, to the extent possible, have been described here with satisfactory success.
The test problem used is an annular sector of a centrifugal contactor; a common
mixing device used in solvent extraction processes.

The front tracking simulation capability is in ongoing development with additional
improvements for advancing simulations to a fully developed mixing regime and char-
acterization of the flow structure in terms of dispersed and continuous fluid phases.
A final report on these advances will be issued in the future.
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A Equations of motion for incompressible Newto-

nian fluids

A.1 One-phase fluid flow

For a single-phase incompressible fluid with constant density and viscosity, the incom-
pressible Navier-Stokes equations along with the equation of continuity in cylindrical
coordinates are

1

r

∂uθ

∂θ
+

∂uz

∂z
+

1

r

∂(rur)

∂r
= 0 (A.1)

ρ(
∂uθ

∂t
+

uθ

r

∂uθ

∂θ
+ uz

∂uθ

∂z
+ ur

∂uθ

∂r
+

uruθ

r
) (A.2)

= −
1

r

∂p

∂θ
+ µ

[
1

r2
∂2uθ

∂θ2
+

∂2uθ

∂z2
+

1

r

∂

∂r

(
r
∂uθ

∂r

)
−

uθ

r2
+

2

r2
∂ur

∂θ

]
+ ρfθ (A.3)

ρ(
∂uz

∂t
+

uθ

r

∂uz

∂θ
+ uz

∂uz

∂z
+ ur

∂uz

∂r
)

= −
∂p

∂z
+ µ

[
1

r2
∂2uz

∂θ2
+

∂2uz

∂z2
+

1

r

∂

∂r

(
r
∂uz

∂r

)]
+ ρfz (A.4)

ρ(
∂ur

∂t
+

uθ

r

∂ur

∂θ
+ uz

∂ur

∂z
+ ur

∂ur

∂r
−

uθuθ

r
)

= −
∂p

∂r
+ µ

[
1

r2
∂2ur

∂θ2
+

∂2ur

∂z2
+

1

r

∂

∂r

(
r
∂ur

∂r

)
−

ur

r2
−

2

r2
∂uθ

∂θ

]
+ ρfr. (A.5)

A.2 Axisymmetric linear stability analysis of Couette flow

The transition from laminar Couette flow to Taylor vortex flow occurs at the crit-
ical Reynolds number 94.7 according to a classical linear stability analysis of small
perturbations. The governing equations for the evolution of these normal mode dis-
turbances as applied to the base Couette flow are presented here for completeness of
this report and as background for Section 5.3. Infinitesimal disturbances are applied
to the Couette flow in the domain

R1 < r < R2 , 0 ≤ θ < 2π and −∞ < z < ∞, (A.6)

with an aspect ratio Γ = ∞.

The velocity field for the Couette flow in cylindrical coordinates is given by

vr = vz = 0 , vθ = V (r) = Ar +
B

r
,
∂p

∂r
= ρ

V 2(r)

r
(A.7)
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where ρ is the density and

A =
R2

2Ω2 −R2
1Ω1

R2
2 −R2

1

= −Ω1
η2 − µ

1− η2
(A.8)

B = −
R2

1R
2
2(Ω2 − Ω1)

R2
2 −R2

1

= Ω1R
2
1

1− µ

1− η2
(A.9)

µ =
Ω2

Ω1

, η =
R1

R2

. (A.10)

The Couette flow can be characterized by the parameters µ, η, and Reynolds
number. Here the values for the parameters are

Ω2 = 0 , µ = 0 , η =
R1

R2

=
2.538

3.166
= 0.8. (A.11)

Let u′, v′, w′ and p′ denote the perturbations of vr, vθ, vz and p for Couette flow.
Substituting vr → vr + u′ = u′, vθ → vθ + v′ = V + v′, vz → vz + w′ = w′ and
p → p+ p′ in the Navier-Stokes equations (A.1), we get

r :
∂u′

∂t
+

V

r

∂u′

∂θ
−

2V

r
v′ +

1

ρ

∂p′

∂r
− ν

(
∇2u′ −

2

r2
∂v′

∂θ
−

u′

r2

)

= −

(
u′∂u

′

∂r
+

v′

r

∂u′

∂θ
+ w′∂u

′

∂z

)
+

v′2

r
(A.12)

θ :
∂v′
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+

dV
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u′ +

V

r

∂v′

∂θ
+

V

r
u′ +

1

ρr

∂p′

∂θ
− ν

(
∇2v′ +

2

r2
∂u′

∂θ
−

v′

r2

)

= −

(
u′∂v

′

∂r
+

v′

r

∂v′

∂θ
+ w′∂v

′

∂z

)
−

v′u′

r
(A.13)

z :
∂w′

∂t
+

V

r

∂w′

∂θ
+

1

ρ

∂p′

∂z
− ν∇2w′ = −

(
u′∂w

′

∂r
+

v′

r

∂w′

∂θ
+ w′∂w

′

∂z

)
. (A.14)

Similarly for the equation of continuity

∂u′

∂r
+

u′

r
+

1

r

∂v′

∂θ
+

∂w′

∂z
= 0 . (A.15)

The no slip condition at the inner and outer cylinder gives the boundary conditions

u′ = v′ = w′ = 0 at r = R1 and r = R2 . (A.16)

We consider infinitesimal disturbances that are axisymmetric, i.e. independent of θ,
and periodic in the axial direction. Linearizing the equations (A.12), (A.13), (A.14)
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and (A.15) and taking into account that all the disturbances are independent of θ we
obtain

∂u′

∂t
−

2V

r
v′ = −

1

ρ

∂p′

∂r
+ ν

(
∇2u′ −

u′

r2

)
(A.17)

∂v′

∂t
+

(
dV

dr
+

V

r

)
u′ = ν

(
∇2v′ −

v′

r2

)
(A.18)

∂w′

∂t
= −

1

ρ

∂p′

∂z
+ ν∇2w′ (A.19)

∂u′

∂r
+

u′

r
+

∂w′

∂z
= 0 , (A.20)

where ∇2 = ∂2

∂r2
+ 1

r
∂
∂r

+ ∂2

∂z2
.

The normal mode solutions for the disturbances have the form

u′ = u(r)eβt+iλz, v′ = v(r)eβt+iλz, w′ = w(r)eβt+iλz, p′ = P (r)eβt+iλz. (A.21)

In these disturbances β is the growth rate and λ is the wavenumber in the axial
direction. Substituting these expressions in (A.17), (A.18), (A.19) and (A.20) we get

ν

(
d2

dr2
+

1

r

d

dr
−

1

r2
− λ2 −

β

ν

)
u =

1

ρ

dP

dr
−

2V

r
v (A.22)

ν

(
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dr2
+

1

r

d

dr
−

1

r2
− λ2 −

β

ν

)
v = 2Au (A.23)

ν

(
d2

dr2
+

1

r

d

dr
− λ2 −

β

ν

)
w =

1

ρ
P (iλz) (A.24)

du

dr
+

u

r
+ iλw = 0 . (A.25)

Finally, eliminating P and w we obtain

ν

(
d2

dr2
+

1

r

d

dr
−

1

r2
− λ2 −

β

ν

)(
d2

dr2
+

1

r

d

dr
−

1

r2
− λ2

)
u = 2λ2Ω(r)v (A.26)

ν

(
d2

dr2
+

1

r

d

dr
−

1

r2
− λ2 −

β

ν

)
v = 2Au (A.27)

where Ω(r) = V
r
. From (A.16) we get at r = R1 and r = R2

u = v = 0 . (A.28)

From equation of continuity we get at r = R1 and r = R2

du

dr
= 0 . (A.29)
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Using the transformations (Prima and Swinney, 1985):

r = R0 + dx, R0 =
R1 +R2

2

δ =
d

R0

, ξ(x) =
1

1 + δx

Ω = Ω1G(x), G(x) =
1

1− η2

[
µ− η2 + 4ξ2(x)η2

1− µ

(1 + η)2

]
(A.30)

σ =
βd2

ν
, α = λd, T = −

4AΩ1d
4

ν2

D =
d

dx
, D∗ = D + δξ(x) .

(A.31)

on equations (A.26) and (A.27), we obtain

(DD∗ − α2 − σ)(DD∗ − α2)u11 = −α2TG(x, µ, η)v11, (A.32)

(DD∗ − α2 − σ) = u11 . (A.33)

with the boundary conditions

u11 = v11 = Du11 = 0 at x = ±
1

2
. (A.34)

Equations (A.32)-(A.34) form an eigenvalue problem in two parameters along with the
boundary conditions. The flow can be described in terms of the geometry parameter
η, the fluid parameters (µ and Taylor’s number T ) and the disturbance parameters
α and σ. It can be shown that for given µ and η there exists a value Tc such that
for T < Tc , Re(σ) < 0 for all α > 0 and for T > Tc , Re(σ) > 0 for a band of wave
numbers (α− < α < α+). This defines a set of points in T, α space which is called the
neutral curve (see fig. A.1) . Clearly the minimum point of the neutral curve is the
Tc below which all disturbances of any wavenumber decay with time and above which
there is a band of wavenumbers for which the disturbances grow exponentially with
time. Table A.1 shows the critical Reynolds and wavenumbers for different radius
ratios η (Chandrasekhar, 1961; Prima and Swinney, 1985; Roberts, 1965; Sparrow
et al., 1974; Walowit et al., 1964). At marginal stability the growth rate of the
critical wavenumber is zero (σ = 0). For a supercritical disturbance the growth rate
will be positive. From linearized theory, the disturbance grows exponentially with
time. However, the disturbances do not show continual amplification with time and
instead attains a finite equilibrium amplitude.

Davey (1962); Wereley and Lueptow (1994) showed that the growth rate is propor-

tional to the reduced Reynolds number ε = 1− R2
c

Re2
. He also calculated the coefficient
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Table A.1: Critical Reynolds number (Γ = ∞, µ = 0) of axisymmetric, linear
stability analysis.

η Recrit kcrit
0.975 260.9 3.13
0.90 131.6 3.13
0.80 94.7 3.13
0.70 79.5 3.14
0.60 71.7 3.15
0.50 68.2 3.16

Fig. A.1: Neutral curve of axisymmetric, linear stability analysis (Prima and Swin-
ney, 1985).
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of the reduced Reynolds number for the growth rate for the wide gap case (R2 = 2R1)
and the narrow gap case (η → 1) (Davey, 1962).

A.3 Two-phase fluid flow

As we described in Sec. 3.4, we smooth the density and viscosity and spread out
the singular force into a strip when using IB. Thus at each step, the incompressible
Navier-Stokes equations with variable density and viscosity need to be solved.

In rectangular coordinate, these equations become

∂u

∂x
+

∂v

∂y
= 0 (A.35)

ut + u
∂u

∂x
+ v

∂u

∂y
= −

px
ρ

+
(2µux)x + (µ(uy + vx))y

ρ
+ Fx +Gx (A.36)

vt + u
∂v

∂x
+ v

∂v

∂y
= −

py
ρ

+
(µ(uy + vx))x + (2µvy)y

ρ
+ Fy +Gy (A.37)

in 2D. In 3D they take the form

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (A.38)

ut + u
∂u

∂x
+ v

∂u

∂y
+ w

∂u
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= −
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ρ

+
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ρ
+ Fx +Gx (A.39)
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∂v
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∂v
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+ w

∂v
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= −
py
ρ

+
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ρ
+ Fy +Gy (A.40)
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∂w

∂x
+ v

∂w

∂y
+ w

∂w
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= −
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ρ

+
(µ(uz + wx))x + (µ(vz + wy))y + (2µwz)z

ρ
+ Fz +Gz (A.41)
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Transforming into cylindrical coordinates, we have

∂uz

∂z
+

∂ur

∂r
+

1

r

∂uθ

∂θ
+

ur

r
= 0, (A.42)
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where the components of the viscous tensor, dij(i, j = θ, z, r) are given by:

dzz = 2µ

(
∂uz

∂z

)
, drr = 2µ

(
∂ur

∂r

)
, dθθ = 2µ

(
1

r

∂uθ
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+
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)
,

dzr = drz = µ

(
∂ur
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+

∂uz

∂r

)
,

dzθ = dθz = µ(

(
∂uθ

∂z
+

1

r

∂uz
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)
,

drθ = dθr = µ

(
∂uθ

∂r
−

uθ

r
+

1

r

∂ur

∂θ

)
.

with µ as the dynamic viscosity.

A.4 Large-eddy filtered equations for one-phase fluid flow

The incompressible, LES-filtered Navier-Stokes equations in cylindrical coordinates
are presented below. The low-pass filtered quantities are considered to be mesh cell
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averages and denoted with an overbar. Repeated indices are summed.
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Where uθ, uz and ur are the velocity components in the azimuthal, axial and radial
directions, respectively, and ρ and p represent the density and the pressure, and the
f i (i = θ, z, r) denote body forces.

The components of the viscous stress tensor dij (i, j = θ, z, r) are given by
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The subgrid scale (SGS) variables τij (i, j = θ, z, r) are defined by

τij = uiuj − uiuj. (A.51)

We use the dynamic eddy viscosity model (Germano et al., 1991; Ma, 2006) for τij .
The anisotropic part of τij is modeled as

τMij = τij −
δij
3
τkk = −2CS∆

2|S|Sij, (A.52)
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and
|S|2 =

∑
2S2

ij . (A.54)

The CS is a model coefficient to be computed dynamically. Let a spatially test-filtered
quantity be denoted by a caret. The test filtered stress Tij is defined by

Tij = ûiuj − ûi ûj (A.55)

and the anisotropic part of Tij is modeled as

TM
ij = −2CS∆̂

2|Ŝ|Ŝij (A.56)

From the Germano’s identity,

Lij = Tij − τ̂ij = ûiuj − ûi ûj . (A.57)

where Lij is the Leonard stress. The right hand side is completely computable from
the resolved variables. In addition,

La
ij = TM

ij − τ̂Mij = 2CS∆
2̂|S|Sij − 2CS∆̂

2|Ŝ|Ŝij = CSMij , (A.58)

where

Mij = 2∆2̂|S|Sij − 2∆̂2|Ŝ|Ŝij (A.59)

and La
ij is the anisotropic part of Lij. We introduce an spatial averaging operation 〈·〉

to avoid numerical problem. The specification of the average is problem dependent,
as the universal definition of an ensemble average is inconvenient to use.

Applying this average to (A.58) and using least squares in the resulting equations
leads to the formula

CS =
〈
∑

La
ijMij〉

〈
∑

MijMij〉
. (A.60)
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A.5 Code structure for incompressible fluid flow in the Fron-

Tier package

For the purpose of coupling different coordinate systems within a single code frame-
work, we designed a structure for the solver part in the incompressible code using a
C++ class hierarchy structure. The benefit for using C++ programming language
is that we can derive the classes for specific coordinate systems from the base class
so that most of the operations, such as initialization of the mesh and various utility
functions, can be reused. For those functions which are related to different curvilinear
coordinate systems, virtual functions are used in the base class and are specified in
each specific class. Currently supported are classes for rectangular and cylindrical
coordinates. Future plans call for a general curvilinear class as well. When using
this hierarchy class structure, the concept of polymorphism in C++ is used so that a
specific function for different coordinate systems can be chosen at run time with the
base class as the parameter for the driver of the entire solver.

The upper-level class Incompress Solver Basis is a pure virtual class which works
as an interface for different interface methods which might have a totally different
code structure including different variables. For example, we derive Incompress-
Solver Smooth Basis and Incompress Solver EBM Basis from it to define the solver
for the Immersed Boundary Method and Embedded Boundary Method respectively.
We focus on the IB Method here since it is in current use for the mixing flow problem.
The Incompress Solver Smooth Basis has all the variables required and all functions
related to the initialization of the mesh and the indices for formation of the matrices
in the diffusion and projection steps, which lead to a call to PETSc. All other func-
tions are pure virtual functions which means they must be rewritten in the derived
classes. The two most important pure virtual functions in this base class are solve()
and setInitialCondition(), which work as an interface for the users to introduce their
own solver for the incompressible Navier-Stokes equations and their own initialization
of the velocity field. From the smooth base class, we derive the base class for 2D and
3D solver named Solver Smooth 2D Basis and Solver Smooth 3D Basis. These two
classes define some basic operations, such as the calculation of Heaviside and Delta
functions which differ between 2D and 3D. Then we derive the classes for different
coordinate systems Solver Smooth 2D Cartesian, Solver Smooth 3D Cartesian and
Solver Smooth 3D Cylindrical. These classes have different implementations of the
virtual functions used in solve() so that we employ different incompressible Navier-
Stokes equations for different coordinate systems.

Based on the different classes for different coordinate system, we also define a
debugging class and rewrite the function which is related to the boundary conditions
for using an exact solution as part of the order of convergence accuracy test. In
summary, the graph for the class hierarchy is
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Fig. A.2: Hierarchy class structure for the incompressible solver.
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