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Abstract 23 

The hybrid finite–discrete element method (FDEM) is widely used for engineering 24 

applications, which, however, is computationally expensive and needs further 25 

development, especially when rock fracture process is modelled. This study aims to 26 

further develop a sequential hybrid FDEM code formerly proposed by the authors and 27 

parallelize it using compute unified device architecture (CUDA) C/C++ on the basis of a 28 
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general purpose graphics processing unit (GPGPU) for rock engineering applications. 29 

Because the contact detection algorithm in the sequential code is not suitable for GPGPU 30 

parallelization, a different contact detection algorithm is implemented in the GPGPU-31 

parallelized hybrid FDEM. Moreover, a number of new features are implemented in the 32 

hybrid FDEM code, including the local damping technique for efficient geostatic stress 33 

analysis, contact damping, contact friction and the absorbing boundary. Then, a number 34 

of simulations with both quasi-static and dynamic loading conditions are conducted using 35 

the GPGPU-parallelized hybrid FDEM, and the obtained results are compared both 36 

quantitatively and qualitatively with those from either theoretical analysis or the literature 37 

to calibrate the implementations. Finally, the speed-up performance of the hybrid FDEM 38 

is discussed in terms of its performance on various GPGPU accelerators and a 39 

comparison with the sequential code, which reveals that the GPGPU-parallelized hybrid 40 

FDEM can run more than 128 times faster than the sequential code if it is run on 41 

appropriate GPGPU accelerators, such as the Quadro GP100. It is concluded that the 42 

GPGPU-parallelized hybrid FDEM developed in this study is a valuable and powerful 43 

numerical tool for rock engineering applications. 44 

Keywords: Rocks, Fracture process analysis, Hybrid FDEM, Quasi-static loading, Impact 45 

loading, GPGPU, and CUDA C/C++ 46 

 47 

1. Introduction 48 

Understanding the fracture process mechanism of rocks is significantly important in the 49 

field of civil and mining engineering as well as other fields, such as geothermal, 50 

hydraulic, oil and gas engineering, in which rock fracture plays an important role. 51 

Recently, numerical methods have been increasingly applied to analyze the fracture 52 

process of rocks (e.g., 1). Recent advances in computational mechanics have realized a 53 

better understanding of complex fracture processes. Generally, approaches based on 54 

computational mechanics can be classified into continuum and discontinuum 55 

formulations. In the framework of the fracture process analysis of rocks, continuum-based 56 
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methods include the finite element method (FEM), the finite difference method (FDM), 57 

the boundary element method (BEM), the scaled-boundary finite element method 58 

(SBFEM), the extended finite element method (XFEM), meshless methods, methods 59 

based on peridynamics and phase-field methods, while discontinuum-based methods 60 

include the distinct element method (DEM), the lattice model (LM) method, and 61 

molecular dynamics (MD). More detailed information on recent advances in the 62 

computational fracture mechanics of rocks can be found in recently published review 63 

articles 1-3. To realistically simulate the fracture process of rock, numerical techniques 64 

must be capable of capturing crack onset, arbitrary crack growth, the correct crack length 65 

within a given time interval and the propagating directions. In recent years, increasing 66 

attention has been paid to these techniques, which can unify the advantages of the 67 

aforementioned continuum-based and discontinuum-based methods. Attempts in this 68 

direction lead to the development of coupled methods, hybrid/hybrid methods and 69 

multiscale coupled methods 1.  70 

The hybrid finite–discrete element method (FDEM) proposed by Munjiza 4 has been 71 

employed successfully to model problems that address the transition process from 72 

continuum to discontinuum such as rock fracturing and fragmentation. The hybrid FDEM 73 

incorporates the advantages of both continuum and discontinuum methods and can 74 

realistically simulate the transition from continuum to discontinuum caused by rock 75 

fracture. Two main implementations of the hybrid FDEM include Y code 5-8 and the 76 

commercial code ELFEN 9-12. Several attempts have been made to actively extend the Y 77 

code, such as Y-GEO 13-19, IRAZU 20-22, Solidity 23-29, HOSS with MUNROU 30,31 and Y-78 

Flow 32-36. In addition, the authors also developed the Y-HFDEM IDE (integrated 79 

development environment) 37-40. The principles of all of the hybrid FDEM codes are 80 

based on continuum mechanics, the cohesive zone model (CZM) and contact mechanics, 81 

which make the codes very computationally expensive. Therefore, developing a capable 82 

parallel computation scheme is important for handling large-scale problems with a 83 

massive number of nodes, elements and contact interactions. 84 
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 To date, some successful parallel implementations of the hybrid FDEM codes using 85 

MPI (message-passing interface) (e.g., 8,9,11,30,31,41,42) and shared-memory programming 86 

such as OpenMP (e.g., 23) have been reported. Among these, Lukas et al. 8 proposed a 87 

novel approach for the parallelization of 2D hybrid FDEM using MPI and parallelization 88 

solvers based on dynamic domain decomposition and successfully applied the 89 

parallelized Y code to a large-scale 2D problem on a PC cluster. Meanwhile, Lei et al. 30 90 

successfully developed the concept of a virtual parallel machine for the hybrid FDEM 91 

using MPI, which can be adapted to various computer architectures ranging from few to 92 

thousands of CPU (central processing unit) cores. Furthermore, Rougier et al. 31 93 

introduced the HOSS with MUNROU code, which notably used 208 processors 94 

controlled by MPI and developed novel contact detection and contact force calculation 95 

algorithms. The developed code was applied successfully to 3D simulation of a dynamic 96 

Brazilian test of rock with a split Hopkinson pressure bar apparatus. ELFEN uses MPI in 97 

its parallelization scheme and has been employed successfully in 2D and 3D simulations 98 

of the rock fracture process. For example, 3D fracture process analysis of a conventional 99 

laboratory test using up to 3 million elements has been reported 11. Additionally, Xiang et 100 

al. 23 optimized the contact detection algorithm in their Solidity code and parallelized the 101 

code using OpenMP; they modeled a packing system with 288 rock-like boulders and 102 

showed that a speedup of 9 times on 12 CPU threads can be achieved (although the 103 

details of the applied algorithm and its implementation were not provided). Relevant to 104 

the MPI-based parallelization, Guo and Zhao 43,44 developed a hierarchical 105 

FEM/DEM coupling, which had been extended for modeling of granular rocks 106 

more recently 45,46. In general, MPI requires a large and expensive PC cluster to achieve 107 

the best performance. Meanwhile, the application of shared-memory programming such 108 

as OpenMP is limited by the total number of multi-processors that can reside in a single 109 

computer; thus, MPI is still required for large-scale problems in which each computer 110 

uses both OpenMP and MPI to transfer data among multiple computers. This means that 111 

the hybrid MPI/OpenMP is necessary.  112 
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In addition to CPU-based parallelization schemes, the GPGPU (general purpose 113 

graphics processing unit) accelerator controlled by either OpenCL (open computing 114 

language) 47 or CUDA (compute unified device architecture) 48 can be considered another 115 

promising method for the parallelization of hybrid FDEM codes. Thousands of GPU-core 116 

processors can reside and concurrently work in a small GPGPU accelerator within an 117 

ordinary laptop/desktop PC or workstation with lower energy consumption than the CPU-118 

based PC cluster. Moreover, a GPGPU cluster with a massive number of GPGPU 119 

accelerators is also possible. 120 

Zhang et al. 49 developed a CUDA-based GPGPU parallel version of Y code (2D) 121 

without considering the fracture process and the contact friction. Batinić et al. 50 122 

implemented GPGPU-based parallel hybrid FDEM based on the Y code for analysis of 123 

cable structures using CUDA. However, neither of the above implementations have been 124 

employed in the simulation of rock fracture. In this regard, a GPGPU-based hybrid 125 

FDEM commercial code, namely, IRAZU 20-22, has just been developed with OpenCL and 126 

was used successfully in rock fracture simulations. Additionally, some novel GPGPU-127 

based DEM modeling methods coupled with FEM, i.e., coupled FEM/DEM, have been 128 

proposed. For example, Nishiura et al. 40 developed the quadruple DEM (QDEM) code 129 

using GPGPU and successfully applied the code to the investigation of ballasted railway 130 

track dynamics. In addition, Ma et al.51 and Wang et al. 52 developed a GPGPU-based 131 

implementation of continuum-based DEM. These studies 40,51,52 showed that the 132 

performance of coupled FEM/DEM can be significantly improved using GPGPU 133 

parallelization. However, the coupled FEM/DEM is a physical coupling of two methods 134 

(DEM and FEM), unlike the hybrid FDEM, in which the transition from continuum to 135 

discontinuum is modeled by CZM under the explicit FEM formulation. In other words, 136 

there are three essential differences between the coupled FEM/DEM and the hybrid 137 

FDEM: 1) the continuous behavior of the coupled FEM/DEM is modelled through 138 

springs with normal and tangential stiffnesses while that of the hybrid FDEM is through 139 

intact cohesive elements with high penalty parameters; 2) the transition from continuum 140 
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to discontinuum of the coupled FEM/DEM is implemented through removing the springs 141 

while that of the hybrid FDEM is through the softening of the cohesive elements; and 3) 142 

the contact interaction between the discrete elements of the coupled FEM/DEM is 143 

calculated through contact springs while that of the hybrid FDEM is through potential 144 

contact force calculation method in the framework of explicit FEM. In this sense, the 145 

hybrid FDEM parallelized in this study is called the hybrid FDEM to distinguish it from 146 

the coupled FEM/DEM. Therefore, the hybrid FDEM is computationally more 147 

demanding than the coupled FEM/DEM.  148 

Overall, it can be concluded that IRAZU, which is parallelized using OpenCL, is the 149 

only available GPGPU-based hybrid FDEM code to date that is capable of modeling the 150 

rock fracture process 20-22. Thus, further studies are required to develop the GPGPU-based 151 

hybrid FDEM. In this regard, we have developed free research code*, Y-HFDEM IDE 37-152 

40, and recently parallelized it using GPGPU with CUDA C/C++. Moreover, it is 153 

desirable to fully describe any newly implemented GPGPU-based code because the 154 

implementation of GPGPU-based codes differs from that of CPU-based sequential codes. 155 

In addition, while there is no freely available GPGPU-based hybrid FDEM code, our code 156 

is free to use and may significantly contribute to many studies in the field of rock 157 

engineering.  158 

Based on the above background, this paper aims to explain the recently developed 159 

GPGPU-based hybrid FDEM algorithm implemented in 2D Y-HFDEM IDE, along with 160 

newly implemented functions, to increase the applicability of the algorithm in the field of 161 

rock engineering. The capability of the code in realistic modeling is demonstrated by 162 

providing examples. Thus, this paper will provide a useful basis for further improvement 163 

and development of the hybrid FDEM codes based on GPGPU.   164 

The paper is arranged as follows. First, the theory used in 2D Y-HFDEM IDE is 165 

introduced, and then its implementation in the GPGPU parallel computation framework is 166 

explained in detail. Section 3 investigates the accuracy and capability of the developed 167 

code through several examples such as 2D fracture process analyses of rock fracture in 168 
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conventional laboratory testing and blasting. In section 4, the performance of the 169 

developed GPGPU-based code is compared against that of the original CPU-based 170 

sequential code. Finally, section 5 concludes and highlights future work. 171 

2. Hybrid finite–discrete element method implemented in Y-HFDEM IDE 172 

   The Y-HFDEM IDE was originally developed using object-oriented programming in 173 

visual C++ 37 on the basis of the CPU-based sequential open-source Y-code 5,7. The Y-174 

HFDEM IDE can not only significantly simplify the process of building and manipulating 175 

the input models and greatly reduce the possibility of erroneous model setup but can also 176 

display calculated results graphically in real-time with OpenGL. The preprocessor of the 177 

Y-HFDEM IDE can even generate simple FDEM mesh and specify initial conditions, 178 

physical properties, contact properties, boundary conditions, fracture criteria, and 179 

explosive charges if necessary. More complex FDEM meshes are usually generated using 180 

third-party software such as ABAQUS®, ANSYS LS-DYNA® and various open-source 181 

mesh generators such as Netgen and Gmsh. Then, the generated mesh data can be easily 182 

imported into the Y-HFDEM IDE for hybrid FDEM analyses. The postprocessor can 183 

visually display the calculated stress, displacement, velocity, force, damage, fracture and 184 

fragmentation in real-time pictures or query calculated results in specified locations and 185 

graphically display them. In addition, a number of operations such as pan, rotation, zoom, 186 

various viewports in perspective and/or orthographic modes, and slideshow are developed 187 

to manipulate the numerical models and calculated results (see 37 for further detail). The 188 

code has been successfully employed in the simulation of the fracture process in various 189 

geotechnical engineering problems 37-40. Because of the nature of sequential 190 

programming, its main application was limited to small-scale 2D problems using a 191 

relatively rough mesh. To overcome this limitation, the parallel programming scheme 192 

using the GPGPU accelerator controlled by CUDA C/C++ is implemented into the Y-193 

HFDEM 2D IDE through this study. Because the various hybrid FDEM-based codes have 194 

been independently developed in different research institute/organization and have 195 
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different features, the fundamental features of Y-HFDEM 2D IDE along with its GPGPU-196 

based parallelization scheme are explained in detail through the following subsections.  197 

2.1. Fundamental theory of 2D Y-HFDEM IDE 198 

   The principles of the hybrid FDEM are based on continuum mechanics, cohesive zone 199 

modeling and contact mechanics, all of which are formulated in the framework of explicit 200 

FEM 5.   201 

   The continuum behavior of materials including rocks is modeled by an assembly of 202 

continuum 3-node triangular finite elements (TRI3s) (Fig. 1(a)). Two types of isotropic 203 

elastic constitutive models have been implemented. In the first type, which is 204 

implemented in the original Y-code and has been widely used, the isotropic elastic solid 205 

obeys Eq. (1) of the Neo-Hookean elastic model: 206 

      ( )1
 ( ,  =1, 2, 3)

2
ij ij ij ij ijJ B D i j

J J

λ µσ δ δ η = − + − + 
 

                  (1) 207 

where σij denotes the Cauchy stress tensor, Bij is the left Cauchy–Green strain, λ and µ 208 

are the Lame’s constants, J is the determinant of the deformation gradient, η is the 209 

damping coefficient, δ ij is the Kronecker’s delta and Dij is the rate of the deformation 210 

tensor. However, Eq. (1) cannot model anisotropic elasticity and the plane strain problem, 211 

which are also very important in the field of rock engineering. Thus, in the second type, a 212 

hyper elastic solid obeying Eqs. (2) and (3) is also implemented: 213 

( , , ,  =1, 2)KL KLMN MNS C E K L M N=                            (2) 214 

1
 ( , , ,  =1, 2)ij iK KL jL ijF S F D i j K L

J
σ η= +                           (3) 215 

where SKL denotes the 2nd Piola–Kirchhoff stress tensor, CKLMN is the effective elastic 216 

stiffness tensor, EMN is the Green–Lagrange strain tensor and F iK is the deformation 217 

gradient. Note that the Einstein’s summation convention applies in Eqs. (2) and (3). By 218 

setting CKLMN in Eq. (2) properly, isotropic and anisotropic elastic behaviors can be 219 

simulated. In Eqs. (1) and (2), the infinitesimal strain tensor is not used and thus a large 220 

displacement and a large rotation can be simulated. For the simulation of the fracture 221 

process of materials under quasi-static loading, η = ηcrit =2h√(ρE) is used to achieve 222 

critical damping 5, where h, ρ and E are the element length, density and Young’s modulus 223 
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of the target material, respectively. Accordingly, the hybrid FDEM can address both 224 

dynamic and quasi-static problems. The σij within each TRI3 is converted to the 225 

equivalent nodal force f int (e.g., 52).   226 

   The fracture of rock under mode I and mode II loading conditions, i.e., the opening 227 

and sliding of cracks, is modeled via CZM using the smeared crack model 53. To model 228 

the behavior of the fracture process zone in front of the crack tips, tensile and shear 229 

softening is applied using an assembly of 4-node cohesive elements with an initial 230 

thickness of zero (CE4s) (Fig. 1(a)) as a function of crack opening and sliding 231 

displacements, (o, s) (Fig. 1(b)). Two methods can be used for CE4 insertion. One 232 

method involves inserting the CE4s into all of the boundaries of the TRI3s at the 233 

beginning of the analysis; this method is known as the intrinsic cohesive zone model 234 

(ICZM) 54. The second method involves adaptively inserting the CE4s into the particular 235 

boundaries of the TRI3s with the help of adaptive remeshing techniques where a given 236 

failure criterion is met; this method is referred as the extrinsic cohesive zone model 237 

(ECZM) 54. Many existing hybrid FDEM codes, e.g., Y code including Y-HFDEM IDE, 238 

have employed the ICZM, while some codes such as ELFEN have used the ECZM. One 239 

of the advantages of the ICZM is that the implementation and application of the parallel 240 

computing algorithm is straightforward since adaptive remeshing is unnecessary in this 241 

case. However, an “artificial” elastic behavior of CE4s before the onset of fracturing 242 

must be specified, which requires the introduction and correct estimation of penalty terms 243 

and the careful selection of the time step increment Δt to avoid numerical instability.  244 

   In the GPGPU-based 2D Y-HFDEM code, normal and shear cohesive tractions (σcoh 245 

and τcoh, respectively) acting on each face of CE4 are computed using Eqs. (2) and (3) 246 

assuming tensile and shear softening behaviors, respectively: 247 

s       

overlap

2

s       p

p p

s          p

2
if 0

  2
( ) if 0

( ) if

coh

o
T o

o

o o
f D T o o

o o

f D T o o

σ

 <
 =   − ≤ ≤      
 <

                          (4) 248 
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( )
2

       p

p p

       p

2
tan( ) ( ) if 0

tan( ) ( ) if

coh

coh

coh

s s
f D c s s

s s

f D c s s

σ φ
τ

σ φ

   − − + ≤ ≤ =     
− + <

   (5) 249 

where op and sp are the elastic limits of o and s, respectively, ooverlap is the representative 250 

overlapping when o is negative, Ts is the tensile strength of CE4, c is the cohesion of CE4 251 

and ϕ is the internal friction angle of CE4. Positive o and σcoh are crack opening and 252 

tensile cohesive traction, respectively. Eq. (5) corresponds to the Mohr–Coulomb (MC) 253 

shear strength model with the tension cut-off. When ICZM is used, the “artificial” elastic 254 

behavior of each CE4 characterized by op and sp along with ooverlap is necessary to 255 

connect the TRI3s to express the intact deformation process, which is given as follows 53: 256 

2 /p s fo hT P=                               (6) 257 

    tan2 /ps hc P=                               (7) 258 

 2 /overlap s overlapo hT P=                         (8) 259 

where Pf, Ptan and Poverlap are the penalty terms of CE4s for opening in the normal 260 

direction, sliding in the tangential direction and overlapping in the normal direction, 261 

respectively, and h is the element length; the values of the penalty terms can be 262 

considered the stiffness of the CE4 for its opening, sliding and overlapping, respectively. 263 

Ideally, these penalty values should be infinity to satisfy elastic behavior of rocks 264 

according to Eq. (1), but this condition would require an infinitesimal Δt. Therefore, a 265 

reasonably large value of the penalty terms, compared to the Young’s modulus or Lame’s 266 

constants, is required, as it is impossible to use infinity in actual numerical simulations. 267 

Otherwise, the intact behavior of the bulk rock shows significantly different behavior 268 

from that specified by Eqs. (1) and (2), and the elastic constants used in Eqs. (1) and (2) 269 

lose their meaning. This consideration is very important, especially for problems in which 270 

the speed of the stress wave is important (see section 3.4). The function f(D) in Eqs. (4) 271 

and (5) is the characteristic function for the tensile and shear softening curves (Fig. 1(b)) 272 

and depends on the damage value D of the CE4. The following definitions of D and f(D) 273 
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are used to consider not only mode I and II fracturing but also mixed mode I–II fracturing 274 

13,53: 275 

22

Minimum 1,   if   or  ,  otherwise 0
p p

p p

t t

o o s s
D o o s s

o s

 −  −   = + ≥ >        

     (9) 276 

( ) ( )( ) ( )1
1 exp 1 (1 )   (0 1)

1
CA B A CB

f D D A D B D D
A B A B A B

  + − +  = − − + − ≤ ≤     + + − −   

     (10) 277 

where A, B and C are the intrinsic rock properties that determine the shape of softening 278 

curves, and o t and s t are the critical values at which a CE4 breaks and turns into a 279 

macro/explicit fracture of o and s, respectively. If tensile loading condition is presented 280 

only (i.e. o>op and |s|≤sp), the damage variable D in Eq. 9 becomes the pure mode I 281 

damage DI (= minimum (1, (o-op)/o t)). If shear loading condition is presented only (i.e. 282 

o≤op and |s|>sp), it becomes the pure mode II damage DII (= minimum (1, (|s|-sp)/s t)). If 283 

both the tensile and shear loading conditions are presented (i.e. o≤op and |s|>sp), it 284 

becomes the mixed mode I-II damage DI-II defined in Eq. 9. The true damage is defined 285 

as the sum of the pure mode I, pure mode II and mixed mode I-II damages, which is D = 286 

DI +DII+DI-II. To avoid unrealistic damage recovery, if the trial f computed from Eq. 287 

(10) at the current time step becomes larger than that at the previous time step fpre, a 288 

condition of f = fpre is assigned. The o t and s t in Eq. (9) satisfy the mode I and II fracture 289 

energies GfI and GfII specified in Eqs. (11) and (12), respectively: 290 

     
fI ( )d    

t

p

o

coh

o

G o oσ= ∫                         (11) 291 

{ }fII ( ) d
t

p

s

coh
res

s

G W s sτ+ = ∫                    (12) 292 

where Wres is the amount of work per area of CE4 done by the residual stress term in the 293 

MC shear strength model. This paper uses the same f(D) with A, B and C equal to 0.63, 294 

1.8 and 6.0 53, respectively, for both mode I and II fracture processes because of the lack 295 

of experimental evidence. In addition, unloading, i.e., the decrease of o or |s|, can also 296 
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occur during the softening regime, i.e., o>op or |s|>sp (see Fig. 1(b)), which is modeled 297 

based on Eqs. (13) and (14) 55: 298 

      pmax max max

max

( )  if 0  and coh
s

o
f D T o o o o

o
σ = < < >              (13) 299 

{ }    pmax max max

max

tan( ) ( )  if  and scoh coh s
f D c s s s

s
τ σ φ= − + < >       (14) 300 

In each CE4, the computed σcoh and τcoh are converted to the equivalent nodal force fcoh 301 

using a 3-point Gaussian integration scheme 53. When either o t or s t is achieved in a CE4, 302 

the element becomes deactivated and its surfaces can be considered new macro-fracture 303 

surfaces.  304 

   The contact processes between the material surfaces, including the newly created 305 

macro fractures by the separation of each CE4, are modeled by the penalty method 4; a 306 

complete and excellent explanation of the method is given in the literature 4. As a brief 307 

explanation, when any two TRI3 elements subjected to contact detection (see the next 308 

subsection for the implementation of contact detection in the framework of GPGPU) are 309 

found to overlapped, the contact potential due to the overlapping of the two TRI3s, i.e., 310 

the contacting couple, is exactly computed. The normal contact force fcon_n, which is 311 

normally acting on the contact surface and is proportional to the contact potential, is then 312 

computed for each contacting couple. The proportional factor is called the normal contact 313 

penalty Pn_con. After the normal contact force fcon_n and its acting point are obtained, the 314 

nominal normal overlap on and the relative displacement Δuslide at the acting point of 315 

fcon_n are readily computed. The contact damping model proposed by An and Tannant 56 316 

(Fig. 2) can also be applied if the role of contact damping is very important. When this 317 

scheme is applied, the normal contact force fcon_n mentioned above is regarded as a trial 318 

contact force (fcon_n)try, and a trial contact stress (σcon_n)try is then computed by dividing 319 

(fcon_n)try by the contact area Acon. Then, Eq. (15) is used to determine the contact stress 320 

σcon_n: 321 
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  ( )( )
( )

try

con_n n

con_n

n _ max n

,  during the increase of (Loading)

/ during the decrease of (Unloading)
b

n

Minimum T o

T o o o

σ
σ


= 



                 (15) 322 

where T is the transition force, b is the exponent, and on_max is the maximum value of on 323 

experienced during the loading process at the contact. T limits σcon_n and defines the 324 

transition between a linear elastic stress–displacement relationship and a ‘recoverable’ 325 

displacement at a constant contact stress. The values of T may be related to the physical 326 

properties of the rocks being simulated, such as the uniaxial compressive strength. The 327 

exponent b adjusts the power of the damping function that is applied to the rebound or 328 

extension phase of the contact. The value of the exponent controls the energy loss during 329 

an impact event. A very similar contact damping model is implemented in the 2D Y-Geo 330 

code in the framework of the hybrid FDEM, in which only b is modeled 13. After σcon_n is 331 

computed using Eq. (15), it is converted to fcon_n (= Acon ×σcon_n). The verification of the 332 

implemented contact damping is discussed in subsection 3.2. After fcon_n is determined, 333 

the tangential contact force fcon_tan is computed according to the classical quasi-static 334 

Coulomb friction law. First, the trial tangential contact force is computed by (fcon_tan)trial 335 

=(Ptan_con × fcon_tan × Δuslide), where Ptan_con is a tangential contact penalty. The actual 336 

fcon_tan is computed based on Eq. (16): 337 

 ( ) ( )
( )

trial trial

con_tan con_tan fric con_n

con_tan trial

fric con_n con_tan fric con_n

 if  

    if 

f f f
f

f f f

µ

µ µ

 ≤= 
 >

                  (16) 338 

where μfric is the friction coefficient between the contact surfaces. The tangential contact 339 

force fcon_tan is applied parallel to the contact surface against the direction of the relative 340 

sliding of the contact faces. The verification of the implementation of the contact friction 341 

is discussed in subsection 3.2. In each contacting couple, the contact force is converted to 342 

the equivalent nodal force fcon 4.  343 

    By computing the nodal forces mentioned above, the following equation of motion, 344 

Eq. (17), is obtained and solved in the framework of explicit FEM 4: 345 

2 2
ext int coh con/ t∂ ∂ = + + +M u f f f f                        (17) 346 

where M is a lumped nodal mass, u is the nodal displacement and fext is the nodal force 347 
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corresponding to the external load. The application of fluid-driven pressure due to 348 

detonation phenomena such as that described by An et al. 39 can also be considered. The 349 

central difference scheme is employed for the explicit time integration to solve Eq. (17). 350 

Careful selection of the time step Δt is necessary to avoid numerical instability. An 351 

excellent explanation of the reasonable selection of Δt in the hybrid FDEM can be found 352 

in section 2.3.5.2 of the literature 29.  353 

 354 

2.2. GPGPU-based parallelization of 2D Y-HFDEM IDE by CUDA C/C++ 355 

   To speed−up the simulation process of the 2D Y-HFDEM IDE, a parallel 356 

computation scheme based on the NVIDIA® GPGPU accelerator is incorporated. In our 357 

case, the computation on the GPGPU device is controlled through the NVIDIA’s CUDA 358 

C/C++ 48, which is essentially an ordinary C/C++ programming language with several 359 

extensions that make it possible to leverage the power of the GPGPU in the 360 

computations. The CUDA programming model uses the abstractions of “threads”, 361 

“blocks” and “grids”48 (Fig. 3). A greater degree of parallelism occurs within the 362 

GPGPU device itself. Functions also known as “kernels” are launched on the GPGPU 363 

device and are executed by many “threads” in parallel. A “thread” is just an execution 364 

unit of a “kernel” that has a given “thread index” within a particular “block“. As shown 365 

in Fig. 3, a “block” is a group of the threads, and a unique “block index” is given to each 366 

“block”. The “block index” and “thread index” enable each thread to use its unique 367 

“index” to globally access elements in the GPGPU data array such that the collection of 368 

all threads processes the entire data set in parallel. A “grid” is just a group of “blocks”. A 369 

system with a single “grid” is used in this study. The “blocks” can execute concurrently 370 

or serially depending on the number of streaming processors available in a GPGPU 371 

accelerator. Synchronization between “threads” within a “block” is possible, while no 372 

synchronization is possible between “blocks”. At each “thread” level, the corresponding 373 

code that “threads” execute is very similar to the CPU-based sequential code (see 374 

Appendix 1 and Fig. A1), which is one of the advantages of the application of CUDA 375 
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C/C++. For example, in the Quadro GP100 accelerator (Pascal generation 48) used in this 376 

paper, the number of streaming processors and CUDA cores 48 are 56 and 3584, 377 

respectively. Thus, a high computational performance of the GPGPU parallelized code 378 

run on the GPU accelerator can be achieved, compared to that of ordinary CPU-based 379 

sequential code. The number of “blocks” per “grid” (NBpG) and the number of “threads” 380 

per “block” (NTpB) can be changed for the speed-up using GPGPU (Fig. 3). The current 381 

version of 2D Y-HFDEM IDE normally sets NTpB to either 256 or 512, and NBpG is 382 

automatically computed by dividing the total number of threads (Nthread) in each “kernel” 383 

by NTpB, in which an additional block is needed if Nthread/NTpB is not the multiple of NTpB. 384 

The value of Nthread is set to be equal to the total number of TRI3s, CE4s, contact couples 385 

or nodes depending on the purpose of each “kernel”. 386 

   In the GPGPU implementation of 2D Y-HFDEM IDE, the computation of each TRI3 387 

(f int and M), CE4 (fcoh), contact couple (fcon) or nodal equation of motion (Eq. (17)) is 388 

assigned to each GPGPU “kernel”, as shown in Fig. 4, and processed in a massively 389 

parallel manner. In Appendix A.1, an exemplary code of the GPGPU “kernel” 390 

programmed to solve Eq. (17) is shown. It is evident from this example that the CUDA 391 

code used in the “kernel” is very similar to the CPU-based sequential code, which also 392 

holds true for all of the computations shown in Fig. 4. Thus, most parts of the original 393 

sequential CPU-based code can be used with minimal modifications. To compute the 394 

contact force fcon, a “triangle-to-triangle” (TtoT) contact interaction is used in the earliest 395 

versions of the Y-2D code5. This TtoT approach exactly considers the geometries of both 396 

contactor and target TRI3s, and the integration of the contact force distributed along the 397 

edges of the TRI3s is done analytically. Because this approach integrates the contact 398 

force exactly, it is precise although quite time consuming. As pointed out in the literature 399 

30, the contact interaction in 2D can be further simplified by “triangle-to-point” (TtoP) 400 

contact interaction kinematics, which makes the implementation simpler and more time 401 

efficient. However, the precision of the computed contact force using the TtoP approach 402 

is low unless a sufficient number of target points per TRI3 is used. Thus, in the Y-403 
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HFDEM 2D IDE, the TtoT approach is applied (instead of the TtoP approach) to ensure 404 

the precision of the computed contact force.  405 

   A flowchart of the 2D Y-HFDEM IDE is shown in Fig. 5. However, one of the 406 

challenging problems in Fig. 5 is the achievement of efficient contact detection for 407 

identifying each contacting couple only through the GPGPU without any sequential 408 

computation. For example, in the case of a sequential CPU implementation, there are 409 

powerful and efficient contact detection algorithms, such as the NBS (no binary search) 410 

contact detection algorithm proposed by Munjiza 4, which can achieve the linear search in 411 

which the required computation for contact detection is proportional to the number of 412 

TRI3 candidates subjected to contact detection. However, such contact detection 413 

algorithms are not straightforward to implement in the GPGPU-based code. In the 2D Y-414 

HFDEM IDE, considering that hybrid FDEM modeling requires a fine mesh that often 415 

consists of TRI3s of a similar size, the following contact detection algorithm is 416 

implemented. In this algorithm, the analysis domain comprising a massive number of 417 

TRI3s is subdivided into multiple equal-sized (nx, ny) square subcells in the x and y 418 

directions (Fig. 6) so that the largest TRI3 in the analysis domain is completely included 419 

in a single subcell. In this way, the center of every TRI3 can have a single subcell to 420 

which it belongs (Fig. 6). By using an integer coordinate (ix, iy) (ix=0,···,nx-1, iy=0,···,ny-421 

1) in the x and y directions for the location of each subcell, unique hash values h 422 

(=iy×nx+ix) are assigned to each subcell. For example, the five TRI3s shown in red in 423 

Fig. 6 are included in the blue subcell and have the same hash value. The subsequent 424 

contact detection procedure is explained using a simplified example shown in Fig. 7, 425 

where there are ten TRI3 candidates of similar size subjected to contact detection. First, 426 

all of the TRI3s are mapped into the integer coordinate (ix=0, 1 and 2, and iy=0,1 and 2) 427 

with nx= ny=3 along with each hash value. In this way, the list L-1 is readily constructed. 428 

Then, the IDs of the TRI3s in the list L-1 are sorted from smallest to largest according to 429 

the hash values as keys, which generates the list L-2 in Fig. 7. For the key sorting by 430 

hash, the radix sorting algorithm optimized for CUDA 57 and implemented in the open-431 
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source “thrust” library is used; thus, this procedure can also be processed in a massively 432 

parallel manner. Utilizing the list L-2 and GPGPU device shared memory 48, the list L-3 433 

is further constructed in a GPGPU “kernel“, which makes it possible to identify the first 434 

and last indices of the particular hash value in the List L-2. As an example, let us consider 435 

the index = 2 in the arrays of L-2, i.e. “Sorted TRI3 ID” = 0 and “Sorted_h” = 3. By 436 

comparing the hash values h in the immediately left and right neighbor indices with that 437 

in the index = 2 (i.e., indices =1 and 3 of “Sorted_h” array) in L-2, it can be found that the 438 

hash value h in the index=1 (i.e. h = 0) is different from that in the index = 2 (i.e. h = 3). 439 

Thus, the indices = 1 and 2 in L-2 correspond to the last and first TRI3s in the subcells 440 

with h = 0 and 3, respectively. Thus, the “last index” for h = 0 and the “first index” for h 441 

= 3 in L-3 are set to “1” and “2”, respectively, as indicated using the green dash curves in 442 

L-2 and L-3 of Fig. 7. At the same time, for the hash values h = 1 and 2, these subcells 443 

are clearly empty with no TRI3 elements, which are filled in “E” (i.e. empty) in L-3. The 444 

same explanation is applicable to all the other indices in the arrays of L-2. In this way, L-445 

3 is constructed. Therefore, the “first index” and the “last index” in L-3 indicate the first 446 

and last indices, respectively, in L-2 for each hash. Since this operation only requires to 447 

check the hash values of two adjacent array indices in L-2, the construction of L-3 can 448 

also be processed in a massively parallel manner. To further explain how the efficient 449 

contact detection is achieved using L-2 and L-3, let us consider a TRI3 with ID =8 in Fig. 450 

7. It is evident that the TRI3 with ID = 8 belongs to a sub-cell with h=4. Thus, the 451 

neighboring sub-cells around the subcell h = 4 are: “h-1-nx”, ”h -nx”, ”h+1-nx”, ”h-452 

1”, ”h”, ”h+1”, “h-1+nx“, “h +nx“ and “h+1+nx“, i.e. h = 0, 1, 2, 3, 4, 5, 6, 7 and 8, 453 

respectively, in this example. According to L-3, it is unnecessary to search the 454 

neighboring cells with h = 1, 2, 6 and 8 since these are the empty subcells. Then, for the 455 

remaining non-empty subcells with h = 0, 3, 4, 5 and 7, TRI3 with ID = 8 of “Sorted 456 

TRI3 ID List” in L-2 may contact with the TRI3s included in these non-empty subcells. 457 

As an example, for a subcell with h = 0, L-3 indicates that the “first index” = 0 and the 458 

“last index” = 1. In this case, it is only necessary to trace the indices from the “first 459 
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index” to the “last index” and then process contacts for the TRI3s with IDs corresponding 460 

to each index of “Sorted TRI3 ID List”. Since no sequential CPU procedure is involved in 461 

the above procedure, it becomes possible to achieve efficient contact detection using the 462 

GPGPU device only. 463 

   Therefore, the GPGPU-parallelized Y-HFDEM IDE can run completely parallel on 464 

the GPGPU device and no sequential processing is necessary (except for the input and 465 

output procedures). The data transfer from the GPGPU device to the host computer is 466 

always necessary for outputting the analysis results, the time of which is often negligible 467 

in the entire simulation time for most of the Y-HFDEM IDE simulations. The obtained 468 

results can be visualized in either OpenGL implemented in the Y-HFDEM IDE 37 or the 469 

open-source visualization software, Paraview 58.  470 

   Finally, it is worth mentioning that an efficient contact detection activation approach 471 

has been proposed and applied in many publications on the hybrid FDEM in the 472 

framework of ICZM (e.g., section 2.3.3.2 and Fig. 2.14 in 29). In the efficient contact 473 

detection activation approach, along with the contact candidates prescribed by the user, 474 

only TRI3s in the vicinity of a newly created explicit fracture become contact candidates 475 

and are added into the contact detection list. One advantage of this approach is that the 476 

contact detection and contact force calculation are necessary only for initial material 477 

surfaces by the time the broken/failed CE4s are generated; thus, drastic time savings for 478 

the contact detection computation are possible. However, in the hybrid FDEM simulation 479 

of rocks under compressive-dominant loading conditions such as uniaxial compression, 480 

most TRI3s can overlap during compression even before the generation of explicit/macro 481 

fractures. In this case, if the amount of overlap is not negligible when broken CE4s are 482 

generated, the efficient contact detection activation approach results in the sudden 483 

application of a contact force such as a step function, i.e., a shock, which causes spurious 484 

numerical instability and results in unrealistic fragmentation. To avoid spurious 485 

numerical instability, an infinitesimally small Δt must be used, which makes the 486 

simulation impracticable. Although the efficient contact detection activation approach is 487 
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implemented in the Y-HFDEM IDE, for the numerical simulation of uniaxial 488 

compression discussed in subsection 3.2, almost all TRI3s are added into the contact 489 

detection at the early stage of simulation, which makes the computation become rather 490 

demanding but is essential for avoiding spurious numerical instability. Thus, the 491 

demanding contact detection activation approach is also implemented in the current code 492 

in addition to the efficient contact detection activation approach. It should be noted that 493 

every ICZM-based hybrid FDEM code needs to address this problem carefully to avoid 494 

any inaccurate simulation (although it has not been reported in the literature). 495 

 496 

3. Numerical tests and code validation 497 

  This section aims to conduct verifications and validations via several numerical 498 

simulations. All numerical simulations in this section are conducted using the GPGPU-499 

parallelized Y-HFDEM IDE developed in this study. When the numerical simulation 500 

results are presented, compressive stress is regarded as negative (cold color) while tensive 501 

stress is taken as positive (warm color).  502 

3.1. Verification of the continuum deformation of GPGPU-parallelized hybrid 503 

FDEM and the implementation of the local damping scheme 504 

  Without the insertion of CE4s, the hybrid FDEM acts as an explicit FEM to solve 505 

continuum deformation. To verify the ability of the developed code in the simulation of 506 

continuum deformations, a simple example of geostatic stress analysis under gravity is 507 

modeled using the GPGPU-parallelized Y-HFDEM IDE, and the numerical model is 508 

shown in Fig. 8. The computation of the geostatic stress field is very important in many 509 

rock engineering applications, such as the stability testing of underground excavations 510 

and slopes. Normally, geostatic stress analysis is conducted before the insertion of CE4s 511 

13,19. In most explicit FEM schemes, a dynamic relaxation scheme based on artificial 512 

damping is applied to compute the geostatic stress field. The critical damping technique is 513 

one of the simplest approaches that has been used in many existing applications in the 514 

literature 13,19 to compute the in situ/initial stress. However, it was noted during our code 515 
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development that the convergence rate of the critical damping technique is very poor. To 516 

solve this problem, we implemented local damping with a mass scaling technique into the 517 

GPGPU-parallelized Y-HFDEM IDE, which was initially proposed by Cundall 59 and 518 

implemented in Itasca’s commercial FLAC software 60. In the local damping with mass 519 

scaling technique, the following Eq. (18) is used instead of the aforementioned Eq. (17): 520 

scale 2 2
tot tot/ sgn( )t α∂ ∂ = +M u f f v 1                        (18) 521 

where Mscale is the scaled lumped mass, f tot is the nodal out-of-balance-force, i.e., the 522 

right-hand side of Eq. (17), v is the nodal velocity, ||f tot || is the absolute value of each 523 

component of f tot, sgn(∙) is the sign function automatically determined by the sign of (∙) 524 

59,60 and α is the local damping coefficient59,60. The comprehensive details of the local 525 

damping scheme can be found in the literature 59,60. 526 

   By applying the gravitational acceleration g = 9.806 (kg.m/s2) downward with the 527 

boundary conditions shown in Fig. 8, initial stress analyses under the plane strain 528 

condition are conducted with an overburden pressure of 0. Two analyses are conducted 529 

using critical damping and local damping schemes. The mechanical properties of the rock 530 

mass are listed in Table 1, where the density ρ =1800 (kg/m3), Young’s modulus E=12.2 531 

(GPa) and Poisson’s ration ν =0.25 (correspondingly Lame constants λ = µ = 4.88 (GPa). 532 

For the critical damping scheme, the critical viscous damping factor ηcrit = 3.0 (MPa∙s) 533 

and the largest time step Δt = 25 (µs) for the stable simulation are selected, while α = 0.8 534 

59,60 and Δt =1 (s) are used for the local damping scheme with mass scaling. The number 535 

of TRI3s and nodes in the model (Fig. 8) are 98314 and 49516, respectively. 536 

   Fig. 9(a) depicts the distribution of the vertical stresses σyy simulated using both the 537 

critical damping scheme and the local damping scheme with mass scaling. Because no 538 

differences can be identified between the final resultant stresses simulated using these 539 

two schemes, only the result of one scheme is displayed in Fig. 9(a). In addition, Fig. 9(b) 540 

shows the profiles of σxx and σyy along the vertical direction of the model from the top to 541 

the bottom. Considering theoretical stresses as σyy= −ρg(100−y) and σxx= ν /(1−ν)σyy, the 542 

obtained results are in good agreement with the theoretical values. Therefore, the 543 
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computations of each TRI3 (f int and M, Mscale) in Eqs. (1)–(3), (17) and (18) based on the 544 

GPGPU computation can be considered to be accurate.   545 

   In the case of explicit FEMs with artificial damping schemes, static stress equilibrium 546 

is achieved when both the total kinetic energy of the system and the maximum value of 547 

||f tot || among all nodes converge to zero. Fig. 10 illustrates the variations of the total 548 

kinetic energy of the system with respect to the calculation time steps during the 549 

simulation of the initial stress analyses. Evidently, the simulation with the local damping 550 

scheme with mass scaling can achieve the equilibrium stress state significantly faster than 551 

that with the critical damping scheme. To reach the final resultant stress state in Fig. 9, 552 

the local damping scheme with mass scaling requires approximately 6400 calculation 553 

steps, while the critical damping scheme requires approximately 1000000 calculation 554 

steps if the convergence criterion suggested in the literature 59,60 is applied.  555 

 556 

3.2. Verifications of the implementation of contact damping and contact friction  557 

To assess the accuracy of the contact damping model implemented in section 2.1, a 558 

simple impact test is modeled (Fig. 11(a)) using the GPGPU-parallelized Y-HFDEM 559 

IDE. The model is same as that reported by Mahabadi et al.13, and the obtained results are 560 

compared with those reported in their work. The model consists of a circular elastic body 561 

with a radius of 0.1 (m) vertically impacting a fixed rigid surface. The elastic body is not 562 

allowed to fracture in this model. Following the literature 13, gravitational acceleration is 563 

neglected, the density of the elastic body is 2,700 (kg/m3), and the kinetic energy of the 564 

elastic body before the impact event is 4.1 (kJ). Because the Lame constants λ and µ  for 565 

the elastic body are not available in the literature 13, it is simply assumed that λ = µ = 5.0 566 

(GPa) and the damping coefficient η =0. Thus, energy dissipation is only due to contact 567 

damping. Parametric analyses are conducted by changing the exponent b and the 568 

transition force T in Eq. (15), and the normal contact penalty Pcon_n between the elastic 569 

body and the rigid surface. The kinetic energy of the elastic body as a function of time is 570 

monitored during the parametric analyses. 571 
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 Fig. 11(b) compares five cases with b values equal to 1, 2, 5, 20 and 30 when T= ∞ 572 

and Pcon_n = 0.1 (GPa). The case with b = 1 corresponds to elastic contact, and thus no 573 

energy dissipation due to contact occurs. The small decrease in the kinetic energy occurs 574 

after the impact event because a small amount of the kinetic energy is converted to the 575 

strain energy of the elastic body. By changing the values of b, the amount of kinetic 576 

energy dissipated from the system increases. This behavior is the same as that reported in 577 

the literature 13 using a sequential hybrid FDEM. Cases with different values of Pcon_n (= 578 

0.1 (GPa) and 10 (GPa)) when b = 2 and T= ∞ show that the same b does not result in the 579 

same energy dissipation when Pcon_n differs, which is a reasonable outcome because the 580 

maximum value of the nominal normal overlap on_max in Eq. (15) during the impact event 581 

does change when Pcon_n changes. However, this detail is not reported or explained in the 582 

literature 13. Likewise, cases with different values of T (= ∞ and 1 MPa) when b = 2 and 583 

Pcon_n = 0.1 GPa show a different amount of energy dissipation, which can also be 584 

explained by the change in on_max. Thus, it is verified that the contact detection and 585 

computation of fcon are properly processed in the GPGPU code; however, this paper does 586 

not consider any contact damping in the following numerical simulations because the 587 

calibration of these parameters is beyond the scope of this paper. 588 

To assess the accuracy of the contact friction model implemented in the GPGPU-589 

parallelized Y-HFDEM IDE, a simple sliding test, suggested by Xiang et al. 61, is 590 

modeled, and the obtained results are compared against those from theoretical analyses. 591 

The model includes a simple sliding rock square with a length of 5 cm and a fixed rigid 592 

base as shown in Fig. 12(a). The material parameters of the rock square are assigned 593 

according to those listed in Table 1. The rock square can slip along the horizontal plane 594 

with a friction coefficient of μfric = 0.5. The sliding distance L is a function of initial 595 

velocity ( iv ), gravity acceleration (g) and μfric, which can be determined theoretically 596 

through Eq. (19):  597 

( )2
fric/ 2iL v gµ=                                 (19) 598 
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   In the numerical modeling, the sliding rock square, which is assigned various initial 599 

velocities from 2 m/s to 6 m/s, slows and stops at a distance due to the friction between 600 

the rock square and the rigid base. As illustrated in Fig. 12(b), the obtained results from 601 

the numerical simulation are in good agreement with those from the theoretical analyses. 602 

 603 

3.3. Simulation of the rock failure process in standard laboratory rock mechanics 604 

tests 605 

   To verify the capabilities of the code in simulating the rock fracture process and 606 

associated failure mechanism, this section models two standard laboratory rock 607 

mechanics tests, i.e., the Brazilian test and the uniaxial compression test, using the 608 

GPGPU-parallelized Y-HFDEM IDE. For this purpose, the failure processes of a 609 

relatively soft limestone in these two tests are modeled. The physicomechanical 610 

properties of the limestone and the numerical input parameters used in the numerical 611 

simulation are listed in Table 1. The numerical input parameters are determined based on 612 

the methodology suggested by Tatone and Grasselli 18 while the physicomechanical 613 

properties of the limestone are obtained from laboratory tests. The diameter and thickness 614 

of the Brazilian disc (BD) are 51.7 (mm) and 25.95 (mm), respectively, and the numerical 615 

model consists of 10,520 unstructured TRI3s (Fig. 13(a)). In the numerical model of the 616 

uniaxial compression test, the height and diameter of the rock specimen are 129.5 (mm) 617 

and 51.7 (mm), respectively. The numerical model consists of 44,214 unstructured TRI3s 618 

(Fig. 13(b)). The average edge length have of TRI3s in both models is 0.7 (mm). The rock 619 

specimens are placed between two moving rigid platens with a constant velocity of 0.05 620 

(m/s) to satisfy quasi-static loading conditions 18. The friction coefficient μfric between 621 

platens/rock and rock/rock are assumed to be 0.1 and 0.5, respectively 62. Hereafter, 622 

compressive stress is shown as negative (cold color) while tension stress is regarded as 623 

positive (warm color).      624 

   Fig. 14 illustrates the screenshots of the rock failure process (Fig. 14 (a)-(c)) and the 625 

associated indirect tensile stress versus axial strain curve (Fig. 14 (d)) obtained from the 626 
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numerical simulation of the Brazilian test using the GPGPU-parallelized Y-HFDEM IDE. 627 

It should be noted that the screenshots of the rock failure process shown in Fig. 14 (a), (b) 628 

and (c) are taken at the stress levels labeled using A, B and C, respectively, in the indirect 629 

tensile stress versus axial strain curve depicted in Fig. 14 (d). It can be seen from Fig. 630 

14(a) that the horizontal stress distribution σxx in the rock specimen is almost uniform 631 

along its loading diameter. When the concentrated stress reaches the critical value (i.e., 632 

the tensile strength of CE4s for the rock), tensile failure develops in the model (Fig. 633 

14(b)). With the two loading plates further moving toward each other, the splitting failure 634 

of the BD occurs due to the propagation of the formed macroscopic fractures, which 635 

coalesce with the microcracks initiated due to the resultant tensile stresses during the 636 

stress propagation process.  637 

   As seen from Fig. 14, at the stress labeled by point A (Fig. 14 (d)), i.e., before the 638 

peak stress, microcracks/damages are initiated and propagate near the loading areas (Fig. 639 

14 (a)). Once the resultant stress (point B in Fig. 14 (d)) reaches the peak strength of the 640 

rock, the macro-crack, i.e., the splitting crack, then appears around the central line of the 641 

model due to the coalescence of microcracks (Fig. 14 (b)). Finally, the stress–strain curve 642 

decreases rapidly during the postfailure stage (e.g., point C in Fig. 14 (d)) when the 643 

splitting crack propagates along the sub-central line of the rock specimen dividing it into 644 

two halves (Fig. 14 (c)). The modelled rock fracture process and the obtained indirect 645 

tensile stress versus axial strain curve are in good agreement with those observed in 646 

laboratory testing of a Brazilian disc specimen under a quasi-static load. Therefore, the 647 

GPGPU-parallelized Y-HFDEM IDE can realistically model the splitting/tensile failure 648 

process of rock in the Brazilian test. 649 

  Fig. 15 illustrates the stages of the rock fracture process in the uniaxial compression 650 

test modeled using the GPGPU-parallelized Y-HFDEM IDE. Fig. 15 (a) illustrates the 651 

stress build-up and evolution process before the onset of nonlinearity in the stress-axial 652 

strain curve, i.e., point A in Fig. 16(a). As loading continues, unstable microcrack growth 653 

commences and continues to the peak stress point of the stress-strain curve, i.e., point B 654 
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in Fig. 16(a). Then, the microcracks coalesce to form macroscopic cracks, which results 655 

in the rock specimen losing its bearing capacity, and correspondingly, the observed stress 656 

decreases with the strain increase. Finally, the formed macroscopic cracks propagate, 657 

resulting in the rock specimen completely losing its bearing capacity at point C in Fig. 658 

16(a). Fig. 16 (b) compares the final fracture patterns obtained from the numerical 659 

simulation and the experimental tests. Clearly, the developed GPGPU-parallelized Y-660 

HFDEM IDE can realistically model the failure process of rock under a uniaxial 661 

compression test in which shear failure is the dominant mechanism.  662 

    663 

3.4. Simulation of dynamic rock fracture process  664 

   In this section, the dynamic fracture process in rock blasting is modeled using the 665 

GPGPU-parallelized Y-HFDEM IDE. Because the code is formulated based on the 666 

explicit FEM, the hybrid FDEM is also a powerful tool for the simulation of a dynamic 667 

rock fracture process and the rock fracture process. By default, the hybrid FDEM 668 

considers all boundaries reflection boundaries, i.e., free faces. However, the simulation of 669 

dynamic problems such as rock blasting often require a nonreflection, i.e., absorbing, 670 

boundary to satisfy the infinity condition. Correspondingly, the absorbing boundary is 671 

implemented into the GPGPU-parallelized Y-HFDEM IDE by viscous boundary tractions 672 

using an approach similar to that used in the literature 63,64. The normal and tangential 673 

boundary tractions (tn, ts) acting perpendicularly and tangentially, respectively, to the 674 

boundary are given by Eq. (20): 675 

n p n

s s s

t V v

t V v
ρ

   
= −   

   
                        (20) 676 

where Vp and Vs are the P- and S-wave speeds of the target boundary, respectively, and 677 

vn and vs are the particle velocities that are perpendicular and tangential to the boundary, 678 

respectively. The computation of the viscous boundary tractions in each edge of the target 679 

boundary is assigned to each GPGPU “thread” following the same concept shown in Fig. 680 

4. In addition, the same features as those in the literature 39 are implemented in the 681 
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GPGPU-parallelized Y-HFDEM IDE, which includes the modeling of blast-induced 682 

pressure due to detonation phenomena and the effect of the loading rate on the fracture 683 

behaviors of rock. The blast-induced pressure at time t according to the literature 39 is 684 

applied to multiple surface edges of TRI3s corresponding to the surfaces of blast holes 685 

and broken CE4s connected to each blast hole. The computations in each edge are also 686 

assigned to each GPGPU “thread” (following the same concept shown in Fig. 4) and 687 

processed completely in a parallel manner. However, the authors have recognized that the 688 

gas pressure model used in the literature 39 should be improved further, which is beyond 689 

the scope of this paper, and thus not used in the following verification. 690 

   The same model used in the literature 64 is utilized with the GPGPU-parallelized Y-691 

HFDEM IDE to simulate the dynamic rock fracture analysis process (Fig. 17) because of 692 

its simplicity and validity. The model consists of a single blast hole (0.05 m in radius) 693 

within a rock disk (5 m in radius). The model includes 45,086 unstructured TRI3s, 694 

135,258 CE4s and 135,258 nodes. The same mechanical properties of rock as those in the 695 

literature 64 are used (see Table 1 in 64), and the simulation is conducted under the plane 696 

strain condition. It should be noted that the 2D DFPA code applied in the literature 64 is 697 

developed based on the implicit FEM using the ECZM model, and its numerical model is 698 

constructed using structured mesh. Thus, the intact stress wave propagation exactly 699 

follows the constitutive behavior of an isotropic elastic body. However, the GPGPU-700 

parallelized Y-HFDEM IDE is developed based on the ICZM, and thus the values of the 701 

penalty numbers (Pf, Ptan and Poverlap) of the CE4s need to be set carefully. For the 702 

dynamic rock fracture modeling reported in this study, the penalty numbers of Pf =P tan = 703 

Poverlap = 50 times the Young modulus of rock (Erock=60 GPa) is used. Accordingly, a 704 

smaller Δt = 0.4 (ns) is used in the modeling to avoid numerical instability. The following 705 

pressure function P(t) of Eq. (21), which is used in the literature 64, is applied to the 706 

surface of the blast hole: 707 

( ) ( )0 0

0( ) / t tt tP t P e e e eα βα β − −− −= − −                         (21) 708 
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where t0 is the rise time of the pressure and given by t0 =[1/(β-α)]log(β/α), and β/α is the 709 

controlling parameter of the pressure decay. Here, only the case of β/α =1.5 and t0 =100 710 

(μs) is simulated. P(t) is only applied to the initial surface of the blast hole following that 711 

in the literature 64, and thus the gas flow into the fractures is not considered. Two cases 712 

are considered to demonstrate the effect of the implementation of the absorbing boundary 713 

on the exterior boundary of the model shown in Fig. 17. The first case (case 1) considers 714 

the exterior boundary an absorbing boundary, while the other case (case 2) considers it a 715 

free boundary.  716 

   Fig. 18(a) compares the spatial distribution of the maximum principal stress (PS1) 717 

and broken CE4s at selected time intervals for both case 1 and case 2. Because the results 718 

of both cases are exactly the same by the time tarrive, i.e., when the stress wave front 719 

reaches the exterior boundary, only one case is shown before tarrive. After the stress wave 720 

front reaches the exterior boundary of the model, the results of both cases are illustrated 721 

and compared with each other. The positive value (warm color) of PS1 corresponds to 722 

tension, and broken CE4s are shown by black lines. Just after the commencement of the 723 

pressure application to the blast hole, the stress wave starts to propagate radially from the 724 

blast hole (t = 200 μs in Fig. 18 (a)). The front of the PS1 wave shows compression (cold 725 

color), and this means that both the radial and circumferential stress components are in 726 

compression. This stress state results in shear fracturing in the vicinity of the blast hole, 727 

i.e., the crushed zone. The tensile PS1 wave shown by the warm color follows this 728 

compressive stress wave front, which causes the radially propagating tensile cracks 729 

around the crushed zone. These tensile cracks extend further with the propagation of the 730 

tensile PS1 wave (t = 600 μs) and then arrest because the gas flows in the cracks are not 731 

considered. The obtained result is in good agreement with the reported results in the 732 

literature 64. After the compressive stress wave front reaches the external boundary, as 733 

expected, no wave reflection is shown in case 1 at t = 1300 μs. However, the wave 734 

reflection is shown in case 2 at t = 1300 μs, with the tensile stress wave propagating back 735 

to the blast hole. It should be noted that the sign reversal of the reflective stress waves 736 
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occurs for both the compressive and tensile stress waves impinging on the free face. 737 

Thus, the implemented absorbing boundaries show the expected behavior during rock 738 

blasting modeling. Correspondingly, it can be concluded that the dynamic fracture 739 

process analysis by the GPGPU-parallelized Y-HFDEM IDE has been verified. 740 

  To investigate the effect of the penalty numbers (Pf, Ptan and Poverlap) of CE4 on the 741 

intact stress wave propagations, Fig. 19(b) shows the spatial distribution of PS1 and 742 

broken CE4s at t = 900 μs for three cases with various penalty numbers (i.e., Poverlap =Pf 743 

=Ptan = 50 Erock, 10 Erock and Erock). Evidently, the stress distributions clearly differ 744 

among the three cases. The condition with the penalty numbers of Erock even shows a 745 

different fracture pattern than those with the penalty numbers of 50 Erock and 10 Erock. By 746 

computing the smallest distance between the stress wave front and the original blast-hole 747 

surface, the apparent P-wave velocities for cases with the penalty numbers of 50 Erock, 10 748 

Erock and Erock are found to be 4910 m/s, 4858 m/s and 4660 m/s, respectively, while the 749 

expected (theoretical) P-wave velocity is 5000 m/s according to the theory of 750 

elastodynamics. In addition, the apparent wave length of the stress wave becomes longer 751 

when the values of the penalty numbers of CE4s decrease. In dynamic fracture process 752 

analysis, stress wave propagation is the most important factor because it determines the 753 

fracturing process, and many previous publications using the ICZM-based hybrid FDEM 754 

for dynamic fracture process analyses simply set the penalty numbers of CE4s to Erock or 755 

close to Erock. In the hybrid FDEM, the intact behavior of rocks should only be governed 756 

by Eqs. (1) or (2) because either of these equations is the constitutive equation for 757 

“continuum behavior”; moreover, the artificial behavior of CE4s controlled by the 758 

penalty numbers should not affect the continuum behavior described by Eq. (1) or Eq. (2). 759 

Otherwise, there is no meaning in specifying the elastic parameters as input parameters. 760 

Hence, the condition of the penalty numbers of CE4s close to Erock must not be used for 761 

any quantitatively meaningful dynamic fracture process analysis. Therefore, any ICZM-762 

based hybrid FDEM simulations used for quantitative evaluation/prediction should set 763 

penalty numbers for CE4s with the utmost care, and the applied penalty numbers of CE4s 764 
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must be validated before any dynamic fracture process analysis. The ECZM-based 765 

method does not suffer from this artificial behavior of CE4s, and our future task includes 766 

the implementation of the ECZM-based hybrid FDEM. 767 

 768 

4. Performance 769 

This section discusses the performance of the GPGPU-parallelized Y-HFDEM IDE, 770 

mainly in terms of its improvement compared with the sequential implementation of the 771 

Y-HFDEM IDE and its performance on several GPGPU accelerators. To accomplish this 772 

goal, the modeling of the rock failure process in the uniaxial compression test, as 773 

discussed in subsection 3.3, is selected as a benchmark because it is a computationally 774 

demanding simulation. The model shown in Fig. 13 (b) comprises 44,214 unstructured 775 

TRI3s, and the numbers of CE4s, nodes and initial contact couples are 66,810, 134,442 776 

and 362,043, respectively. Because the performance of GPGPU-parallelized code is 777 

significantly dependent on the applied GPGPU accelerators 48, the GPGPU-parallelized 778 

Y-HFDEM IDE is run using several NVIDIA® GPGPU accelerators, i.e., Quadro GP100, 779 

GTX 1060, GTX 1050Ti, GTX 830M, TESLA K80(K40) and TESLA K20, to investigate 780 

its performance. Each of the NVIDIA® GPGPU accelerators can be categorized based on 781 

its generation. Sorting by date from newest to oldest, the Quadro GP100, GTX 1060 and 782 

GTX 1050Ti belong to the “Pascal” generation, whereas GTX 830M is in the “Maxwell” 783 

generation, and TESLA K80(K40) and TESLA K20 are in the “Kepler” generation. The 784 

new “Volta” and “Turing” generations have been released recently, but this paper does 785 

not consider these generations. The developed GPGPU-parallelized Y-HFDEM IDE can 786 

be run in all these GPGPU accelerators without any modifications. At the same time, an 787 

Intel® Core i7-440 CPU (3.40 GHz) is used to run our sequential CPU-based Y-HFDEM 788 

IDE.  789 

   Fig. 19 shows the speed-up times of the GPGPU-based code relative to the sequential 790 

CPU-based code running on a single thread. In Fig. 19, the vertical axis shows the 791 

quotients of the total run time using each GPGPU accelerator divided by that using the 792 
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sequential CPU-based code (= 138.17 (hours)), which, thus, correspond to the speed-up 793 

times of the GPGPU-based code relative to the sequential CPU-based code. Clearly, all 794 

the GPGPU-based codes can achieve quicker times than the sequential CPU-based code, 795 

and the Quadro GP100 accelerator in the “Pascal” generation shows the best performance 796 

among them. However, the performance of GTX 830M in the “Maxwell” generation is 797 

very poor because the computational capability to perform double precision arithmetic in 798 

the GPGPU accelerator of this generation is very limited compared with that of the 799 

“Kepler” and “Pascal” generations 48. Therefore, among the investigated GPGPU 800 

accelerators, the application of “Kepler” and “Pascal” generations are suited to achieve 801 

better performance, considering the given specifications of each accelerator 48. In 802 

addition, because the performance of GPGPU accelerators have continued to significantly 803 

improve by generation, the GPGPU-parallelized Y-HFDEM IDE can easily achieve better 804 

speed-up times without requiring any changes if it is run on GPGPU accelerators of the 805 

newest generation, such as the Volta generation (e.g., GTX TITAN V, Quadro GV100 806 

and Tesla V100) 48. This finding is very important because the selection of the proper 807 

GPGPU accelerator tends to be difficult for many researchers.  808 

    In addition, the relative speed-up times between GPGPU-based and sequential CPU-809 

based codes can further increase when many more elements and nodes with more 810 

significant contact detections/force calculations are involved. In other words, keeping all 811 

the GPGPU cores busy is the most important factor in achieving the best performance of 812 

the GPGPU-based code. For example, the uniaxial compression model shown in Fig. 13 813 

(b) is simulated using six different average element lengths (have), whose values are 0.15 814 

(mm), 0.2 (mm), 0.3 (mm), 0.4 (mm), 0.5 (mm) and 0.6 (mm). To make the condition of 815 

each case closer, the value of Δt is fixed to 0.5 (ns), with other conditions remaining the 816 

same as those in Table 1, excluding the critical damping coefficient ηcrit, which is 817 

selected based on element size. Table 2 shows the number of TRI3s, CE4s and nodes, and 818 

the initial number of contact couples in each model. It is evident that mesh discretization 819 
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with have = 0.15 (mm) results in tremendously massive computation. The runtime required 820 

for 10,000 calculation time-steps is monitored here.  821 

   The list of actual runtimes required for 10,000 calculation time steps is shown at the 822 

bottom of Table 2 for several values of have, for the cases of the GPGPU-based code using 823 

the Quadro GP100 accelerator and the sequential CPU-based code. The results show that 824 

108,767 s (30.2 (hours)) are required to solve the 10,000 time steps in the sequential 825 

CPU-based code for have = 0.15 (mm), which means that solving the problem with this 826 

level of fine discretization is too computationally expensive using the sequential code. 827 

Based on the list in Table 2, Fig. 20 shows the speed-up times of the GPGPU-based code 828 

using the Quadro GP100 accelerator relative to the sequential CPU-based code, in which 829 

the horizontal axis represents the number of TRI3s for each have. The relative speed-up 830 

time increases when the mesh becomes finer, i.e., when the GPGPU becomes busier. 831 

Notably, a relative speed-up time of 128.6 times is achieved for the finest mesh (have = 832 

0.15 (mm)). Thus, the GPGPU accelerator must be kept busy to achieve its best 833 

performance. Even if different models and different architectures of the GPGPU 834 

accelerators are used to run the CUDA-based GPGPU-parallelized Y-HFDEM IDE 835 

discussed in this paper, the obtained speed-up time is quite competent compared with the 836 

performance of the OpenCL-based GPGPU code “IRAZU” reported by Lisjak et al. 22. 837 

Finally, considering that the Quadro GP100 can be installed in an ordinary workstation, 838 

the demonstrated speed-up performances indicate that less space and time are required to 839 

solve large-scale hybrid FDEM simulations by applying the GPGPU-parallelized Y-840 

HFDEM IDE. The presented speed-up list here can provide useful information for the 841 

application of GPGPU parallelization to the hybrid FDEM simulations.  842 

 843 

5. Conclusion and future work 844 

This paper developed a GPGPU-parallelized Y-HFDEM IDE based on the authors’ 845 

formal CPU-based sequential hybrid FDEM code. The algorithm of the GPGPU-846 

parallelized hybrid FDEM was first given in detail so that this paper can provide a basis 847 
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for further improvement and progress of any hybrid FDEM codes that were reviewed in 848 

the introduction section on the basis of GPGPU parallelization. It should be noted that a 849 

new contact detection algorithm that differs from that in the sequential CPU code was 850 

implemented in the GPGPU-parallelized Y-HFDEM IDE because the contact detection 851 

algorithm in the sequential code is not suitable for GPGPU parallelization. A number of 852 

new features that were unavailable in the original CPU-based sequential code were 853 

implemented into the GPGPU-parallelized Y-HFDEM IDE to achieve improvements in 854 

rock engineering applications, which include the implementation of efficient geostatic 855 

stress analysis through the local damping scheme with mass scaling, contact damping, 856 

contact friction and the absorbing boundary. Then, a series of numerical simulations were 857 

conducted using the GPGPU-parallelized Y-HFDEM IDE, and the obtained results were 858 

compared with those from either theoretical analysis or the literature to calibrate the 859 

implementations. Finally, GPGPU-parallelized Y-HFDEM IDE was applied in modeling 860 

the rock failure process in the Brazilian test, the uniaxial compression test and rock 861 

blasting to demonstrate its application in rock engineering. Through this study, the 862 

following conclusions can be drawn:  863 

− The developed GPGPU-parallelized Y-HFDEM IDE can work well with the 864 

implementation of the aforementioned algorithm, and its precision is successfully verified 865 

through a series of numerical simulations.  866 

− By conducting the fracture process analyses of rock due to quasi-static loading (the 867 

uniaxial compression test and Brazilian test) and dynamic loading (blasting), the obtained 868 

results successfully demonstrated the capability of the developed GPGPU-parallelized Y-869 

HFDEM IDE for various types of loading configurations. From the obtained results, it 870 

can be concluded that for dynamic simulation including stress wave propagation in rock, 871 

the correct selection of penalty terms for CE4s using the ICZM-based approach is very 872 

important.  873 

− The GPGPU-parallelized Y-HFDEM IDE can run on various GPGPU accelerators 874 

of different generations. However, the comparison of the runtimes from the simulation of 875 
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the uniaxial compression test concludes that GPGPU accelerators of different generations 876 

perform in drastically different ways, and thus the proper selection of the GPGPU 877 

accelerators is suggested. Remarkably, the GPGPU-parallelized Y-HFDEM IDE running 878 

on the Quadro GP100 GPGPU accelerator achieves a speed-up of 128.6 times compared 879 

with the authors’ formal sequential CPU-based code. It must be emphasized that this 880 

performance is obtained using a single GPGPU accelerator.  881 

   Therefore, the GPGPU-parallelized Y-HFDEM IDE developed in this study is a 882 

valuable and powerful numerical tool for rock engineering applications. However, further 883 

work is needed. The following are the highlights of our future tasks. 884 

− The main purpose of this paper was to explain the newly developed GPGPU-885 

parallelized Y-HFDEM IDE, and we intentionally selected the simpler examples for the 886 

verifications and validations of the developed code because complex problems make the 887 

verifications very challenging. Thus, we will apply the developed GPGPU-based code in 888 

wide range of rock engineering problems, such as mechanical rock cutting and rock 889 

blasting, in the next phase.  890 

− This study focused on the development and verification of 2D GPGPU-based Y-891 

HFDEM IDE; however, the authors have already developed the prototype of the 3D 892 

version of the GPGPU-based hybrid FDEM based on both ICZM and ECZM. The 893 

verification and validation of the 3D GPGPU-parallelized Y-HFDEM IDE are in active 894 

progress and will be presented in a separate study.  895 

− Because multiple GPGPU accelerators can reside in a single ordinary workstation or 896 

even in a GPGPU cloud/cluster, another important task, which is in active progress, is to 897 

implement the code using multiple GPGPU accelerators to solve much larger problems 898 

using the GPGPU-based hybrid FDEM. In this case, the application of MPI is 899 

indispensable for the multiple GPGPU accelerators to communicate with each other. 900 

− For the blasting simulation, although we implemented the approach used in An et al. 901 

39 to model the blast-induced pressure, this approach must be improved to realize a more 902 

precise blasting simulation. To achieve a better blasting simulation, we are currently 903 
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working on coupling the GPGPU-based hybrid FDEM with GPGPU-based smoothed 904 

particle hydrodynamics 65 to model the expansion of the blast-induced gas and its 905 

interaction with rock, including newly created fracture surfaces. The development is still 906 

in active progress. 907 
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 917 

Appendix A.1  918 

   Fig. A.1 shows an example GPGPU “kernel” for solving Eq. (17), i.e., the 2D 919 

mechanical solver for nodes with x and y degrees of freedom. To enhance the readability 920 

of the code, the assignment of the boundary condition is not shown and only the update of 921 

the nodal velocity and the coordinate in the x direction is shown in this example. The 922 

name of the “kernel”, i.e., the name of this function, is “Ysd2MEC_GPU”. As is evident 923 

from this example, the appearance of the CUDA C/C++ code is very similar to the 924 

sequential CPU-based C/C++ code. Variables with names ending in “DEV“ are global 925 

data stored on GPGPU global memory 48 and their meanings are given in the example 926 

code. The speed of GPGPU global memory access is relatively slow, and thus access 927 

should be minimized to improve performance. This “kernel” is launched by 928 

“Ysd2MEC_GPU<<< NBpG, NTpB>>>” from the host C/C++ code, which is again very 929 

similar to ordinary C/C++ except that the specification of (NBpG, NTpB) is necessary (see 930 

subsection 2.2). When the “kernel” is launched, each CUDA thread is assigned its unique 931 
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thread ID (threadIdx.x) and block ID (blockIdx.x) and NTpB is automatically stored in 932 

“blockDim.x” (see Figs. 3 and 4). Thus, “threadIdx.x + blockIdx.x * blockDim.x” in the 933 

code can be considered a unique node ID “inopo”. If each node ID is within the range of 934 

the total number of existing nodes (current_num_nodes_CST), the mechanical solver is 935 

processed for the node IDs in completely parallel manner. Note that variables with names 936 

ending in “CST” are stored in the GPGPU constant memory 48, which can achieve faster 937 

memory access than the GPGPU global memory. However, because memory size is 938 

limited, GPGPU constant memory is used to store the constant values, such as 939 

mechanical properties and topological data, that do not change throughout the simulation. 940 

Finally, using the “register” 48 for the declaration of local variables in each “thread” can 941 

achieve the fastest memory access. However, the total size of the register memory in each 942 

“thread” is quite limited, and defining too many local variables using the “register” 943 

keyword results in poor performance. In the developed code, we minimized the variables 944 

declared with the “register” keyword and used them repeatedly for several meanings. 945 

Thus, the readability of the actual code was slightly compromised. 946 
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Figure Captions 1154 

Fig. 1 Modeling of transition from continuum to discontinuum behavior of rock in 2D Y-1155 

HFDEM IDE. (a) Assembly of TRI3s and CE4s and (b) tensile/shear softening curves in 1156 

ICZM.  1157 
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Fig. 2. Elastic–inelastic power function model implemented in 2D Y-HFDEM IDE (after 1158 

56 with modification). 1159 

Fig. 3. The concept of the CUDA programming model using the abstractions of 1160 

“threads”, “blocks” and “grid”. 1161 

Fig. 4. The concept of massively parallel computation for each CUDA “kernel” for a 1162 

particular purpose. 1163 

Fig. 5. Flowchart of GPGPU-based 2D Y-HFDEM IDE. 1164 

Fig. 6. The concept of hash values assigned to each square subcell (left) and TRI3s 1165 

included in a particular subcell (right). 1166 

Fig. 7. Efficient contact detection algorithm used in the developed GPGPU-based 2D Y-1167 

HFDEM IDE. 1168 

Fig. 8. A model of initial stress analysis under gravity. 1169 

Fig. 9. The result of initial stress analysis using critical and local damping schemes. (a) 1170 

Stress distribution computed and (b) the profiles of σxx and σyy along the vertical direction 1171 

of the model from the top to the bottom. 1172 

Fig. 10. Comparison of change in total kinetic energy of the system with respect to 1173 

calculation time-steps between local and critical damping schemes. 1174 

Fig. 11. A simple test for verification of contact damping model. (a) Numerical model 1175 

similar to 13 and (b) time history of total kinetic energy. 1176 

Fig. 12. Contact friction verification: (a) model configuration, (b) comparison between 1177 

numerical and theoretical results. 1178 

Fig. 13. Verification models for fracture process of rock under quasi-static loading. (a) 1179 

Brazilian indirect tensile test and (b) uniaxial compression test. 1180 

Fig. 14. The results of the numerical simulation of the Brazilian test. (a) Extension of 1181 

shear microcracks before the peak stress and corresponding horizontal stress distribution, 1182 

(b) tensile microcracks at the peak stress and corresponding horizontal stress distribution, 1183 

(c) postfailure fracture pattern and corresponding horizontal stress distribution and (d) 1184 

Brazilian indirect tensile stress versus axial strain. 1185 
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Fig. 15. Fracture process in uniaxial compression test. (a) Initiation and propagation of 1186 

shear microcracks into model before the peak stress, (b) unstable crack propagation at the 1187 

peak stress and (c) postfailure fracture pattern. 1188 

Fig. 16. Comparison of numerical simulation and experiment for uniaxial compression 1189 

test. (a) Plot of axial stress versus axial strain and (b) final fracture patterns from 1190 

numerical simulation and experimental test.  1191 

Fig. 17. A numerical model with a single blast-hole used in the dynamic fracture process 1192 

analysis (after 64). 1193 

Fig. 18. The results of dynamic fracture process analysis for a single blast-hole model. (a) 1194 

Spatial distribution of PS1 and broken CE4s at selected time intervals and (b) the results 1195 

of dynamic fracture process analysis using different penalty numbers for CE4s. 1196 

Fig. 19. Relative speed-up of the GPGPU-based code using different GPGPU accelerators 1197 

to the sequential CPU-based code.     1198 

Fig. 20. Change in relative speed-up with respect to the number of TRI3s used in FDEM 1199 

mesh for the simulation of uniaxial compression test. 1200 

Fig. A.1. An example of GPGPU “kernel” in 2D Y-HFDEM IDE. 1201 

 1202 

Table 1 1203 

Parameter Unit   Value 

Density (ρ) kg/m3 1800 

Young’s modulus (E) GPa 12.2 

Poisson’s ratio (ν) - 0.25 

Tensile strength (Ts) MPa 1.77 

Cohesion (c) MPa 5 

Internal Friction angle of intact rock (φ) ° 25 

Mode I fracture energy (GfI) J/m2 16 

Mode II fracture energy (GfII) J/m2 160 

Normal contact penalty number (Pn_con) GPa 1220 
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Tangent contact penalty number (Ptan_con) GPa/m 1220 

Fracture penalty numbers (Pf, Ptan, Poverlap) GPa 12200 

Average element size (have) mm 0.7 

Critical viscous damping factor (η) kg/m.s 5.60E+03 

Table 2 1204 

have / (mm) 0.15 0.2 0.3 0.4 0.5 0.6 

The number of 

nodes 
3,253,194 1,893,901 723,894 410,322 303,537 181,038 

The number of 

TRI3s 
1,084,398 540,754 241,298 136,774 86,570 60,346 

The number of CE4s 1,624,686 809,872 306,990 204,355 129,316 90,040 

The initial number 

of contact couples. 
6,970,705 4,348,700 1,943,205 1,096,737 686,954 476,433 

Simulation time 

(sec) for sequential 

CPU-based code 

/10000 steps 

108,767 42,021 19,343 10,515 9,146 6,231 

Simulation time 

(sec) for GPUGU-

based code (Quadro 

GP100) /10000 steps 

846 392 214 146 134 126 

 1205 
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