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Abstract We present the development and application of

a generic analysis scheme for the measurement of neutrino

spectra with the IceCube detector. This scheme is based on

regularized unfolding, preceded by an event selection which
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c Earthquake Research Institute, University of Tokyo, Bunkyo,
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uses a Minimum Redundancy Maximum Relevance algo-

rithm to select the relevant variables and a random forest

for the classification of events. The analysis has been devel-

oped using IceCube data from the 59-string configuration

of the detector. 27,771 neutrino candidates were detected in

346 days of livetime. A rejection of 99.9999 % of the atmo-

spheric muon background is achieved. The energy spectrum

of the atmospheric neutrino flux is obtained using the TRUEE

unfolding program. The unfolded spectrum of atmospheric

muon neutrinos covers an energy range from 100 GeV to
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1 PeV. Compared to the previous measurement using the

detector in the 40-string configuration, the analysis presented

here, extends the upper end of the atmospheric neutrino spec-

trum by more than a factor of two, reaching an energy region

that has not been previously accessed by spectral measure-

ments.

1 Introduction

Measuring the energy spectrum of atmospheric muon neu-

trinos is particularly challenging due to its steeply falling

behavior. As neutrinos cannot be detected directly, their

flux is measured through the detection of neutrino-induced

muons. However, atmospheric muons produced in extended

air showers when a cosmic ray interacts with a nucleus in the

Earth’s atmosphere constitute a natural background to atmo-

spheric neutrino searches. In a detector like IceCube [1],

the majority of this atmospheric muon background can be

rejected by the selection of upward going tracks. Remain-

ing background events consist of originally downward-going

muons falsely reconstructed as upward going. Thus, an effec-

tive selection of events is required.

Furthermore, the energy of the neutrino cannot be accessed

directly, but needs to be inferred from energy dependent

observables. These challenges demand a sophisticated data

analysis chain, considering both the separation of signal and

background events and the reconstruction of the spectrum by

using unfolding techniques.

This paper describes a novel analysis approach aimed at

measuring the atmospheric muon-neutrino spectrum. We use

experimental data taken with IceCube in the 59-string con-

figuration. The analysis consists of an event selection based

on a data pre-processing using quality cuts on a few selected

variables, followed by a machine learning algorithm for final

event selection.

In a machine learning algorithm events are classified

according to their properties. Rules for this classification are

automatically derived from a set of events for which the class

is known, e.g. simulated events. The induction of classifica-

tion rules is generally referred to as training.

All analysis steps were carefully validated and are based

on well established methods from Computer Science and

Statistics. This approach was found to outperform previous

measurements [2] with respect to background rejection and

signal efficiency. We then present the first application of the

new unfolding program TRUEE [3] on IceCube data. This

analysis procedure proved capable of producing a neutrino

energy spectrum from 100 GeV to 1 PeV.

The paper is organized as follows: In Sect. 2 we describe

the IceCube detector. Section 3 summarizes the basic physics

of atmospheric neutrinos. The machine learning algorithms

used for event selection, their validation and their application

to IceCube data are covered in Sect. 4. An enhanced unfold-

ing algorithm and its application in an atmospheric neutrino

analysis are presented in Sect. 5. In Sect. 6 the spectrum

is unfolded for two different zenith bins. A comparison of

the results to previous measurements is given in Sect. 7. A

summary of the results concludes the paper (Sect. 8).

2 IceCube

IceCube is a cubic-kilometer neutrino detector located at the

geographic South Pole. Neutrinos are detected through the

Cherenkov light emitted by secondary particles produced

in neutrino-nucleon interactions in or around the detector.

The detector consists of an array of digital optical modules

(DOMs) mounted on 86 cables (or strings). The strings are

arranged in an hexagon with typical horizontal spacing of

125 m, and hold 60 DOMs each. The vertical separation

between DOMs is 17 m and they are deployed at depths

between 1450 m and 2450 m. Eight strings at the center of

the array were deployed with a distance of about 70 m and

vertical DOM distance of 7 m. This denser configuration is

part of the DeepCore detector [4]. Each DOM consists of a

25 cm Hamamatsu R7081-02 Photo-multiplier Tube (PMT)

and a suite of electronics board assemblies contained within

a spherical glass pressure housing of 35.6 cm diameter. High

accuracy and a wide dynamic range can be achieved by the

DOMs by internally digitizing and time-stamping the pho-

tonic signals. Packaged digitized data is then transmitted

to the surface. Each DOM can operate as a complete and

autonomous data acquisition system [1,5]. IceCube was suc-

cessfully completed in December 2010.

IceTop stations are located on the top of the strings, form-

ing an air-shower array with a nominal grid spacing match-

ing the 125 m of the in-ice part of the detector. Each station

consists of two tanks equipped with downward facing DOMs

with their lower hemisphere embedded in the ice. Two DOMs

are deployed per tank for redundancy and flexibility [1].

The Cherenkov light emitted by muons produced in neu-

trino interactions can be used to reconstruct the muon tra-

jectory. Since at high energies (TeV or above) the direction

of the muon deviates only marginally from the direction of

the neutrino, the direction of the incoming neutrino can be

reconstructed as well. The pointing resolution of IceCube

was found to be 0.7◦ in a moon shadow analysis using TeV

cosmic rays [6].

There are two primary detection channels in IceCube, the

first one being track-like events originating from charged cur-

rent (CC) νµ interactions of the form:

νµ + N −→ µ + X, (1)

where N represents a nucleon and X denotes the rest of the

particles produced in the interaction. The second channel are
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cascade-like events produced in CC interactions of νe and

ντ and in neutral current (NC) interactions of all neutrino

flavors. Only νµ CC interactions are relevant for the atmo-

spheric neutrino analysis presented in this paper.

Data for this analysis were taken between May 2009 and

May 2010, when the detector consisted of 59 strings. This

configuration is referred to as IceCube-59. The analysis is

based on a preselection of events which is provided to the

analyzers by the IceCube Collaboration.

3 Atmospheric neutrinos

Although primarily designed for the detection of high-energy

neutrinos from astrophysical sources, IceCube can also be

used for investigating the atmospheric neutrino spectrum

over several orders of magnitude in energy. Despite the fact

that the atmospheric νµ spectrum has been measured by

various experiments including Frejus [7], AMANDA [8],

ANTARES [9] and IceCube in the 40-string configura-

tion [2], the flux, especially at high energies, is still subject

to rather large uncertainties [10].

The flux of atmospheric muon neutrinos is dominated by

neutrinos originating from the decay of pions and kaons,

produced in extended air showers, up to energies of Eν ≈

500 TeV [8] (conventional atmospheric neutrino flux). Due

to their relatively long lifetime, pions and kaons lose part of

their energy prior to decaying. As the flux of cosmic rays fol-

lows a power law, the atmospheric neutrino spectrum is also

expected to follow a power law, which is one power steeper

(asymptotically dΦ
d E

∝ E−3.7) compared to the spectrum of

primary cosmic rays [2].

However, despite the isotropic distribution of cosmic rays,

the flux of conventional atmospheric neutrinos is a function

of the zenith angle, since horizontally travelling mesons have

a much higher probability to decay before losing energy in

collisions [11]. This results in a harder neutrino spectrum of

horizontal events compared to vertical events.

At energies exceeding 500 TeV, neutrinos from the decay

of charmed mesons, so called prompt neutrinos, are expected

to contribute notably to the spectrum. Since neutrinos from

the decay of charmed mesons have not been conclusively

detected, the exact threshold depends strongly on the under-

lying model. Due to their short lifetime (tlife ≈ 10−12 s [12]),

these mesons decay before interacting and follow the initial

spectrum of cosmic rays more closely, therefore causing a

flattening of the overall neutrino flux [2,8].

A detailed measurement of the conventional and prompt

atmospheric neutrino spectrum is made difficult by its steeply

falling characteristic and the finite energy resolution of neu-

trino energy reconstruction. We have developed an analysis

technique making use of machine learning processes to select

a sample of neutrino candidates with high purity.

4 Event selection

The signature of atmospheric muons entering the detector

from above is similar to the event pattern of a neutrino-

induced muon. Both signatures can be distinguished by their

reconstructed track parameters and quality measures, which

form an n-dimensional parameter space. Selecting events

from this parameter space can be achieved by making good

use of machine learning algorithms.

Selecting only upward going tracks can remove a large

fraction of the atmospheric muon background. A certain

fraction of muon events, however, is falsely reconstructed

as upward going. This type of event still occurs 1,000

times more frequently than neutrino-induced events. As mis-

reconstructed muons are significantly harder to reject, a

multi-faceted event selection needs to be carried out to obtain

a highly pure sample of neutrino candidates.

The event selection presented here consists of several con-

secutive steps: Initially, two simple cuts are applied to reduce

the event sample to a manageable size. As a second step, vari-

ables to be used as input for the learner are selected using

an automated variable selection. As IceCube runs multiple

reconstruction algorithms on each interesting event, there are

hundreds of variables that are potential inputs to the classi-

fication algorithm. We use an automated variable selection

process to select the variables that have the most power for

separating signal and background events. Data preprocess-

ing, variable selection and performance of the classification

algorithm were thoroughly validated in cross validations,

where the average performance over many splits in disjoint

training and test data is obtained.

4.1 Data preprocessing

The preprocessing consisted of a cut on the LineFit velocity

(vLineFit > 0.19 c) and a cut on the reconstructed zenith angle

(θ > 88◦).1

The LineFit algorithm reconstructs a track on the basis of

the position, ri , and hit times, ti , of all DOMs with a hit in

the event. The geometry of the Cherenkov cone as well as the

optical properties of the medium are ignored, and the method

assumes that the photons propagate along a 1-dimensional

line with constant speed, vLineFit. Minimizing the following

X2:

X2 =

N
∑

i

(ri − rLineFit − vLineFit · ti )
2, (2)

1 A reconstructed zenith angle of 0◦corresponds to an event entering

the detector from above (the South), whereas a reconstructed zenith

angle of 180◦corresponds to an event entering the detector from below

(the North).
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one obtains the fit parameters, vLineFit and rLineFit, where

i runs over the DOMs with a hit in the event. Cascade-like

events will produce a spherical light pattern from which small

values of |vLineFit| are reconstructed. As long muon tracks of

high quality are required for a reliable reconstruction of the

energy spectrum, a cut on |vLineFit| can be utilized to select

such events.

The zenith-angle cut is aimed at reducing the contami-

nation of atmospheric muons entering the detector at angles

θ < 90◦. Choosing a cut at θ = 88◦ rather than at θ = 90◦

aims at a slight extension of the field of view in order to

detect high energy neutrinos from above the horizon. Muons

approaching the detector at angles between θ = 88◦ and

θ = 90◦, are very likely to range out before reaching the

detector.

Both cuts were optimized simultaneously with respect to

background rejection and signal efficiency. The application

of the two cuts yielded a background rejection of 91.4 % at

a signal efficiency of 57.1 %.

4.2 Automated variable selection

The quality of an automated, machine learning-based, event

selection largely depends on the set of variables used (in

machine learning these are generally referred to as “features”

or “attributes”). In this analysis the variables considered as

input for the learner were the reconstructed properties of the

events and different measures of the quality of the recon-

struction. As not all variables are equally well suited for the

event selection, and since using all available variables would

result in an unreasonably large consumption of computing

resources, a representation in fewer dimensions needs to be

found. In general, a manual selection based on knowledge

about the detector and the classification problem at hand will

result in a good set of variables for training the classifica-

tion algorithm. It will, however, not necessarily result in the

best set of variables. In the event selection presented in this

paper, we therefore used the Minimum Redundancy Maxi-

mum Relevance (MRMR) Algorithm [13] for the selection

of variables.

Within MRMR the relevance of a set of variables is com-

puted from an F-test, whereas its redundancy V can be

obtained from the following equation [13]:

V =
1

|F |2

∑

i, j

∣

∣c(xi , x j )
∣

∣ , (3)

where F represents a set of variables. To compute the sim-

ilarity between two variables xi and x j the absolute value
∣

∣c(xi , x j )
∣

∣ of Pearson’s correlation coefficient is used. As a

final selection criterion the quotient Q between relevance and

redundancy is computed. The variable set, which maximizes

Q is returned. MRMR is particularly useful when certain

quantities (e.g. zenith angle) are obtained from a number

of different reconstruction algorithms. For futher details on

MRMR we refer to Ref. [13].

As variable selections are in general carried out on a lim-

ited number of events, their performance might be influenced

by statistical fluctuations within those subsets. The average

performance given by the cross validation is a valid output.

However, one might want to additionally inspect the stability

of the variable selection. The stability expresses the variance

over different cross validation splits. Two stability measures,

Jaccard index and Kuncheva’s index [14] were used to deter-

mine the stability of the MRMR variable selection. They

express the ratio between the data splits returning the same

variables and the number of variables returned by all splits.

The basic equation for the Jaccard index is:

J =
|Fi ∩ F j |

|Fi ∪ F j |
, (4)

where Fi and F j represent two subsets of variables, selected

on two disjoint sets of events drawn at random from the same

distribution.

A similar stability measure is Kuncheva’s index, defined

as:

IC (Fi , F j ) =
rn − k2

k(n − k)
. (5)

In Eq. (5) the parameter k represents the size of the subset,

whereas r = |A ∩ B| represents the cardinality of the inter-

section. The total number of variables available is denoted

by n.

The stability of the variable selection was tested with

respect to the number of variables selected. To perform this

test the number of variables was increased stepwise by one

variable in the range between one and 50 variables. For

each number of variables the MRMR variable selection was

restarted and repeated 10 times on 10 disjoint subsets of

events. The overall stability S̄ as depicted in Fig. 1 is defined

as the average of the indices I for all combinations of those

feature selections [15]:

S̄ =
2

l2 − l

l
∑

i=1

l
∑

j=i+1

I (Fi , F j ), (6)

where l is the total number of feature selections for a spe-

cific number of variables. The quantity I in Eq. 6 represents

the Jaccard index or Kuncheva’s index, respectively. In total

10,000 events were used for the calculation of the indices.

The stability measures presented in Eqs. 4 and 5 can take

values between 0 and 1. In general a selection is considered

stable if the indices are close to 1 and considered unstable

if the indices are close to 0. Figure 1 depicts the stability of

the MRMR variable selection as a function of the number of

selected variables. The stability of the variable selection is

found to increase with the number of variables selected. It is
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Fig. 1 Stability of the MRMR variable selection as a function of the

number of variables considered. The Jaccard and Kuncheva’s indices

were used as stability measures. One finds that both stability measures

increase with the number of variables considered. As both measures

are well above 0.7, indicating a stable selection, if 25 or more variables

are selected, MRMR can be considered stable in case this threshold is

exceeded

further observed that both stability measures are well above

0.7, in case the number of selected variables exceeds 25.

Twenty-five variables were selected as this number repre-

sents a reasonable trade-off between variable selection stabil-

ity and the anticipated resource consumption of the learner.

Moreover, the separation power of the remaining variables

was found to be close to zero.

Attributes found to yield large separation power in this

analysis are zenith angles, the length of the track obtained

from direct photons and the number of direct photons

detected in various time windows. Photons are referred to

as direct when their arrival time at the DOM agrees with that

expected for unscattered cherenkov photons [16].

4.3 Performance of the random forest

In general, the evaluation of the performance of a classifica-

tion algorithm consists of the two important steps of training

and testing the algorithm. From the machine learning point

of view the event selection can be formalized in terms of a

classification task with the classes signal (atmospheric neu-

trinos) and background (atmospheric muons).

A random forest [17], which utilizes an ensemble of

simple decision trees, was chosen as the machine learning

algorithm because ensemble algorithms are well known for

their robustness and stability. In general trees can be inter-

preted easily and performed well in previous IceCube analy-

ses [2]. Moreover, a study by Bock et al. has shown that ran-

dom forests outperform other classification algorithms [18].

Training and testing were carried out in a standard fivefold

cross-validation.

Within the cross validation 70,000 simulated neutrino

events and 750,000 simulated background events were used.

In a cross validation events are split into n disjoint sub-

sets of events. In every iteration one of the disjoint sets is

used to test the performance of the random forest, whereas

the remaining sets are used for training. Thus, 14,000 neu-

trino events and 150,000 background events were available

for testing in every iteration in the fivefold cross validation

used in this analysis. Accordingly, 56,000 neutrino events and

600,000 background events per iteration were available for

training. The neutrino events were generated by the IceCube

neutrino-generator (NuGen). Background events were sim-

ulated according to the Polygonato model [19] using COR-

SIKA [20].

The 25 variables selected by the MRMR algorithm were

used for the training of the forest. In order to improve the

overall performance of the event selection three additional

parameters were created and added according to the find-

ings in [2]. The first variable added is the absolute difference

between the zenith angle obtained from a simple LineFit

and the reconstructed zenith angle obtained from a multi-

photo-electron (MPE) fit. As a second variable the differ-

ence between the log-likelihood obtained from a Bayesian

fit and a single-photo-electron (SPE) fit was added. The third

variable added was the log-likelihood derived from an MPE-

fit, divided by the number of hit DOMs. For details on the

individual fit algorithms we refer to [16].

Within the forest, every event is labeled as signal or back-

ground according to its attributes by every tree. The final

output score is then computed by averaging over the classi-

fications of the individual trees in the forest.

The ratio of signal and background events used for train-

ing the forest was varied systematically. These tests yielded

that the signal-to-background ratio available for training did

not result in an optimal performance of the learner. Within

the tests it was found that very good results in terms of signal

efficiency and background rejection can be obtained using

27,000 simulated signal- and 27,000 simulated background

events for the training of the forest. Furthermore, a reasonable

trade-off between signal efficiency and background rejection

could be achieved using this setting. In order to provide the

learner with this number of events a simple sampling opera-

tion was carried out inside the cross validation. Within this

sampling 27,000 simulated neutrino events and 27,000 sim-

ulated background events were drawn at random. Helping

the learning algorithm by using balanced training and test

sets does not imply that the application of the learned func-

tion works only on balanced class distributions. Empirically,

we have observed that the decision function obtained from

balanced samples can be successfully applied to extremely

biased samples. As the sampling only concerned the train-

ing of the random forest, the number of events available for

testing remained unchanged.

The neutrino events used in the training process were sim-

ulated according to an E−2 flux. Using an E−2 flux instead

of an atmospheric neutrino flux will provide the learner with
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enough events also at high energies. This is required in order

to obtain a reliable classification over the entire energy range.

Although this flux deviates from an atmospheric neutrino flux

it can still be used for the training of the forest as the clas-

sification is achieved on an event-by-event basis. Therefore,

once a certain event pattern is memorized as neutrino-like

by the forest, events with similar patterns will always be

labelled as signal, independent of the underlying energy dis-

tribution. Furthermore, the result achieved using a decision

tree depends only weakly on the underlying distribution used

for training. After classification every event was re-weighted

according to an atmospheric flux in order to obtain a predic-

tion of the neutrino rate.

In general, the performance of a random forest is found

to increase with the number of trees. However, the larger the

number of trees, the larger the computational cost for train-

ing and testing (CPU time and memory). It was found that

500 trees provided a reasonable tradeoff between the perfor-

mance of the classification algorithm and the computational

cost. Therefore, the forest was trained and validated using

500 trees.

The output scores of the random forest for simulated

events and experimental data are shown in Figs. 2 and 3.

Figure 3 focuses on the region between 490 and 500 trees,

whereas the entire output range of the random forest is

depicted in Fig. 2. The well matching distributions of exper-

imental data and simulated events indicate a stable perfor-

mance of the forest. The rather poor agreement of simulated

events and experimental data for ntrees < 100 originates from

poorly reconstructed muons of low energy.
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Fig. 2 Number of trees classifying an event as signal. Atmospheric

neutrinos are depicted in blue, whereas atmospheric muons are shown in

red. Experimental data is shown in black, whereas the sum of simulated

signal and background events is depicted in green. The sum of simulated

signal events and background events is found to agree well with the

distribution of experimental data, indicating a stable performance of

the random forest
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Fig. 3 Same as Fig. 2, zoom into the region where the final selection

cut is considered

Unfolding the energy distribution of the neutrino sample

requires an extremely strict rejection of atmospheric muons.

This is due to the fact that only a small number of events

is found to populate the highest energy bins. Therefore, a

single high energy muon might cause a flattening of the

unfolded spectrum at high energies and thus mimic a prompt

or astrophysical flux of neutrinos. We chose a very strict cut

of ntrees = 500, thus selecting only events that were classified

as signal by every tree in the forest.

The statistical uncertainty of the event selection, which

is introduced due to statistical fluctuations in the training

and test sets, was estimated from the cross validation results.

The statistical uncertainty can be calculated from the signal

efficiency and background rejection of the individual itera-

tions. A statistical uncertainty of 1.6 % was estimated for the

expected number of neutrino candidates, which indicates a

stable and reliable performance of the forest.

The systematic uncertainty of the event selection was esti-

mated by applying the forest to simulated events produced

with different DOM efficiencies and a different modeling of

the ice. For this purpose the efficiencies of all DOMs were

either increased or decreased by 10 % from their nominal

values. The modeling of the ice was taken into account by

using the SPICE Mie ice model [21] instead of its predeces-

sor SPICE-1. It was found that the uncertainty of the event

selection due to the ice model is on the order of 5 %, whereas

the uncertainty due to the DOM efficiency was estimated

to be 18 %. Combining both values one finds that the total

systematic uncertainty of the event selection is 19 %.

After verifying the performance of the random forest the

final model was trained using 27,000 simulated neutrino

events and 27,000 simulated background events. The events

for each class were drawn at random from the total sample

of available simulated events.

The application of the entire event selection chain on the

full set of IceCube-59 data yielded 27,771 neutrino candi-
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dates in 346 days of detector live-time (≈80 neutrino candi-

dates per day). The number of remaining atmospheric muons

was estimated to be 114 ± 103. The purity of the final neu-

trino event sample was estimated to be (99.59+0.36
−0.37) %. No

events with a zenith angle θ < 90◦ were observed in the

sample after the application of the random forest.

The number of events surviving the two preselection cuts

on the zenith angle and the LineFit velocity is 15.3 × 106.

This corresponds to an estimated background rejection of

91.4 % at a signal efficiency of 57.1 %.

Comparing the total number of neutrino candidates at final

level an increase of 62 % is observed with respect to [2],

which used IceCube in the 40-string configuration. Taking

into account the larger volume of the detector (59 compared

to 40 strings) and the increased trigger rate, the event selec-

tion method presented in this paper succeeds in an increase

of 8 % in the number of neutrino candidates compared to the

event selection presented in [2]. The relative contamination

of the sample with atmospheric muons was found to be of

the same size as in [2].

In the event selection, which is the basis for the subsequent

unfolding of the νµ energy spectrum, a signal efficiency of

18.2 % was achieved at a background rejection of 99.9999 %,

which corresponds to a reduction of the contamination of

the event sample with atmospheric muons by six orders of

magnitude. Both signal efficiency and background rejection

were computed for events with θZenith ≥ 88◦, with respect

to the starting level of the analysis and for neutrino energies

between Eν = 100 GeV and Eν = 1 PeV.

All event selection steps regarding machine learning, pre-

processing, and validation were carried out using the Rapid-

Miner [22] machine learning environment.

5 Spectrum unfolding

As the neutrino energy spectrum cannot be accessed directly,

it needs to be inferred from the reconstructed energy of the

muons. This task is generally referred to as an inverse, or

ill-posed, problem and described by the Fredholm integral

equation of first kind [3]:

g(y) =

∫ a

b

A(y, E) f (E) d E . (7)

For the discrete case this transforms to:

g(y) = A(y, E)f(E), (8)

where f(E) is the sought energy distribution and the mea-

sured energy dependent distribution is given as g(y). The

matrix A(y, E) represents the response matrix of the detec-

tor, which accounts for the physics of neutrino interactions

in or near the detector as well as for the propagation of the

muon.

Several approaches to the solution of inverse problems

exist. The unfolding program Truee [3], which is an exten-

sion of the RUN [23] algorithm, was used for unfolding in

this analysis. The stability of the unfolding as well as the

results obtained on experimental data are addressed in the

following.

5.1 Unfolding input

The spectrum is unfolded in ten logarithmic energy bins

between 100 GeV and 1 PeV. Three variables (track length,

number of hit DOMs, number of direct photons) were used

as input for the unfolding. Direct hits have not suffered scat-

tering in the ice from their emission point to the DOM and

therefore keep precise timing information, which is essential

for an accurate track reconstruction. For the unfolding only

direct hits from a time window ranging from −15 to 75 ns

have been used. An estimate of the track length inside the

detector is obtained by projecting all DOMs that recorded

direct photons onto the reconstructed track.

The energy dependence of the three input variables for

simulated events is depicted in Figs. 4, 5 and 6. Good cor-

relation with energy was found for all three observables. A

sample of 300,000 simulated neutrino events was used for

the determination of the response matrix. This number cor-

responds to approximately ten times the livetime of IceCube

in the 59-string configuration. The sample was obtained by

sampling events according to their atmospheric weights. The

energy distribution of simulated events thus, matches the one

of an atmospheric neutrino spectrum.

5.2 Verification

The verification of the unfolding result consists of two dif-

ferent tests. The first test is based on multiple unfoldings of

a specified number of simulated events, which are drawn at

random. This kind of test can be accessed via Truee [3]. The

second test is based on re-weighting simulated events accord-
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Fig. 4 Neutrino energy E vs. the number of hit DOMs (NCh) for the

simulated events used for the determination of the response matrix
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the simulated events used for the determination of the response matrix

ing to the unfolded spectrum of atmospheric νµ. Both tests

were successfully carried out and are individually addressed

in the following.

The result of the first test is shown in Fig. 7. Within this

test a fraction of simulated events is drawn at random. For

every bin the unfolding result is then compared to the number

of injected events in that bin. For the analysis reported here

500 test unfoldings were carried out. The number of injected

events from the Monte Carlo distribution is depicted on the

x-axis of Fig. 7 and the number of unfolded events is shown

on the y-axis.

The individual populations observed in the figure corre-

spond to the individual energy bins of the final unfolding

result. The line-like structures observed for small event num-

bers are due to the fact that only integers are possible as event

number for the true MC distributions, whereas real numbers

can be returned as the unfolding result for the individual bins.

The rather large deviation between the unfolding result

and the number of injected events obtained for the highest

energy bins is a result of the steeply falling spectrum of atmo-

spheric neutrinos and the applied bootstrapping procedure.

Due to the small number of expected events in the last bin,

either 0 or 1 events are drawn randomly from the true dis-

tribution. Two or more events are only drawn in rather rare
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Fig. 7 Results of 500 unfoldings for all bins. The x-axis depicts the

number of simulated events, whereas the number of unfolded events is

shown on the y-axis. Unfoldings where the difference between the true

number of events in a certain bin and the unfolding result for that bin

lies within the statistical uncertainty returned by Truee are shown in

red. Unfoldings where this is not the case are depicted in black. The

energy spectrum of the simulated events corresponds to an atmospheric

spectrum. In general, we find that the number of unfolded events is

highly correlated with the true number of events in a certain unfold-

ing. The individual populations observed in the plot, correspond to the

individual energy bins of the unfolded distribution

cases. Based on the response matrix, which accounts for the

limited statistics in the highest energy bins by using ten times

more events compared to experimental data, only a fraction

of an event is reconstructed for the highest energy bin. As

the statistical uncertainties derived in Truee fail to account

for the difference between the predicted bin content and the

number of injected events, large deviations are observed. This

further implies that an overestimation is obtained in case no

events are present in the last bin on experimental data. As

soon as one event is present in this bin, an underestimation

is observed.

Within Truee the statistical uncertainties are computed

as the square root of the diagonal elements of the covariance

matrix. This test can therefore be used to validate the statis-

tical uncertainties returned by the algorithm. The unfolding

result is compared to the underlying distribution of events. If

the difference between the unfolding result and the true value

is covered by the statistical uncertainty returned by Truee,

the statistical uncertainties are estimated correctly. For cases

where the statistical uncertainty fails to cover this difference

the statistical uncertainty is scaled up. For the analysis pre-

sented here an underestimation of the number of injected

events is observed for the 9th and 10th bin, respectively. This

underestimation is not covered by the statistical uncertainty,

which is thus scaled up by a factor of 1.9 for the 9th, and a

factor of 6.3 for the 10th bin.

In a second test, simulated events are re-weighted accord-

ing to the unfolding result (see Fig. 13 of Sect. 5.4). For a
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successful unfolding, data and simulated events are expected

to agree after re-weighting. This test was carried out for the

three variables used as input for the unfolding but also for

two additional energy dependent observables (energy loss

per unit length d E/d X and total charge Qtot).

The outcome of the re-weighting is depicted in Figs. 8,

9, 10, 11 and 12. A good agreement between data and the

re-weighted simulation is observed over the entire range of

the individual parameters.

5.3 Estimation of systematic uncertainties

As the unfolding result is obtained by using a response matrix

determined from Monte Carlo simulation, the properties of

the simulation will affect the unfolding result. In order to
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Fig. 12 Simulated events (red) re-weighted to the unfolding result

(Fig. 13) compared to real data (black) for the total charge collected

in an event Qtot

determine the effect of different simulation settings on the

spectrum of atmospheric neutrinos, additional unfoldings

were carried out using different sets of simulated events for

the determination of the response matrix. For each simula-

tion set used for the estimation of systematic uncertainties

one property was changed with respect to the default simu-

lation set.

The setting for the efficiency of the DOMs was varied

by ±10 % with respect to the nominal value. Within this

simulation the efficiency of all DOMs was simultaneously

increased or decreased, respectively. A shift of ±10 % with

respect to the nominal value is slightly larger than the 7.7 %

cited in [24] and is thus a bit more conservative.

Further systematic tests were carried out by using simu-

lated events generated with a ±5 % increased and decreased

pair production cross section, respectively. The value of

±5 % was chosen to be slightly more conservative than the

theoretical uncertainty cited in [25]. The modeling of the ice

was varied as well, by using the SPICE Mie ice model [21]

instead of its predecessor SPICE-1.

The response matrices obtained for the individual sys-

tematic sets of data were then applied to real data in order to

estimate the size of the systematic uncertainties. Prior to the

application on real data, however, every setting was checked

using the multiple unfoldings in Truee. No indications for

instabilities were observed for any of the systematic tests.

Thus, five additional unfolding results were obtained

on real data. The difference between the unfolding result
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obtained using the standard Monte Carlo sets and the system-

atic Monte Carlo sets were computed bin-wise and for every

setting. The final uncertainties were calculated by adding

the obtained differences in quadrature. This procedure fur-

ther offers the advantage that all systematic uncertainties are

derived on experimental data.

For energies up to 1 TeV the total systematic uncertainty

is dominated by the uncertainty arising from the modeling of

the ice. For energies above 1 TeV the uncertainties due to the

DOM efficiencies and the modeling of the ice were found to

be of approximately the same size. A more precise modeling

of the ice and a better understanding of the DOM efficiency,

are therfore likely to reduce the systematic uncertainties of

future measurements.

5.4 Unfolding result

The number of unfolded events as returned by Truee is

depicted in Fig. 13. The energies of the bins were obtained as

the mean of the distribution of simulated atmospheric neu-

trino events for every bin. This result can now be converted

into a flux of atmospheric neutrinos by utilizing the effective

area Aeff and the livetime of the detector as well as the solid

angle. The effective area for this analysis is shown in Fig. 14.

Figure 15 shows the acceptance-corrected and zenith-

averaged flux of atmospheric neutrinos obtained with Ice-

Cube in the 59-string configuration of the detector. The spec-

trum covers the energy range from 100 GeV to 1 PeV. Six

theoretical model expectations are shown for comparison.

The model by Honda et al. [26] (Honda2006), extrapolated to

higher energies is shown as a solid black line. The Honda2006

model only models the conventional atmospheric neutrino

flux. The model by Honda et al. together with a model of

the prompt component by Enberg et al. [27] (ERS) is shown

as a solid green line. The recent best fit to an astrophysical
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Fig. 15 Acceptance corrected flux of atmospheric neutrinos from

100 GeV to 1 PeV, compared to several theoretical models (please see

the text for more details on the individual models)

flux obtained in the IceCube high energy starting event anal-

ysis (HESE) [28] are included as a third component in the

blue dashed line. An additional modeling of the knee of the

cosmic ray flux is included in the model labeled Honda H3a

+ ERS (solid blue line). Atmospheric neutrino flux predic-

tions obtained from ANFlux [10] using QGSJET-II [29] and

SIBYLL-2.1 [30] as hadronic interaction models are shown

as a solid red line and a red dashed-dotted line respectively.

Compared to the IceCube-40 result the systematic uncer-

tainties of the spectrum were reduced, especially at low and

intermediate energies. The decreased error bars are due to a

better understanding of systematic effects in IceCube. Due to

the relatively large systematic uncertainties at high energies,

no statement can be made about a possible contribution of

neutrinos from the decay of charmed mesons. Furthermore,

no statement about a possible contribution of neutrinos from

astrophysical sources can be made in this analysis.
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Table 1 Bin-wise summary of the acceptance-corrected unfolding

result, which corresponds to the differential flux of atmospheric neutri-

nos, scaled by E2 and given in GeV cm−2 sr−1 s−1

log10(E/GeV) E2Φ σ stat.
rel. (%) σ

syst.
rel. (%)

2.25 2.54 × 10−4 ±2.5 +63
−53

2.62 0.97 × 10−4 ±2.3 +19
−49

3.01 3.06 × 10−5 ±3.2 +32
−42

3.39 1.00 × 10−5 ±4.4 +65
−28

3.78 3.64 × 10−6 ±4.5 +69
−43

4.17 1.01 × 10−6 ±6.7 +60
−40

4.56 2.65 × 10−7 ±13.1 +66
−37

4.96 6.44 × 10−8 ±19.0 +54
−52

5.36 1.85 × 10−8 +45.8
−23.5

+61
−68

5.76 3.81 × 10−9 +163
−26.0

+130
−68

In general, a good agreement between the unfolded flux

and the models is observed. Deviations of 3.2 σ and 2.6 σ are

observed between the unfolded distribution and the theoret-

ical model obtained using SIBYLL-2.1 as a hadronic inter-

action model, for the second (Eν = 418 GeV) and third

bin (Eν = 1013 GeV), respectively. However, a correlation

of the systematic uncertainties of these two bins should be

noted.

The acceptance-corrected flux of atmospheric neutrinos as

well as the relative uncertainties are summarized in Table 1.

6 Unfolding of different angular regions

In order to study the dependence of the atmospheric neu-

trino flux on the zenith angle, additional unfoldings were

carried out dividing the data into two separate sets according

to the reconstructed zenith angle. The first zenith band con-

tains events with a reconstructed zenith angle between 90◦

and 120◦, whereas events with reconstructed zenith angles

between 120◦ and 180◦ were used for the second zenith band.

Using the 500 unfoldings of simulated events selected ran-

domly it was found that no changes in the unfolding settings

were required in order to unfold the two different angular

regions. The same input parameters as for the unfolding of the

full angular range were used and the systematic uncertainties

were estimated in the same way as described above. Because

of the smaller statistics the unfolding was not extended as

high in energy as for the full sample. The upper end of the

spectrum extends to Eν = 316 TeV for events with a recon-

structed zenith angle between 90◦ and 120◦. An upper end

of Eν = 158 TeV is reached for events with a reconstructed

zenith angle between 120◦ and 180◦.

The result of unfolding the two different angular regions is

depicted in Fig. 16. The flux obtained for the zenith band from
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Fig. 16 Unfolded atmospheric neutrino flux for the energy range from

100 GeV to 316 TeV and for two different zenith bands. Events with

a reconstructed zenith angle from 90◦ to 120◦ are depicted in black,

whereas events with a reconstructed zenith angle from 120◦ to 180◦ are

shown in red. The Honda H3a + ERS model is shown for comparison.

Compared to the neutrino spectrum obtained for the full angular range, a

smaller range in energy is covered, which is due to the smaller statistics

of the two unfolded samples

Table 2 Bin-wise summary of the acceptance-corrected unfolding

result for zenith angles between 90◦ and 120◦, which corresponds to

the differential flux of atmospheric neutrinos, scaled by E2 and given

in GeV cm−2 sr−1 s−1

log10(E/GeV) E2Φ σ stat.
rel. (%) σ

syst.
rel. (%)

2.25 2.45 × 10−4 ±4.3 +23
−89

2.62 1.13 × 10−4 ±3.2 +20
−46

3.01 3.80 × 10−5 ±3.9 +22
−32

3.39 1.12 × 10−5 ±5.5 +63
−19

3.78 4.45 × 10−6 ±5.8 +82
−28

4.17 1.61 × 10−6 ±7.2 +70
−31

4.56 4.15 × 10−7 ±13.9 +105
−27

4.96 8.76 × 10−8 ±22.2 +112
−115

5.36 2.22 × 10−8 +58.2
−29.1

+129
−94

90◦ to 120◦ is depicted in black, whereas the flux obtained

for the zenith band from 120◦ to 180◦ is shown in red. The

Honda2006 model, accounting for a different modeling of the

knee plus using the ERS model for the prompt component of

the atmospheric flux, is shown for both angular regions for

comparison.

In general, a good agreement between the unfolded distri-

bution and the theoretical model is observed. The unfolding

results for the two angular bins are summarized in Tables 2

and 3.
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Table 3 Bin-wise summary of the acceptance-corrected unfolding

result for zenith angles between 120◦ and 180◦, which corresponds to

the differential flux of atmospheric neutrinos, scaled by E2 and given

in GeV cm−2 sr−1 s−1

log10(E/GeV) E2Φ σ stat.
rel. (%) σ

syst.
rel. (%)

2.25 2.75 × 10−4 ±3.1 +31
−69

2.62 0.87 × 10−4 ±3.4 +19
−42

3.01 2.28 × 10−5 ±4.7 +43
−35

3.39 7.81 × 10−6 ±5.6 +65
−30

3.78 1.99 × 10−6 ±7.3 +102
−37

4.17 3.81 × 10−7 ±17.4 +151
−73

4.56 6.84 × 10−8 ±36.5 +247
−24

4.96 1.07 × 10−8 ±52.7 +207
−54
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Fig. 17 Comparison of the unfolding result obtained using IceCube

in the 59-string configuration to previous experiments. At the low

energy end of the spectrum the results of the Frejus experiment [7]

are depicted as black squares for νµ, whereas the Frejus results for

νe are shown as hollow squares. The unfolding results obtained with

the AMANDA experiment [8] are shown as black triangles. Results

from the ANTARES neutrino telescope [9] are depicted in blue. The νe

spectrum obtained using IceCube in the 79 string configuration [31] is

shown as green triangles. The results of the analysis presented here are

shown as red circles. Theoretical models are shown for comparison

7 Comparison to previous experiments

Figure 17 shows the results of the measurement presented in

this paper, depicted as red circles, in the wider context of mea-

surements obtained with previous experiments. We find that

the results derived in this measurement are in good agreement

with both the theoretical models and previous measurements

of the atmospheric νµ flux. Comparing our results to the spec-

trum obtained using the AMANDA detector we find that the

measurement extends to energies that are larger by almost

an order of magnitude. The two measurements are found to

agree well within their estimated systematic uncertainties.

Due to the different energy thresholds, the IceCube and Fre-

jus spectra overlap only between 100 GeV and 1 TeV. Both

measurements agree within their error bars. Comparing the

measurement presented in this paper to the results obtained

with the ANTARES neutrino telescope [9] we find that both

measurements are fully compatible within their systematic

uncertainties. A gap in experimental data points exists at

energies between 30 and 300 GeV. Within this energy region

neutrino oscillations become important and, thus, the spec-

trum becomes more complicated. This gap can most likely be

closed by utilizing the full capabilities of IceCube DeepCore,

which has an energy threshold of 10 GeV [32]. The measure-

ment presented here did not benefit from the more densely

instrumented DeepCore strings, as only one such string had

been deployed at the time of the measurement.

8 Summary

In this paper we presented the measurement of the atmo-

spheric νµ flux obtained using IceCube in the 59-string con-

figuration. The unfolded spectrum of atmospheric muon neu-

trinos covers an energy range from 100 GeV to 1 PeV, thus

covering four orders of magnitude in energy. Compared to

the previous measurement of the atmospheric νµ flux, which

utilized the detector in the 40-string configuration, the analy-

sis presented here extended the upper end of the atmospheric

neutrino spectrum by more than a factor of two.

This increase in the accessible energy was achieved by

using a dedicated event selection procedure, which utilized

state of the art algorithms from the field of machine learning

and data mining. Using a random forest preceded by an Min-

imum Redundancy Maximum Relevance variable selection

we were able to reject 99.9999 % of the incoming background

events. At this background rejection 27,771 atmospheric neu-

trino candidates were detected in 346 days of IceCube-59.

This corresponds to 80.3 neutrino events per day, which is a

significant improvement over the 49.3 neutrino events per day

reported in [2]. The purity of the final neutrino sample was

estimated to (99.59+0.36
−0.37) %. Taking into account the excel-

lent agreement between expectations derived on the basis of

simulated events and results obtained on experimental data

(see Fig. 2) we find that the combination of a random forest

and an MRMR can be applied to real life problems, deliver-

ing excellent results in terms of both background rejection

and signal efficiency.

An energy spectrum of the atmospheric νµ was obtained

using the new unfolding software Truee. The unfolding

result was validated using a bootstrapping procedure imple-

mented in Truee. A test using multiple unfoldings of simu-

lated neutrino events selected at random yielded a very good

agreement between the unfolding result and the true distri-

123



116 Page 14 of 14 Eur. Phys. J. C (2015) 75 :116

bution of events, thus validating the overall stability of the

unfolding process. Comparing the unfolding results to the-

oretical models, one finds that no statement on a possible

contribution of a prompt and/or astrophysical component to

the overall flux of atmospheric neutrinos can be made, due

to the relatively large uncertainties at high energies.

Additional years of measurements with IceCube in the 79-

string and in the 86-string configurations are likely to confirm

the results from [28] in spectral measurements. It is further

expected that the systematic uncertainties will decrease due

to a better understanding of systematic effects and due to the

homogeneous shape of the detector.

In summary we find that the data analysis chain presented

in this paper yields highly stable results for both event selec-

tion and the reconstruction of the spectrum. The entire anal-

ysis procedure can therefore be applied to all other sets of

IceCube data with only minor changes. The analysis chain is

especially well suited for measurements of the atmospheric

neutrino flux, where future analyzers only have to account

for the different detector geometry.
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