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Ultrasonography has been used for breast cancer screening in Japan. Screening using a conventional
hand-held probe is operator dependent and thus it is possible that some areas of the breast may not
be scanned. To overcome such problems, a mechanical whole breast ultrasound �US� scanner has
been proposed and developed for screening purposes. However, another issue is that radiologists
might tire while interpreting all images in a large-volume screening; this increases the likelihood
that masses may remain undetected. Therefore, the aim of this study is to develop a fully automatic
scheme for the detection of masses in whole breast US images in order to assist the interpretations
of radiologists and potentially improve the screening accuracy. The authors database comprised 109
whole breast US images, which include 36 masses �16 malignant masses, 5 fibroadenomas, and 15
cysts�. A whole breast US image with 84 slice images �interval between two slice images: 2 mm�
was obtained by the ASU-1004 US scanner �ALOKA Co., Ltd., Japan�. The feature based on the
edge directions in each slice and a method for subtracting between the slice images were used for
the detection of masses in the authors proposed scheme. The Canny edge detector was applied to
detect edges in US images; these edges were classified as near-vertical edges or near-horizontal
edges using a morphological method. The positions of mass candidates were located using the
near-vertical edges as a cue. Then, the located positions were segmented by the watershed algo-
rithm and mass candidate regions were detected using the segmented regions and the low-density
regions extracted by the slice subtraction method. For the removal of false positives �FPs�, rule-
based schemes and a quadratic discriminant analysis were applied for the distribution between
masses and FPs. As a result, the sensitivity of the authors scheme for the detection of masses was
80.6% �29/36� with 3.8 FPs per whole breast image. The authors scheme for a computer-aided
detection may be useful in improving the screening performance and efficiency. © 2007 American
Association of Physicists in Medicine. �DOI: 10.1118/1.2795825�
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I. INTRODUCTION

The incident rate of breast cancer is the highest among all
women’s cancers in Japan.1 The detection and treatment of
breast cancer at an early stage gives good treatment results;
therefore, the early detection of the cancer is an important

task for radiologists and surgeons. The two imaging modali-
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ties, mammography and ultrasonography, are effective and
established methods for the detection of breast masses in
breast cancer screening. It has been reported that the use of
mammography for breast cancer screening is useful for
women aged 40 and above,2,3 and screening mammography

has been an established practice for Japanese women. How-
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ever, it is known that mammography is rather limited in
dense breasts because small masses might be obscure in
dense breast tissues.4,5 In addition, younger women tend to
have dense breasts6,7 and Asian women tend to have denser
ones. However, ultrasonography is capable of detecting
masses even in dense breasts, as in the case of young
women.8–10 It has also been reported that breast cancer
screening becomes effective when mammography and ultra-
sonography are used concurrently.11–14 Hence, ultrasonogra-
phy has been widely used in Japan for the detection as well
as classification of breast masses; further, breast cancer
screening by ultrasonography has also been started in some
regions.11 In other words, the importance of breast ultra-
sonography has been increasing yearly.

Conventional hand-held probes are generally used in ul-
trasound �US� screening. However, there is a disadvantage in
that such US screening is operator dependent. Therefore, the
obtained images are poorly reproducible, screening examina-
tion takes a long time to scan an entire breast, and some
areas of the breast may not be scanned. In order to overcome
these problems, several mechanical whole breast US scan-
ners have been developed. For example, ALOKA Co., Ltd.,
Japan has developed the ASU-1004 whole breast US
scanner.15 This scanner has an automated water path system
and scans the entire breast in three overlapping runs.
U-systems, Inc. has developed the SomoVu automated breast
US system.16 This system sweeps the breast using a wide-
aperture linear transducer. Duric et al. have developed a US
tomography for breast imaging.17 The tomography uses a
pair of transducers on independent rotation stages such as a
transmitter and receiver. The advantages of ultrasonography
using such scanners are that the reproducible whole breast
images can be easily acquired in a short duration and non-
scanning areas are not generated. Due to these advantages,
such scanners are effective and can potentially be used as
devices for a large-volume screening in the detection of
masses. However, the screening will generate a large volume
of US images and radiologists might tire while interpreting
them. Therefore, it is possible that masses may remain unde-
tected. The screening accuracy might be improved if a
computer-aided detection �CAD� system could assist radiolo-
gists by indicating the location of mass candidate regions,
e.g., mammography with CAD.18,19

FIG. 1. ASU-1004 whole breast ultrasound scanner. �a� Appearance of the s
head. �c� Overhead view removed a membrane. The scanner has a water tan

2
tank at 2 mm intervals. An entire breast is scanned 16�16 cm in three overlap

Medical Physics, Vol. 34, No. 11, November 2007
Several research groups have reported the development of
breast ultrasonographic CAD schemes for the detection of
masses and their classification as either benign or malignant.
Drukker et al. have reported an automatic lesion detection
technique using a radial gradient index filtering.20,21 They
have also evaluated the performance of their detection and
diagnosis method with breast US images obtained using US
equipment from two different manufacturers.22 Horsch et al.
have attempted to classify masses using a Bayesian neural
network or a linear discriminant analysis based on computer-
extracted lesion features.23 Chang et al. have proposed a
method that uses the watershed segmentation algorithm to
find suspicious frames in whole breast US images, which
physicians acquired by using a conventional two-
dimensional �2D� hand-held probe.24 They have also re-
ported a mass detection method in whole breast US images25

and a classification technique that makes use of textural and
morphological features.26 Fukuoka et al. have developed a
CAD scheme based on active contour model and active bal-
loon model in 2D and three-dimensional �3D� spaces.27,28

Sahiner et al. have investigated the computerized character-
ization of breast masses in 3D US volumetric images and
developed 2D and 3D active contour models for the auto-
mated segmentation of the mass volume.29 Other groups
have also suggested classification methods using morpho-
logical and texture features or fractal features.30,31 In addition
to the detection and classification of masses, schemes for
automatically analyzing the breast density, which is one of
the important factors for estimating the risk of breast cancer
and its early prevention, have also been reported.32,33 How-
ever, mass detection methods in whole breast US images for
a large-volume screening have hardly been reported. Al-
though Chang et al. have reported a mass detection method
in whole breast US images,25 their database seems to be
small and it is also considered difficult to detect masses with
posterior attenuation using their method. Most research does
not use whole breast images acquired by a mechanical mov-
ing probe; instead, they used 2D images acquired by conven-
tional 2D hand-held probes. Some systems also require a
radiologist to manually indicate the locations of masses in
images, while others that use segmentation based on the

r. �b� A subject set her breast on the membrane in a posture of bowing her
h a linear probe. �d� Scanning process. The probe runs automatically in the
canne
k wit
ping runs.
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pixel value and density gradient magnitude may encounter
difficulties in detecting masses with obscure boundaries, i.e.,
with posterior echo attenuation.

We have developed a CAD system for a large-volume
breast cancer screening by ultrasonography. The aim of this
system is to improve the screening performance and effi-
ciency. The purpose of this study is to propose a fully auto-
matic scheme for the detection of masses in whole breast US
images. Our approach differs from others in that we use the
feature based on edge directions in the slice images.

II. MATERIALS

II.A. Hardware system overview

An entire breast was scanned by using Prosound-II SSD-
5500 US system with the ASU-1004 whole breast US scan-
ner, which are developed by ALOKA Co., Ltd., Japan. The
overview of the ASU-1004 mechanism is described in Fig. 1.
The US images obtained by this system are in the DICOM
format. This scanner has a 6-cm linear transducer �probe�
with a frequency range of 5–10 MHz; this probe is immersed
in a water tank where it moves mechanically. A special mem-
brane for the US is set on the tank and a subject set her breast
on the membrane in a posture of bowing her head. An entire
breast can be automatically scanned with an area of 16
�16 cm2 in three overlapping runs within approximately 30
s. The overlapping has a 1-cm width, as shown in Fig. 1�d�,
and the interval between two images is 2 mm. A whole breast
slice image was generated from the three original images by
an integration technique using image processing. The inte-
gration technique is described in Sec. III.

II.B. Image database

A whole breast image per breast after applying image in-
tegration processing to the original images comprised of 84
slice images with 2 mm intervals. Each slice image matrix
had a size of 694�400 pixels; the pixels had a size of 0.23
mm and they had 8-bit gray scale. Our database comprised
109 whole breast images that were obtained in clinical prac-

FIG. 2. Histogram of the frequency distribution of mass effective diameter

size in our database.
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tice and all cases were diagnosed by an experienced radiolo-
gist who had 34 years of experience in the field of ultra-
sonography. Of the 109 whole breast images, 23 were
abnormal images and 86 were normal images. These abnor-
mal images included 36 masses �16 malignant masses, 5 fi-
broadenomas, and 15 cysts� and some images had two or
more masses. The size of effective diameters ranged from
between 6 and 20 mm, with an average size of 12 mm. The
effective diameter implies the diameter of a circle having the
same area as a mass. Figure 2 shows the frequency distribu-
tion of the mass diameter size.

FIG. 3. Breast ultrasound anatomy and clinical breast ultrasound images. �a�
Illustration of a breast ultrasound image. Normal breast ultrasound image
consists of five main types of tissues. From top to bottom: skin, subcutane-
ous fat, mammary gland, retromammary fat, and pectoralis major muscle.
�b� A normal breast ultrasound image and its edge image. �c� An abnormal

breast ultrasound image with a malignant mass and its edge image.
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III. METHODS

III.A. Overview

Two features were used for the detection of masses.
The first feature was based on edge directions. A breast

US image comprises five main types of tissues, namely skin,
subcutaneous fat, mammary gland, retromammary fat, and
pectoralis major muscle, as illustrated in Fig. 3�a�. An edge
image generated from a normal breast US image comprises
near-horizontal edges, as shown in Fig. 3�b�. However, an
edge image generated from an abnormal breast US image
with a mass includes near-vertical edges detected in the mass
boundary, as shown in Fig. 3�c�.

The second feature was based on the density difference
between slice images. The idea of using this feature comes
from the fact that radiologists interpret all whole breast slice
images as a moving image; further, they focus on a region
whose density is different as compared to the previous or
succeeding slice image.

The flowchart of our detection scheme comprises seven
major steps and is shown in Fig. 4.

III.B. Image integration

A whole breast slice image was generated by integrating
three original images. An ith path image is defined as f i�x ,y�.
The corresponding points in f i�x ,y� and f i+1�x ,y� may have a
different y coordinate due to the patients’ motion such as
breathing and heartbeat. Hence, a position adjustment for
each image was required in this step.
An integrated slice image g�x ,y� is calculated as
g�x,y� = � f i�x,y� �if�x,y� � f i,�x,y� � f i+1�
f i+1�x,y + �yi+1� �if�x,y� � f i,�x,y� � f i+1��i = 1,2�
�f i�x,y� + �1 − ��f i+1�x,y + �yi+1� �otherwise�

� , �1�
where �y is the adjustment along the y direction and � is the
transparency rate, as shown in Fig. 5. The adjustment �y was
computed by a template matching technique that utilizes the
overlapped area. A similarity measure R calculated by the
sum of the squared difference, as shown in Eq. �2�, was used
for the matching algorithm.

R = �
y

�
x

�f i+1�x,y + �y� − f i�x,y��2. �2�

A �y value having a minimum value of R was selected. The
transparency rate � was linearly transformed in the range
from 0 to 1 based on the relative lateral �x axis� position of
two images.

Figure 6 shows the three separate originally acquired im-
ages �a� obtained by ASU-1004 and a whole breast slice

image �b� integrated by our proposed method. Eventually 84
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slice images were generated for each breast; this integration
procedure was judged to be successful based on a visual
evaluation of all the slices and the cases studied.

III.C. Preprocessing

US images always have a lot of speckle noises that are
caused by the interference effects between overlapping ech-
oes, and the image brightness varies with an adjustment in
the gain control of a US device. Therefore, noise reduction
and image density normalization are used. In this study, im-
pulse noises were removed by applying the median filter;
subsequently, minor fluctuating noises were reduced by ap-
plying the hysteresis smoothing algorithm.34 Finally, gray-
scale transformation was employed to normalize the image
intensity. A preprocessed image obtained after these applying
FIG. 4. General overview of the methodology. The original images are in-
tegrated to generate a whole breast image �Sec. III B�. The whole breast
image is preprocessed �Sec. III C� and a breast volume without a skin layer
is segmented �Sec. III D�. Subsequently, mass candidates are segmented
�Sec. III E� and low-density regions are extracted �Sec. III F�. Mass candi-
dates are detected based on previous two outputs �Sec. III G�. Finally, false
positives are reduced �Sec. III H�.
these processes is defined as h�x ,y ,z�.



4382 Ikedo et al.: Fully automatic scheme for detection of masses 4382
III.D. Segmentation of a breast volume

As stated previously, features based on edge directions
were used for mass detection. Therefore, false positive �FP�
regions were generated due to the edges at the boundaries of
the skin tissue and subcutaneous fat tissue. In order to reduce
such FPs, a breast volume without the skin layer was seg-
mented from each whole breast image.

First, an initial breast volume including the skin volume
was extracted from a whole breast image by gray level

FIG. 5. Positional relations of three separate images �upper part� and trans-
parency rate � of each image �lower part� in the step of image integration.

FIG. 6. Example of image integration. �a� Three original images. �b� A

whole breast slice image after applying the integration method.
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thresholding with a threshold level of 30, since the breast
volume is obviously brighter than its black background. The
threshold level was defined empirically. The hole filling tech-
nique was applied to the initial breast volume because
anechoic masses might be removed by gray level threshold-
ing. The hole filling technique was that holes surrounded by
the initial breast volume were included in initial breast vol-
ume. The skin tissue was depicted with a high density as
compared to other tissues and the skin thickness was less
than 5 mm. Gray level thresholding with a threshold level of
180 was applied to the whole breast image. The threshold
level was also defined empirically. A volume of 5-mm thick-
ness from the anterior surface of the binary volume was de-
fined as the initial skin volume. The initial skin volume in-
cluded not only skin tissue but also subcutaneous fat tissue.
A skin volume containing only skin tissue was extracted
from the initial skin volume using gray level thresholding
with a threshold value selected by the discriminant
analysis.35 Finally, the skin volume was removed from the
initial breast volume and the remaining volume was defined
as a breast volume. Figure 7 shows an example of a slice
image of a segmented breast volume.

FIG. 8. Illustrations of edges used for the detection of masses. �a� A mass
with two near-vertical edges. �b� A mass with two near-vertical and a near-
horizontal edges. The near-vertical edges are shown in solid lines and the
near-horizontal edge is shown in a dashed line. Near-horizontal edges in the
posterior boundary of a mass are not used because there are some masses

FIG. 7. Example of breast region segmented from a whole breast slice image
in Fig. 6�b�. Solid line shows the contour of a breast region.
with posterior echo attenuation.



4383 Ikedo et al.: Fully automatic scheme for detection of masses 4383
III.E. Segmentation of mass candidates

Combination of edges �COE�, i.e., two near-vertical edges
�COE-V� or two near-vertical edges and a single near-
horizontal edge �COE-VH�, were found near the boundary of
a mass region, as shown in Fig. 8. Therefore, a mass candi-
date could be determined based on the COE-V or COE-VH.
Near-horizontal edges in the posterior boundary of a mass
were not used because there were some masses with poste-
rior echo attenuation in US images.

Edges in a whole breast slice image were detected by the
Canny edge detector36 and an edge image �EI� was generated
by applying a thinning algorithm37 to the detected edges be-
cause the edges detected by the Canny edge detector were
not fully thin edges. A near-vertical edge image �n-VEI� was
generated by subtracting the EI from a copy of the EI trans-
lated along the x direction for two pixels, i.e., EI�x ,y�
�0�EI�x+2,y�=0. A near-horizontal edge image �n-HEI�
was generated by subtracting the n-VEI from the EI, i.e.,
EI�x ,y��0�n-VEI�x ,y�=0. Figure 9 shows an example
image of n-VEI and n-HEI. The side with a lower density
associated with each near-vertical edge was determined by
comparing the average densities in the left and right side
regions, as shown in Fig. 10. Both regions were kept at a
distance three pixels �along the x axis� away from the near-
vertical edge because they reduce the effect of the neighbor-
hood densities of the near-vertical edge. Consider that the
average density in the right side region of a near-vertical
edge is lower than that in the left side region; region of

FIG. 9. Example of edge images detected by using our method. �a� Original
image with a mass. �b� Near-vertical edge image. �c� Near-horizontal edge
image.

FIG. 11. Illustration of region of interest �ROI� used for the detection of a
ev�x ,y�. In all illustrations, consider that the average density in the right sid
in the left side region is lower, the ROIs are set to the left side of ev�x ,y�. �
is constructed at the top left hand corner located at �x1+1 ,y1+4� with a size
the right pixel �xn ,yn� of the near-horizontal edge, and the height H of ev�x
the bottom right hand corner located at �xn+5,yn−H�. �c� Definition of RO
bottom pixel �xn ,yn� of ev�x ,y�, the ROI3 is constructed at the top left han

+86,yn−21�. The 86 and 21 pixels correspond to 20 and 5 mm, respectively.
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interest 1 �ROI1� was defined as shown in Fig. 11�a�. With
regard to the top pixel �x1 ,y1� of the near-vertical edge,
ROI1 is constructed at the top left hand corner located at
�x1+1 ,y1+4� with a size of 9�9 pixels. If another near-
vertical edge exists in ROI1, a COE-V scenario was estab-
lished. If a near-horizontal edge exists in ROI1 and another
near-vertical edge exists in ROI2, as shown in Fig. 11�b�, a
COE-VH scenario was established. With regard to the left
pixel �x1 ,y1� and the right pixel �xn ,yn� of the near-
horizontal edge and the height H of the first near-vertical
edge, ROI2 is constructed at the top left hand corner located
at �x1 ,y1� and at the bottom right hand corner located at
�xn+5,yn−H�. A near-vertical edge with no other edges
found in ROI1 or ROI2 was eliminated from the n-VEI.
ROI3 was constructed for the near-vertical edges where a
COE-V or COE-VH scenario had been established, as shown
in Fig. 11�c�. Referring the top pixel �x1 ,y1�, right pixel
�xi ,yi�, left pixel �xj ,yj�, and bottom pixel �xn ,yn� of the
near-vertical edge, ROI3 is constructed at the top left hand
corner located at �xj −21,y1+21� and at the bottom right cor-
ner located at �xi+86,yn−21�. ROI3 was segmented by the
watershed algorithm.38,39 If the average density of a seg-
mented region was higher than that of ROI3, the segmented

FIG. 10. Illustration of left and right side regions used for the detection of
the side with lower density associated with a near-vertical edge ev�x ,y�.
Average densities in the left side and right side regions are compared.

vertical or a near-horizontal edges in neighborhood of a near-vertical edge
on of the ev�x ,y� is lower that in the left side region. If the average density
finition of ROI1. With regard to the top pixel �x1 ,y1� of ev�x ,y�, the ROI1

�9 pixels. �b� Definition of ROI2. With regard to the left pixel �x1 ,y1� and
he ROI2 is constructed at the top left hand corner located at �x1 ,y1� and at
ith regard to the top pixel �x1 ,y1�, right pixel �xi ,yi�, left pixel �xj ,yj�, and
ner located at �xj −21,y1+21� and at the bottom right corner located at �xi
near-
e regi
a� De
of 9

,y�, t
I3. W
d cor
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region was removed. Contiguous regions were stitched, and
the maximum size region was extracted from ROI3 as a mass
candidate.

III.F. Extraction of low-density regions

If the pixel density in a current slice image is lower than
that of the same pixel in a previous slice image, the pixel in
the current slice image is defined as a low-density pixel.
Low-density regions comprise low-density pixels.

The following method was applied twice, once to the slice
forward and once to the slice backward. First, a boundary
pixel between a low-density pixel and a high-density pixel
was detected by the slice subtraction method. The boundary
pixel �i , j ,k� is given by

h�i, j,k − 1� − h�i, j,k + 1� � 30, �3�

where the threshold value of 30 is selected empirically. If a
boundary pixel is detected, a low-density pixel is given by

h�i, j,k − 1� − h�i, j,k + i� � 30�i = 1, . . . ,5� , �4�

where i is less than or equal to 5 because the maximum
radius of the masses in our database is 10 mm and the slice
interval is 2 mm. In the second time �slice backward�, k−1,
k+1, and k+ i were replaced by k+1, k−1, and k− i, respec-
tively, in the method and the same method was applied again.

III.G. Detection of mass candidates

An area of an extracted region �ER� in Sec. III E is de-
noted by AER. If the area of a low-density region included in
the ER was greater than or equal to eight tenths of the AER,
the ER was detected as an initial mass candidate region.
Figure 12 shows an example of an extracted mass region in
an ultrasound image.

III.H. False positive reduction

III.H.1. Feature extraction

In this study, FP candidates were reduced employing two
methods, i.e., rule-based �RB� technique and quadratic dis-
criminant analysis40 �QDA�. These methods were performed
using five features including area �A�, average density �AD�,
position of center of gravity �PCG�, difference of average
density �DAD�, and depth-to-width ratio �DWR� for each
FIG. 12. Detection of the mass shown in Fig. 9�a�.
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candidate region in a slice image. A is the number of pixels
in a mass candidate region and AD is the average density in
the candidate region. PCG is the distance between the center
of gravity and the posterior boundary of the breast region in
the same x coordinate as the center of gravity, as shown in
Fig. 13. DAD is given by subtracting the average density of
the core region from that of the periphery region, as shown
in Fig. 14. The core region was generated by applying “mor-
phological erosion”41 with a structuring element of a 5�5
circle to the candidate region. The periphery region was gen-
erated by subtracting the candidate region from the expanded
region by applying “morphological dilation”41 with a struc-
turing element of a 9�9 circle to the candidate region. How-
ever, in this process, the candidate region was expanded by
morphological dilation with a structuring element of a 5
�5 circle to reduce the effect of the candidate margin den-
sity. Only the anterior side region of the center of gravity was
used in both the core and the periphery regions in order to
eliminate the effect of posterior echo attenuation. DWR is
the aspect ratio of a rectangle outlining a mass candidate
region.

The distributions of the five features are plotted in Fig. 15
and the results of tests for the univariate equality of group

FIG. 13. Definition of the position of center of gravity �PCG�. PCG is the
distance between the center of gravity �cx ,cv� of a mass region and the
posterior boundary of the breast region �cx ,bv�.

FIG. 14. Illustration of the core and periphery regions which are used to

calculate a DAD.
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means are shown in Table I. Wilks’ lambda42 is defined as the
ratio of within-group variance to the total variance and indi-
cates the degree of discrimination between the masses and
FPs; for A, this value was lesser than that for any other
feature. The F value42 for A was also higher than that for any
other feature. This result indicates that A greatly contributed

FIG. 15. Distribution of four features in each mass candidate region �mass:
gravity vs difference of average density. The dotted lines indicate the thresh
The dotted lines in each figure indicate the threshold values using rule-base

TABLE I. Test for univariate equality of group means in distinguishing be-
tween masses and FPs �A: area, AD: average density, PCG: position of
center of gravity, DAD: difference of average density, and DWR: depth-to-
width ratio�.

Feature Wilk’s lambda F value P value

A 0.965 201.910 �0.001
AD 0.989 62.895 �0.001

PCG 0.993 40.957 �0.001
DAD 0.967 188.868 �0.001
DWR 1.000 0.504 0.478
Medical Physics, Vol. 34, No. 11, November 2007
in distinguishing between masses and FPs. DWR contributed
to some extent in eliminating FPs, because DWR was an
only shape feature. Therefore, DWR was used as a parameter
to reduce FPs in this study.

III.H.2. Rule-based technique

Four features, namely, A, AD, PCG, and DAD were used
for the RB technique. We applied the RB technique to these
feature diagrams by drawing dotted lines, as shown in Figs.
15�a� and 15�b�, and the candidate regions in the feature
spaces, with the A value greater than or equal to 200, the AD
value less than or equal to 137, the PCG value greater than or
equal to 57, and the DAD value greater than or equal to 43,
remained as mass candidates. However, two masses were
removed by the PCG rule �see Fig. 15�b��. The feature values

; false positive: dot�. �a� Area vs average density. �b� Position of center of
for reduction of false positives. �c� Depth-to-width ratio vs average density.
hniques.
circle
olds
d tec
of the masses lied outside the distribution of other masses
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and the same masses were detected in other slices. Therefore,
it is considered that no problems occur by removing these
two mass regions.

Those threshold values were decided for our database. If
unknown new images were used for our proposed method,
masses out of the threshold values were removed by the RB
technique. In that case, the threshold values might be needed
to reconsider.

III.H.3. Quadratic discriminant analysis

All features of the mass candidate volumes were used for
the QDA. However, the volume of a mass candidate region
was determined in all slice images. Therefore, in this part,
each feature of a mass candidate volume was defined as an
average feature value of all mass candidate regions in order
to construct the mass candidate volume. The quadratic dis-
criminant function is defined by

h�X� =
1

2
�X − ML�T�L

−1
�X − ML�

−
1

2
�X − MF�T�F

−1
�X − MF� +

1

2
log

��L�
��F�

, �5�

where X is a feature vector of all candidates. �ML ,�L� and
�MF ,�F� are the mean feature vectors and covariance matrix
of the features in the mass candidates and the FPs, respec-
tively.

Employing the RB technique before applying QDA might
be effective for the accurate calculation of the QDA decision
boundary because outlying FPs were removed using the RB
technique.

IV. RESULTS AND DISCUSSION

The proposed scheme for the detection of masses was
evaluated using our database. In this study, the resubstitution
method43 was utilized for the evaluation. The resubstitution
method is that the same data set is used, first for training and
then for testing. This was because our database was small
and there were not many masses. If the center of gravity of a
detected region is located in a mass region, the detected re-
gion is considered to be true positive. The sensitivities of the
detection of masses before and after applying the RB tech-
nique for FP reduction were 91.7% �33/36� with 35.8 FPs
�3905/109� and 91.7% �33/36� with 22.5 FPs �2448/109� per
whole breast image, respectively. However, the sensitivity
with QDA was 80.6% �29/36� with 3.8 FPs �409/109� per
whole breast image. In addition, the leave-one-out method
was also employed to evaluate the performance of the
scheme. The sensitivity with QDA was 80.6% �29/36� with
6.6 FPs �723/109� per whole breast image. Figure 16 shows
the FROC curves44 for the overall performance of our detec-
tion scheme as evaluated by the resubstitution and leave-one-
out methods. This curve was determined by changing the
threshold level of the output value of the quadratic discrimi-
nant function. The evaluation using the leave-one-out

method could be underestimated because our database was
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small. Therefore, in future studies, we need to evaluate the
detection scheme using a large database by the leave-one-out
method and a cross validation method.

We found that the feature based on edge directions was
useful for the detection of masses. It is also easy to apply the
detection scheme to 2D US images obtained by a conven-
tional hand-held probe because the scheme employs a 2D
method and not a 3D method. This scheme could detect
masses effectively even if they had posterior attenuation. On
the other hand, it was difficult to detect flat-shaped masses
�short in the vertical dimension and long in the horizontal
dimension when viewed on a slice image� because the near-
vertical edges of the masses could not be easily detected, as
shown in Fig. 17�a�.

A lot of FPs were generated at an initial detection stage,
many of which remained even after applying the reduction
procedures for FPs. These remaining FPs corresponded to
the fat and rib regions, as shown in Figs. 17�b� and 17�c�.
This is because the edges of Cooper’s ligaments in the fat
tissue and rib section were incorrectly detected. However,
there is a difference between the 3D shapes of the masses
and fat tissue or ribs. Masses are spherical, while the fat
tissue and ribs are not. The 3D characteristics were not used
in our proposed detection method because the interval of
slice images in our database was large �2 mm�. However, the
ASU-1004 has now been improved to scan an entire breast
with interval of 2 mm or less and the 3D shape characteris-
tics can be extracted easily. Therefore, it seems that the in-
troduction of a 3D method for the detection of masses is one
of the effective methods for solving such a problem.

We expect that in the future, the use of our whole breast
US images will lead to the development of other CAD sys-

FIG. 16. FROC curves for overall performance of our scheme for the detec-
tion of masses evaluated by the resubstitution and leave-one-out methods
�resubstitution: solid line with black circle; leave-one-out: solid line with
white circle�.
tems such as the quantitative evaluation of breast densities
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and the analysis of architectural distortions. Furthermore, it
may also be possible to detect interval changes using the
image registration technique of previous and current whole
breast images.

V. CONCLUSION

We have developed a fully automatic scheme for the de-
tection of masses in whole breast US images. Using our
scheme, the sensitivity of the detection of masses was 80.6%
�29/36� with 3.8 FPs �409/109� per whole breast image. We
found that the feature based on edge directions is useful for
the detection of masses in US images. A CAD system em-
ploying our proposed scheme may be useful in improving the
screening performance and efficiency.
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