

Instructions for use

Title Development of a GPGPU-parallelized hybrid finite-discrete element method for modeling rock fracture

Author(s) Fukuda, Daisuke; Mohammadnejad, Mojtaba; Liu, Hongyuan; Dehkhoda, Sevda; Chan, Andrew; Cho, Sang-Ho; Min,
Gyeong-Jo; Han, Haoyu; Kodama, Jun-ichi; Fujii, Yoshiaki

Citation International journal for numerical and analytical methods in geomechanics, 43(10), 1797-1824
https://doi.org/10.1002/nag.2934

Issue Date 2019-07

Doc URL http://hdl.handle.net/2115/78767

Rights

This is the peer reviewed version of the following article: Fukuda, D, Mohammadnejad, M, Liu, HY, et al.
Development of a GPGPU‐parallelized hybrid finite‐discrete element method for modeling rock fracture. Int J
Numer Anal Methods Geomech. 2019; 43: 1797‒ 1824. , which has been published in final form at
https://doi.org/10.1002/nag.2934. This article may be used for non-commercial purposes in accordance with Wiley
Terms and Conditions for Use of Self-Archived Versions.

Type article (author version)

File Information Article-NAG-revision-NormalCopy.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

1

Development of a GPGPU-Parallelized Hybrid Finite-Discrete Element Method for 1

Modelling Rock Fracture 2

 3

D. Fukuda a,b, M. Mohammadnejad b,c, H.Y. Liu b,*, S. Dehkhodac, A. Chan b, S.H. Chod, 4

G.J. Mind, H. Han b, J. Kodamaa, Y. Fujiia 5

a Faculty of Engineering, Hokkaido University, Hokkaido 060-8628, Japan 6

b College of Sciences and Engineering, University of Tasmania, TAS 7001, Australia 7

c CSIRO Minerals Resources Business Unit, Queensland Centre for Advanced 8

Technologies, Brisbane, QLD 4069, Australia 9

d Department of Mineral Resources and Energy Engineering, Chonbuk National 10

University, Jeollabuk−do 561−756, South Korea 11

 12

*Corresponding author: H.Y. Liu 13

E-mail: Hong.Liu@utas.edu.au 14

Tel/Fax: + 03-6226-2113 15

 16

*Footnote 17

If you are interested in using our GPGPU-parallelized hybrid finite-discrete element code 18

(Y-HFDEM IDE) for your research or verification, please write an email to the 19

corresponding author. However, we do not accept the use of the code for military or 20

commercial purposes. 21

 22

Abstract 23

The hybrid finite–discrete element method (FDEM) is widely used for engineering 24

applications, which, however, is computationally expensive and needs further 25

development, especially when rock fracture process is modelled. This study aims to 26

further develop a sequential hybrid FDEM code formerly proposed by the authors and 27

parallelize it using compute unified device architecture (CUDA) C/C++ on the basis of a 28

2

general purpose graphics processing unit (GPGPU) for rock engineering applications. 29

Because the contact detection algorithm in the sequential code is not suitable for GPGPU 30

parallelization, a different contact detection algorithm is implemented in the GPGPU-31

parallelized hybrid FDEM. Moreover, a number of new features are implemented in the 32

hybrid FDEM code, including the local damping technique for efficient geostatic stress 33

analysis, contact damping, contact friction and the absorbing boundary. Then, a number 34

of simulations with both quasi-static and dynamic loading conditions are conducted using 35

the GPGPU-parallelized hybrid FDEM, and the obtained results are compared both 36

quantitatively and qualitatively with those from either theoretical analysis or the literature 37

to calibrate the implementations. Finally, the speed-up performance of the hybrid FDEM 38

is discussed in terms of its performance on various GPGPU accelerators and a 39

comparison with the sequential code, which reveals that the GPGPU-parallelized hybrid 40

FDEM can run more than 128 times faster than the sequential code if it is run on 41

appropriate GPGPU accelerators, such as the Quadro GP100. It is concluded that the 42

GPGPU-parallelized hybrid FDEM developed in this study is a valuable and powerful 43

numerical tool for rock engineering applications. 44

Keywords: Rocks, Fracture process analysis, Hybrid FDEM, Quasi-static loading, Impact 45

loading, GPGPU, and CUDA C/C++ 46

 47

1. Introduction 48

Understanding the fracture process mechanism of rocks is significantly important in the 49

field of civil and mining engineering as well as other fields, such as geothermal, 50

hydraulic, oil and gas engineering, in which rock fracture plays an important role. 51

Recently, numerical methods have been increasingly applied to analyze the fracture 52

process of rocks (e.g., 1). Recent advances in computational mechanics have realized a 53

better understanding of complex fracture processes. Generally, approaches based on 54

computational mechanics can be classified into continuum and discontinuum 55

formulations. In the framework of the fracture process analysis of rocks, continuum-based 56

3

methods include the finite element method (FEM), the finite difference method (FDM), 57

the boundary element method (BEM), the scaled-boundary finite element method 58

(SBFEM), the extended finite element method (XFEM), meshless methods, methods 59

based on peridynamics and phase-field methods, while discontinuum-based methods 60

include the distinct element method (DEM), the lattice model (LM) method, and 61

molecular dynamics (MD). More detailed information on recent advances in the 62

computational fracture mechanics of rocks can be found in recently published review 63

articles 1-3. To realistically simulate the fracture process of rock, numerical techniques 64

must be capable of capturing crack onset, arbitrary crack growth, the correct crack length 65

within a given time interval and the propagating directions. In recent years, increasing 66

attention has been paid to these techniques, which can unify the advantages of the 67

aforementioned continuum-based and discontinuum-based methods. Attempts in this 68

direction lead to the development of coupled methods, hybrid/hybrid methods and 69

multiscale coupled methods 1. 70

The hybrid finite–discrete element method (FDEM) proposed by Munjiza 4 has been 71

employed successfully to model problems that address the transition process from 72

continuum to discontinuum such as rock fracturing and fragmentation. The hybrid FDEM 73

incorporates the advantages of both continuum and discontinuum methods and can 74

realistically simulate the transition from continuum to discontinuum caused by rock 75

fracture. Two main implementations of the hybrid FDEM include Y code 5-8 and the 76

commercial code ELFEN 9-12. Several attempts have been made to actively extend the Y 77

code, such as Y-GEO 13-19, IRAZU 20-22, Solidity 23-29, HOSS with MUNROU 30,31 and Y-78

Flow 32-36. In addition, the authors also developed the Y-HFDEM IDE (integrated 79

development environment) 37-40. The principles of all of the hybrid FDEM codes are 80

based on continuum mechanics, the cohesive zone model (CZM) and contact mechanics, 81

which make the codes very computationally expensive. Therefore, developing a capable 82

parallel computation scheme is important for handling large-scale problems with a 83

massive number of nodes, elements and contact interactions. 84

4

 To date, some successful parallel implementations of the hybrid FDEM codes using 85

MPI (message-passing interface) (e.g., 8,9,11,30,31,41,42) and shared-memory programming 86

such as OpenMP (e.g., 23) have been reported. Among these, Lukas et al. 8 proposed a 87

novel approach for the parallelization of 2D hybrid FDEM using MPI and parallelization 88

solvers based on dynamic domain decomposition and successfully applied the 89

parallelized Y code to a large-scale 2D problem on a PC cluster. Meanwhile, Lei et al. 30 90

successfully developed the concept of a virtual parallel machine for the hybrid FDEM 91

using MPI, which can be adapted to various computer architectures ranging from few to 92

thousands of CPU (central processing unit) cores. Furthermore, Rougier et al. 31 93

introduced the HOSS with MUNROU code, which notably used 208 processors 94

controlled by MPI and developed novel contact detection and contact force calculation 95

algorithms. The developed code was applied successfully to 3D simulation of a dynamic 96

Brazilian test of rock with a split Hopkinson pressure bar apparatus. ELFEN uses MPI in 97

its parallelization scheme and has been employed successfully in 2D and 3D simulations 98

of the rock fracture process. For example, 3D fracture process analysis of a conventional 99

laboratory test using up to 3 million elements has been reported 11. Additionally, Xiang et 100

al. 23 optimized the contact detection algorithm in their Solidity code and parallelized the 101

code using OpenMP; they modeled a packing system with 288 rock-like boulders and 102

showed that a speedup of 9 times on 12 CPU threads can be achieved (although the 103

details of the applied algorithm and its implementation were not provided). Relevant to 104

the MPI-based parallelization, Guo and Zhao 43,44 developed a hierarchical 105

FEM/DEM coupling, which had been extended for modeling of granular rocks 106

more recently 45,46. In general, MPI requires a large and expensive PC cluster to achieve 107

the best performance. Meanwhile, the application of shared-memory programming such 108

as OpenMP is limited by the total number of multi-processors that can reside in a single 109

computer; thus, MPI is still required for large-scale problems in which each computer 110

uses both OpenMP and MPI to transfer data among multiple computers. This means that 111

the hybrid MPI/OpenMP is necessary. 112

5

In addition to CPU-based parallelization schemes, the GPGPU (general purpose 113

graphics processing unit) accelerator controlled by either OpenCL (open computing 114

language) 47 or CUDA (compute unified device architecture) 48 can be considered another 115

promising method for the parallelization of hybrid FDEM codes. Thousands of GPU-core 116

processors can reside and concurrently work in a small GPGPU accelerator within an 117

ordinary laptop/desktop PC or workstation with lower energy consumption than the CPU-118

based PC cluster. Moreover, a GPGPU cluster with a massive number of GPGPU 119

accelerators is also possible. 120

Zhang et al. 49 developed a CUDA-based GPGPU parallel version of Y code (2D) 121

without considering the fracture process and the contact friction. Batinić et al. 50 122

implemented GPGPU-based parallel hybrid FDEM based on the Y code for analysis of 123

cable structures using CUDA. However, neither of the above implementations have been 124

employed in the simulation of rock fracture. In this regard, a GPGPU-based hybrid 125

FDEM commercial code, namely, IRAZU 20-22, has just been developed with OpenCL and 126

was used successfully in rock fracture simulations. Additionally, some novel GPGPU-127

based DEM modeling methods coupled with FEM, i.e., coupled FEM/DEM, have been 128

proposed. For example, Nishiura et al. 40 developed the quadruple DEM (QDEM) code 129

using GPGPU and successfully applied the code to the investigation of ballasted railway 130

track dynamics. In addition, Ma et al.51 and Wang et al. 52 developed a GPGPU-based 131

implementation of continuum-based DEM. These studies 40,51,52 showed that the 132

performance of coupled FEM/DEM can be significantly improved using GPGPU 133

parallelization. However, the coupled FEM/DEM is a physical coupling of two methods 134

(DEM and FEM), unlike the hybrid FDEM, in which the transition from continuum to 135

discontinuum is modeled by CZM under the explicit FEM formulation. In other words, 136

there are three essential differences between the coupled FEM/DEM and the hybrid 137

FDEM: 1) the continuous behavior of the coupled FEM/DEM is modelled through 138

springs with normal and tangential stiffnesses while that of the hybrid FDEM is through 139

intact cohesive elements with high penalty parameters; 2) the transition from continuum 140

6

to discontinuum of the coupled FEM/DEM is implemented through removing the springs 141

while that of the hybrid FDEM is through the softening of the cohesive elements; and 3) 142

the contact interaction between the discrete elements of the coupled FEM/DEM is 143

calculated through contact springs while that of the hybrid FDEM is through potential 144

contact force calculation method in the framework of explicit FEM. In this sense, the 145

hybrid FDEM parallelized in this study is called the hybrid FDEM to distinguish it from 146

the coupled FEM/DEM. Therefore, the hybrid FDEM is computationally more 147

demanding than the coupled FEM/DEM. 148

Overall, it can be concluded that IRAZU, which is parallelized using OpenCL, is the 149

only available GPGPU-based hybrid FDEM code to date that is capable of modeling the 150

rock fracture process 20-22. Thus, further studies are required to develop the GPGPU-based 151

hybrid FDEM. In this regard, we have developed free research code*, Y-HFDEM IDE 37-152

40, and recently parallelized it using GPGPU with CUDA C/C++. Moreover, it is 153

desirable to fully describe any newly implemented GPGPU-based code because the 154

implementation of GPGPU-based codes differs from that of CPU-based sequential codes. 155

In addition, while there is no freely available GPGPU-based hybrid FDEM code, our code 156

is free to use and may significantly contribute to many studies in the field of rock 157

engineering. 158

Based on the above background, this paper aims to explain the recently developed 159

GPGPU-based hybrid FDEM algorithm implemented in 2D Y-HFDEM IDE, along with 160

newly implemented functions, to increase the applicability of the algorithm in the field of 161

rock engineering. The capability of the code in realistic modeling is demonstrated by 162

providing examples. Thus, this paper will provide a useful basis for further improvement 163

and development of the hybrid FDEM codes based on GPGPU. 164

The paper is arranged as follows. First, the theory used in 2D Y-HFDEM IDE is 165

introduced, and then its implementation in the GPGPU parallel computation framework is 166

explained in detail. Section 3 investigates the accuracy and capability of the developed 167

code through several examples such as 2D fracture process analyses of rock fracture in 168

7

conventional laboratory testing and blasting. In section 4, the performance of the 169

developed GPGPU-based code is compared against that of the original CPU-based 170

sequential code. Finally, section 5 concludes and highlights future work. 171

2. Hybrid finite–discrete element method implemented in Y-HFDEM IDE 172

 The Y-HFDEM IDE was originally developed using object-oriented programming in 173

visual C++ 37 on the basis of the CPU-based sequential open-source Y-code 5,7. The Y-174

HFDEM IDE can not only significantly simplify the process of building and manipulating 175

the input models and greatly reduce the possibility of erroneous model setup but can also 176

display calculated results graphically in real-time with OpenGL. The preprocessor of the 177

Y-HFDEM IDE can even generate simple FDEM mesh and specify initial conditions, 178

physical properties, contact properties, boundary conditions, fracture criteria, and 179

explosive charges if necessary. More complex FDEM meshes are usually generated using 180

third-party software such as ABAQUS®, ANSYS LS-DYNA® and various open-source 181

mesh generators such as Netgen and Gmsh. Then, the generated mesh data can be easily 182

imported into the Y-HFDEM IDE for hybrid FDEM analyses. The postprocessor can 183

visually display the calculated stress, displacement, velocity, force, damage, fracture and 184

fragmentation in real-time pictures or query calculated results in specified locations and 185

graphically display them. In addition, a number of operations such as pan, rotation, zoom, 186

various viewports in perspective and/or orthographic modes, and slideshow are developed 187

to manipulate the numerical models and calculated results (see 37 for further detail). The 188

code has been successfully employed in the simulation of the fracture process in various 189

geotechnical engineering problems 37-40. Because of the nature of sequential 190

programming, its main application was limited to small-scale 2D problems using a 191

relatively rough mesh. To overcome this limitation, the parallel programming scheme 192

using the GPGPU accelerator controlled by CUDA C/C++ is implemented into the Y-193

HFDEM 2D IDE through this study. Because the various hybrid FDEM-based codes have 194

been independently developed in different research institute/organization and have 195

8

different features, the fundamental features of Y-HFDEM 2D IDE along with its GPGPU-196

based parallelization scheme are explained in detail through the following subsections. 197

2.1. Fundamental theory of 2D Y-HFDEM IDE 198

 The principles of the hybrid FDEM are based on continuum mechanics, cohesive zone 199

modeling and contact mechanics, all of which are formulated in the framework of explicit 200

FEM 5. 201

 The continuum behavior of materials including rocks is modeled by an assembly of 202

continuum 3-node triangular finite elements (TRI3s) (Fig. 1(a)). Two types of isotropic 203

elastic constitutive models have been implemented. In the first type, which is 204

implemented in the original Y-code and has been widely used, the isotropic elastic solid 205

obeys Eq. (1) of the Neo-Hookean elastic model: 206

 ()1
 (, =1, 2, 3)

2
ij ij ij ij ijJ B D i j

J J

λ µσ δ δ η = − + − + 
 

 (1) 207

where σij denotes the Cauchy stress tensor, Bij is the left Cauchy–Green strain, λ and µ 208

are the Lame’s constants, J is the determinant of the deformation gradient, η is the 209

damping coefficient, δ ij is the Kronecker’s delta and Dij is the rate of the deformation 210

tensor. However, Eq. (1) cannot model anisotropic elasticity and the plane strain problem, 211

which are also very important in the field of rock engineering. Thus, in the second type, a 212

hyper elastic solid obeying Eqs. (2) and (3) is also implemented: 213

(, , , =1, 2)KL KLMN MNS C E K L M N= (2) 214

1
 (, , , =1, 2)ij iK KL jL ijF S F D i j K L

J
σ η= + (3) 215

where SKL denotes the 2nd Piola–Kirchhoff stress tensor, CKLMN is the effective elastic 216

stiffness tensor, EMN is the Green–Lagrange strain tensor and F iK is the deformation 217

gradient. Note that the Einstein’s summation convention applies in Eqs. (2) and (3). By 218

setting CKLMN in Eq. (2) properly, isotropic and anisotropic elastic behaviors can be 219

simulated. In Eqs. (1) and (2), the infinitesimal strain tensor is not used and thus a large 220

displacement and a large rotation can be simulated. For the simulation of the fracture 221

process of materials under quasi-static loading, η = ηcrit =2h√(ρE) is used to achieve 222

critical damping 5, where h, ρ and E are the element length, density and Young’s modulus 223

9

of the target material, respectively. Accordingly, the hybrid FDEM can address both 224

dynamic and quasi-static problems. The σij within each TRI3 is converted to the 225

equivalent nodal force f int (e.g., 52). 226

 The fracture of rock under mode I and mode II loading conditions, i.e., the opening 227

and sliding of cracks, is modeled via CZM using the smeared crack model 53. To model 228

the behavior of the fracture process zone in front of the crack tips, tensile and shear 229

softening is applied using an assembly of 4-node cohesive elements with an initial 230

thickness of zero (CE4s) (Fig. 1(a)) as a function of crack opening and sliding 231

displacements, (o, s) (Fig. 1(b)). Two methods can be used for CE4 insertion. One 232

method involves inserting the CE4s into all of the boundaries of the TRI3s at the 233

beginning of the analysis; this method is known as the intrinsic cohesive zone model 234

(ICZM) 54. The second method involves adaptively inserting the CE4s into the particular 235

boundaries of the TRI3s with the help of adaptive remeshing techniques where a given 236

failure criterion is met; this method is referred as the extrinsic cohesive zone model 237

(ECZM) 54. Many existing hybrid FDEM codes, e.g., Y code including Y-HFDEM IDE, 238

have employed the ICZM, while some codes such as ELFEN have used the ECZM. One 239

of the advantages of the ICZM is that the implementation and application of the parallel 240

computing algorithm is straightforward since adaptive remeshing is unnecessary in this 241

case. However, an “artificial” elastic behavior of CE4s before the onset of fracturing 242

must be specified, which requires the introduction and correct estimation of penalty terms 243

and the careful selection of the time step increment Δt to avoid numerical instability. 244

 In the GPGPU-based 2D Y-HFDEM code, normal and shear cohesive tractions (σcoh 245

and τcoh, respectively) acting on each face of CE4 are computed using Eqs. (2) and (3) 246

assuming tensile and shear softening behaviors, respectively: 247

s

overlap

2

s p

p p

s p

2
if 0

 2
() if 0

() if

coh

o
T o

o

o o
f D T o o

o o

f D T o o

σ

 <
 =   − ≤ ≤      
 <

 (4) 248

10

()
2

 p

p p

 p

2
tan() () if 0

tan() () if

coh

coh

coh

s s
f D c s s

s s

f D c s s

σ φ
τ

σ φ

   − − + ≤ ≤ =     
− + <

 (5) 249

where op and sp are the elastic limits of o and s, respectively, ooverlap is the representative 250

overlapping when o is negative, Ts is the tensile strength of CE4, c is the cohesion of CE4 251

and ϕ is the internal friction angle of CE4. Positive o and σcoh are crack opening and 252

tensile cohesive traction, respectively. Eq. (5) corresponds to the Mohr–Coulomb (MC) 253

shear strength model with the tension cut-off. When ICZM is used, the “artificial” elastic 254

behavior of each CE4 characterized by op and sp along with ooverlap is necessary to 255

connect the TRI3s to express the intact deformation process, which is given as follows 53: 256

2 /p s fo hT P= (6) 257

 tan2 /ps hc P= (7) 258

 2 /overlap s overlapo hT P= (8) 259

where Pf, Ptan and Poverlap are the penalty terms of CE4s for opening in the normal 260

direction, sliding in the tangential direction and overlapping in the normal direction, 261

respectively, and h is the element length; the values of the penalty terms can be 262

considered the stiffness of the CE4 for its opening, sliding and overlapping, respectively. 263

Ideally, these penalty values should be infinity to satisfy elastic behavior of rocks 264

according to Eq. (1), but this condition would require an infinitesimal Δt. Therefore, a 265

reasonably large value of the penalty terms, compared to the Young’s modulus or Lame’s 266

constants, is required, as it is impossible to use infinity in actual numerical simulations. 267

Otherwise, the intact behavior of the bulk rock shows significantly different behavior 268

from that specified by Eqs. (1) and (2), and the elastic constants used in Eqs. (1) and (2) 269

lose their meaning. This consideration is very important, especially for problems in which 270

the speed of the stress wave is important (see section 3.4). The function f(D) in Eqs. (4) 271

and (5) is the characteristic function for the tensile and shear softening curves (Fig. 1(b)) 272

and depends on the damage value D of the CE4. The following definitions of D and f(D) 273

11

are used to consider not only mode I and II fracturing but also mixed mode I–II fracturing 274

13,53: 275

22

Minimum 1, if or , otherwise 0
p p

p p

t t

o o s s
D o o s s

o s

 −  −   = + ≥ >        

 (9) 276

() ()() ()1
1 exp 1 (1) (0 1)

1
CA B A CB

f D D A D B D D
A B A B A B

  + − +  = − − + − ≤ ≤     + + − −   

 (10) 277

where A, B and C are the intrinsic rock properties that determine the shape of softening 278

curves, and o t and s t are the critical values at which a CE4 breaks and turns into a 279

macro/explicit fracture of o and s, respectively. If tensile loading condition is presented 280

only (i.e. o>op and |s|≤sp), the damage variable D in Eq. 9 becomes the pure mode I 281

damage DI (= minimum (1, (o-op)/o t)). If shear loading condition is presented only (i.e. 282

o≤op and |s|>sp), it becomes the pure mode II damage DII (= minimum (1, (|s|-sp)/s t)). If 283

both the tensile and shear loading conditions are presented (i.e. o≤op and |s|>sp), it 284

becomes the mixed mode I-II damage DI-II defined in Eq. 9. The true damage is defined 285

as the sum of the pure mode I, pure mode II and mixed mode I-II damages, which is D = 286

DI +DII+DI-II. To avoid unrealistic damage recovery, if the trial f computed from Eq. 287

(10) at the current time step becomes larger than that at the previous time step fpre, a 288

condition of f = fpre is assigned. The o t and s t in Eq. (9) satisfy the mode I and II fracture 289

energies GfI and GfII specified in Eqs. (11) and (12), respectively: 290

fI ()d

t

p

o

coh

o

G o oσ= ∫ (11) 291

{ }fII () d
t

p

s

coh
res

s

G W s sτ+ = ∫ (12) 292

where Wres is the amount of work per area of CE4 done by the residual stress term in the 293

MC shear strength model. This paper uses the same f(D) with A, B and C equal to 0.63, 294

1.8 and 6.0 53, respectively, for both mode I and II fracture processes because of the lack 295

of experimental evidence. In addition, unloading, i.e., the decrease of o or |s|, can also 296

12

occur during the softening regime, i.e., o>op or |s|>sp (see Fig. 1(b)), which is modeled 297

based on Eqs. (13) and (14) 55: 298

 pmax max max

max

() if 0 and coh
s

o
f D T o o o o

o
σ = < < > (13) 299

{ } pmax max max

max

tan() () if and scoh coh s
f D c s s s

s
τ σ φ= − + < > (14) 300

In each CE4, the computed σcoh and τcoh are converted to the equivalent nodal force fcoh 301

using a 3-point Gaussian integration scheme 53. When either o t or s t is achieved in a CE4, 302

the element becomes deactivated and its surfaces can be considered new macro-fracture 303

surfaces. 304

 The contact processes between the material surfaces, including the newly created 305

macro fractures by the separation of each CE4, are modeled by the penalty method 4; a 306

complete and excellent explanation of the method is given in the literature 4. As a brief 307

explanation, when any two TRI3 elements subjected to contact detection (see the next 308

subsection for the implementation of contact detection in the framework of GPGPU) are 309

found to overlapped, the contact potential due to the overlapping of the two TRI3s, i.e., 310

the contacting couple, is exactly computed. The normal contact force fcon_n, which is 311

normally acting on the contact surface and is proportional to the contact potential, is then 312

computed for each contacting couple. The proportional factor is called the normal contact 313

penalty Pn_con. After the normal contact force fcon_n and its acting point are obtained, the 314

nominal normal overlap on and the relative displacement Δuslide at the acting point of 315

fcon_n are readily computed. The contact damping model proposed by An and Tannant 56 316

(Fig. 2) can also be applied if the role of contact damping is very important. When this 317

scheme is applied, the normal contact force fcon_n mentioned above is regarded as a trial 318

contact force (fcon_n)try, and a trial contact stress (σcon_n)try is then computed by dividing 319

(fcon_n)try by the contact area Acon. Then, Eq. (15) is used to determine the contact stress 320

σcon_n: 321

13

 ()()
()

try

con_n n

con_n

n _ max n

, during the increase of (Loading)

/ during the decrease of (Unloading)
b

n

Minimum T o

T o o o

σ
σ


= 



 (15) 322

where T is the transition force, b is the exponent, and on_max is the maximum value of on 323

experienced during the loading process at the contact. T limits σcon_n and defines the 324

transition between a linear elastic stress–displacement relationship and a ‘recoverable’ 325

displacement at a constant contact stress. The values of T may be related to the physical 326

properties of the rocks being simulated, such as the uniaxial compressive strength. The 327

exponent b adjusts the power of the damping function that is applied to the rebound or 328

extension phase of the contact. The value of the exponent controls the energy loss during 329

an impact event. A very similar contact damping model is implemented in the 2D Y-Geo 330

code in the framework of the hybrid FDEM, in which only b is modeled 13. After σcon_n is 331

computed using Eq. (15), it is converted to fcon_n (= Acon ×σcon_n). The verification of the 332

implemented contact damping is discussed in subsection 3.2. After fcon_n is determined, 333

the tangential contact force fcon_tan is computed according to the classical quasi-static 334

Coulomb friction law. First, the trial tangential contact force is computed by (fcon_tan)trial 335

=(Ptan_con × fcon_tan × Δuslide), where Ptan_con is a tangential contact penalty. The actual 336

fcon_tan is computed based on Eq. (16): 337

 () ()
()

trial trial

con_tan con_tan fric con_n

con_tan trial

fric con_n con_tan fric con_n

 if

 if

f f f
f

f f f

µ

µ µ

 ≤= 
 >

 (16) 338

where μfric is the friction coefficient between the contact surfaces. The tangential contact 339

force fcon_tan is applied parallel to the contact surface against the direction of the relative 340

sliding of the contact faces. The verification of the implementation of the contact friction 341

is discussed in subsection 3.2. In each contacting couple, the contact force is converted to 342

the equivalent nodal force fcon 4. 343

 By computing the nodal forces mentioned above, the following equation of motion, 344

Eq. (17), is obtained and solved in the framework of explicit FEM 4: 345

2 2
ext int coh con/ t∂ ∂ = + + +M u f f f f (17) 346

where M is a lumped nodal mass, u is the nodal displacement and fext is the nodal force 347

14

corresponding to the external load. The application of fluid-driven pressure due to 348

detonation phenomena such as that described by An et al. 39 can also be considered. The 349

central difference scheme is employed for the explicit time integration to solve Eq. (17). 350

Careful selection of the time step Δt is necessary to avoid numerical instability. An 351

excellent explanation of the reasonable selection of Δt in the hybrid FDEM can be found 352

in section 2.3.5.2 of the literature 29. 353

 354

2.2. GPGPU-based parallelization of 2D Y-HFDEM IDE by CUDA C/C++ 355

 To speed−up the simulation process of the 2D Y-HFDEM IDE, a parallel 356

computation scheme based on the NVIDIA® GPGPU accelerator is incorporated. In our 357

case, the computation on the GPGPU device is controlled through the NVIDIA’s CUDA 358

C/C++ 48, which is essentially an ordinary C/C++ programming language with several 359

extensions that make it possible to leverage the power of the GPGPU in the 360

computations. The CUDA programming model uses the abstractions of “threads”, 361

“blocks” and “grids”48 (Fig. 3). A greater degree of parallelism occurs within the 362

GPGPU device itself. Functions also known as “kernels” are launched on the GPGPU 363

device and are executed by many “threads” in parallel. A “thread” is just an execution 364

unit of a “kernel” that has a given “thread index” within a particular “block“. As shown 365

in Fig. 3, a “block” is a group of the threads, and a unique “block index” is given to each 366

“block”. The “block index” and “thread index” enable each thread to use its unique 367

“index” to globally access elements in the GPGPU data array such that the collection of 368

all threads processes the entire data set in parallel. A “grid” is just a group of “blocks”. A 369

system with a single “grid” is used in this study. The “blocks” can execute concurrently 370

or serially depending on the number of streaming processors available in a GPGPU 371

accelerator. Synchronization between “threads” within a “block” is possible, while no 372

synchronization is possible between “blocks”. At each “thread” level, the corresponding 373

code that “threads” execute is very similar to the CPU-based sequential code (see 374

Appendix 1 and Fig. A1), which is one of the advantages of the application of CUDA 375

15

C/C++. For example, in the Quadro GP100 accelerator (Pascal generation 48) used in this 376

paper, the number of streaming processors and CUDA cores 48 are 56 and 3584, 377

respectively. Thus, a high computational performance of the GPGPU parallelized code 378

run on the GPU accelerator can be achieved, compared to that of ordinary CPU-based 379

sequential code. The number of “blocks” per “grid” (NBpG) and the number of “threads” 380

per “block” (NTpB) can be changed for the speed-up using GPGPU (Fig. 3). The current 381

version of 2D Y-HFDEM IDE normally sets NTpB to either 256 or 512, and NBpG is 382

automatically computed by dividing the total number of threads (Nthread) in each “kernel” 383

by NTpB, in which an additional block is needed if Nthread/NTpB is not the multiple of NTpB. 384

The value of Nthread is set to be equal to the total number of TRI3s, CE4s, contact couples 385

or nodes depending on the purpose of each “kernel”. 386

 In the GPGPU implementation of 2D Y-HFDEM IDE, the computation of each TRI3 387

(f int and M), CE4 (fcoh), contact couple (fcon) or nodal equation of motion (Eq. (17)) is 388

assigned to each GPGPU “kernel”, as shown in Fig. 4, and processed in a massively 389

parallel manner. In Appendix A.1, an exemplary code of the GPGPU “kernel” 390

programmed to solve Eq. (17) is shown. It is evident from this example that the CUDA 391

code used in the “kernel” is very similar to the CPU-based sequential code, which also 392

holds true for all of the computations shown in Fig. 4. Thus, most parts of the original 393

sequential CPU-based code can be used with minimal modifications. To compute the 394

contact force fcon, a “triangle-to-triangle” (TtoT) contact interaction is used in the earliest 395

versions of the Y-2D code5. This TtoT approach exactly considers the geometries of both 396

contactor and target TRI3s, and the integration of the contact force distributed along the 397

edges of the TRI3s is done analytically. Because this approach integrates the contact 398

force exactly, it is precise although quite time consuming. As pointed out in the literature 399

30, the contact interaction in 2D can be further simplified by “triangle-to-point” (TtoP) 400

contact interaction kinematics, which makes the implementation simpler and more time 401

efficient. However, the precision of the computed contact force using the TtoP approach 402

is low unless a sufficient number of target points per TRI3 is used. Thus, in the Y-403

16

HFDEM 2D IDE, the TtoT approach is applied (instead of the TtoP approach) to ensure 404

the precision of the computed contact force. 405

 A flowchart of the 2D Y-HFDEM IDE is shown in Fig. 5. However, one of the 406

challenging problems in Fig. 5 is the achievement of efficient contact detection for 407

identifying each contacting couple only through the GPGPU without any sequential 408

computation. For example, in the case of a sequential CPU implementation, there are 409

powerful and efficient contact detection algorithms, such as the NBS (no binary search) 410

contact detection algorithm proposed by Munjiza 4, which can achieve the linear search in 411

which the required computation for contact detection is proportional to the number of 412

TRI3 candidates subjected to contact detection. However, such contact detection 413

algorithms are not straightforward to implement in the GPGPU-based code. In the 2D Y-414

HFDEM IDE, considering that hybrid FDEM modeling requires a fine mesh that often 415

consists of TRI3s of a similar size, the following contact detection algorithm is 416

implemented. In this algorithm, the analysis domain comprising a massive number of 417

TRI3s is subdivided into multiple equal-sized (nx, ny) square subcells in the x and y 418

directions (Fig. 6) so that the largest TRI3 in the analysis domain is completely included 419

in a single subcell. In this way, the center of every TRI3 can have a single subcell to 420

which it belongs (Fig. 6). By using an integer coordinate (ix, iy) (ix=0,···,nx-1, iy=0,···,ny-421

1) in the x and y directions for the location of each subcell, unique hash values h 422

(=iy×nx+ix) are assigned to each subcell. For example, the five TRI3s shown in red in 423

Fig. 6 are included in the blue subcell and have the same hash value. The subsequent 424

contact detection procedure is explained using a simplified example shown in Fig. 7, 425

where there are ten TRI3 candidates of similar size subjected to contact detection. First, 426

all of the TRI3s are mapped into the integer coordinate (ix=0, 1 and 2, and iy=0,1 and 2) 427

with nx= ny=3 along with each hash value. In this way, the list L-1 is readily constructed. 428

Then, the IDs of the TRI3s in the list L-1 are sorted from smallest to largest according to 429

the hash values as keys, which generates the list L-2 in Fig. 7. For the key sorting by 430

hash, the radix sorting algorithm optimized for CUDA 57 and implemented in the open-431

17

source “thrust” library is used; thus, this procedure can also be processed in a massively 432

parallel manner. Utilizing the list L-2 and GPGPU device shared memory 48, the list L-3 433

is further constructed in a GPGPU “kernel“, which makes it possible to identify the first 434

and last indices of the particular hash value in the List L-2. As an example, let us consider 435

the index = 2 in the arrays of L-2, i.e. “Sorted TRI3 ID” = 0 and “Sorted_h” = 3. By 436

comparing the hash values h in the immediately left and right neighbor indices with that 437

in the index = 2 (i.e., indices =1 and 3 of “Sorted_h” array) in L-2, it can be found that the 438

hash value h in the index=1 (i.e. h = 0) is different from that in the index = 2 (i.e. h = 3). 439

Thus, the indices = 1 and 2 in L-2 correspond to the last and first TRI3s in the subcells 440

with h = 0 and 3, respectively. Thus, the “last index” for h = 0 and the “first index” for h 441

= 3 in L-3 are set to “1” and “2”, respectively, as indicated using the green dash curves in 442

L-2 and L-3 of Fig. 7. At the same time, for the hash values h = 1 and 2, these subcells 443

are clearly empty with no TRI3 elements, which are filled in “E” (i.e. empty) in L-3. The 444

same explanation is applicable to all the other indices in the arrays of L-2. In this way, L-445

3 is constructed. Therefore, the “first index” and the “last index” in L-3 indicate the first 446

and last indices, respectively, in L-2 for each hash. Since this operation only requires to 447

check the hash values of two adjacent array indices in L-2, the construction of L-3 can 448

also be processed in a massively parallel manner. To further explain how the efficient 449

contact detection is achieved using L-2 and L-3, let us consider a TRI3 with ID =8 in Fig. 450

7. It is evident that the TRI3 with ID = 8 belongs to a sub-cell with h=4. Thus, the 451

neighboring sub-cells around the subcell h = 4 are: “h-1-nx”, ”h -nx”, ”h+1-nx”, ”h-452

1”, ”h”, ”h+1”, “h-1+nx“, “h +nx“ and “h+1+nx“, i.e. h = 0, 1, 2, 3, 4, 5, 6, 7 and 8, 453

respectively, in this example. According to L-3, it is unnecessary to search the 454

neighboring cells with h = 1, 2, 6 and 8 since these are the empty subcells. Then, for the 455

remaining non-empty subcells with h = 0, 3, 4, 5 and 7, TRI3 with ID = 8 of “Sorted 456

TRI3 ID List” in L-2 may contact with the TRI3s included in these non-empty subcells. 457

As an example, for a subcell with h = 0, L-3 indicates that the “first index” = 0 and the 458

“last index” = 1. In this case, it is only necessary to trace the indices from the “first 459

18

index” to the “last index” and then process contacts for the TRI3s with IDs corresponding 460

to each index of “Sorted TRI3 ID List”. Since no sequential CPU procedure is involved in 461

the above procedure, it becomes possible to achieve efficient contact detection using the 462

GPGPU device only. 463

 Therefore, the GPGPU-parallelized Y-HFDEM IDE can run completely parallel on 464

the GPGPU device and no sequential processing is necessary (except for the input and 465

output procedures). The data transfer from the GPGPU device to the host computer is 466

always necessary for outputting the analysis results, the time of which is often negligible 467

in the entire simulation time for most of the Y-HFDEM IDE simulations. The obtained 468

results can be visualized in either OpenGL implemented in the Y-HFDEM IDE 37 or the 469

open-source visualization software, Paraview 58. 470

 Finally, it is worth mentioning that an efficient contact detection activation approach 471

has been proposed and applied in many publications on the hybrid FDEM in the 472

framework of ICZM (e.g., section 2.3.3.2 and Fig. 2.14 in 29). In the efficient contact 473

detection activation approach, along with the contact candidates prescribed by the user, 474

only TRI3s in the vicinity of a newly created explicit fracture become contact candidates 475

and are added into the contact detection list. One advantage of this approach is that the 476

contact detection and contact force calculation are necessary only for initial material 477

surfaces by the time the broken/failed CE4s are generated; thus, drastic time savings for 478

the contact detection computation are possible. However, in the hybrid FDEM simulation 479

of rocks under compressive-dominant loading conditions such as uniaxial compression, 480

most TRI3s can overlap during compression even before the generation of explicit/macro 481

fractures. In this case, if the amount of overlap is not negligible when broken CE4s are 482

generated, the efficient contact detection activation approach results in the sudden 483

application of a contact force such as a step function, i.e., a shock, which causes spurious 484

numerical instability and results in unrealistic fragmentation. To avoid spurious 485

numerical instability, an infinitesimally small Δt must be used, which makes the 486

simulation impracticable. Although the efficient contact detection activation approach is 487

19

implemented in the Y-HFDEM IDE, for the numerical simulation of uniaxial 488

compression discussed in subsection 3.2, almost all TRI3s are added into the contact 489

detection at the early stage of simulation, which makes the computation become rather 490

demanding but is essential for avoiding spurious numerical instability. Thus, the 491

demanding contact detection activation approach is also implemented in the current code 492

in addition to the efficient contact detection activation approach. It should be noted that 493

every ICZM-based hybrid FDEM code needs to address this problem carefully to avoid 494

any inaccurate simulation (although it has not been reported in the literature). 495

 496

3. Numerical tests and code validation 497

 This section aims to conduct verifications and validations via several numerical 498

simulations. All numerical simulations in this section are conducted using the GPGPU-499

parallelized Y-HFDEM IDE developed in this study. When the numerical simulation 500

results are presented, compressive stress is regarded as negative (cold color) while tensive 501

stress is taken as positive (warm color). 502

3.1. Verification of the continuum deformation of GPGPU-parallelized hybrid 503

FDEM and the implementation of the local damping scheme 504

 Without the insertion of CE4s, the hybrid FDEM acts as an explicit FEM to solve 505

continuum deformation. To verify the ability of the developed code in the simulation of 506

continuum deformations, a simple example of geostatic stress analysis under gravity is 507

modeled using the GPGPU-parallelized Y-HFDEM IDE, and the numerical model is 508

shown in Fig. 8. The computation of the geostatic stress field is very important in many 509

rock engineering applications, such as the stability testing of underground excavations 510

and slopes. Normally, geostatic stress analysis is conducted before the insertion of CE4s 511

13,19. In most explicit FEM schemes, a dynamic relaxation scheme based on artificial 512

damping is applied to compute the geostatic stress field. The critical damping technique is 513

one of the simplest approaches that has been used in many existing applications in the 514

literature 13,19 to compute the in situ/initial stress. However, it was noted during our code 515

20

development that the convergence rate of the critical damping technique is very poor. To 516

solve this problem, we implemented local damping with a mass scaling technique into the 517

GPGPU-parallelized Y-HFDEM IDE, which was initially proposed by Cundall 59 and 518

implemented in Itasca’s commercial FLAC software 60. In the local damping with mass 519

scaling technique, the following Eq. (18) is used instead of the aforementioned Eq. (17): 520

scale 2 2
tot tot/ sgn()t α∂ ∂ = +M u f f v 1 (18) 521

where Mscale is the scaled lumped mass, f tot is the nodal out-of-balance-force, i.e., the 522

right-hand side of Eq. (17), v is the nodal velocity, ||f tot || is the absolute value of each 523

component of f tot, sgn(∙) is the sign function automatically determined by the sign of (∙) 524

59,60 and α is the local damping coefficient59,60. The comprehensive details of the local 525

damping scheme can be found in the literature 59,60. 526

 By applying the gravitational acceleration g = 9.806 (kg.m/s2) downward with the 527

boundary conditions shown in Fig. 8, initial stress analyses under the plane strain 528

condition are conducted with an overburden pressure of 0. Two analyses are conducted 529

using critical damping and local damping schemes. The mechanical properties of the rock 530

mass are listed in Table 1, where the density ρ =1800 (kg/m3), Young’s modulus E=12.2 531

(GPa) and Poisson’s ration ν =0.25 (correspondingly Lame constants λ = µ = 4.88 (GPa). 532

For the critical damping scheme, the critical viscous damping factor ηcrit = 3.0 (MPa∙s) 533

and the largest time step Δt = 25 (µs) for the stable simulation are selected, while α = 0.8 534

59,60 and Δt =1 (s) are used for the local damping scheme with mass scaling. The number 535

of TRI3s and nodes in the model (Fig. 8) are 98314 and 49516, respectively. 536

 Fig. 9(a) depicts the distribution of the vertical stresses σyy simulated using both the 537

critical damping scheme and the local damping scheme with mass scaling. Because no 538

differences can be identified between the final resultant stresses simulated using these 539

two schemes, only the result of one scheme is displayed in Fig. 9(a). In addition, Fig. 9(b) 540

shows the profiles of σxx and σyy along the vertical direction of the model from the top to 541

the bottom. Considering theoretical stresses as σyy= −ρg(100−y) and σxx= ν /(1−ν)σyy, the 542

obtained results are in good agreement with the theoretical values. Therefore, the 543

21

computations of each TRI3 (f int and M, Mscale) in Eqs. (1)–(3), (17) and (18) based on the 544

GPGPU computation can be considered to be accurate. 545

 In the case of explicit FEMs with artificial damping schemes, static stress equilibrium 546

is achieved when both the total kinetic energy of the system and the maximum value of 547

||f tot || among all nodes converge to zero. Fig. 10 illustrates the variations of the total 548

kinetic energy of the system with respect to the calculation time steps during the 549

simulation of the initial stress analyses. Evidently, the simulation with the local damping 550

scheme with mass scaling can achieve the equilibrium stress state significantly faster than 551

that with the critical damping scheme. To reach the final resultant stress state in Fig. 9, 552

the local damping scheme with mass scaling requires approximately 6400 calculation 553

steps, while the critical damping scheme requires approximately 1000000 calculation 554

steps if the convergence criterion suggested in the literature 59,60 is applied. 555

 556

3.2. Verifications of the implementation of contact damping and contact friction 557

To assess the accuracy of the contact damping model implemented in section 2.1, a 558

simple impact test is modeled (Fig. 11(a)) using the GPGPU-parallelized Y-HFDEM 559

IDE. The model is same as that reported by Mahabadi et al.13, and the obtained results are 560

compared with those reported in their work. The model consists of a circular elastic body 561

with a radius of 0.1 (m) vertically impacting a fixed rigid surface. The elastic body is not 562

allowed to fracture in this model. Following the literature 13, gravitational acceleration is 563

neglected, the density of the elastic body is 2,700 (kg/m3), and the kinetic energy of the 564

elastic body before the impact event is 4.1 (kJ). Because the Lame constants λ and µ for 565

the elastic body are not available in the literature 13, it is simply assumed that λ = µ = 5.0 566

(GPa) and the damping coefficient η =0. Thus, energy dissipation is only due to contact 567

damping. Parametric analyses are conducted by changing the exponent b and the 568

transition force T in Eq. (15), and the normal contact penalty Pcon_n between the elastic 569

body and the rigid surface. The kinetic energy of the elastic body as a function of time is 570

monitored during the parametric analyses. 571

22

 Fig. 11(b) compares five cases with b values equal to 1, 2, 5, 20 and 30 when T= ∞ 572

and Pcon_n = 0.1 (GPa). The case with b = 1 corresponds to elastic contact, and thus no 573

energy dissipation due to contact occurs. The small decrease in the kinetic energy occurs 574

after the impact event because a small amount of the kinetic energy is converted to the 575

strain energy of the elastic body. By changing the values of b, the amount of kinetic 576

energy dissipated from the system increases. This behavior is the same as that reported in 577

the literature 13 using a sequential hybrid FDEM. Cases with different values of Pcon_n (= 578

0.1 (GPa) and 10 (GPa)) when b = 2 and T= ∞ show that the same b does not result in the 579

same energy dissipation when Pcon_n differs, which is a reasonable outcome because the 580

maximum value of the nominal normal overlap on_max in Eq. (15) during the impact event 581

does change when Pcon_n changes. However, this detail is not reported or explained in the 582

literature 13. Likewise, cases with different values of T (= ∞ and 1 MPa) when b = 2 and 583

Pcon_n = 0.1 GPa show a different amount of energy dissipation, which can also be 584

explained by the change in on_max. Thus, it is verified that the contact detection and 585

computation of fcon are properly processed in the GPGPU code; however, this paper does 586

not consider any contact damping in the following numerical simulations because the 587

calibration of these parameters is beyond the scope of this paper. 588

To assess the accuracy of the contact friction model implemented in the GPGPU-589

parallelized Y-HFDEM IDE, a simple sliding test, suggested by Xiang et al. 61, is 590

modeled, and the obtained results are compared against those from theoretical analyses. 591

The model includes a simple sliding rock square with a length of 5 cm and a fixed rigid 592

base as shown in Fig. 12(a). The material parameters of the rock square are assigned 593

according to those listed in Table 1. The rock square can slip along the horizontal plane 594

with a friction coefficient of μfric = 0.5. The sliding distance L is a function of initial 595

velocity (iv), gravity acceleration (g) and μfric, which can be determined theoretically 596

through Eq. (19): 597

()2
fric/ 2iL v gµ= (19) 598

23

 In the numerical modeling, the sliding rock square, which is assigned various initial 599

velocities from 2 m/s to 6 m/s, slows and stops at a distance due to the friction between 600

the rock square and the rigid base. As illustrated in Fig. 12(b), the obtained results from 601

the numerical simulation are in good agreement with those from the theoretical analyses. 602

 603

3.3. Simulation of the rock failure process in standard laboratory rock mechanics 604

tests 605

 To verify the capabilities of the code in simulating the rock fracture process and 606

associated failure mechanism, this section models two standard laboratory rock 607

mechanics tests, i.e., the Brazilian test and the uniaxial compression test, using the 608

GPGPU-parallelized Y-HFDEM IDE. For this purpose, the failure processes of a 609

relatively soft limestone in these two tests are modeled. The physicomechanical 610

properties of the limestone and the numerical input parameters used in the numerical 611

simulation are listed in Table 1. The numerical input parameters are determined based on 612

the methodology suggested by Tatone and Grasselli 18 while the physicomechanical 613

properties of the limestone are obtained from laboratory tests. The diameter and thickness 614

of the Brazilian disc (BD) are 51.7 (mm) and 25.95 (mm), respectively, and the numerical 615

model consists of 10,520 unstructured TRI3s (Fig. 13(a)). In the numerical model of the 616

uniaxial compression test, the height and diameter of the rock specimen are 129.5 (mm) 617

and 51.7 (mm), respectively. The numerical model consists of 44,214 unstructured TRI3s 618

(Fig. 13(b)). The average edge length have of TRI3s in both models is 0.7 (mm). The rock 619

specimens are placed between two moving rigid platens with a constant velocity of 0.05 620

(m/s) to satisfy quasi-static loading conditions 18. The friction coefficient μfric between 621

platens/rock and rock/rock are assumed to be 0.1 and 0.5, respectively 62. Hereafter, 622

compressive stress is shown as negative (cold color) while tension stress is regarded as 623

positive (warm color). 624

 Fig. 14 illustrates the screenshots of the rock failure process (Fig. 14 (a)-(c)) and the 625

associated indirect tensile stress versus axial strain curve (Fig. 14 (d)) obtained from the 626

24

numerical simulation of the Brazilian test using the GPGPU-parallelized Y-HFDEM IDE. 627

It should be noted that the screenshots of the rock failure process shown in Fig. 14 (a), (b) 628

and (c) are taken at the stress levels labeled using A, B and C, respectively, in the indirect 629

tensile stress versus axial strain curve depicted in Fig. 14 (d). It can be seen from Fig. 630

14(a) that the horizontal stress distribution σxx in the rock specimen is almost uniform 631

along its loading diameter. When the concentrated stress reaches the critical value (i.e., 632

the tensile strength of CE4s for the rock), tensile failure develops in the model (Fig. 633

14(b)). With the two loading plates further moving toward each other, the splitting failure 634

of the BD occurs due to the propagation of the formed macroscopic fractures, which 635

coalesce with the microcracks initiated due to the resultant tensile stresses during the 636

stress propagation process. 637

 As seen from Fig. 14, at the stress labeled by point A (Fig. 14 (d)), i.e., before the 638

peak stress, microcracks/damages are initiated and propagate near the loading areas (Fig. 639

14 (a)). Once the resultant stress (point B in Fig. 14 (d)) reaches the peak strength of the 640

rock, the macro-crack, i.e., the splitting crack, then appears around the central line of the 641

model due to the coalescence of microcracks (Fig. 14 (b)). Finally, the stress–strain curve 642

decreases rapidly during the postfailure stage (e.g., point C in Fig. 14 (d)) when the 643

splitting crack propagates along the sub-central line of the rock specimen dividing it into 644

two halves (Fig. 14 (c)). The modelled rock fracture process and the obtained indirect 645

tensile stress versus axial strain curve are in good agreement with those observed in 646

laboratory testing of a Brazilian disc specimen under a quasi-static load. Therefore, the 647

GPGPU-parallelized Y-HFDEM IDE can realistically model the splitting/tensile failure 648

process of rock in the Brazilian test. 649

 Fig. 15 illustrates the stages of the rock fracture process in the uniaxial compression 650

test modeled using the GPGPU-parallelized Y-HFDEM IDE. Fig. 15 (a) illustrates the 651

stress build-up and evolution process before the onset of nonlinearity in the stress-axial 652

strain curve, i.e., point A in Fig. 16(a). As loading continues, unstable microcrack growth 653

commences and continues to the peak stress point of the stress-strain curve, i.e., point B 654

25

in Fig. 16(a). Then, the microcracks coalesce to form macroscopic cracks, which results 655

in the rock specimen losing its bearing capacity, and correspondingly, the observed stress 656

decreases with the strain increase. Finally, the formed macroscopic cracks propagate, 657

resulting in the rock specimen completely losing its bearing capacity at point C in Fig. 658

16(a). Fig. 16 (b) compares the final fracture patterns obtained from the numerical 659

simulation and the experimental tests. Clearly, the developed GPGPU-parallelized Y-660

HFDEM IDE can realistically model the failure process of rock under a uniaxial 661

compression test in which shear failure is the dominant mechanism. 662

 663

3.4. Simulation of dynamic rock fracture process 664

 In this section, the dynamic fracture process in rock blasting is modeled using the 665

GPGPU-parallelized Y-HFDEM IDE. Because the code is formulated based on the 666

explicit FEM, the hybrid FDEM is also a powerful tool for the simulation of a dynamic 667

rock fracture process and the rock fracture process. By default, the hybrid FDEM 668

considers all boundaries reflection boundaries, i.e., free faces. However, the simulation of 669

dynamic problems such as rock blasting often require a nonreflection, i.e., absorbing, 670

boundary to satisfy the infinity condition. Correspondingly, the absorbing boundary is 671

implemented into the GPGPU-parallelized Y-HFDEM IDE by viscous boundary tractions 672

using an approach similar to that used in the literature 63,64. The normal and tangential 673

boundary tractions (tn, ts) acting perpendicularly and tangentially, respectively, to the 674

boundary are given by Eq. (20): 675

n p n

s s s

t V v

t V v
ρ

   
= −   

   
 (20) 676

where Vp and Vs are the P- and S-wave speeds of the target boundary, respectively, and 677

vn and vs are the particle velocities that are perpendicular and tangential to the boundary, 678

respectively. The computation of the viscous boundary tractions in each edge of the target 679

boundary is assigned to each GPGPU “thread” following the same concept shown in Fig. 680

4. In addition, the same features as those in the literature 39 are implemented in the 681

26

GPGPU-parallelized Y-HFDEM IDE, which includes the modeling of blast-induced 682

pressure due to detonation phenomena and the effect of the loading rate on the fracture 683

behaviors of rock. The blast-induced pressure at time t according to the literature 39 is 684

applied to multiple surface edges of TRI3s corresponding to the surfaces of blast holes 685

and broken CE4s connected to each blast hole. The computations in each edge are also 686

assigned to each GPGPU “thread” (following the same concept shown in Fig. 4) and 687

processed completely in a parallel manner. However, the authors have recognized that the 688

gas pressure model used in the literature 39 should be improved further, which is beyond 689

the scope of this paper, and thus not used in the following verification. 690

 The same model used in the literature 64 is utilized with the GPGPU-parallelized Y-691

HFDEM IDE to simulate the dynamic rock fracture analysis process (Fig. 17) because of 692

its simplicity and validity. The model consists of a single blast hole (0.05 m in radius) 693

within a rock disk (5 m in radius). The model includes 45,086 unstructured TRI3s, 694

135,258 CE4s and 135,258 nodes. The same mechanical properties of rock as those in the 695

literature 64 are used (see Table 1 in 64), and the simulation is conducted under the plane 696

strain condition. It should be noted that the 2D DFPA code applied in the literature 64 is 697

developed based on the implicit FEM using the ECZM model, and its numerical model is 698

constructed using structured mesh. Thus, the intact stress wave propagation exactly 699

follows the constitutive behavior of an isotropic elastic body. However, the GPGPU-700

parallelized Y-HFDEM IDE is developed based on the ICZM, and thus the values of the 701

penalty numbers (Pf, Ptan and Poverlap) of the CE4s need to be set carefully. For the 702

dynamic rock fracture modeling reported in this study, the penalty numbers of Pf =P tan = 703

Poverlap = 50 times the Young modulus of rock (Erock=60 GPa) is used. Accordingly, a 704

smaller Δt = 0.4 (ns) is used in the modeling to avoid numerical instability. The following 705

pressure function P(t) of Eq. (21), which is used in the literature 64, is applied to the 706

surface of the blast hole: 707

() ()0 0

0() / t tt tP t P e e e eα βα β − −− −= − − (21) 708

27

where t0 is the rise time of the pressure and given by t0 =[1/(β-α)]log(β/α), and β/α is the 709

controlling parameter of the pressure decay. Here, only the case of β/α =1.5 and t0 =100 710

(μs) is simulated. P(t) is only applied to the initial surface of the blast hole following that 711

in the literature 64, and thus the gas flow into the fractures is not considered. Two cases 712

are considered to demonstrate the effect of the implementation of the absorbing boundary 713

on the exterior boundary of the model shown in Fig. 17. The first case (case 1) considers 714

the exterior boundary an absorbing boundary, while the other case (case 2) considers it a 715

free boundary. 716

 Fig. 18(a) compares the spatial distribution of the maximum principal stress (PS1) 717

and broken CE4s at selected time intervals for both case 1 and case 2. Because the results 718

of both cases are exactly the same by the time tarrive, i.e., when the stress wave front 719

reaches the exterior boundary, only one case is shown before tarrive. After the stress wave 720

front reaches the exterior boundary of the model, the results of both cases are illustrated 721

and compared with each other. The positive value (warm color) of PS1 corresponds to 722

tension, and broken CE4s are shown by black lines. Just after the commencement of the 723

pressure application to the blast hole, the stress wave starts to propagate radially from the 724

blast hole (t = 200 μs in Fig. 18 (a)). The front of the PS1 wave shows compression (cold 725

color), and this means that both the radial and circumferential stress components are in 726

compression. This stress state results in shear fracturing in the vicinity of the blast hole, 727

i.e., the crushed zone. The tensile PS1 wave shown by the warm color follows this 728

compressive stress wave front, which causes the radially propagating tensile cracks 729

around the crushed zone. These tensile cracks extend further with the propagation of the 730

tensile PS1 wave (t = 600 μs) and then arrest because the gas flows in the cracks are not 731

considered. The obtained result is in good agreement with the reported results in the 732

literature 64. After the compressive stress wave front reaches the external boundary, as 733

expected, no wave reflection is shown in case 1 at t = 1300 μs. However, the wave 734

reflection is shown in case 2 at t = 1300 μs, with the tensile stress wave propagating back 735

to the blast hole. It should be noted that the sign reversal of the reflective stress waves 736

28

occurs for both the compressive and tensile stress waves impinging on the free face. 737

Thus, the implemented absorbing boundaries show the expected behavior during rock 738

blasting modeling. Correspondingly, it can be concluded that the dynamic fracture 739

process analysis by the GPGPU-parallelized Y-HFDEM IDE has been verified. 740

 To investigate the effect of the penalty numbers (Pf, Ptan and Poverlap) of CE4 on the 741

intact stress wave propagations, Fig. 19(b) shows the spatial distribution of PS1 and 742

broken CE4s at t = 900 μs for three cases with various penalty numbers (i.e., Poverlap =Pf 743

=Ptan = 50 Erock, 10 Erock and Erock). Evidently, the stress distributions clearly differ 744

among the three cases. The condition with the penalty numbers of Erock even shows a 745

different fracture pattern than those with the penalty numbers of 50 Erock and 10 Erock. By 746

computing the smallest distance between the stress wave front and the original blast-hole 747

surface, the apparent P-wave velocities for cases with the penalty numbers of 50 Erock, 10 748

Erock and Erock are found to be 4910 m/s, 4858 m/s and 4660 m/s, respectively, while the 749

expected (theoretical) P-wave velocity is 5000 m/s according to the theory of 750

elastodynamics. In addition, the apparent wave length of the stress wave becomes longer 751

when the values of the penalty numbers of CE4s decrease. In dynamic fracture process 752

analysis, stress wave propagation is the most important factor because it determines the 753

fracturing process, and many previous publications using the ICZM-based hybrid FDEM 754

for dynamic fracture process analyses simply set the penalty numbers of CE4s to Erock or 755

close to Erock. In the hybrid FDEM, the intact behavior of rocks should only be governed 756

by Eqs. (1) or (2) because either of these equations is the constitutive equation for 757

“continuum behavior”; moreover, the artificial behavior of CE4s controlled by the 758

penalty numbers should not affect the continuum behavior described by Eq. (1) or Eq. (2). 759

Otherwise, there is no meaning in specifying the elastic parameters as input parameters. 760

Hence, the condition of the penalty numbers of CE4s close to Erock must not be used for 761

any quantitatively meaningful dynamic fracture process analysis. Therefore, any ICZM-762

based hybrid FDEM simulations used for quantitative evaluation/prediction should set 763

penalty numbers for CE4s with the utmost care, and the applied penalty numbers of CE4s 764

29

must be validated before any dynamic fracture process analysis. The ECZM-based 765

method does not suffer from this artificial behavior of CE4s, and our future task includes 766

the implementation of the ECZM-based hybrid FDEM. 767

 768

4. Performance 769

This section discusses the performance of the GPGPU-parallelized Y-HFDEM IDE, 770

mainly in terms of its improvement compared with the sequential implementation of the 771

Y-HFDEM IDE and its performance on several GPGPU accelerators. To accomplish this 772

goal, the modeling of the rock failure process in the uniaxial compression test, as 773

discussed in subsection 3.3, is selected as a benchmark because it is a computationally 774

demanding simulation. The model shown in Fig. 13 (b) comprises 44,214 unstructured 775

TRI3s, and the numbers of CE4s, nodes and initial contact couples are 66,810, 134,442 776

and 362,043, respectively. Because the performance of GPGPU-parallelized code is 777

significantly dependent on the applied GPGPU accelerators 48, the GPGPU-parallelized 778

Y-HFDEM IDE is run using several NVIDIA® GPGPU accelerators, i.e., Quadro GP100, 779

GTX 1060, GTX 1050Ti, GTX 830M, TESLA K80(K40) and TESLA K20, to investigate 780

its performance. Each of the NVIDIA® GPGPU accelerators can be categorized based on 781

its generation. Sorting by date from newest to oldest, the Quadro GP100, GTX 1060 and 782

GTX 1050Ti belong to the “Pascal” generation, whereas GTX 830M is in the “Maxwell” 783

generation, and TESLA K80(K40) and TESLA K20 are in the “Kepler” generation. The 784

new “Volta” and “Turing” generations have been released recently, but this paper does 785

not consider these generations. The developed GPGPU-parallelized Y-HFDEM IDE can 786

be run in all these GPGPU accelerators without any modifications. At the same time, an 787

Intel® Core i7-440 CPU (3.40 GHz) is used to run our sequential CPU-based Y-HFDEM 788

IDE. 789

 Fig. 19 shows the speed-up times of the GPGPU-based code relative to the sequential 790

CPU-based code running on a single thread. In Fig. 19, the vertical axis shows the 791

quotients of the total run time using each GPGPU accelerator divided by that using the 792

30

sequential CPU-based code (= 138.17 (hours)), which, thus, correspond to the speed-up 793

times of the GPGPU-based code relative to the sequential CPU-based code. Clearly, all 794

the GPGPU-based codes can achieve quicker times than the sequential CPU-based code, 795

and the Quadro GP100 accelerator in the “Pascal” generation shows the best performance 796

among them. However, the performance of GTX 830M in the “Maxwell” generation is 797

very poor because the computational capability to perform double precision arithmetic in 798

the GPGPU accelerator of this generation is very limited compared with that of the 799

“Kepler” and “Pascal” generations 48. Therefore, among the investigated GPGPU 800

accelerators, the application of “Kepler” and “Pascal” generations are suited to achieve 801

better performance, considering the given specifications of each accelerator 48. In 802

addition, because the performance of GPGPU accelerators have continued to significantly 803

improve by generation, the GPGPU-parallelized Y-HFDEM IDE can easily achieve better 804

speed-up times without requiring any changes if it is run on GPGPU accelerators of the 805

newest generation, such as the Volta generation (e.g., GTX TITAN V, Quadro GV100 806

and Tesla V100) 48. This finding is very important because the selection of the proper 807

GPGPU accelerator tends to be difficult for many researchers. 808

 In addition, the relative speed-up times between GPGPU-based and sequential CPU-809

based codes can further increase when many more elements and nodes with more 810

significant contact detections/force calculations are involved. In other words, keeping all 811

the GPGPU cores busy is the most important factor in achieving the best performance of 812

the GPGPU-based code. For example, the uniaxial compression model shown in Fig. 13 813

(b) is simulated using six different average element lengths (have), whose values are 0.15 814

(mm), 0.2 (mm), 0.3 (mm), 0.4 (mm), 0.5 (mm) and 0.6 (mm). To make the condition of 815

each case closer, the value of Δt is fixed to 0.5 (ns), with other conditions remaining the 816

same as those in Table 1, excluding the critical damping coefficient ηcrit, which is 817

selected based on element size. Table 2 shows the number of TRI3s, CE4s and nodes, and 818

the initial number of contact couples in each model. It is evident that mesh discretization 819

31

with have = 0.15 (mm) results in tremendously massive computation. The runtime required 820

for 10,000 calculation time-steps is monitored here. 821

 The list of actual runtimes required for 10,000 calculation time steps is shown at the 822

bottom of Table 2 for several values of have, for the cases of the GPGPU-based code using 823

the Quadro GP100 accelerator and the sequential CPU-based code. The results show that 824

108,767 s (30.2 (hours)) are required to solve the 10,000 time steps in the sequential 825

CPU-based code for have = 0.15 (mm), which means that solving the problem with this 826

level of fine discretization is too computationally expensive using the sequential code. 827

Based on the list in Table 2, Fig. 20 shows the speed-up times of the GPGPU-based code 828

using the Quadro GP100 accelerator relative to the sequential CPU-based code, in which 829

the horizontal axis represents the number of TRI3s for each have. The relative speed-up 830

time increases when the mesh becomes finer, i.e., when the GPGPU becomes busier. 831

Notably, a relative speed-up time of 128.6 times is achieved for the finest mesh (have = 832

0.15 (mm)). Thus, the GPGPU accelerator must be kept busy to achieve its best 833

performance. Even if different models and different architectures of the GPGPU 834

accelerators are used to run the CUDA-based GPGPU-parallelized Y-HFDEM IDE 835

discussed in this paper, the obtained speed-up time is quite competent compared with the 836

performance of the OpenCL-based GPGPU code “IRAZU” reported by Lisjak et al. 22. 837

Finally, considering that the Quadro GP100 can be installed in an ordinary workstation, 838

the demonstrated speed-up performances indicate that less space and time are required to 839

solve large-scale hybrid FDEM simulations by applying the GPGPU-parallelized Y-840

HFDEM IDE. The presented speed-up list here can provide useful information for the 841

application of GPGPU parallelization to the hybrid FDEM simulations. 842

 843

5. Conclusion and future work 844

This paper developed a GPGPU-parallelized Y-HFDEM IDE based on the authors’ 845

formal CPU-based sequential hybrid FDEM code. The algorithm of the GPGPU-846

parallelized hybrid FDEM was first given in detail so that this paper can provide a basis 847

32

for further improvement and progress of any hybrid FDEM codes that were reviewed in 848

the introduction section on the basis of GPGPU parallelization. It should be noted that a 849

new contact detection algorithm that differs from that in the sequential CPU code was 850

implemented in the GPGPU-parallelized Y-HFDEM IDE because the contact detection 851

algorithm in the sequential code is not suitable for GPGPU parallelization. A number of 852

new features that were unavailable in the original CPU-based sequential code were 853

implemented into the GPGPU-parallelized Y-HFDEM IDE to achieve improvements in 854

rock engineering applications, which include the implementation of efficient geostatic 855

stress analysis through the local damping scheme with mass scaling, contact damping, 856

contact friction and the absorbing boundary. Then, a series of numerical simulations were 857

conducted using the GPGPU-parallelized Y-HFDEM IDE, and the obtained results were 858

compared with those from either theoretical analysis or the literature to calibrate the 859

implementations. Finally, GPGPU-parallelized Y-HFDEM IDE was applied in modeling 860

the rock failure process in the Brazilian test, the uniaxial compression test and rock 861

blasting to demonstrate its application in rock engineering. Through this study, the 862

following conclusions can be drawn: 863

− The developed GPGPU-parallelized Y-HFDEM IDE can work well with the 864

implementation of the aforementioned algorithm, and its precision is successfully verified 865

through a series of numerical simulations. 866

− By conducting the fracture process analyses of rock due to quasi-static loading (the 867

uniaxial compression test and Brazilian test) and dynamic loading (blasting), the obtained 868

results successfully demonstrated the capability of the developed GPGPU-parallelized Y-869

HFDEM IDE for various types of loading configurations. From the obtained results, it 870

can be concluded that for dynamic simulation including stress wave propagation in rock, 871

the correct selection of penalty terms for CE4s using the ICZM-based approach is very 872

important. 873

− The GPGPU-parallelized Y-HFDEM IDE can run on various GPGPU accelerators 874

of different generations. However, the comparison of the runtimes from the simulation of 875

33

the uniaxial compression test concludes that GPGPU accelerators of different generations 876

perform in drastically different ways, and thus the proper selection of the GPGPU 877

accelerators is suggested. Remarkably, the GPGPU-parallelized Y-HFDEM IDE running 878

on the Quadro GP100 GPGPU accelerator achieves a speed-up of 128.6 times compared 879

with the authors’ formal sequential CPU-based code. It must be emphasized that this 880

performance is obtained using a single GPGPU accelerator. 881

 Therefore, the GPGPU-parallelized Y-HFDEM IDE developed in this study is a 882

valuable and powerful numerical tool for rock engineering applications. However, further 883

work is needed. The following are the highlights of our future tasks. 884

− The main purpose of this paper was to explain the newly developed GPGPU-885

parallelized Y-HFDEM IDE, and we intentionally selected the simpler examples for the 886

verifications and validations of the developed code because complex problems make the 887

verifications very challenging. Thus, we will apply the developed GPGPU-based code in 888

wide range of rock engineering problems, such as mechanical rock cutting and rock 889

blasting, in the next phase. 890

− This study focused on the development and verification of 2D GPGPU-based Y-891

HFDEM IDE; however, the authors have already developed the prototype of the 3D 892

version of the GPGPU-based hybrid FDEM based on both ICZM and ECZM. The 893

verification and validation of the 3D GPGPU-parallelized Y-HFDEM IDE are in active 894

progress and will be presented in a separate study. 895

− Because multiple GPGPU accelerators can reside in a single ordinary workstation or 896

even in a GPGPU cloud/cluster, another important task, which is in active progress, is to 897

implement the code using multiple GPGPU accelerators to solve much larger problems 898

using the GPGPU-based hybrid FDEM. In this case, the application of MPI is 899

indispensable for the multiple GPGPU accelerators to communicate with each other. 900

− For the blasting simulation, although we implemented the approach used in An et al. 901

39 to model the blast-induced pressure, this approach must be improved to realize a more 902

precise blasting simulation. To achieve a better blasting simulation, we are currently 903

34

working on coupling the GPGPU-based hybrid FDEM with GPGPU-based smoothed 904

particle hydrodynamics 65 to model the expansion of the blast-induced gas and its 905

interaction with rock, including newly created fracture surfaces. The development is still 906

in active progress. 907

 908

Acknowledgments 909

The first author of this work was supported by JSPS KAKENHI (Grant Number 910

JP18K14165) for Grant-in-Aid for Young Scientists. The corresponding author is 911

thankful for the support of the AJF (No. 17/20470), AAS (No. RI8) and IRGS (No. 912

L0018929) grants of Australia and the National Science Foundation grants of China (No. 913

51574060 and No. 51079017). All authors would like to thank the anonymous reviewers 914

for their helpful and constructive comments that significantly contributed to improving 915

the final version of the paper. 916

 917

Appendix A.1 918

 Fig. A.1 shows an example GPGPU “kernel” for solving Eq. (17), i.e., the 2D 919

mechanical solver for nodes with x and y degrees of freedom. To enhance the readability 920

of the code, the assignment of the boundary condition is not shown and only the update of 921

the nodal velocity and the coordinate in the x direction is shown in this example. The 922

name of the “kernel”, i.e., the name of this function, is “Ysd2MEC_GPU”. As is evident 923

from this example, the appearance of the CUDA C/C++ code is very similar to the 924

sequential CPU-based C/C++ code. Variables with names ending in “DEV“ are global 925

data stored on GPGPU global memory 48 and their meanings are given in the example 926

code. The speed of GPGPU global memory access is relatively slow, and thus access 927

should be minimized to improve performance. This “kernel” is launched by 928

“Ysd2MEC_GPU<<< NBpG, NTpB>>>” from the host C/C++ code, which is again very 929

similar to ordinary C/C++ except that the specification of (NBpG, NTpB) is necessary (see 930

subsection 2.2). When the “kernel” is launched, each CUDA thread is assigned its unique 931

35

thread ID (threadIdx.x) and block ID (blockIdx.x) and NTpB is automatically stored in 932

“blockDim.x” (see Figs. 3 and 4). Thus, “threadIdx.x + blockIdx.x * blockDim.x” in the 933

code can be considered a unique node ID “inopo”. If each node ID is within the range of 934

the total number of existing nodes (current_num_nodes_CST), the mechanical solver is 935

processed for the node IDs in completely parallel manner. Note that variables with names 936

ending in “CST” are stored in the GPGPU constant memory 48, which can achieve faster 937

memory access than the GPGPU global memory. However, because memory size is 938

limited, GPGPU constant memory is used to store the constant values, such as 939

mechanical properties and topological data, that do not change throughout the simulation. 940

Finally, using the “register” 48 for the declaration of local variables in each “thread” can 941

achieve the fastest memory access. However, the total size of the register memory in each 942

“thread” is quite limited, and defining too many local variables using the “register” 943

keyword results in poor performance. In the developed code, we minimized the variables 944

declared with the “register” keyword and used them repeatedly for several meanings. 945

Thus, the readability of the actual code was slightly compromised. 946

 947

References 948

1. Mohammadnejad M, Liu H, Chan A, Dehkhoda S, Fukuda D. An 949
overview on advances in computational fracture mechanics of rock. 950
Geosystem Engineering. 2018:1-24. 951

2. Lisjak A, Grasselli G. A review of discrete modeling techniques for 952
fracturing processes in discontinuous rock masses. Journal of Rock 953
Mechanics and Geotechnical Engineering. 2014;6(4):301-314. 954

3. Lei Q, Latham J-P, Tsang C-F. The use of discrete fracture networks for 955
modelling coupled geomechanical and hydrological behaviour of fractured 956
rocks. Computers and Geotechnics. 2017;85:151-176. 957

4. Munjiza AA. The combined finite-discrete element method. John Wiley & 958
Sons; 2004. 959

5. Munjiza A. The Combined Finite-Discrete Element Method. Wiley; 2004. 960
6. Xiang J, Munjiza A, Latham JP. Finite strain, finite rotation quadratic 961

tetrahedral element for the combined finite–discrete element method. 962
International Journal for Numerical Methods in Engineering. 963
2009;79(8):946-978. 964

7. Munjiza A, Xiang J, Garcia X, Latham JP, D’Albano GGS, John NWM. 965
The Virtual Geoscience Workbench, VGW: Open Source tools for 966
discontinuous systems. Particuology. 2010;8(2):100-105. 967

36

8. Lukas T, Schiava D'Albano GG, Munjiza A. Space decomposition based 968
parallelization solutions for the combined finite–discrete element method 969
in 2D. Journal of Rock Mechanics and Geotechnical Engineering. 970
2014;6(6):607-615. 971

9. Rockfield. Rockfield Software Ltd. 2005; 972
http://www.rockfield.co.uk/elfen.htm. 973

10. Elmo D, Stead D. An Integrated Numerical Modelling–Discrete Fracture 974
Network Approach Applied to the Characterisation of Rock Mass Strength 975
of Naturally Fractured Pillars. Rock Mechanics and Rock Engineering. 976
2010;43(1):3-19. 977

11. Hamdi P, Stead D, Elmo D. Damage characterization during laboratory 978
strength testing: A 3D-finite-discrete element approach. Computers and 979
Geotechnics. 2014;60:33-46. 980

12. Rogers S, Elmo D, Webb G, Catalan A. Volumetric Fracture Intensity 981
Measurement for Improved Rock Mass Characterisation and 982
Fragmentation Assessment in Block Caving Operations. Rock Mechanics 983
and Rock Engineering. 2015;48(2):633-649. 984

13. Mahabadi OK, Lisjak A, Munjiza A, Grasselli G. Y-Geo: New Combined 985
Finite-Discrete Element Numerical Code for Geomechanical Applications. 986
International Journal of Geomechanics. 2012;12(6):676-688. 987

14. Lisjak A. Investigating the influence of mechanical anisotropy on the 988
fracturing behaviour of brittle clay shales with application to deep 989
geological repositories: Civil Engineering, University of Toronto; 2014. 990

15. Lisjak A, Figi D, Grasselli G. Fracture development around deep 991
underground excavations: Insights from FDEM modelling. Journal of 992
Rock Mechanics and Geotechnical Engineering. 2014;6(6):493-505. 993

16. Lisjak A, Grasselli G, Vietor T. Continuum–discontinuum analysis of 994
failure mechanisms around unsupported circular excavations in anisotropic 995
clay shales. International Journal of Rock Mechanics and Mining 996
Sciences. 2014;65:96-115. 997

17. Mahabadi O, Kaifosh P, Marschall P, Vietor T. Three-dimensional FDEM 998
numerical simulation of failure processes observed in Opalinus Clay 999
laboratory samples. Journal of Rock Mechanics and Geotechnical 1000
Engineering. 2014;6(6):591-606. 1001

18. Tatone BSA, Grasselli G. A calibration procedure for two-dimensional 1002
laboratory-scale hybrid finite–discrete element simulations. International 1003
Journal of Rock Mechanics and Mining Sciences. 2015;75:56-72. 1004

19. Lisjak A, Liu Q, Zhao Q, Mahabadi OK, Grasselli G. Numerical 1005
simulation of acoustic emission in brittle rocks by two-dimensional finite-1006
discrete element analysis. Geophysical Journal International. 1007
2013;195(1):423-443. 1008

20. Mahabadi O, Lisjak A, He L, Tatone B, Kaifosh P, Grasselli G. 1009
Development of a new fully-parallel finite-discrete element code: Irazu. 1010
Paper presented at: 50th US Rock Mechanics/Geomechanics 1011
Symposium2016. 1012

21. Lisjak A, Kaifosh P, He L, Tatone BSA, Mahabadi OK, Grasselli G. A 1013
2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling 1014
fracturing processes in discontinuous, porous rock masses. Computers and 1015
Geotechnics. 2017;81:1-18. 1016

http://www.rockfield.co.uk/elfen.htm
http://www.rockfield.co.uk/elfen.htm

37

22. Lisjak A, Mahabadi OK, He L, et al. Acceleration of a 2D/3D finite-1017
discrete element code for geomechanical simulations using General 1018
Purpose GPU computing. Computers and Geotechnics. 2018;100:84-96. 1019

23. Xiang J, Latham J-P, Farsi A. Algorithms and Capabilities of Solidity to 1020
Simulate Interactions and Packing of Complex Shapes. 2016; Singapore. 1021

24. Latham J, Guo L, Wang X, Xiang J. Modelling the evolution of fractures 1022
using a combined FEM-DEM numerical method. 2012. 1023

25. Guo L, Xiang J, Latham J-P, Izzuddin B. A numerical investigation of 1024
mesh sensitivity for a new three-dimensional fracture model within the 1025
combined finite-discrete element method. Engineering Fracture 1026
Mechanics. 2016;151:70-91. 1027

26. Lei Q, Latham J-P, Xiang J. Implementation of an Empirical Joint 1028
Constitutive Model into Finite-Discrete Element Analysis of the 1029
Geomechanical Behaviour of Fractured Rocks. Rock Mechanics and Rock 1030
Engineering. 2016;49(12):4799-4816. 1031

27. Guo L, Latham J-P, Xiang J. A numerical study of fracture spacing and 1032
through-going fracture formation in layered rocks. International Journal 1033
of Solids and Structures. 2017;110:44-57. 1034

28. Solidity. Solidity Project. 2017; http://solidityproject.com/. 1035
29. Guo L. Development of a three-dimensional fracture model for the 1036

combined finite-discrete element method, Imperial College London; 2014. 1037
30. Lei Z, Rougier E, Knight EE, Munjiza A. A framework for grand scale 1038

parallelization of the combined finite discrete element method in 2d. 1039
Computational Particle Mechanics. 2014;1(3):307-319. 1040

31. Rougier E, Knight EE, Broome ST, Sussman AJ, Munjiza A. Validation of 1041
a three-dimensional Finite-Discrete Element Method using experimental 1042
results of the Split Hopkinson Pressure Bar test. International Journal of 1043
Rock Mechanics and Mining Sciences. 2014;70:101-108. 1044

32. Yan C, Zheng H. A coupled thermo-mechanical model based on the 1045
combined finite-discrete element method for simulating thermal cracking 1046
of rock. International Journal of Rock Mechanics and Mining Sciences. 1047
2017;91:170-178. 1048

33. Yan C, Zheng H. FDEM-flow3D: A 3D hydro-mechanical coupled model 1049
considering the pore seepage of rock matrix for simulating three-1050
dimensional hydraulic fracturing. Computers and Geotechnics. 1051
2017;81:212-228. 1052

34. Yan C, Jiao Y-Y. A 2D fully coupled hydro-mechanical finite-discrete 1053
element model with real pore seepage for simulating the deformation and 1054
fracture of porous medium driven by fluid. Computers & Structures. 1055
2018;196:311-326. 1056

35. Yan C, Jiao Y-Y, Zheng H. A fully coupled three-dimensional hydro-1057
mechanical finite discrete element approach with real porous seepage for 1058
simulating 3D hydraulic fracturing. Computers and Geotechnics. 1059
2018;96:73-89. 1060

36. Yan C, Jiao Y-Y, Yang S. A 2D coupled hydro-thermal model for the 1061
combined finite-discrete element method. Acta Geotechnica. 2018. 1062

37. Liu HY, Kang YM, Lin P. Hybrid finite–discrete element modeling of 1063
geomaterials fracture and fragment muck-piling. International Journal of 1064
Geotechnical Engineering. 2015;9(2):115-131. 1065

38. Liu HY, Han H, An HM, Shi JJ. Hybrid finite-discrete element modelling 1066
of asperity degradation and gouge grinding during direct shearing of rough 1067

http://solidityproject.com/
http://solidityproject.com/

38

rock joints. International Journal of Coal Science & Technology. 1068
2016;3(3):295-310. 1069

39. An HM, Liu HY, Han H, Zheng X, Wang XG. Hybrid finite-discrete 1070
element modelling of dynamic fracture and resultant fragment casting and 1071
muck-piling by rock blast. Computers and Geotechnics. 2017;81:322-345. 1072

40. Mohammadnejad M, Liu H, Dehkhoda S, Chan A. Numerical 1073
Investigation of Dynamic Rock Fragmentation in Mechanical Cutting 1074
Using Combined FEM/DEM. 3rd Nordic Rock Mechanics Symposium - 1075
NRMS 2017; 2017/11/3/, 2017; Helsinki, Finland. 1076

41. Richard T. Determination of rock strength from cutting tests. Master's 1077
thesis: University of Minnesota, Minneapolis, MN, USA Google 1078
Scholar1999. 1079

42. Zhou Y, Lin J-S. Modeling the ductile–brittle failure mode transition in 1080
rock cutting. Engineering Fracture Mechanics. 2014;127:135-147. 1081

43. Guo N, Zhao J. Parallel hierarchical multiscale modelling of hydro-1082
mechanical problems for saturated granular soils. Computer Methods in 1083
Applied Mechanics and Engineering. 2016;305:37-61. 1084

44. Guo N, Zhao J. A coupled FEM/DEM approach for hierarchical multiscale 1085
modelling of granular media. International Journal for Numerical 1086
Methods in Engineering. 2014;99(11):789-818. 1087

45. Wu H, Guo N, Zhao J. Multiscale modeling and analysis of compaction 1088
bands in high-porosity sandstones. Acta Geotechnica. 2018;13(3):575-599. 1089

46. Wu H, Zhao J, Guo N. Multiscale Insights Into Borehole Instabilities in 1090
High-Porosity Sandstones. Journal of Geophysical Research: Solid Earth. 1091
2018;123(5):3450-3473. 1092

47. Zhou Y, Lin J-S. On the critical failure mode transition depth for rock 1093
cutting. International Journal of Rock Mechanics and Mining Sciences. 1094
2013;62:131-137. 1095

48. NVIDIA. Cuda C Programming Guide. 2018; 1096
http://docs.nvidia.com/cuda/. 1097

49. Zhang L, Quigley SF, Chan AHC. A fast scalable implementation of the 1098
two-dimensional triangular Discrete Element Method on a GPU platform. 1099
Advances in Engineering Software. 2013;60-61:70-80. 1100

50. Batinić M, Smoljanović H, Munjiza A, Mihanović A. GPU based parallel 1101
FDEM for analysis of cable structures. Građevinar. 2018;69(12.):1085-1102
1092. 1103

51. Liu Q, Jiang Y, Wu Z, Xu X, Liu Q. Investigation of the Rock 1104
Fragmentation Process by a Single TBM Cutter Using a Voronoi Element-1105
Based Numerical Manifold Method. Rock Mechanics and Rock 1106
Engineering. 2018;51(4):1137-1152. 1107

52. Li X, Zhang Q, Li J, Zhao J. A numerical study of rock scratch tests using 1108
the particle-based numerical manifold method. Tunnelling and 1109
Underground Space Technology. 2018;78:106-114. 1110

53. Liu W, Zhu X, Jing J. The analysis of ductile-brittle failure mode 1111
transition in rock cutting. Journal of Petroleum Science and Engineering. 1112
2018;163:311-319. 1113

54. Zhang Z, Paulino G, Celes W. Extrinsic cohesive modelling of dynamic 1114
fracture and microbranching instability in brittle materials. International 1115
Journal for Numerical Methods in Engineering. 2007;72(8):893-923. 1116

http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/

39

55. Xianqun H, Chaoshui X. Discrete element modelling of rock cutting: from 1117
ductile to brittle transition. International Journal for Numerical and 1118
Analytical Methods in Geomechanics. 2015;39(12):1331-1351. 1119

56. An B, Tannant DD. Discrete element method contact model for dynamic 1120
simulation of inelastic rock impact. Computers & Geosciences. 1121
2007;33(4):513-521. 1122

57. Satish N, Harris M, Garland M. Designing efficient sorting algorithms for 1123
manycore GPUs. Paper presented at: Parallel & Distributed Processing, 1124
2009. IPDPS 2009. IEEE International Symposium on2009. 1125

58. Ayachit U. The paraview guide: a parallel visualization application. 2015. 1126
59. Cundall PA. Distinct element models of rock and soil structure. Analytical 1127

and Computational Methods in Engineering Rock Mechanics. 1987:129-1128
163. 1129

60. Karekal S. Modeling Rock Chipping Process In Linear Drag Cutting 1130
Mode. ISRM International Symposium - EUROCK 2012; 2012/5/28/, 1131
2012; Stockholm, Sweden. 1132

61. Xiang J, Munjiza A, Latham J-P, Guises R. On the validation of DEM and 1133
FEM/DEM models in 2D and 3D. Engineering Computations. 1134
2009;26(6):673-687. 1135

62. Mahabadi OK. Investigating the Influence of Micro-scale Heterogeneity 1136
and Microstructure on the Failure and Mechanical Behaviour of 1137
Geomaterials: Civil Engineering, University of Toronto; 2012. 1138

63. Lysmer J, Kuhlemeyer RL, Institute of T, et al. Finite dynamic model for 1139
infinite media. Berkeley, Calif.: Dept. of Civil Engineering, Univ. of 1140
California, Institute of Transportation and Traffic Engineering, Soil 1141
Mechanics Laboratory; 1969. 1142

64. Cho SH, Kaneko K. Influence of the applied pressure waveform on the 1143
dynamic fracture processes in rock. International Journal of Rock 1144
Mechanics and Mining Sciences. 2004;41(5):771-784. 1145

65. Benz W, Asphaug E. Simulations of brittle solids using smooth particle 1146
hydrodynamics. Computer physics communications. 1995;87(1-2):253-1147
265. 1148

 1149

Table Titles 1150

Table 1. Rock mechanical properties and numerical parameters 1151

Table 2. Model details for several have values. 1152

 1153

Figure Captions 1154

Fig. 1 Modeling of transition from continuum to discontinuum behavior of rock in 2D Y-1155

HFDEM IDE. (a) Assembly of TRI3s and CE4s and (b) tensile/shear softening curves in 1156

ICZM. 1157

40

Fig. 2. Elastic–inelastic power function model implemented in 2D Y-HFDEM IDE (after 1158

56 with modification). 1159

Fig. 3. The concept of the CUDA programming model using the abstractions of 1160

“threads”, “blocks” and “grid”. 1161

Fig. 4. The concept of massively parallel computation for each CUDA “kernel” for a 1162

particular purpose. 1163

Fig. 5. Flowchart of GPGPU-based 2D Y-HFDEM IDE. 1164

Fig. 6. The concept of hash values assigned to each square subcell (left) and TRI3s 1165

included in a particular subcell (right). 1166

Fig. 7. Efficient contact detection algorithm used in the developed GPGPU-based 2D Y-1167

HFDEM IDE. 1168

Fig. 8. A model of initial stress analysis under gravity. 1169

Fig. 9. The result of initial stress analysis using critical and local damping schemes. (a) 1170

Stress distribution computed and (b) the profiles of σxx and σyy along the vertical direction 1171

of the model from the top to the bottom. 1172

Fig. 10. Comparison of change in total kinetic energy of the system with respect to 1173

calculation time-steps between local and critical damping schemes. 1174

Fig. 11. A simple test for verification of contact damping model. (a) Numerical model 1175

similar to 13 and (b) time history of total kinetic energy. 1176

Fig. 12. Contact friction verification: (a) model configuration, (b) comparison between 1177

numerical and theoretical results. 1178

Fig. 13. Verification models for fracture process of rock under quasi-static loading. (a) 1179

Brazilian indirect tensile test and (b) uniaxial compression test. 1180

Fig. 14. The results of the numerical simulation of the Brazilian test. (a) Extension of 1181

shear microcracks before the peak stress and corresponding horizontal stress distribution, 1182

(b) tensile microcracks at the peak stress and corresponding horizontal stress distribution, 1183

(c) postfailure fracture pattern and corresponding horizontal stress distribution and (d) 1184

Brazilian indirect tensile stress versus axial strain. 1185

41

Fig. 15. Fracture process in uniaxial compression test. (a) Initiation and propagation of 1186

shear microcracks into model before the peak stress, (b) unstable crack propagation at the 1187

peak stress and (c) postfailure fracture pattern. 1188

Fig. 16. Comparison of numerical simulation and experiment for uniaxial compression 1189

test. (a) Plot of axial stress versus axial strain and (b) final fracture patterns from 1190

numerical simulation and experimental test. 1191

Fig. 17. A numerical model with a single blast-hole used in the dynamic fracture process 1192

analysis (after 64). 1193

Fig. 18. The results of dynamic fracture process analysis for a single blast-hole model. (a) 1194

Spatial distribution of PS1 and broken CE4s at selected time intervals and (b) the results 1195

of dynamic fracture process analysis using different penalty numbers for CE4s. 1196

Fig. 19. Relative speed-up of the GPGPU-based code using different GPGPU accelerators 1197

to the sequential CPU-based code. 1198

Fig. 20. Change in relative speed-up with respect to the number of TRI3s used in FDEM 1199

mesh for the simulation of uniaxial compression test. 1200

Fig. A.1. An example of GPGPU “kernel” in 2D Y-HFDEM IDE. 1201

 1202

Table 1 1203

Parameter Unit Value

Density (ρ) kg/m3 1800

Young’s modulus (E) GPa 12.2

Poisson’s ratio (ν) - 0.25

Tensile strength (Ts) MPa 1.77

Cohesion (c) MPa 5

Internal Friction angle of intact rock (φ) ° 25

Mode I fracture energy (GfI) J/m2 16

Mode II fracture energy (GfII) J/m2 160

Normal contact penalty number (Pn_con) GPa 1220

42

Tangent contact penalty number (Ptan_con) GPa/m 1220

Fracture penalty numbers (Pf, Ptan, Poverlap) GPa 12200

Average element size (have) mm 0.7

Critical viscous damping factor (η) kg/m.s 5.60E+03

Table 2 1204

have / (mm) 0.15 0.2 0.3 0.4 0.5 0.6

The number of

nodes
3,253,194 1,893,901 723,894 410,322 303,537 181,038

The number of

TRI3s
1,084,398 540,754 241,298 136,774 86,570 60,346

The number of CE4s 1,624,686 809,872 306,990 204,355 129,316 90,040

The initial number

of contact couples.
6,970,705 4,348,700 1,943,205 1,096,737 686,954 476,433

Simulation time

(sec) for sequential

CPU-based code

/10000 steps

108,767 42,021 19,343 10,515 9,146 6,231

Simulation time

(sec) for GPUGU-

based code (Quadro

GP100) /10000 steps

846 392 214 146 134 126

 1205

Fig. 1.

(smeared crack)

τcoh

|s|sp

|tan(ϕ)σcoh|

c

st

σcoh

oop

Ts

ot

(a)

(b)

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

(a) (b)

Fig. 10.

Fig. 11.

(b)

Fig. 12.

5 cm

𝑣𝑣𝑖𝑖
(a)

S
to

p
 d

is
ta

n
ce

 /
(m

)

Initial velocity / (m/s)

51.7 mm
129.5 mm

v = 5 cm/s

v = 5 cm/s

51.7 mm

v = 5 cm/s

v = 5 cm/s

(a) (b)

Fig. 13.

Fig. 14.

(a) (b) (c)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1000 2000 3000

In
d

ir
ec

t
te

n
si

le
 s

tr
es

s
/

(M
P

a)

Micro-strain

A

B

C

(d)

X

Y

/(Pa) / (Pa) /(Pa)

Mode II damage, DII

Mode I damage, DI
True damage, D

Fig. 15.

(a) (b) (c)

Mode II damage, DII
Mode II damage, DII Damage, D

Fig. 16.

(b)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
0 500 1000 1500 2000 2500

A
x

ia
l

st
re

ss
 /

 (
M

P
a)

Micro-strain

Experiment

Numerical simulation

A

B

C

(a)

Fig. 17.

1
0
 m

0.1 m

Fig. 18.

(b)

(a)

Fig. 19.

1.0
2.6

10.0

13.5 13.9

20.6

34.7

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

CPU GTX 830M
(Maxwell)

GTX1050Ti
(Pascal)

K20
(Kepler)

GTX1060
(Pascal)

K80&K40
(Kepler)

QUADRO
GP100
(Pascal)

Relative speed-up

0 0.2 0.4 0.6 0.8 1

[×10
6
]

0

50

100

150

Fig. 20.

The number of unstructured TRI3s

R
el

at
iv

e
sp

ee
d

-u
p

Fig. A.1

	Figure-NAG-Revision(accepted).pdf
	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21

