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Abstract. Assessing the intracity spatial distribution and

temporal variability in air quality can be facilitated by a

dense network of monitoring stations. However, the cost of

implementing such a network can be prohibitive if traditional

high-quality, expensive monitoring systems are used. To this

end, the Real-time Affordable Multi-Pollutant (RAMP) mon-

itor has been developed, which can measure up to five gases

including the criteria pollutant gases carbon monoxide (CO),

nitrogen dioxide (NO2), and ozone (O3), along with tempera-

ture and relative humidity. This study compares various algo-

rithms to calibrate the RAMP measurements including linear

and quadratic regression, clustering, neural networks, Gaus-

sian processes, and hybrid random forest–linear regression

models. Using data collected by almost 70 RAMP monitors

over periods ranging up to 18 months, we recommend the use

of limited quadratic regression calibration models for CO,

neural network models for NO, and hybrid models for NO2

and O3 for any low-cost monitor using electrochemical sen-

sors similar to those of the RAMP. Furthermore, generalized

calibration models may be used instead of individual models

with only a small reduction in overall performance. General-

ized models also transfer better when the RAMP is deployed

to other locations. For long-term deployments, it is recom-

mended that model performance be re-evaluated and new

models developed periodically, due to the noticeable change

in performance over periods of a year or more. This makes

generalized calibration models even more useful since only

a subset of deployed monitors are needed to build these new

models. These results will help guide future efforts in the cal-

ibration and use of low-cost sensor systems worldwide.

1 Introduction

Current regulatory methods for assessing urban air qual-

ity rely on a small network of monitoring stations provid-

ing highly precise measurements (at a commensurately high

setup and operating cost) of specific air pollutants (e.g., Sny-

der et al., 2013). The United States Environmental Protec-

tion Agency (EPA) determines compliance with national air

quality standards at the county level using data collected by

local monitoring stations. Many rural counties have at most a

single monitoring site; urban counties may be more densely

instrumented, though not at the neighborhood scale. For in-

stance, the Allegheny County Health Department (ACHD)

maintains a network of 10 monitoring stations which col-

lect continuous and/or 24 h data for the 2000 km2 Allegheny

County (with a population of 1.2 million) in Pennsylvania,

USA, with only one of these stations providing continuous

data for all EPA criteria pollutants listed in the National

Ambient Air Quality Standards (NAAQS) (Hacker, 2017).

However, air pollutant concentrations can vary greatly even

within urban areas due to the large number and variety of

sources (Marshall et al., 2008; Karner et al., 2010; Tan et al.,

2014). This variability could lead to inaccurate estimates of
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air quality based on these sparse monitoring data (Jerrett et

al., 2005).

One approach to increasing the spatial resolution of air

quality data is the use of dense networks of low-cost sen-

sor packages. Low-cost monitors are instruments which com-

bine one or more comparatively inexpensive sensors (typi-

cally electrochemical or metal oxide sensors) with indepen-

dent power sources and wireless communication systems.

This allows larger numbers of monitors to be employed at a

cost similar to that of a more traditional monitoring network

as described above. The general goals of low-cost sensing in-

clude supplementing existing regulatory networks, monitor-

ing air quality in areas that have lacked this in the past (for

example in developing countries), and increasing community

involvement in air quality monitoring through the provision

of sensors and the resulting data to community volunteers to

support more informed public decision-making and engage-

ment in air quality issues (Snyder et al., 2013; Loh et al.,

2017; Turner et al., 2017). Several pilot programs of low-cost

sensor network deployment have been attempted, in Cam-

bridge, UK (Mead et al., 2013); Imperial Valley, California

(Sadighi et al., 2018; English et al., 2017); and Pittsburgh,

Pennsylvania (Zimmerman et al., 2018).

There are several trade-offs resulting from the use of low-

cost sensors. These sensors are less precise and sensitive than

regulatory-grade instruments at typical ambient concentra-

tions due to cross-sensitivities to other pollutants and de-

pendence of the sensor response to ambient temperature and

humidity (Popoola et al., 2016). These interactions are of-

ten nonlinear, meaning that linear regression models devel-

oped under controlled laboratory conditions are often insuf-

ficient to accurately translate the raw sensor responses into

concentration measures (Castell et al., 2017). Due to the va-

riety of interactions and atmospheric conditions which can

affect sensor performance, covering the range of conditions

to which the sensor will be exposed using laboratory cal-

ibrations is difficult. Field calibrations of the sensors are

thus necessary, with the sensors being collocated with highly

accurate regulatory-grade instruments. Various calibration

methods that have been explored include the determination

of sensor calibrations from physical and chemical principles

(Masson et al., 2015), higher-dimensional models to capture

nonlinear interactions (Cross et al., 2017), and nonparamet-

ric approaches including artificial neural networks (Spinelle

et al., 2015) and k-nearest neighbors (Hagan et al., 2018).

Recent work by our group compared lab-based linear calibra-

tion models with multiple linear regression and nonparamet-

ric random forest algorithms based on ambient collocations

(Zimmerman et al., 2018). The machine learning algorithm

using random forests on ambient collocation data enabled

low-cost electrochemical sensor measurements to meet EPA

data quality guidelines for hot spot detection and personal

exposure for NO2 and supplemental monitoring for CO and

ozone (Zimmerman et al., 2018).

There remain several unanswered questions with respect

to the calibration of data collected by low-cost sensors which

we seek to answer in this work by examining data collected

by almost 70 Real-time Affordable Multi-Pollutant (RAMP)

monitors over periods ranging up to 18 months in the city

of Pittsburgh, PA, USA. First, although various models have

been applied to perform calibrations in different contexts,

a thorough comparison on a common set of data of sev-

eral different forms of calibration models applied to multi-

pollutant measurements has yet to be performed. We seek

to provide such a comparison and thereby draw robust con-

clusions about which calibration approaches work best over-

all and in specific contexts. Second, in previous work with

the RAMP monitors and in work with other sensors, unique

models have been developed for each sensor. This requires

that extensive collocation data be collected for each low-cost

sensor, which may not be feasible if large sensor networks

are to be deployed. Therefore, it is important to investigate

how well a single generalized calibration model can perform

when applied across different individual sensors. Third, it

is important to quantify the generalizability of models cal-

ibrated using data collected at a specific location to other

locations across the same city where the sensors might be

deployed, which may not share the same ratios of pollutants.

This question is examined with several RAMPs that are co-

located with regulatory monitors in the city of Pittsburgh, PA,

USA. Finally, we seek to address the stability of calibration

models over time by tracking changes in performance over

the course of a year, and from one year to the next. Overall,

we find support for using a generalized model for a network

of RAMPs, developed based on local collocation of a sub-

set of RAMPs. This reduces the need to collocate each node

of a network, which otherwise can significantly increase net-

work operating costs. These results will help guide future de-

ployment efforts for RAMP or similar lower-cost air quality

monitors.

2 Methods

2.1 The RAMP monitor

The RAMP monitor (Fig. 1) was jointly developed by the

Center for Atmospheric Particle Studies at Carnegie Mellon

University (CMU) and a private company, SenSevere (Pitts-

burgh, PA). The RAMP package combines a power supply,

control circuitry, cellular network communications capabil-

ity, a memory card for data storage, and up to five gas sen-

sors in a weatherproof enclosure. All RAMPs incorporate a

nondispersive infrared (NDIR) CO2 sensor produced by SST

Sensing (UK), which also measures temperature and relative

humidity (RH). All RAMPs have one sensor that measures

CO and one sensor that measures NO2. Of the remaining

sensors, one is either an SO2 or NO sensor, and the other

measures a combination of either oxidants (referred to here-
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Figure 1. External (a) and internal (b) configuration of the RAMP

monitor.

after as an ozone or O3 sensor, since this is its primary func-

tion in the RAMP) or volatile organic compounds (VOCs).

The VOC sensor is an Alphasense (UK) photoionization de-

tector and all other unspecified sensors are Alphasense B4

electrochemical units. Specially designed signal processing

circuitry ensures relatively low noise from the electrochem-

ical sensors. Further details of the RAMP are provided else-

where (Zimmerman et al., 2018). Data collected from a total

of 68 RAMP monitors are considered in this work.

2.2 Calibration data collection

Following Zimmerman et al. (2018), RAMP monitors are de-

ployed outdoors on a parking lot located on the CMU cam-

pus for a calibration based on collocated monitoring with

regulatory-grade instruments. The parking lot (40◦26′31′′ N

by 79◦56′33′′ W) is a narrow strip between a low-rise aca-

demic building to the south and several tennis courts to the

north. RAMP monitors are deployed for 1 month or more

to allow for exposure to a wide range of environmental con-

ditions; in 2017, these deployments took place in the sum-

mer and fall. Less than 10 m from the RAMP monitors, a

suite of high-quality regulatory-grade instruments, measur-

ing ambient concentrations of CO (with a Teledyne T300U

instrument), CO2 (LI-COR 820), O3 (Teledyne T400 pho-

tometric ozone analyzer), and NO and NO2 (2B Technolo-

gies model 405 nm) are stationed to provide true concentra-

tion values for these various gases to which the RAMP mon-

itors are exposed. These regulatory-grade instruments are

contained within a mobile laboratory van, into which sam-

ples are drawn through an inlet 2.5 m above ground level.

Using sensor signal data collected by the RAMPs during

this collocation period together with data collected by these

regulatory-grade instruments, calibration models are created

for each RAMP monitor prior to its deployment, as described

in Sect. 2.3. Further details on the regulatory-grade instru-

mentation and the collocation process are provided in previ-

ous work (Zimmerman et al., 2018).

In addition to collocation at the CMU campus, addi-

tional special collocation deployments of RAMP monitors

were performed, in order to allow independent comparisons

between the RAMP monitor data and regulatory monitors

at different locations. One RAMP monitor was collocated

with ACHD regulatory monitors at their Lawrenceville site

(40◦27′56′′ N by 79◦57′39′′ W), an urban background site

where all NAAQS criteria pollutant concentrations are mea-

sured. The ACHD Parkway East site, located alongside the

I-376 highway (40◦26′15′′ N by 79◦51′49′′ W), was chosen

as an additional collocation site for observing higher lev-

els of NO and NO2: up to ∼ 100 ppb for NO and ∼ 40 ppb

for NO2. For reference, the NAAQS limit for 1 h maximum

NO2 is 100 ppb (https://www.epa.gov/criteria-air-pollutants/

naaqs-table, last access: 5 February 2019).

2.3 Gas sensor calibration models

Various computational models were applied to the sensor

readings of the RAMPs (i.e., the net signal, or raw re-

sponse minus reference signal, from each electrochemical

gas sensor, together with the outputs of the CO2, temper-

ature, and humidity sensor) to estimate gas concentrations,

based entirely on ambient collocations of the RAMPs with

regulatory-grade monitors. These models, outlined in the fol-

lowing subsections, include parametric models such as linear

and quadratic regression models, a semi-parametric Gaus-

sian process regression model, and nonparametric nearest-

neighbor clustering, artificial neural network, and hybrid ran-

dom forest–linear regression models. A common difficulty of

nonparametric methods is generalizing beyond the training

data set. For example, if no high concentrations are observed

during the collocation period, then the resulting trained non-

parametric model will be unable to estimate such high con-

centrations if it is exposed to these during deployment. This

is of potential concern for air quality applications, as the

detection of high concentrations is an important considera-

tion. Parametric models avoid this difficulty, but at the cost

of lower flexibility in the types of input–output relationships

they can capture.

Models using each of these algorithms were calibrated in

three separate categories. First, individualized RAMP cali-

bration models (iRAMPs) were created for each RAMP, us-

ing only the data collected by gas sensors in that RAMP and

the regulatory monitors. Individualized models are applied

only to data from the RAMP on which they were trained.

Second, from these individualized models, a best individual

calibration model (bRAMP) was chosen, which performed

best out of all the individualized models on a testing data set

with respect to correlation (Pearson r; see Sect. 2.4). This

model was then used to correct data from all other RAMPs

which shared the same mix of gas sensors (to ensure that

the inputs to the model would be consistent). Third, general

calibration models (gRAMPs) were developed by taking the

median of the data from a subset of the RAMP monitors de-

ployed at the same place and time and treating this as a vir-

tual “typical RAMP”, for which models were calibrated for
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each gas sensor (the median is used rather than the mean to

reduce the effects of any erroneous measurements by a few

gas sensors in some RAMP monitors on the typical signal).

The motivation for the use of gRAMP models is similar to

that of Smith et at. (2017); however, while in that work it

is recommended that the median from a set of duplicate low-

cost sensors be used to improve performance, in this work we

use that method to develop the gRAMP calibration model but

then apply this calibration to the outputs of individual sensors

rather than to the median of a group of sensors. RAMPs were

divided into training and testing sets for the gRAMP models

randomly, with the caveat that the two RAMPs deployed to

the Lawrenceville and Parkway East sites were required to be

part of the testing set. Data from about three-quarters of the

RAMP monitors (53 out of 68) were used for developing the

general calibration models (although not all of these moni-

tors were active at the same time). Data from the remaining

15 RAMP monitors were used for testing, ensuring that the

testing data are completely distinct from the training data.

For the gRAMP models, the set of possible model inputs was

restricted to ensure that, for each gas, all necessary model in-

puts would be provided by every RAMP (e.g., for NO mod-

els, only CO, NO, NO2, T , and RH could be used as inputs

since all RAMP monitors measuring NO would also mea-

sure these, but not necessarily any of the other gases). Thus,

each of the calibration model algorithms was applied in three

categories, yielding iRAMP, bRAMP, and gRAMP variants

of each model. Finally, note that, for brevity, we will refer

to iRAMP, bRAMP, or gRAMP model variants when dis-

cussing specific results; however, when drawing general con-

clusions about low-cost electrochemical gas sensor calibra-

tion methods, we will use less-RAMP-specific terms (such

as “generalized models”).

In all cases, models were calibrated using training data,

which consist of the RAMP monitor data collected during

the collocation period (which are measurements of the input

variables, i.e., the signals from the various gas sensors) to-

gether with the readings of the regulatory-grade instruments

with which the RAMP monitor was collocated (which are the

targets for the output variables). These collocation data are

down-averaged from their original sampling rates to 15 min

averages, to ensure stability of the trained models and min-

imize the effects of noise on the training process. From the

collocation data, eight equally sized, equally spaced time in-

tervals are selected to serve as training data for the calibra-

tion models. The number of training data is selected to be

either 80 % of the collocation data or 4 weeks of data (cor-

responding to 2688 15 min averaged data points), whichever

is smaller. The minimum number of training data is 21 days;

if fewer are available, no iRAMP model is trained for this

RAMP, and thus no iRAMP model performance can be as-

sessed for it (although bRAMP and gRAMP models trained

on other RAMPs are still applied to this RAMP for testing).

Training data for gRAMP models are obtained in the same

way, although in that case it is the data for the virtual typi-

cal RAMP which are divided, rather than data for individual

RAMPs. Any remaining data from the collocation period are

left aside as a separate testing set, on which the performance

of the trained models is evaluated. Note that due to differ-

ences in which RAMPs and/or regulatory-grade instruments

were operating at a given time, training and testing periods

are not necessarily the same for all RAMPs and gases; for

example, a certain time may be part of the training period

for the CO model for one RAMP and be part of the test-

ing period for the O3 model of another RAMP. However, the

training and testing periods for a given RAMP and gas are al-

ways distinct. The division of data collected at the CMU site

in 2017 into training and testing periods is illustrated in the

Supplement (Figs. S6–S10). The division of data collected

at the CMU site in 2016 is carried out in a similar manner.

The choice of averaging period, of minimum and maximum

training times, and of the method for dividing between train-

ing and testing periods is motivated by previous work with

the RAMP monitors (Zimmerman et al., 2018). All data col-

lected at sites other than the CMU site (i.e., the Lawrenceville

or Parkway East sites) are reserved for testing; no training of

calibration models is performed using data collected at these

other sites, and so they represent a true test of the perfor-

mance of the models at an “unseen” location.

2.3.1 Linear and quadratic regression models

Linear regression models represent perhaps the simplest and

most common method for gas sensor calibration and have

been used extensively in prior work (Spinelle et al., 2013,

2015; Zimmerman et al., 2018). A linear regression model

(sometimes called a multi-linear regression model in the case

that there are multiple inputs) describes the output as an

affine function of the inputs. Here, linear functions are used

where the sets of inputs are restricted to the signal of the

sensor for the gas in question along with temperature and

RH. For example, the calibrated measurement of CO from

the RAMP, cCO, is an affine function of the signal of the CO

sensor, sCO, and the temperature, T , and RH measured by the

RAMP:

cCO = αCOsCO + αT T + αRHRH + βCO. (1)

Coefficients αCO, αT , and αRH and offset term βCO are cal-

ibrated from training data to minimize the root-mean-square

difference of cCO and the measured CO concentration from

the regulatory-grade instrument. The one exception to this

general formulation is for evaluation of cO3
, for which both

sO3
and sNO2

are used as inputs (along with T and RH); this

is carried out to account for the fact that the sensor for O3

also responds to NO2 concentrations (Afshar-Mohajer et al.,

2018).

In addition to linear regressions, quadratic regressions

were also applied. These are the same as linear regressions

but can involve second-order interactions of the input vari-

ables. For example, for CO, a quadratic regression function
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would be of the following form:

cCO = αCOsCO + αCO2s
2
CO + αT T + αT 2T

2 + αRH RH

+ αRH2 RH2 + αCO,T sCOT + αCO,RHsCO RH

+ αT ,RHT RH + βCO. (2)

Note that, as above, a reduced set of inputs is used here.

Quadratic regression models using such reduced sets (the

same sets used for linear regression) are hereafter referred to

as “limited” quadratic regression models; in contrast, mod-

els making full use of all available gas, temperature, and hu-

midity sensor inputs from a given RAMP are referred to as

“complete” quadratic regression models.

The main advantages of linear and quadratic regression

models are their ease of implementation and calibration, as

well as their ability to be readily interpreted, e.g., the relative

magnitudes of the regression coefficients correspond to the

relative importance of the different inputs in producing the

output. The main disadvantage of these models is their inabil-

ity to compute complicated relationships between input and

output which are beyond that of a second-order polynomial.

The training and application of linear and quadratic regres-

sion models are implemented using custom-written routines

for the MATLAB programming language (version R2016b).

2.3.2 Gaussian process models

Gaussian processes are a form of regression which general-

izes the multivariate Gaussian distribution to infinite dimen-

sionality (Rasmussen and Williams, 2006). For the purposes

of calibration, we make use of a simplified variant of a Gaus-

sian process model. From the training data, both the signals

of the RAMP monitors and the readings of the regulatory-

grade instruments are transformed such that their distribu-

tions during the training period can be approximately mod-

eled as standard normal distributions. This transformation is

accomplished by means of a piecewise linear transforma-

tion, in which the domain is segmented and for each segment

different linear mappings are applied. After this transforma-

tion, an empirical mean vector µ and covariance matrix 6

are computed for the regulatory-grade and RAMP measure-

ments. The transformed measurements can then be described

using a multivariate Gaussian distribution. For example, for

a RAMP measuring CO, SO2, NO2, O3, and CO2, this distri-

bution would be

{

c′
CO,c′

SO2
,c′

NO2
,c′

O3
,c′

CO2
, s′

CO, s′
SO2

, s′
NO2

,

s′
O3

, s′
CO2

,T ′,RH′
}T

∼ N (µ,6) , (3)

where, for example, c′
CO represents the concentration mea-

surement for CO following the transformation. The mean

vector and covariance matrix are divided as follows:

µ =

[

µconc

µRAMP

]

6 =

[

6conc,conc 6conc, RAMP

6T
conc, RAMP 6RAMP, RAMP

]

, (4)

where µconc represents the mean of the (transformed) con-

centration measurements of the regulatory-grade instrument,

µRAMP represents the mean of the (transformed) signal mea-

surements from the RAMP, 6conc,conc represents the covari-

ance of the (transformed) concentrations, 6RAMP, RAMP rep-

resents covariance of the (transformed) RAMP signals, and

6conc, RAMP represents the covariance between the (trans-

formed) concentrations and RAMP signals (6T
conc, RAMP is

the transpose of 6conc, RAMP). Once these vectors and matri-

ces have been defined, the model is calibrated.

Given a new set of signal measurements from a RAMP,

denoted as yRAMP =
{

sCO, sSO2
, sNO2

, sO3
, sCO2

,T ,RH
}T

,

these are transformed using the piecewise linear transforma-

tion defined above to give the set of transformed signal mea-

sures y′
RAMP. These are then used to estimate the concentra-

tions measured by the RAMP with the standard conditional

updating formula of the multivariate Gaussian as follows:

{

c′
CO,c′

SO2
,c′

NO2
,c′

O3
,c′

CO2

}T
=

µconc + 6conc, RAMP6−1
RAMP, RAMP

(

y′
RAMP − µRAMP

)

. (5)

The inverse of the original piecewise linear transformation is

then applied to these transformed concentration estimates to

yield the appropriate concentration estimates in their original

units.

The main advantage of a Gaussian process calibration

model of this form is its robustness to incomplete or inac-

curate information; for example, if a signal from one gas

sensor were missing or corrupted by a large voltage spike,

in the former case the missing input could be “filled in” by

the correlated measurements of other sensors, while in the

latter case estimates would be “reigned in” by the more rea-

sonable measures of the other sensors. A major disadvantage

of this calibration model is its continued use of what is ba-

sically a linear regression formula, the only difference being

in the nonlinear transformation from the original measure-

ment space to the standard normal variable space used by

the model. Furthermore, during the calibration process, the

ratios of concentration for the pollutants of the collocation

site may be learned by the model, making it less likely to

predict differing ratios during field deployment. The train-

ing and application of Gaussian process calibration models

are accomplished using custom-written routines in the MAT-

LAB programming language.

2.3.3 Clustering model

The clustering model presented here seeks to estimate the

outputs corresponding to new inputs by searching for input–
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output pairs in the training data for which the distance (by a

predefined distance metric in a potentially high-dimensional

space) between the new input and the training inputs is min-

imized and using the average of several outputs correspond-

ing to these nearby inputs (the nearest neighbors). In a tra-

ditional k-nearest-neighbor approach, such as that used in

previous work (Hagan et al., 2018), every input–output pair

from the training data is stored for comparison to new inputs.

Although this provides the best possible estimation perfor-

mance via this approach, storing these data and performing

these comparisons are computation- and memory-intensive.

Therefore, in this work, the input data are first clustered, i.e.,

grouped by proximity of the input data. These clusters are

then represented by their centroid, with the corresponding

output being the mean of the outputs from the clustered in-

puts. In this work, training data are grouped into 1000 clus-

ters using the “kmeans” function in MATLAB. Euclidian

distance in the multidimensional space of the sensor signals

from each RAMP is used. For estimation, the outputs of the

five nearest neighbors to a new input are averaged.

A major advantage of this approach is its simplicity

and flexibility, allowing it to capture complicated nonlin-

ear input–output relationships by referring to past records

of these relationships, rather than attempting to determine

the actual pattern which these relationships follow. Such a

method can perform very well when the relationships are

stable, and when any new input with which the model is pre-

sented is similar to at least one of the inputs from the training

period. However, as with all nonparametric models, general-

izing beyond the training period is difficult, and the model

will tend to perform poorly if the nearest neighbors of a new

input are in fact quite far away, in terms of the distance metric

used, from this input.

2.3.4 Artificial neural network model

The artificial neural network model, or simply neural net-

work, is a machine learning paradigm which seeks to repli-

cate, in a simplified manner, the functioning of an animal

brain in order to perform tasks in pattern recognition and

classification (Aleksander and Morton, 1995). A basic neural

network consists of several successive layers of “neurons”.

These neurons each receive a weighted combination of in-

puts from a higher layer (or the signal inputs, if they are in

the top layer) and apply a simple but nonlinear function to

them, producing a single output which is then fed on into the

next layer. By including a variety of possible functions per-

formed by the neurons and appropriately tuning the weights

applied to inputs fed from one layer to the next, highly com-

plicated nonlinear transformations can be performed in suc-

cessive small steps.

Neural networks have been applied to a large number of

problems, including the calibration of low-cost gas sensors

(Spinelle et al., 2015). Neural networks represent an ex-

tremely versatile framework and are able to capture nearly

any nonlinear input–output relationship (Hornik, 1991). Un-

fortunately, to do so may require vast numbers of training

data, which it is not always practical to obtain. Calibration

of these models is also a time-consuming process, requir-

ing many iterations to tune the weightings applied to val-

ues passed from one layer to the next. In this work, neural

networks were trained and applied using the “Netlab” tool-

box for MATLAB (Nabney, 2002). The network has a single

hidden layer with 20 nodes. To limit the computation time

needed for model training, the number of allowable iterations

of the training algorithm was capped at 10 000; this cap was

typically reached during the training.

2.3.5 Hybrid random forest and linear regression

models

A random forest model is a machine learning method which

makes use of a large number of decision “trees”. These trees

are hierarchical sets of rules which group input variables

based on thresholding (e.g., the third input variable is above

or below a given value). The thresholds used for these rules

as well as the inputs they are applied to and the order in

which they are applied are calibrated during training. The

final groupings of input variables from the training data, lo-

cated at the end or “leaves” of the branching decision tree, are

then associated with the mean values of the output variables

for this group (similar to a clustering model). For estimating

an output given a new set of inputs, each decision tree within

the random forest applies its sequence of rules to assign the

new data to a specific leaf, and outputs the value associated

with that leaf. The output of the random forest is the average

of the outputs of each of its trees.

A primary shortcoming of the random forest model (which

it shares with other nonparametric methods) is its inability

to generalize beyond the range of the training data set, i.e.,

outputs of a random forest model for new data can only be

within the range of the values included as part of the train-

ing data. For this reason, the standard random forest model

was expanded into a hybrid random forest–linear regression

model. The use of this approach for RAMP data was sug-

gested by Zimmerman et al. (2018). Furthermore, it is sim-

ilar to the approach of Hagan et al. (2018), who hybridize

nearest-neighbor and linear regression models. In this modi-

fied model, a random forest is applied to new data to estimate

the concentrations of various measured pollutants. For exam-

ple, the concentration of CO measured by a RAMP including

sensors for CO, SO2, NO2, O3, and CO2 is estimated using a

random forest as

cCO = RFCO

(

sCO, sSO2
, sNO2

, sO3
, sCO2

,T ,RH
)

. (6)

If this estimated concentration exceeds a given value (in this

case, 90 % of the maximum concentration value observed

during the training, corresponding to about 1 ppm in the case

of CO), a linear model of the form of Eq. (1) is instead used

to estimate the concentration. This linear model is calibrated
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using a 15 % subset of the training data with the highest con-

centrations of the target gas and is therefore better able to

extrapolate beyond the upper concentration value observed

during the training period. This hybrid model is therefore de-

signed to combine the strengths of the random forest model,

i.e., its ability to capture complicated nonlinear relationships

between various inputs and the target output, with the ability

of a simple linear model to extrapolate beyond the set of data

on which the model is trained. Random forests are imple-

mented using the “TreeBagger” function in MATLAB, and

custom routines are used to implement hybrid models.

2.4 Assessment metrics

In the following section, the performance of the calibration

models in translating sensor signals to concentration esti-

mates is assessed in several ways. It should be noted that

the metrics presented here are applied only for testing data,

i.e., data which were not used to build the calibration mod-

els. Model performance on the training data is expected to

be higher, and thus less representative of the true capability

of the model. The estimation bias is assessed as the mean

normalized bias (MNB), the average difference between the

estimated and actual values, divided by the mean of the ac-

tual values. That is, for n measurements,

MNB =

n
∑

i=1

(

cestimated,i − ctrue,i

)

n
∑

i=1

(

ctrue,i

)

, (7)

where cestimated,i is the measured concentration as estimated

by the RAMP monitor and ctrue,i is the corresponding true

value measured by a regulatory-grade instrument. The vari-

ance of the estimation is assessed via the coefficient of varia-

tion in the mean absolute error (CvMAE), the average of the

absolute differences between the estimated and actual values

divided by the mean of the actual values. The estimates used

in evaluating the CvMAE are corrected for any bias as deter-

mined above:

CvMAE =

n
∑

i=1

∣

∣cestimated,i − nbias − ctrue,i

∣

∣

n
∑

i=1

(

ctrue,i

)

, (8)

where

nbias =
1

n

n
∑

i=1

(

cestimated,i − ctrue,i

)

. (9)

Correlation between estimated and actual concentrations is

assessed using the Pearson linear correlation coefficient (r):

r =

n
∑

i=1

1cestimated,i · 1ctrue,i

√

n
∑

i=1

1c2
estimated,i

√

n
∑

i=1

1c2
estimated,i

, (10)

where

1cestimated,i = cestimated,i −
1

n

n
∑

j=1

cestimated,j , (11)

and

1ctrue,i = ctrue,i −
1

n

n
∑

j=1

ctrue,j . (12)

Intuitively, these basic metrics are used to quantify the differ-

ence in averages between estimated and true concentrations

(MNB), the average of differences between these (CvMAE),

and the similarity in their behavior (r).

In addition to the above metrics, EPA methods for evaluat-

ing precision and bias errors are used as outlined in Camalier

et al. (2007). To summarize, the precision error is evaluated

as

precision =

√

√

√

√

√

√

n
n
∑

i=1

δ2
i −

(

n
∑

i=1

δi

)2

nχ2
0.1,n−1

, (13)

where χ2
0.1,n−1 denotes the 10th percentile of the chi-squared

distribution with n − 1 degrees of freedom and the percent

difference in the ith measurement is evaluated as

δi =
cestimated,i − ctrue,i

ctrue,i
· 100. (14)

The bias error is computed as

bias =
1

n

n
∑

i=1

|δi | +
t0.95,n−1

n

√

√

√

√

√

n
n
∑

i=1

δ2
i −

(

n
∑

i=1

|δi |

)2

n − 1
, (15)

where t0.95,n−1 is the 95th percentile of the t distribution with

n − 1 degrees of freedom. Prior to the computation of these

precision and bias metrics, measurements for which the cor-

responding true value is below an assigned lower limit are re-

moved from the measurement set to be evaluated, so as not to

allow near-zero denominator values in Eq. (14). Lower lim-

its used in this work are based on the guidelines presented by

Williams et al. (2014) and are listed in Table 1. Note that this

removal of low values is applied only when computing the

precision and bias error metrics, and not when evaluating the

other metrics described above.
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Table 1. Assigned lower limits for censoring small measurement

values.

Quantity Assigned lower limit

CO 200 ppb

NO2 10 ppb

O3 10 ppb

Table 2. EPA air quality sensor performance guidelines for various

applications. Reproduced from Williams et al. (2014).

Tier Application Error metrics

I Education < 50 %

II Hotspot identification and < 30 %

characterization

III Supplemental monitoring < 20 %

IV Personal exposure monitoring < 30 %

V Regulatory monitoring < 7 % for O3

< 10 % for CO

< 15 % for NO2

Using the EPA precision and bias calculations allows for

these values to be compared against performance guidelines

for various sensing applications, as presented in Williams et

al. (2014) and listed in Table 2. For the RAMP monitors, a

primary goal is to achieve data quality sufficient for hotspot

identification and characterization (Tier II) or personal expo-

sure monitoring (Tier IV), which requires that both precision

and error bias metrics be below 30 %. A supplemental goal

is to achieve performance sufficient for supplemental moni-

toring (Tier III), requiring precision and bias metrics below

20 %.

3 Results

In this section, we examine the performance of the RAMP

gas sensors and the various calibration models applied to

their data. We will focus our attention on the CO, NO, NO2,

and O3 sensors. Results for calibration of measurements by

the CO2 sensors are presented in the figures in the Supple-

ment.

3.1 Performance across individualized models on CMU

site collocation data

Figure 2 presents a comparison of the performance of vari-

ous calibration models applied to testing data collected at the

CMU site during 2017. As described in Sect. 2.3, colloca-

tion data are divided into training and testing sets, with the

former (always being between 3 and 4 weeks in total dura-

tion) used for model development and the latter used to test

the developed model using the assessment metrics described

in Sect. 2.4, as presented in Fig. 2. All models in the figure

Table 3. Performance of iRAMP calibration models with respect

to EPA air quality sensor performance guidelines as assessed at the

CMU site. Entries in the table denote which models meet the corre-

sponding guidelines for each gas (LR: linear regression; LQR: lim-

ited quadratic regression; CQR: complete quadratic regression; GP:

Gaussian process; CL: clustering; NN: neural network; HY: hybrid

random forest–linear regression).

Gas Tier I Tier II/IV Tier III

CO NN LR, GP, CL, HY LQR, CQR

O3 CL LR, LQR, CQR, GP, NN, HY

NO2 GP LR, LQR, CQR, CL, NN, HY

are of the iRAMP category, being developed using only data

collected by a single RAMP and the collocated regulatory-

grade instruments. In the figure, squares indicate the median

performance across all RAMPs for each performance metric,

and the error bars span from the 25th to 75th percentiles of

each metric across the RAMPs. For CO, 48 iRAMP models

are compared; for NO, 19 models; for NO2, 62 models; and

for O3, 44 models. Note that only 20 RAMP monitors in-

cluded an NO sensor. An iRAMP model was not developed

for RAMP monitors that had fewer than 21 days of colloca-

tion data with the relevant regulatory-grade instrument. The

figures are arranged such that the lower-left corner denotes

“better” performance (CvMAE close to 0 and r close to 1).

Typically, several of the model types provide similar per-

formance for a given gas. For CO and O3, the simple para-

metric quadratic regression models perform as well as or bet-

ter than the nonparametric modeling approaches, and even

linear regression models give reasonable results. For NO2

and NO, while the nonparametric hybrid or neural network

models perform best, complete quadratic regression models

give comparable performance. Quadratic regression and hy-

brid models give the most consistently good performance,

being among the top four methods across all gases. Bias

tends to be low to moderate (depending on the gas) regard-

less of correction method (MNB less than 1 % for CO, less

than 2 % for O3, less than 10 % for NO, and less than 20 %

for NO2 across all methods). For the hybrid models, across

gases, their random forest components were typically active

from 88 % to 93 % of the time (or one crossing from ran-

dom forest to linear models every 12 to 17 h of active sensor

time), although for specific RAMPs this ranged from 75 %

to 99 % (one “crossing” every 5 to 83 h) depending on the

ranges of training and testing data. For perspective, the ran-

dom forest component would be active 90 % of the time if

the distributions of training and testing concentrations were

identical. Table 2 lists the EPA performance guidelines for

various applications, and Table 3 lists the modeling meth-

ods which meet these based on performance at the CMU

site in 2017. All methods meet at least Tier I (educational

monitoring, < 50 % error) criteria for all gases considered.

Most methods fall within the Tier II (hotspot detection) or
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Figure 2. Comparative performance of various individualized RAMP calibration models across gases measured by the RAMPs. Models are

trained and tested on distinct subsets of collocation data collected at the CMU site during 2017; performance shown is based on the testing

data set only. Proximity to the lower-left corner of each figure indicates better performance. Note the differing vertical axis scales.

Tier IV (personal exposure) performance levels (< 30 % er-

ror) for all gases. For CO, quadratic regression methods meet

Tier III (supplemental monitoring) criteria (< 20 % error). In

Table 4, the durations of the training and testing periods and

the measured concentration ranges during these periods are

provided. Finally, in Table 5, additional metrics about these

performance results are presented, including un-normalized

MAE and bias in the measured concentration units, to allow

for direct comparison with the concentration ranges. More

detailed information is also provided in the Supplement.

3.2 Comparison of individualized, best, and general

models on CMU site collocation data

Next, we examine how the performance of the best individ-

ual models (bRAMP) and of the general models (gRAMP)

applied to all RAMPs compare to the performance of the in-

dividualized RAMP (iRAMP) models presented in Sect. 3.1.

Evaluation is carried out on the testing data collected at the

CMU site in 2017. For simplicity, we restrict ourselves to

three models for each gas, chosen from among the better-

performing iRAMP models and including at least one para-

metric and one nonparametric approach. Figure 3 presents

these comparisons.

Across all gases and models, iRAMP models tend to per-

form best, as might be expected since these models are both

trained and applied to data collected by a single RAMP mon-

itor, and therefore will account for any peculiarities of in-

dividual sensors. Between the bRAMP models, in which a

model is trained using data from a single RAMP and ap-

plied across multiple RAMPs, and gRAMP models, which

are trained on data from a virtual typical RAMP (composed

of the median signal from several RAMPs) and then applied

across other RAMPs, it is difficult to say which approach

would be better based on these results, as they vary by gas as

well as by modeling approach. For parametric models (i.e.,

linear and quadratic regression) the bRAMP and gRAMP

versions typically have a similar performance, although there

is less variability in performance for the gRAMP versions.

For nonparametric models (i.e., neural network and hybrid

models), performance of bRAMP versions is typically bet-

ter than the gRAMP versions, although in the case of NO2

and O3 the performance is comparable. Overall, we find that

a bRAMP or gRAMP version of several of the models can

give similar performance to its iRAMP version, even though

these models are not calibrated to each individual RAMP.

3.3 Performance of selected models at regulatory

monitoring sites

Figure 4 depicts the performance of calibration models for

two RAMP monitors deployed at two EPA monitoring sta-

tions operated by the ACHD (one monitor is deployed to each

station). Filled markers indicate the performance of the mod-

els at these sites, while hollow markers indicate the 2017 test-

ing period performance of the corresponding RAMP when it

was at the CMU site for comparison. For each gas type, dif-

ferent calibration models are used, chosen from among the

models depicted in Fig. 3. Models trained at the CMU site

(as presented in previous sections) are used to correct data
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Table 4. Durations and ranges of testing and training data at CMU in 2017. Durations of the training and testing periods are in days. Ranges

indicated are in parts per billion for all gases, degrees Celsius for temperature (T ), and percent for relative humidity (RH). Note that because

training and testing periods vary for different RAMPs, as described in Sect. 2.3, the duration and concentration ranges of the training and

testing periods will likewise vary. This table gives an indication of the variability in training and testing period durations across RAMPs, as

well as the variability in concentrations, temperature, and relative humidity. The “lower range” indicates the variability in the lowest 15 min

average concentration experienced by RAMPs during training or testing. Likewise, the “upper range” indicates the variability in the highest

15 min average concentrations. The “average range” indicates the variability in the average 15 min average concentration across RAMPs for

either the training or testing period. Further information about these ranges is provided in the Supplement (see Figs. S11–S15).

Gas Training period Testing period

Duration Concentration Duration Concentration

(days) (ppb) (days) (ppb)

Range lower range average range upper range Range lower range average range upper range

CO 21–28 57–118 193–356 923–3750 3–75 57–120 145–451 235–3750

NO 26–28 0–1 1–4 21–66 4–93 0–2 1–3 11–66

NO2 22–28 0–1 5–9 19–31 4–110 0–1 4–9 15–32

O3 21–28 1–3 21–36 62–128 2–76 1–23 22–48 54–128

T (◦C) 2–16 18–26 32–42 (◦C) 0–18 14–27 27–42

RH (%) 26–52 56–71 66–94 (%) 25–52 50–73 64–94

Table 5. Performance data for iRAMP models at CMU in 2017 (Avg. is the average; SD is the standard deviation). The “No.” sub-column

under “Model” indicates the total number of iRAMP models developed for each gas. Slope and r2 are presented for the best-fit line between

the calibrated RAMP measures and those of the regulatory monitor.

Gas Model Testing performance

Type No. Slope r2 MAE Bias

(ppb) (ppb)

Avg. SD Avg. SD Avg. SD Avg. SD

CO LR 48 1.08 0.36 0.75 0.16 60 19 −6 18

LQR 48 1.01 0.18 0.83 0.10 48 11 −5 14

CQR 48 0.96 0.16 0.85 0.09 46 16 −3 20

CL 48 1.06 0.24 0.74 0.11 58 17 1 22

NN 48 1.33 1.11 0.46 0.23 84 34 −2 34

HY 48 0.94 0.20 0.77 0.12 52 15 11 22

NO LR 19 1.31 0.56 0.15 0.07 2.3 1.1 0.26 0.80

LQR 19 1.15 0.52 0.25 0.15 2.3 1.1 0.26 0.80

CQR 19 0.97 0.36 0.36 0.14 2.1 1.0 0.35 0.82

CL 19 0.67 0.33 0.18 0.10 2.2 1.2 0.08 0.80

NN 19 0.90 0.35 0.30 0.13 2.0 1.0 0.09 0.55

HY 19 0.65 0.37 0.32 0.14 2.3 0.8 0.76 0.66

NO2 LR 62 0.89 0.31 0.17 0.08 3.4 0.7 0.16 0.88

LQR 62 0.79 0.23 0.21 0.09 3.3 0.6 0.18 0.93

CQR 62 0.85 0.15 0.47 0.11 2.6 0.5 0.07 0.73

CL 62 0.77 0.17 0.37 0.12 2.9 0.5 0.27 0.70

NN 62 0.93 0.16 0.49 0.12 2.6 0.5 0.07 0.59

HY 62 0.83 0.13 0.48 0.10 2.6 0.4 0.51 0.63

O3 LR 44 0.98 0.06 0.80 0.12 5.1 1.7 −0.05 1.6

LQR 44 0.96 0.05 0.83 0.11 4.6 1.7 0.12 1.4

CQR 44 0.93 0.07 0.82 0.12 4.6 1.7 −0.08 1.1

CL 44 0.89 0.11 0.62 0.11 7.3 1.3 −0.47 2.4

NN 44 0.98 0.21 0.73 0.26 5.8 2.8 0.09 1.3

HY 44 0.93 0.06 0.81 0.09 4.9 1.3 0.40 1.5
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Figure 3. Comparative performance of individualized (iRAMP – square), best individual (bRAMP – diamond), and general (gRAMP –

circle) model categories across gases measured by the RAMPs. The modeling algorithms used for each gas correspond to three of the better-

performing algorithms identified among the individualized models. Models are trained and tested on distinct subsets of collocation data

collected at the CMU site during 2017; performance shown is based on the testing data set only. Proximity to the lower-left corner of each

figure indicates better performance.

collected by the RAMP monitor at the station. Note that all

data collected at either deployment site are treated as testing

data, and that no data from these other sites are used to cal-

ibrate the models. Also note that not all gases monitored by

RAMPs are monitored by the stations, hence why only one

station may appear in each plot.

Overall, there tends to be a change in model performance

at either of the deployment sites compared to the CMU site.

This is to be expected to some degree, as the concentration

range and mixture of gases (especially at the Parkway East

site, which is located next to a major highway) can be dif-

ferent at a new site (where the model was not trained), and

thus cross-sensitivities of the sensors may be affected. These

differences appear to be greatest for CO, with performance

being better at the Parkway East site, where overall CO con-

centrations are higher (both the average and standard devi-

ation of the CO concentration at the Parkway East site are

more than double those of the CMU or Lawrenceville sites).

Additionally, gRAMP models tend to perform as well as or

better than iRAMP models when monitors are deployed to

new sites (only the CO results at Parkway East are much

better for the iRAMP than the gRAMP models). Further-

more, the performance of the gRAMP models at the training

site is typically more representative of the expected perfor-

mance at other sites than that of the iRAMP models. This is

likely because, while the iRAMP models are trained for in-

dividual RAMPs at the training site, the gRAMP models are

trained across multiple RAMPs at that site, and therefore are

more robust to a range of different responses for the same

atmospheric conditions. Thus, when a RAMP is moved from

one site to another, and its responses change slightly due to

a change in the surrounding conditions, the gRAMP model

will be more robust against these changes. Based on these

results, since the change in performance as a monitor is de-

ployed to a field site is often greater than the gap between

iRAMP and gRAMP performance at the calibration site (as
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Figure 4. Comparative performance of individual and general mod-

els for RAMPs deployed to ACHD monitoring stations (filled mak-

ers), compared to the performance of the same RAMPs at the CMU

site (hollow markers). For example, a filled green marker indicates

the performance of a RAMP at the Lawrenceville site, while a hol-

low green marker indicates the performance of that same RAMP

when it was at the CMU site. The modeling algorithm used for each

gas corresponds to the most consistent algorithm identified among

the models depicted in Fig. 3: limited quadratic regression (LQR)

for CO, neural network (NN) for NO, and hybrid random forest–

linear regression models (HY) for NO2 and O3. Models are trained

on data collected at the CMU site during 2017; performance shown

for the CMU site (hollow marker) is based on the testing data for

the corresponding RAMPs collected at that site. Proximity to the

lower-left corner of each figure indicates better performance.

assessed in Sect. 3.2), there is no reason to prefer an iRAMP

model to a gRAMP model for correction of field data.

To evaluate the performance of these sensors in a differ-

ent way, EPA-style precision and bias metrics are provided

in Fig. 5. Only CO, O3, and NO2 are considered, as these are

the gases for which performance guidelines have been sug-

gested by the EPA (Table 2). These guidelines are indicated

by the dotted boxes in the figure; points falling within the box

meet the criteria for the corresponding tier. Also, the range in

observed performance at the CMU site, as depicted in Fig. 3,

Figure 5. Comparative performance of individual and general mod-

els for RAMPs deployed to ACHD monitoring stations using EPA

performance criteria. Dotted lines indicate the outer limits of each

performance tier. Performance shown for the CMU site is based on

performance across all RAMPs at that site based on testing data

only. Proximity to the lower-left corner of each figure indicates bet-

ter performance.

is reproduced here for comparison using black markers with

error bars. For CO, by these criteria, the gRAMP model out-

performs the iRAMP model, with the gRAMP model meet-

ing Tier II or IV criteria (< 30 % error) for all locations.

Thus, under these metrics, for CO the gRAMP model is more

representative of performance at other sites, while for the

iRAMP model performance is more varied between sites. For

O3, performance of both models at Lawrenceville is better

than assessed at the CMU site, and both models fall near the

boundary between Tiers II/IV and Tier III performance crite-

ria (about 20 % error). For NO2, performance at the deploy-

ment sites in terms of the bias is always worse than predicted

by the CMU performance, although in terms of precision, the

gRAMP model at the CMU site better represents the site per-

formance than the iRAMP model (the same trend as was seen

using the other metrics).

3.4 Performance of calibration models over time

We now examine the change in performance of calibration

models over time. Figure 6 shows the performance of models

developed based on data collected at the CMU site in both
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2016 and 2017 and tested on data collected in either of these

years.

Training and testing data for 2017 represent the same train-

ing and testing periods as used for previous results. For 2016,

training and testing data are divided using the same proce-

dure as was applied for 2017 data, as discussed in Sect. 2.3.

For example, the results for “2016 data, 2017 models” rep-

resent the performance of models calibrated using the train-

ing data subset of the 2017 CMU site data when applied to

the testing data subset of the 2016 CMU site data. A change

in performance between these two models on data from the

same year will indicate the degree to which the models have

changed from one year to the next; likewise, a change in per-

formance for the same model applied to data from different

years will indicate the degree to which sensor responses have

changed over time. Note that NO is omitted here because data

to build calibration models for this gas were not collected in

2016. Also note that results presented in the rest of this pa-

per only use data collected in 2017 for model training and

evaluation.

A drop in performance when models from one year are

applied to data collected in the next year is consistently ob-

served for all models and gases, with O3 having the small-

est variability from one year to the next. This suggests that

degradation is occurring in the sensors, reducing the inten-

sity of their responses to the same ambient conditions and/or

changing the relationships between their responses. Thus, a

model calibrated on the response characteristics of the sen-

sors in one year will not necessarily perform as well using

data collected by the same sensors in a different year. This

degradation has also been directly observed, as the raw re-

sponses of “old” sensors deployed with the RAMPs since

2016 were compared to those of “new” sensors recently pur-

chased in 2018; in some cases, responses of old sensors were

about half the amplitude of those of new sensors exposed to

the same conditions. This is consistent with the operation of

the electrochemical sensors, for which the electrolyte con-

centration changes over time as part of the normal function-

ing of the sensor. To compensate for this, new models should

be calibrated for sensors on at least an annual basis, to keep

track of changes in signal response. Furthermore, calibration

models should preferably be applied to data from sensors

with a similar age to avoid effects due to different signal re-

sponses of sensors which have degraded to varying degrees.

Finally, in comparing model performance from one year to

the next, there is no significant increase in error associated

with using gRAMP models (trained for sensors of a similar

age) rather than iRAMP or bRAMP models.

Additionally, calibration model performance was assessed

as a function of averaging time. Note that the calibration

models discussed in this paper are developed using RAMP

data averaged over 15 min intervals, as discussed in Sect. 2.3.

However, these models may be applied to raw RAMP sig-

nals averaged over longer or shorter time periods. Further-

more, the calibrated data can also be averaged over differ-

ent periods. To investigate the effects of averaging time on

calibration model performance, we assess the performance

of RAMPs calibrated with gRAMP models for CO, O3, and

CO2 at the CMU site in 2017, with averaging performed ei-

ther before or after the calibration. Results are provided in the

Supplement (Figs. S4 and S5). Overall, we find little varia-

tion in calibration model performance with respect to aver-

aging periods between 1 min and 1 h.

3.5 Changes in field performance over time

Finally, we track the performance of RAMPs over time at

specific deployment locations, as depicted in Fig. 7, to evalu-

ate changes in calibration model field performance over time.

This is carried out using three RAMP monitors; one was

deployed at the ACHD Lawrenceville station from January

through September of 2017, as well as during November and

December 2017. A second RAMP was kept at the CMU site

year-round, where it was collocated with regulatory-grade in-

struments intermittently between May and October. The third

RAMP was deployed at the ACHD Parkway East site be-

ginning in November of 2017. The same gRAMP calibra-

tion models as depicted in Fig. 4 (using the training data

collected at the CMU site in 2017) are used; note that the

RAMP present at the CMU site was a part of the training

set of RAMPs for the gRAMP model, while the other two

RAMPs were not. Performance of CO, NO2, and O3 sensors

are depicted, as both CO and NO2 were continuously mon-

itored at both ACHD sites and intermittently monitored at

the CMU site, and O3 was consistently monitored at ACHD

Lawrenceville as well as being intermittently monitored at

the CMU site. Performance is assessed on a weekly basis.

For CO, the limited quadratic regression gRAMP model is

used, and for O3, the hybrid gRAMP model is used, as these

showed the least variability in performance of the gRAMP

models in Fig. 3. For NO2, a hybrid gRAMP model is used,

which provided the same performance as the neural network

gRAMP model in Fig. 3.

Performance of the calibrated O3 measurements shows al-

most uniformly high correlation and low CvMAE through-

out the year. For CO and (to a lesser degree) NO2, while

CvMAE is relatively consistent, periods of lower and more

variable correlation occurred from July to September (for

CO) or October (for NO2). These periods of lower correla-

tion do not appear to coincide with periods of atypical con-

centrations, periods of excessive pollutant variability at the

site, or any unusual pattern in the other factors measured by

the RAMP. Periods of lower performance appear to roughly

coincide for the CMU and Lawrenceville sites for the time

during which both sites were active, and observed pollutant

concentration ranges were comparable for both the CMU and

Lawrenceville sites during these periods. There does not ap-

pear to be a clear seasonal or temporal trend in this perfor-

mance, as low correlations occur in the late summer but not

early summer, when conditions were similar. Thus, while
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Figure 6. Comparative performance of models in 2016 and 2017. The “models” year indicates the year from which training data collected at

the CMU site are used to calibrate the model; the “data” year indicates the year from which testing data collected at the CMU site are used

to evaluate the model.

sensor performance is observed to fluctuate from week to

week, there does not appear to be a seasonal degradation in

performance.

4 Discussion and conclusions

Based on the results presented in Sect. 3.1, complete

quadratic regression and hybrid models give the best and

most consistent performance across all gases. Of these, the

hybrid models, combining the complicated non-polynomial

behaviors of random forest models (capable of capturing un-

known sensor cross-sensitivities) with the generalization per-

formance of parametric linear models, tend to generalize best

for NO, NO2, and O3 when applied to data collected at new

sites. For CO, quadratic regression models generalize bet-

ter. Neural networks perform well for NO and NO2 but not

for CO; limited quadratic regression models perform well for

CO and O3 but not for NO and NO2. Linear regression, Gaus-

sian processes, and clustering are the worst overall models

for these gases, never being in the top two best-performing

models, and only rarely being one of the top three. These

results could perhaps be improved further; for instance, our

linear and quadratic regression models did not use regulariza-

tion, nor did we experiment with neural networks involving

multiple hidden layers and varying numbers of nodes or with

the use of different k means and nearest-neighbor algorithms

for clustering.

Overall, in most cases the generic bRAMP and generalized

gRAMP calibration models perform worse than the individ-

ualized iRAMP models at the calibration site, but the decline

in performance may be manageable and acceptable depend-

ing on the use case. For example, for NO2 (Fig. 3), median

performance of bRAMP and gRAMP neural network and hy-

brid models are only 15 % worse in terms of CvMAE and 5 %

worse is terms of r . For O3, median performance of all mod-

els is above 0.8 for r and below 0.25 for CvMAE, indicating

a high level of correlation and relatively low estimation er-

ror. For CO, limited quadratic models meet the same criteria.

Furthermore, in examining the generalization performance of

the models when applied to new sites, as depicted in Figs. 4

and 5, for NO2 (in terms of the r and CvMAE metrics) and

for CO (in terms of the EPA precision and bias metrics), the

gRAMP models show more consistent performance between

the calibration and deployment locations than the iRAMP

models. For O3, performance of iRAMP and gRAMP mod-

els at the Lawrenceville site is comparable, while for NO,

performance of the gRAMP model at the Parkway East site

is actually better than that of the iRAMP model. This may

indicate that the NO sensors are more affected by changes in

ambient conditions than the other electrochemical sensors,

and the gRAMP model is better able to average out these

sensitivities than the other model categories considered.

Based on comparisons between the performance of mod-

els from one year to the next, as well as the analysis of
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Figure 7. Tracking the performance of RAMP monitors deployed to ACHD Lawrenceville, ACHD Parkway East, and CMU over time.

Statistics are computed for each week. Results shown correspond to those of models trained using data collected at the CMU site during 2017.

For CO, the generalized limited quadratic regression model is used; for NO2 and O3, generalized hybrid random forest–linear regression

models are used.

changes in performance of the RAMP monitors collocated

with regulatory-grade instruments for long periods, some

sensors, such as the O3 sensor, are quite stable over time.

For the CO sensor, performance seemed variable over time,

and performance noticeably degraded from one year to the

next, although no seasonal trends were apparent, and overall

performance may be acceptable (CvMAE < 0.5). The NO2

sensor also exhibited some degradation from one year to the

next, although performance was stable over time in 2017,

with minimal changes in overall performance during this

long deployment period.

It can generally be expected that RAMP monitors will

at least meet Tier II or Tier IV EPA performance criteria

(< 30 % error) for O3 (with hybrid random forest–linear re-

gression bRAMP and possibly gRAMP models) and CO

(with limited quadratic regression gRAMP models). Individ-

ualized calibration models are more likely to meet Tier II/IV

criteria for NO2 (with iRAMP or bRAMP hybrid models),

and localized calibration may also be required. For NO,

while no specific target criteria are established, neural net-

work iRAMP or gRAMP models appear to perform best.
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Recommendations for future low-cost sensor

deployments

In comparing different methods for the calibration of electro-

chemical sensor data, it was found that in some cases, e.g.,

for CO, simple parametric models, such as quadratic func-

tions of a limited subset of the available inputs, were suffi-

cient to transform the signals to concentration estimates with

a reasonable degree of accuracy. For other gases, e.g., NO2,

more sophisticated nonparametric models performed better,

although parametric quadratic regression models making use

of all sensor inputs were still among the best-performing

models for all gases. Depending on the application, therefore,

different methods might be appropriate, e.g., using simpler

parametric models such as quadratic regression to calibrate

measurements and provide real-time estimates, while using

more sophisticated nonparametric methods such as random

forest models when performing long-term analysis for ex-

posure studies. Of the nonparametric methods considered,

hybrid random forest–linear regression models gave the best

general performance across all the gas types. These models,

along with the quadratic models, should therefore be consid-

ered for situations in which it is desirable to use the same type

of calibration across all gases, e.g., to reduce the “overhead”

of programming multiple calibration approaches. The hybrid

model, which combines the flexibility of the random forest

with the generalizability of the linear model, is most theo-

retically promising for general application. Future work will

also investigate other forms of hybrid models. For example,

combinations of neural network and linear regression models

may work well for NO, for which neural networks provided

better performance than hybrid models using random forests.

Also, for CO and ozone, hybrid models combining random

forests with quadratic regression might perform better than

those with linear models since quadratic models perform bet-

ter than linear models for these gases overall.

Although there is a reduction in performance as a result

of not using individualized monitor calibration models when

these are calibrated and tested at the same location, the use

of a single calibration model across multiple monitors, rep-

resenting either the best of available individualized models

or a general model developed for a typical monitor, tends to

give more consistent generalization performance when tested

at a new site. This suggests that variability in the responses

of individual sensors for the same gas when exposed to the

same conditions (such as would be accounted for when de-

veloping separate calibration models for each monitor) tends

to be lower than the variability in the response of a single sen-

sor when exposed to different ambient environmental condi-

tions and a different mixture of gases (such as is experienced

when the monitor is moved to a new site). Models that are

developed and/or applied across multiple monitors will avoid

“overfitting” to the specific response characteristics of a sin-

gle sensor in a single environment. Thus, considering that it

is impractical to perform a collocation for each monitor at the

location where it is to be deployed, there is little benefit to de-

veloping individualized calibration models for each monitor

when their performance will be similar to (if not worse than)

that of a generalized model when the monitor is moved to

another location.

There are several additional qualitative advantages to us-

ing generalized models. First, the effort required to cali-

brate models is reduced since not every monitor needs to be

present for collocation and separate models do not have to be

created for every monitor. For example, while for CO only 48

RAMPs had sufficient data to calibrate individualized mod-

els based on data collected at the CMU site in 2017, gen-

eral models can be calibrated and applied for all 68 RAMPs

which were at the CMU site during this period, as well as

for additional RAMPs which were never collocated at the

CMU site but have the same gas sensors installed. Second,

collocation data collected from multiple monitors at differ-

ent sites can be combined in the creation of a generalized

model, whereas individualized models would require each

monitor to be present at each collocation site. This means

that a wider range of ambient gas concentrations can be re-

flected in the training data, allowing for better generalization.

Finally, the use of generalized models allows for robustness

against noise of individual sensors, which can lead to mis-

calibration of individualized models but is less likely to do

so if data from multiple sensors are averaged. Therefore, for

future deployments, generalized models applicable across all

monitors should be used.

For long-term deployments, it is recommended that model

performance be periodically re-evaluated (using limited co-

location campaigns with a subset of the deployed sensors)

every 6 months to 1 year and that development of new cal-

ibration models be contingent on the outcomes of these re-

evaluations. This recommendation is due to the noticeable

change in performance when models for one year were used

for processing data collected in the subsequent year. If gen-

eralized models are used, model development can be per-

formed using only a representative subset of monitors col-

lecting data across a range of temperature and humidity con-

ditions, allowing most monitors to remain deployed in the

field (although periodic “sanity checks” should be made for

field-deployment monitors to ensure all on-board sensors are

operating properly). Another option is to maintain a few

“gold standard” monitors collocated with regulatory-grade

instruments year-round and to use these monitors for the de-

velopment of generalized models to be used with all field-

deployed monitors over the same period. Determination of

how many monitors are necessary to develop a sufficiently

robust generalized model is a topic of ongoing work.

Data availability. All data (reference monitor data, RAMP raw

signal data, calibrated RAMP data for both training and testing),

and codes (in MATLAB language) to recreate the results discussed

here are provided online at https://doi.org/10.5281/zenodo.1302030
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the data set (without the calibrated data or models, but

still including the codes to generate these) is available at
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