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Abstract

In this paper, after reviewing the traditional Kalman filter
formulation, a development of a fuzzy logic-based adaptive
Kaman filter is outlined. The alaptation is in the sense of
adaptively tuning, on-line, the measurement noise @variance
matrix R or the process noise @variance matrix Q. This
improves the Kalman filter performance axd prevents filter
divergencewhen R or Q are uncertain. Based on the whiteness
of the filter innovation sequence ad employing the
covariance-matching technique the tuning process is caried
out by afuzzy inference system. If a statisticd analysis of the
innovation sequence shows discrepancies with its expeded
dtatigtics then a fuzzy inference system adjusts a fador
through which the matrices R or Q are tuned on line. This
fuzzy logic-based adaptive Kaman filter is tested on a
numericd example. The results are cmpared with these
obtained ushg a @nventiona Kaman filter and a
traditionally adapted Kalman filter. The fuzzy logic-based
adaptive Kalman filter showed better results than its
traditional counterparts.

1 Introduction
1.1 Kalman Filtering

The Kalman filter is an optimal reaursive data processng
algorithm [6] that provides a linea, unbiased, and minimum
error variance estimate of the unknown state vedor x, 00"
at ead instant k = 1,2,..., (indexed by the subscripts) of a
discrete-time ontrolled process described by the linea
stochagtic difference euations:

D
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Xisr = AcXi + Beuy +wy
z, = Hx, +v,
where x, is an (n x 1) system state vedor, A is an (n x n)

transition matrix, uy is an (I x 1) vedor of the input forcing
function, Byisan (n x |) matrix, wy isan (n x 1) processnoise

vedor, 7 is a (m x 1) measurement vedor, Hy is a (m x n)
measurement matrix, and vy is a (m x 1) measurement noise
vedor.

Both w, and v, are aaumed to be uncorrelated zero-mean
Gausdan white noise sequences with covariance matrices:
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where E{ [Jl is the statisticd expedation, superscript T denotes
transpose, Qy is the processnoise wvariance matrix, and R is
the measurement noise cvariance matrix.

The Kalman filter algorithm is organised into two groups of
equations[12],
i) Time update (or prediction) equations:

(6)
().

These guations projed, from time step k to step k+1, the
current state and error covariance etimates to oktain the a
priori (indicated by the super minus) estimates for the next
time step.

Xivr = AX + Bouy
Pea = AP AkT +Q,

i) Measurement update (or corredion) eguations:

Kk:Pk_HkT[HkPk_HkT"'Rk]_l ©)
X, = X + K[z, —H X/] 9)
P =[I - K H P (10).

These @uations incorporate a new measurement into the a
priori estimate to oltain an improved a posteriori estimate.
In the eove eguations, X, isan estimate of the system state

vedor X, and Py is the mvariance matrix corresponding to the
state estimation error defined by,

P, = E{(x, - %)(x - %)} (12).



The term H, X, is the one-stage predicted output 2, , and
(z, —H, X, ) is the one-stage prediction error sequence,

aso referred to as the innovation sequence or residual,
generally denoted asr and defined as:

re = (z, —HX) (12).
The innovation represents the alditional information avail able
to thefilter as a cnsequence of the new observation z, . The

weighted innovation, K, [z -H,X ], ads as a wrredion to
the predicted estimate %, to form the estimation x, ; the

weighting matrix Ky is commonly referred to as the filter gain
or the Kalman gain matrix.

1.2 Statement of the problem

As described previoudy, the traditional Kaman filter
formulation asuumes complete a priori knowledge of the
process and measurement noise cvariance matrices Q and R
[9]. However, in most pradicd appli cations these matrices are
initially estimated o, in fad, are unkrown. The problem here
isthat the optimality of the Kalman filter estimates are dosely
conneded to the quality of these apriori noise statistics[1, 7].
It has been shown how inadequate initial noise statistics may
seriously degrade the predsion of the state estimates or even
provoke the divergence of the filter [3, 4]. From this point of
view it can be epeded that an adaptive formulation of the
Kaman filter will result in a better performance or will
prevent filter divergence

Different traditi onal adaptive procedures for the Kalman filter
have been devised [4, 8, 9, and 1(Q since its origina
formulation [5]. Recently, Mohamed and Schwarz [10] have
clasdfied these procedures into two man approades:
innovation-based adaptive estimation (IAE) and multiple-
model-based adaptive estimation (MM AE). In the former the
adaptation is made diredly to the datisticd information
matrices R and/or Q based on the danges in the filter
innovation sequence In the send, a bank of Kalman filters
runs in parallel with different models for the filter's gatistica
information. In both techniques the concept of utilising the
new information available in the innovation (or residual)
sequence is used but they differ in their implementation. In
this work only the first approach will be aldressed, for the
second approach the reader isreferred to [1].

The role of matrices Q and R in the Kalman filter settingis to
adjust the Kalman gain in such away that it controls the filter
bandwidth as the state and the measurement errors vary [9].
Dired adaptation of R can be dtainable via a arve fitting-like
procedure while, in general, dired adaptation of Q is very
hard or impossble to oktain.

In this work the alaptation procedure is concerned with the
impasition of conditions under which the filter statistica
information matrices R or Q are alaptively tuned via aFIS
which uses the available new information gven by the filter

innovation sequence We note that these matrices are
considered as constantsin the conventional Kalman filter.

The remainder of this paper is organised as follows. Sedion 2
describes the proposed fuzzy-logic based Kaman filtering
approach. Here two cases are explained: when Q is known
and R is adapted, and when R is known and Q is adapted. To
show the dfedivenessof this approac anill ustrative example
is outlined in sedion 3. The results obtained are compared
with those obtained with a cnventional Kalman filter and
with those obtained with a traditi onall y adapted Kalman filter.
Finaly, the mnclusions of thiswork are given in sedion 4.

2 Fuzzy logic-based adaptive Kalman filtering

In this ®dion an on-line IAE agorithm employing the
principles of fuzzy logic is presented. In particular, the
technique known as covariance matching [8] is employed. The
basic ideabehind this technique is to make the adual value of
the mvariance of the residuals consistent with its theoreticd
value [10]. If a gtatisticd analysis of the innovation sequence
shows discrepancies between its theoreticd covariance and its
adua covariance then a fuzzy inference system (FIS) adjusts
afador throughwhich the matrices R and/or Q are tuned, on
line, in order to reduce this discrepancy. The ajusting fador
is generated by a FIS based on the size of the discrepancy
above mentioned.

The general idea eplored here is to take alvantage of the
main charaderistics that fuzzy systems have, like the
simplicity of the gproach, the cagability to ded with
impredse information, and the posshility of including
heuristic  knowledge @out the phenomenon  urder
consideration. The next sedions will describe the proposed
fuzzy logic-based adaptive Kalman filtering approach (FL-
AKF).

2.1 Adaptive adjustment of the measurement noise
covariance matrix R with Q known

The measurement noise variance matrix R represents the
acaracy of the measurement instrument, meaning a larger R
for measured data implies that we trust this data lessand take
more acount of the prediction. Asauming that the noise
covariance matrix Q is known, here a1 algorithm employing
the principles of fuzzy logic has been derived to adaptively
adjust the matrix R. This is done in two steps; first, having
avail able the innovation sequence or residua r, (defined by
Equation 12), itstheoreticd covarianceis,

S, =H,P H] +R, (13,

obtained from the Kalman filter algorithm. Seoond, if it is
found that the adual value of the @variance of ry has a
discrepancy with its theoreticd value, then a FIS is used to
derive ajustments for R based on knowledge of the size of
this discrepancy. The objedive of these ajustments is to
corred this mismatch as well as possble.



Given the avail ability of the innovation sequencer,, its adual
covariance C, is approximated by its sample covariance [10]
through averaging inside amoving estimation window of size
N!

A k

Cu = %Z ririT

=T,

14,

whereig = k= N + 1 is the first sample inside the estimation
window. This means that only the last N samples of r, are
used to estimate its covariance The window size is chosen
empiricdly to give some statisticd smoathing.

Now, anew variable cdled the Degreeof Matching (DoM), is
defined to deted the size of the discrepancy between S and
C, . Thisis

DoM, =S, -C,, (15).

The basic idea of adaptation used by a FIS to derive
adjustments for Ris as follows. It can be noted from Equation
13 that an increment in R will increment S, and vice versa.
Thus, R can be used to vary Sin acordance with the value of

DoM in order to reduce the discrepancies between S and ér .
From here threegeneral rules of adaptation are defined:

1. If DoM [ O (this means S and ér match almost

perfedly) then maintain R unchanged.
2. 1f DoM > 0 (thismeans Sis greaer than its adual value

ér ) then deaease R.
3. 1f DoM < 0 (thismeans Sis snaller than its adual value
C,) thenincrease R.
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Fig. 1. Graphicd representation of the aljusting processof R.

Because there is a dired relationship between the dimensions
of the matrices S, R and DoM, the alaptation of the (i, i)
element of R can be made in accordancewith the (i, i) element
of DoM. Thus, a singe-input-singe-output (SISO) FIS
generates the tuning or corredion fador for ead element in
the main diagonal of R, and the crredion is made in this way:

R, (i,i) = R, (i,i) + AR, (16),

where AR is the tuning fador that is added or subtraded from
the dement (i, i) of R at ead instant of time. AR, is the FIS
output and DoM(i,i) is the FIS input. The FIS sequentialy
generates the mrredion fadors for R until all the dements (n
in total) in its main diagona are aljusted. A graphicd
representation of this adjusting processis siownin Fig. 1.

2.2 Adaptive adjustment of the process noise covariance
matrix Q with R known

The variance matrix Q represents the uncertainty in the
processmodel. An increase in the mvariance matrix Q means
that we have lesstrust in the process model and more in the
measurement. Asauming that the noise mvariance matrix R is
known an agorithm to estimate the matrix Q can be derived.

The ideabehind the process of adaptation of Q is as foll ows.
Equation 13 can be rewritten as:

1),

and from Equation 17 it can be deduced that a variation in Q
will affed thevalue of S If Qisincreased, then Sisincreased,

and vice versa. Thus, if a mismatch between S and érk is

S, = Hk(AkPkAII +Qk)HII + Ry

observed then a crredion can be made through augmenting
or diminishing the value of Q. Thus, similar to the previous
case, threegeneral adaptation rules are defined:

1. If DoM 0O 0 (this means érk and S are equal) then
maintain Q unchanged.
2. If DoM > 0O (this means C,, is snadler than §) then

deaeae Q.
3. If DoM < 0 (this means C,, is greder than §) then

increase Q.

If the dimensions of matrices S R and DoM, are the same &
that of matrix Q, then the same procedure used to adjust R can
be used in this case. The adaptation of the (i, i) element of Q
is made in acordance with the (i, i) element of DoM. Thus, a
SISO FIS generates the tuning fador for ead element in the
main diagonal of Q, and the mrredion is made in thisway:

Qi (i,1) = Q- (i,1) + AQ, (19),

where AQ is added o subtraded from ead element of the
main diagonal of Q at ead instant of time. AQ is obtained
from a FIS were DoM(i,i) is the FIS input. Thus the FIS
sequentially generates the wrredion fador for the (i, i)
element of Q. The graphicd representation of this adjusting
processis the same as that shown in Fig. 1, but replace a R
witha Q.

A more difficult task is that of adjusting Q when thereisnot a
dired correspondence between the dimension of the matrices
S Q and DoM. However, asit will be shown in the ill ustrative



example, some enpirica considerations can be used by a FIS
to succesgully overcome this problem.

3 Illustrative example

To demonstrate the dficiency of the fuzzy logic-based
adaptive Kalman filtering (FL-AKF) approach, a simple
numericd example is presented. The results are compared
with those obtained with a traditional Kalman filter without
adaptation (TKF) and a traditional adaptive Kaman filter
(TAKF).

Consider the following linea system, which is a modified
version of atracking model [2, 11],

k,0 00.77 0.20 0.000 GO O C
Je. =025 075 0250 GeDe el (199
Hi.H .05 0.00 0755 FiH HviH
Ok, O
, g ooogio, (19b
k %) 1 OE ggg k
k

with initial conditions X, = 0, P, = 0.011,, where x', X%,
and x are the pasition, velocity and accéeration, respedively,
of a flying objed. In Equation 19, the system and
measurement noise sequences {wg and {w} are
pseudorandom sequences (i.e., uncorrelated zero-mean
Gaussgan white noise sequences) with covariance matrices:

.2 00O

Q=002l5, R=
Ho 150

(20).

MATLAB code was developed to simulate the FL-AKF, the
TKF and the TAKF. The postion and velocity were
considered as the daraderistics being measured. The
simulation and results obtained are presented in the following
sedions.

3.1 Adaptation of R and comparisons

Following the guidelines given in sedion 2.1, five fuzzy sets
have been defined for DoM: NM = Negative Medium, NS =
Negative Small, ZE = Zero, PS = Positive Small, and PM =
Positive Medium. In a similar way five fuzzy sets have been
defined for AR: IL = Increase Large, | = Increase, M =
Maintain, D = Deaease, and DL = Deaease Large. Findly,
five rules comprise the SISO FIS rule base,

1. If DoM = NM, then AR=IL
2. If DoM =NS thenAR=1

3. If DoM = ZE, then AR=M
4. If DoM =PS, then AR=D

5. If DoM = PM, then AR=DL.

The membership functions for DoM and AR are presented in
Fig. 2.

Degree of membership
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Fig. 2. Membership functions for DoM and AR.

The model described by Equation 19 was smulated for 500s
with a sample time of 0.5s. Q was fixed at its adua value,
0.0215. The acdual value of R has been assumed unknown, but
itsinitial value was ®leded as.

25 00
Ro=Ho 5.0 .
u .04

The values in the main diagonal of R are @ntinuously
adjusted as described in sedion 2.1.

For comparison purposes the foll owing performance measures
were adopted:

Jl:\/%i(zi -v,)?
J, :\/%i(zi -z)°

where z is the adua value of the daraderistic being
measured (without noise); zv; is the measurement (with noise
added); and zg is the estimation of the daraderistic being
measured.

(22)

(23),

To make cmparisons, the traditional adaptation procedure
propased by Mohamed and Schwarz [10] was used to adapt R
and Q. In this method R or Q are etimated using the
following equations,

Rk

Q«
where C,, is obtained with Equation 14. H T, P, and K,
are those obtained in the Kalman filter algorithm.

(24)
(29),

=érk “H/P H{
= KkérkK:

Table 1 shows the performance measures obtained for ead of
the foll owing cases:

1. TKF-ANS, traditional Kaman filter considering the
adual values of the noise statistics (matrices R and Q).

2. TKF, traditional Kalman filter with incorred fixed value
of Rand adual fixed value of Q.

3. TAKF, traditionally adapted Kalman filter with initia
incorred value of R and adual fixed value of Q. Here R
is adaptively tuned using a traditional technique.



4, FL-AKF, fuzzy logic-based adaptive Kalman filter with
initial incorred value of R and adua fixed value of Q.
Here Ris adaptively tuned usingaFIS.

From experimentation, it was noticed that the best results
were obtained with a window size of 50 samples for cases 3
and 4.

Table 1
Performance TKF- TKF TAKF | FL-AKF
measure ANS
J; - Position 0.4490 0.4490 0.4490 0.4490
J; - Velocity 3.8512 3.8512 3.8512 3.8512
J, - Position 0.2256 0.3688 0.3020 0.2274
J> - Velocity 0.2914 0.4168 0.3665 0.2933
3
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Fig 3. (@) Outputs for case 2; (b) Outputs for case 3, and (c)
Outputs for case 4.

Analysing the data in table 1 it is deduced that the best
estimation of the paosition and velocity of the flying objed is
that obtained with the FL-AKF as it has the best performance
measures for both parameters. A more explicit performance
measure is obtained cdculating the percentage of degradation
in the estimation with resped to the estimation obtained with
the traditional Kalman filter (TKF) considering the adua
noise statistics (case 1). These percentages are shown in Table
2. It is remarkable that only a dlightly degradation in the
estimations is observed in the FL-AKF (case 4). As expeded,
the worst degradation is observed in the TKF without
adaptation (case 2). An intermediate level of degradation is
observed in the TAKF (case 3).

Figure 3 shows the plots of the dements (1,1) of ead matrix:
R S, C, ., and DoM. This data was obtained for cases 2, 3

and 4 described previoudly. In Fig. 3(a), corresponding to
case 2, a discrepancy can be seen between the adual

covariance of the residual érk and its theoreticd value S.

Because both Q and R are fixed DoM remains a large value.
In Fig. 3(b), corresponding to case 3, a mntinuous adjustment
of R can be observed. In this case DoM remains at a very
small value while R amost reades its true value. This
explains the filter performance improvement. In Fig. 3(c),
corresponding to case 4; similarly to the previous case, a
continuous adjustment of R is noted; DoM oscill ates around
zero and R oscill ates around its true value. Becaise we ae
deding with urcertain information about the noise statistics,
this oscillation around the true values explains the better
estimation obtained in this last case.

Table 2
Percentage of | TKF- FL-
degradation  on| ANS TKF TAKF AKF
the estimation d:
Position 0% 63.5% 33.9% 0.8%
Velocity 0% 43.0% 258% | 0.65%

3.2 Adaptation of Q and comparisons

Foll owing the guidelines given in sedion 2.2, five fuzzy sets
have been defined for DoM and five for AQ with the same
labels but different membership functions than those in the
previous case (seeFig. 4). Thus, five fuzzy rules comprise the
rule base,

1. If DoM = NM, thenAQ = IL
2. If DoM = NS thenAQ = |

3. If DoM = ZE, thenAQ =M

4. 1f DoM = PS then AQ=D

5. If DoM = PM, then AQ = DL.

The model described by Equation 19 was smulated for 500s
with a sample time of 0.5s. In this case R was fixed as its
adua value. The value of Q has been asumed to be
unkmown, but itsinitial value was sleded as,

Q, =10Q

In this case adired correspondence between the dimension of
the matrices R, S, Q and DoM does not exist; all matrices,
except Q are of dimension 2 x 2 (only the paosition and
velocity are being measured). To overcome this problem a
heuristic consideration was incorporated to the tuning process
This consists of estimating the component (3, 3) of DoM as:

DoM , (3,3) =[DoM , (1,2)]° @7,

this value then enters the FIS and the procedure of adjustment
continues as edfied.

(26).

Table 3 shows the performance measures obtained for ead of
the foll owing cases:

1. TKF-ANS, traditiona Kaman filter considering the
adual values of the noise statistics (matrices R and Q).

2. TKF, traditional Kalman filter with incorred fixed value
of Q and adual fixed value of R.



3. TAKF, traditionally adapted Kalman filter with initial
incorred value of Q and adual fixed value of R. Here Q is
adaptively tuned using a traditional technique.

4, FL-AKF, fuzzy logic-based adaptive Kalman filter with
initial incorred value of Q and adual fixed value of R.
Here Q is adaptively tuned usinga FIS.
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Fig. 4. Membership functions for DoM and AQ.

Table 3
Performance TKF- TKF TAKF | FL-AKF
measure ANS
J; - Position 0.4490 0.4490 0.4490 0.4490
J; - Velocity 3.8512 3.8512 3.8512 3.8512
J, - Position 0.2256 0.2990 0.2495 0.2433
J> - Velocity 0.2914 0.3410 0.3243 0.3141
Table4
Percentage of | TKF- FL-
degradation on| ANS TKF TAKF AKF
the estimation d:
Position 0% 32.5% 10.6% 7.8%
Velocity 0% 17.0% 11.3% 7.8%

From the analysis of the data in table 3 it is ®en that, in this
case, the improvement of performance obtained with both
TAKF and FL-AKF is amost the same, but they are
significant with resped to the non-adaptive cae. Thisis more
explicit in the data of table 4. As can be seen the degradation
in the estimation for both adaptive caes is between 7% and
11%. However the estimation in the performance in the TKF
is degraded by up to 325%.

4. Conclusions

In this paper a fuzzy logic-based adaptive Kalman filter was
presented (FL-AKF). The aaptation, caried out by a fuzzy
inference system, is in the sense of adaptively tuning the
measurement noise @variance matrix R or the process noise
covariance matrix Q. An example showing the dficiency of
this method was presented. It is remarkable that only five
rules were needed to cary out the alaptation in ead case.
The andlysis of the results from the example presented show
that a greaer improvement in Kalman filter performance is
obtained with the FL-AKF when compared with its traditi onal
counterpart (TAKF). Also, they show that the alaptation of Q
is harder to oltain. Nevertheless the improvement on the
Kaman filter performance, for thislast case, is not as good as
that for R, it is comparable to that obtained with its traditi onal
counterpart.

The main advantage of the proposed FL-AKF is the wegker
relianceon the a priori statisticd information. In this adaptive
formulation, the a priori statisticd information is only of
semndary importance becaise the new measurement and
process noise mvariance matrices are aaptively tuned
acording to the new information gven ead instant of time
by the Kalman filter innovation sequence. This information is
succesgully manipulated by a FIS to cary out the alaptation
procedure. Thus, the good results obtained in the ill ustrative
example show that the general idea of exploring the use of
fuzzy logic goproaches to achieve alaptive Kalman filtering
appeasto be apromising avenue of investigation.

The FL-AKF approach shares the problem of fuzzy systems
about the ladk of tod s that al ow its mathematicd analysis and
demonstrations. One way of overcome this problem is to
benchmark the fuzzy logic-based approach against some
representative traditional scheme, like was done in this work;
that do allow some @nfidence on the gproach.
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