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Abstract

In this paper, after reviewing the traditional Kalman filter
formulation, a development of a fuzzy logic-based adaptive
Kalman filter is outlined. The adaptation is in the sense of
adaptively tuning, on-line, the measurement noise covariance
matrix R or the process noise covariance matrix Q. This
improves the Kalman filter performance and prevents filter
divergence when R or Q are uncertain. Based on the whiteness
of the filter innovation sequence and employing the
covariance-matching technique the tuning process is carried
out by a fuzzy inference system. If a statistical analysis of the
innovation sequence shows discrepancies with its expected
statistics then a fuzzy inference system adjusts a factor
through which the matrices R or Q are tuned on line. This
fuzzy logic-based adaptive Kalman filter is tested on a
numerical example. The results are compared with these
obtained using a conventional Kalman filter and a
traditionally adapted Kalman filter. The fuzzy logic-based
adaptive Kalman filter showed better results than its
traditional counterparts.

1 Introduction

1.1 Kalman Filtering

The Kalman filter is an optimal recursive data processing
algorithm [6] that provides a linear, unbiased, and minimum
error variance estimate of the unknown state vector n

kx ℜ∈
at each instant k = 1,2,…, (indexed by the subscripts) of a
discrete-time controlled process described by the linear
stochastic difference equations:

kkkkkk wuBxAx ++=+1 (1)

kkkk vxHz +=   (2)

where xk is an (n × 1) system state vector, Ak is an (n × n)
transition matrix, uk is an (l × 1) vector of the input forcing
function, Bk is an (n × l) matrix, wk is an (n × 1) process noise

vector, zk is a (m × 1) measurement vector, Hk is a (m × n)
measurement matrix, and vk is a (m × 1) measurement noise
vector.

Both wk and vk are assumed to be uncorrelated zero-mean
Gaussian white noise sequences with covariance matrices:
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where E{ ⋅} is the statistical expectation, superscript T denotes
transpose, Qk is the process noise covariance matrix, and Rk is
the measurement noise covariance matrix.

The Kalman filter algorithm is organised into two groups of
equations [12],

i) Time update (or prediction) equations:

kkkkk uBxAx +=−
+ ˆˆ 1

(6)

k
T
kkkk QAPAP +=−

+1
(7).

These equations project, from time step k to step k+1, the
current state and error covariance estimates to obtain the a
priori (indicated by the super minus) estimates for the next
time step.

ii ) Measurement update (or correction) equations:

1][ −−− += k
T
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T
kkk RHPHHPK (8)

 ]ˆ[ˆˆ −− −+= kkkkkk xHzKxx (9)

 −−= kkkk PHKIP ][ (10).

These equations incorporate a new measurement into the a
priori estimate to obtain an improved a posteriori estimate.

In the above equations, kx̂  is an estimate of the system state

vector xk, and Pk is the covariance matrix corresponding to the
state estimation error defined by,

{ }T
kkkkk xxxxEP )ˆ)(ˆ( −−= (11).



The term −
kk xH ˆ  is the one-stage predicted output kẑ , and

)ˆ( −− kkk xHz  is the one-stage prediction error sequence,

also referred to as the innovation sequence or residual,
generally denoted as r and defined as:

)ˆ( −−= kkkk xHzr (12).

The innovation represents the additional information available
to the filter as a consequence of the new observation kz . The

weighted innovation, ]ˆ[ −− kkkk xHzK , acts as a correction to

the predicted estimate −
kx̂  to form the estimation 

kx̂ ; the

weighting matrix Kk is commonly referred to as the filter gain
or the Kalman gain matrix.

1.2 Statement of the problem

As described previously, the traditional Kalman filter
formulation assumes complete a priori knowledge of the
process and measurement noise covariance matrices Q and R
[9]. However, in most practical applications these matrices are
initially estimated or, in fact, are unknown. The problem here
is that the optimality of the Kalman filter estimates are closely
connected to the quality of these a priori noise statistics [1, 7].
It has been shown how inadequate initial noise statistics may
seriously degrade the precision of the state estimates or even
provoke the divergence of the filter [3, 4]. From this point of
view it can be expected that an adaptive formulation of the
Kalman filter will result in a better performance or will
prevent filter divergence.

Different traditional adaptive procedures for the Kalman filter
have been devised [4, 8, 9, and 10] since its original
formulation [5]. Recently, Mohamed and Schwarz [10] have
classified these procedures into two main approaches:
innovation-based adaptive estimation (IAE) and multiple-
model-based adaptive estimation (MMAE). In the former the
adaptation is made directly to the statistical information
matrices R and/or Q based on the changes in the filter
innovation sequence. In the second, a bank of Kalman filters
runs in parallel with different models for the filter’s statistical
information. In both techniques the concept of utili sing the
new information available in the innovation (or residual)
sequence is used but they differ in their implementation. In
this work only the first approach will be addressed, for the
second approach the reader is referred to [1].

The role of matrices Q and R in the Kalman filter setting is to
adjust the Kalman gain in such a way that it controls the filter
bandwidth as the state and the measurement errors vary [9].
Direct adaptation of R can be attainable via a curve fitting-like
procedure while, in general, direct adaptation of Q is very
hard or impossible to obtain.

In this work the adaptation procedure is concerned with the
imposition of conditions under which the filter statistical
information matrices R or Q are adaptively tuned via a FIS
which uses the available new information given by the filter

innovation sequence. We note that these matrices are
considered as constants in the conventional Kalman filter.

The remainder of this paper is organised as follows. Section 2
describes the proposed fuzzy-logic based Kalman filtering
approach. Here two cases are explained: when Q is known
and R is adapted, and when R is known and Q is adapted. To
show the effectiveness of this approach an ill ustrative example
is outlined in section 3. The results obtained are compared
with those obtained with a conventional Kalman filter and
with those obtained with a traditionally adapted Kalman filter.
Finally, the conclusions of this work are given in section 4.

2 Fuzzy logic-based adaptive Kalman filtering

In this section an on-line IAE algorithm employing the
principles of fuzzy logic is presented. In particular, the
technique known as covariance matching [8] is employed. The
basic idea behind this technique is to make the actual value of
the covariance of the residuals consistent with its theoretical
value [10]. If a statistical analysis of the innovation sequence
shows discrepancies between its theoretical covariance and its
actual covariance then a fuzzy inference system (FIS) adjusts
a factor through which the matrices R and/or Q are tuned, on
line, in order to reduce this discrepancy. The adjusting factor
is generated by a FIS based on the size of the discrepancy
above mentioned.

The general idea explored here is to take advantage of the
main characteristics that fuzzy systems have, like the
simplicity of the approach, the capabilit y to deal with
imprecise information, and the possibilit y of including
heuristic knowledge about the phenomenon under
consideration. The next sections will describe the proposed
fuzzy logic-based adaptive Kalman filtering approach (FL-
AKF).

2.1 Adaptive adjustment of the measurement noise
covariance matrix R with Q known

The measurement noise covariance matrix R represents the
accuracy of the measurement instrument, meaning a larger R
for measured data implies that we trust this data less and take
more account of the prediction. Assuming that the noise
covariance matrix Q is known, here an algorithm employing
the principles of fuzzy logic has been derived to adaptively
adjust the matrix R. This is done in two steps; first, having
available the innovation sequence or residual rk (defined by
Equation 12), its theoretical covariance is,

k
T
kkkk RHPHS += − (13),

obtained from the Kalman filter algorithm. Second, if it is
found that the actual value of the covariance of rk has a
discrepancy with its theoretical value, then a FIS is used to
derive adjustments for R based on knowledge of the size of
this discrepancy. The objective of these adjustments is to
correct this mismatch as well as possible.



Given the availabilit y of the innovation sequence rk, its actual

covariance rĈ  is approximated by its sample covariance [10]

through averaging inside a moving estimation window of size
N,
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where i0 = k − N + 1 is the first sample inside the estimation
window. This means that only the last N samples of rk are
used to estimate its covariance. The window size is chosen
empirically to give some statistical smoothing.

Now, a new variable called the Degree of Matching (DoM), is
defined to detect the size of the discrepancy between S and

rĈ . This is:

rkkk CSDoM ˆ−= (15).

The basic idea of adaptation used by a FIS to derive
adjustments for R is as follows. It can be noted from Equation
13 that an increment in R will i ncrement S, and vice versa.
Thus, R can be used to vary S in accordance with the value of

DoM in order to reduce the discrepancies between S and rĈ .

From here three general rules of adaptation are defined:

1. If DoM ≅  0 (this means S and rĈ  match almost

perfectly) then maintain R unchanged.
2. If DoM > 0 (this means S is greater than its actual value

rĈ ) then decrease R.

3. If DoM < 0 (this means S is smaller than its actual value

rĈ ) then increase R.
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Fig. 1. Graphical representation of the adjusting process of R.

Because there is a direct relationship between the dimensions
of the matrices S, R and DoM, the adaptation of the (i, i)
element of R can be made in accordance with the (i, i) element
of DoM. Thus, a single-input-single-output (SISO) FIS
generates the tuning or correction factor for each element in
the main diagonal of R, and the correction is made in this way:

kkk RiiRiiR ∆+= − ),(),( 1
(16),

where ∆Rk is the tuning factor that is added or subtracted from
the element (i, i) of R at each instant of time. ∆Rk is the FIS
output and DoMk(i,i) is the FIS input. The FIS sequentially
generates the correction factors for R until all the elements (n
in total) in its main diagonal are adjusted. A graphical
representation of this adjusting process is shown in Fig. 1.

2.2 Adaptive adjustment of the process noise covariance
matrix Q with R known

The covariance matrix Q represents the uncertainty in the
process model. An increase in the covariance matrix Q means
that we have less trust in the process model and more in the
measurement. Assuming that the noise covariance matrix R is
known an algorithm to estimate the matrix Q can be derived.

The idea behind the process of adaptation of Q is as follows.
Equation 13 can be rewritten as:

k
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and from Equation 17 it can be deduced that a variation in Q
will affect the value of S. If Q is increased, then S is increased,

and vice versa. Thus, if a mismatch between S and rkĈ  is

observed then a correction can be made through augmenting
or diminishing the value of Q. Thus, similar to the previous
case, three general adaptation rules are defined:

1. If DoM ≅  0 (this means rkĈ  and S are equal) then

maintain Q unchanged.

2. If DoM > 0 (this means rkĈ  is smaller than S) then

decrease Q.

3. If DoM < 0 (this means rkĈ  is greater than S) then

increase Q.

If the dimensions of matrices S, R and DoM, are the same as
that of matrix Q, then the same procedure used to adjust R can
be used in this case. The adaptation of the (i, i) element of Q
is made in accordance with the (i, i) element of DoM. Thus, a
SISO FIS generates the tuning factor for each element in the
main diagonal of Q, and the correction is made in this way:

kkk QiiQiiQ ∆+= − ),(),( 1
(18),

where ∆Q is added or subtracted from each element of the
main diagonal of Q at each instant of time. ∆Q is obtained
from a FIS were DoM(i,i) is the FIS input. Thus the FIS
sequentially generates the correction factor for the (i, i)
element of Q. The graphical representation of this adjusting
process is the same as that shown in Fig. 1, but replace an R
with a Q.

A more diff icult task is that of adjusting Q when there is not a
direct correspondence between the dimension of the matrices
S, Q and DoM. However, as it will be shown in the ill ustrative



example, some empirical considerations can be used by a FIS
to successfully overcome this problem.

3 Illustrative example

To demonstrate the eff iciency of the fuzzy logic-based
adaptive Kalman filtering (FL-AKF) approach, a simple
numerical example is presented. The results are compared
with those obtained with a traditional Kalman filter without
adaptation (TKF) and a traditional adaptive Kalman filter
(TAKF).

Consider the following linear system, which is a modified
version of a tracking model [2, 11],
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with initial conditions 0ˆ 0 =x , 
30 01.0 IP = , where x1, x2,

and x3 are the position, velocity and acceleration, respectively,
of a flying object. In Equation 19, the system and
measurement noise sequences { wk} and { vk} are
pseudorandom sequences (i.e., uncorrelated zero-mean
Gaussian white noise sequences) with covariance matrices:

Q = 0.02 I3  ,  R = 







150

02.0 (20).

MATLAB code was developed to simulate the FL-AKF, the
TKF and the TAKF. The position and velocity were
considered as the characteristics being measured. The
simulation and results obtained are presented in the following
sections.

3.1 Adaptation of R and comparisons

Following the guidelines given in section 2.1, five fuzzy sets
have been defined for DoM: NM = Negative Medium, NS =
Negative Small , ZE = Zero, PS = Positive Small , and PM =
Positive Medium. In a similar way five fuzzy sets have been
defined for ∆R: IL = Increase Large, I = Increase, M =
Maintain, D = Decrease, and DL = Decrease Large. Finally,
five rules comprise the SISO FIS rule base,

1. If DoM = NM, then ∆R = IL
2. If DoM = NS, then ∆R = I
3. If DoM = ZE, then ∆R = M
4. If DoM = PS, then ∆R = D
5. If DoM = PM, then ∆R = DL.

The membership functions for DoM and ∆R are presented in
Fig. 2.

Fig. 2. Membership functions for DoM and ∆R.

The model described by Equation 19 was simulated for 500s
with a sample time of 0.5s. Q was fixed at its actual value,
0.02I3. The actual value of R has been assumed unknown, but
its initial value was selected as:
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The values in the main diagonal of R are continuously
adjusted as described in section 2.1.

For comparison purposes the following performance measures
were adopted:
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where zi is the actual value of the characteristic being
measured (without noise); zvi is the measurement (with noise
added); and zei is the estimation of the characteristic being
measured.

To make comparisons, the traditional adaptation procedure
proposed by Mohamed and Schwarz [10] was used to adapt R
and Q. In this method R or Q are estimated using the
following equations,

T
kk

T
krkk HPHCR −−= ˆˆ (24)

T
krkkk KCKQ ˆˆ = (25),

where rkĈ  is obtained with Equation 14. T
kH , −

kP , and 
kK

are those obtained in the Kalman filter algorithm.

Table 1 shows the performance measures obtained for each of
the following cases:

1. TKF-ANS, traditional Kalman filter considering the
actual values of the noise statistics (matrices R and Q).

2. TKF, traditional Kalman filter with incorrect fixed value
of R and actual fixed value of Q.

3. TAKF, traditionally adapted Kalman filter with initial
incorrect value of R and actual fixed value of Q. Here R
is adaptively tuned using a traditional technique.



4. FL-AKF, fuzzy logic-based adaptive Kalman filter with
initial incorrect value of R and actual fixed value of Q.
Here R is adaptively tuned using a FIS.

From experimentation, it was noticed that the best results
were obtained with a window size of 50 samples for cases 3
and 4.

Table 1
Performance
measure

TKF-
ANS

TKF TAKF FL-AKF

J1 - Position 0.4490 0.4490 0.4490 0.4490
J1 - Velocity 3.8512 3.8512 3.8512 3.8512
J2 - Position 0.2256 0.3688 0.3020 0.2274
J2 - Velocity 0.2914 0.4168 0.3665 0.2933

Fig 3. (a) Outputs for case 2; (b) Outputs for case 3, and (c)
Outputs for case 4.

Analysing the data in table 1 it is deduced that the best
estimation of the position and velocity of the flying object is
that obtained with the FL-AKF as it has the best performance
measures for both parameters. A more explicit performance
measure is obtained calculating the percentage of degradation
in the estimation with respect to the estimation obtained with
the traditional Kalman filter (TKF) considering the actual
noise statistics (case 1). These percentages are shown in Table
2. It is remarkable that only a slightly degradation in the
estimations is observed in the FL-AKF (case 4). As expected,
the worst degradation is observed in the TKF without
adaptation (case 2). An intermediate level of degradation is
observed in the TAKF (case 3).

Figure 3 shows the plots of the elements (1,1) of each matrix:

R, Sk, rkĈ , and DoM. This data was obtained for cases 2, 3

and 4 described previously. In Fig. 3(a), corresponding to
case 2, a discrepancy can be seen between the actual

covariance of the residual rkĈ  and its theoretical value Sk.

Because both Q and R are fixed DoM remains a large value.
In Fig. 3(b), corresponding to case 3, a continuous adjustment
of R can be observed. In this case DoM remains at a very
small value while R almost reaches its true value. This
explains the filter performance improvement. In Fig. 3(c),
corresponding to case 4; similarly to the previous case, a
continuous adjustment of R is noted; DoM oscill ates around
zero and R oscill ates around its true value. Because we are
dealing with uncertain information about the noise statistics,
this oscill ation around the true values explains the better
estimation obtained in this last case.

Table 2
Percentage of
degradation on
the estimation of:

TKF-
ANS TKF TAKF

FL-
AKF

Position 0% 63.5% 33.9% 0.8%
Velocity 0% 43.0% 25.8% 0.65%

3.2 Adaptation of Q and comparisons

Following the guidelines given in section 2.2, five fuzzy sets
have been defined for DoM and five for ∆Q with the same
labels but different membership functions than those in the
previous case (see Fig. 4). Thus, five fuzzy rules comprise the
rule base,

1. If DoM = NM, then ∆Q = IL
2. If DoM = NS, then ∆Q = I
3. If DoM = ZE, then ∆Q = M
4. If DoM = PS, then ∆Q= D
5. If DoM = PM, then ∆Q = DL.

The model described by Equation 19 was simulated for 500s
with a sample time of 0.5s. In this case R was fixed as its
actual value. The value of Q has been assumed to be
unknown, but its initial value was selected as,

QQ 100 = (26).

In this case a direct correspondence between the dimension of
the matrices R, S, Q and DoM does not exist; all matrices,
except Q are of dimension 2 x 2 (only the position and
velocity are being measured). To overcome this problem a
heuristic consideration was incorporated to the tuning process.
This consists of estimating the component (3, 3) of DoM as:

2)]2,1([)3,3( kk DoMDoM = (27),

this value then enters the FIS and the procedure of adjustment
continues as specified.

Table 3 shows the performance measures obtained for each of
the following cases:

1. TKF-ANS, traditional Kalman filter considering the
actual values of the noise statistics (matrices R and Q).

2. TKF, traditional Kalman filter with incorrect fixed value
of Q and actual fixed value of R.

(a)

(b)

(c)



3. TAKF, traditionally adapted Kalman filter with initial
incorrect value of Q and actual fixed value of R. Here Q is
adaptively tuned using a traditional technique.

4. FL-AKF, fuzzy logic-based adaptive Kalman filter with
initial incorrect value of Q and actual fixed value of R.
Here Q is adaptively tuned using a FIS.

Fig. 4. Membership functions for DoM and ∆Q.

Table 3
Performance
measure

TKF-
ANS

TKF TAKF FL-AKF

J1 - Position 0.4490 0.4490 0.4490 0.4490
J1 - Velocity 3.8512 3.8512 3.8512 3.8512
J2 - Position 0.2256 0.2990 0.2495 0.2433
J2 - Velocity 0.2914 0.3410 0.3243 0.3141

Table 4
Percentage of
degradation on
the estimation of:

TKF-
ANS TKF TAKF

FL-
AKF

Position 0% 32.5% 10.6% 7.8%
Velocity 0% 17.0% 11.3% 7.8%

From the analysis of the data in table 3 it is seen that, in this
case, the improvement of performance obtained with both
TAKF and FL-AKF is almost the same, but they are
significant with respect to the non-adaptive case. This is more
explicit in the data of table 4. As can be seen the degradation
in the estimation for both adaptive cases is between 7% and
11%. However the estimation in the performance in the TKF
is degraded by up to 32.5%.

4. Conclusions

In this paper a fuzzy logic-based adaptive Kalman filter was
presented (FL-AKF). The adaptation, carried out by a fuzzy
inference system, is in the sense of adaptively tuning the
measurement noise covariance matrix R or the process noise
covariance matrix Q. An example showing the eff iciency of
this method was presented. It is remarkable that only five
rules were needed to carry out the adaptation in each case.
The analysis of the results from the example presented show
that a greater improvement in Kalman filter performance is
obtained with the FL-AKF when compared with its traditional
counterpart (TAKF). Also, they show that the adaptation of Q
is harder to obtain. Nevertheless the improvement on the
Kalman filter performance, for this last case, is not as good as
that for R, it is comparable to that obtained with its traditional
counterpart.

The main advantage of the proposed FL-AKF is the weaker
reliance on the a priori statistical information. In this adaptive
formulation, the a priori statistical information is only of
secondary importance because the new measurement and
process noise covariance matrices are adaptively tuned
according to the new information given each instant of time
by the Kalman filter innovation sequence. This information is
successfully manipulated by a FIS to carry out the adaptation
procedure. Thus, the good results obtained in the ill ustrative
example show that the general idea of exploring the use of
fuzzy logic approaches to achieve adaptive Kalman filtering
appears to be a promising avenue of investigation.

The FL-AKF approach shares the problem of fuzzy systems
about the lack of tools that allow its mathematical analysis and
demonstrations. One way of overcome this problem is to
benchmark the fuzzy logic-based approach against some
representative traditional scheme, like was done in this work;
that do allow some confidence on the approach.
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