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In rolling contact fatigue (RCF), failure mechanisms are known to be very sensitive to material microstructure. Yet, among the different numerical models 
developed to predict RCF life, few models use a microstructure representation. A granular cohesive finite element model has been developed to simulate 
progressive damage of a structure subject to RCF and to investigate failure initiation mechanisms. This article focuses on the implementation of crystal elasticity 
in the model. The numerical analysis of a representative volume element (RVE) validates the use of cubic elasticity to represent crystal behavior. The influence 
of the RVE size and the influence of boundary conditions applied on the RVE are evaluated in the finite element approximation framework. With regard to the 
implementation of cubic elasticity in the RCF model, the generation of stress singularities at triple junctions is first highlighted. Then the average value of the 
intergranular shear stress is proved to be mesh size independent and therefore can be used as damage criterion. Finally, the influence of crystal elasticity on 
microcrack distribution is presented.

Introduction

Contact fatigue is the predominant mode of failure of components
subjected to a repeated contact pressure, like rolling element bearings
or gears. This phenomenon is known as rolling contact fatigue
(RCF). A large number of models (described in Sadeghi, et al.’s (1)
review), have been developed to predict RCF, but there is currently
no complete predictive life model, and understanding RCF failure
mechanism remains a significant challenge. Different reasons can
explain this difficulty: (1) the complexity and variety of RCFmanifes-
tations and failure mechanisms as highlighted by Olver (2) most of
the theoretical models (Keer and Bryant (3)) include an initial crack
and are consequently limited to the prediction of the propagation
stage, because crack initiation is being investigated. The extended
finite element method (X-FEM) has been used to simulate crack
propagation (Troll�e, et al. (4)). Furthermore, X-FEM combined with
Dang Van’s criterion is used for crack initiation and propagation in
the fretting case in 2D and 3D (initiation is based on the distribution
of Dang Van’s crack nucleation risk; Pierres, et al. (5)). Another key
point in the difficulty in predicting RCF life is the influence of mate-
rial microstructure. As in classical structural fatigue, the material
microstructure has a significant role in RCF failuremechanisms.

This study focuses on the role of microstructure in RCF fail-
ure initiation mechanisms. In the spirit of models proposed by
Sadeghi and coworkers (Raje, et al. (6)), an FEM is developed
to simulate the progressive damage of a structure subject to
rolling contact. The developed model is based on a granular
representation and a cohesive zone method is used to represent

grain boundaries (GBs): indeed, in the proposed approach,
intergranular failure initiation is assumed. In the literature, a
micromechanical model based on a collection of cohesive zones
embedded between each finite element (cohesive-volumetric
approach) has already been used (Blal, et al. (7)). The overall
macroscopic elastic behavior is then obtained using homogeni-
zation techniques. In this article, this approach is extended to a
collection of cohesive zones embedded between each grain of
the polycrystalline material.

In a first step, isotropic elasticity is used to represent the grain
mechanical behavior. However, a polycrystalline material, like steel,
usually exhibits an anisotropic behavior at the grain scale (mesoscopic
level). Therefore, in order to make the developed model more repre-
sentative of the material microstructure, the anisotropic grain behav-
ior is implemented. Crystal elasticity has been frequently investigated
in the past (Sauzay (8)) and, recently, Paulson, et al. (9) applied crystal
elasticity to RCF. Concerning RCF, Alley and Neu (10) also investi-
gated a model with crystal plasticity. However, it seems that crystal
elasticity has never been associated with damagemodeling and cohe-
sivemethods in RCF analysis.

In this article, the key features of themodel are first described: roll-
ing contact modeling at the grain level, introduction of cohesive ele-
ments to represent GB, and damage modeling. An example of
microcrack distribution concludes this first section. Then the aniso-
tropic crystal behavior and cubic elasticity are presented. The article
focuses on the behavior of an aggregate of crystals called

CONTACT F. Ville fabrice.ville@insa-lyon.fr

1



representative volume element (RVE). Finally, the influence of crystal
anisotropy on RCF andmesh size are discussed.

Finite element model

The purpose of the presentmodel is to simulate the progressive dam-
age from initial undamaged state to the initiation offirstmicrocracks.
Figure 1 illustrates the approach used in this study: (1) a granular
cohesive model is built with mechanical properties equivalent to an
undamaged GB; (2) the rolling contact cycle is simulated by moving
a Hertzian pressure on the granular model; (3) following the finite
element analysis (FEA), a damage rate is computed for each GB and
a new damage value is evaluated; and (4)mechanical properties are
changed in accordance with the new damage value. As intergranular
failure initiation is assumed, damage is applied on the tangential stiff-
ness of cohesive element (Kt). Then steps 2 to 4 are repeated to simu-
late the progressive deterioration of the GB. First, a computationally
efficient, 2Dplane–strainmodel is developed to analyze the influence
of different parameters such as mechanical properties, operating
contact conditions, material microstructure, etc. ANSYS Academic
Research, Release 14.5, is used.

Rolling contact cycle modeling at the mesoscopic scale

Different numerical methods are used to represent the material
microstructure. A first method consists of using hexagons in a
2D model (Romero de la Osa, et al. (11); Estevez, et al. (12)).
Another method frequently observed consists of using Voronoi
tessellation (Warner and Molinari (13); Bomidi, et al. (14)).

In the present work, a 2D approach similar to the Voronoi
method has been used. The size of each grain is approximately
25 mm, which is representative of bearing steels. The boundary
conditions must be applied far enough from the area of interest
in order to avoid modifying the stress field in this area. To
reduce computational time, the granular representation is
applied only on a small part of the model. Each grain is meshed
with classical finite elements (quadratic elements; Fig. 2a).

The rolling contact cycle is simulated by moving a Hertzian
pressure (Eq. [1]) upon the granular representation on a dis-
tance LHP (Fig. 3), as in Keer and Bryant (3), Bhargava, et al.
(15), and Warhadpande, et al. (16). Tangential surface stress
induced by friction or pressure profile modifications due to
roughness, for example, can also be implemented.

P xð ÞDP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1¡ x
a= Þ2:

�

q

(1)

Figure 1. Damage simulation method.

Nomenclature

a D Hertzian contact half width
[C] D Stiffness matrix
D D Damage variable

DD D Maximum damage increment between two FEA
E D Young’s modulus
Fx D Computed reaction force (x direction) on the RVE
G D Shear modulus
K D Bulk modulus
Kn D Normal stiffness of cohesive elements
Kt D Tangential stiffness of cohesive elements
Kt0 D Initial tangential stiffness of cohesive elements
LHP D Distance of the moving of the Hertzian pressure
m D Material parameter used in damage law
N D Number of cycles

NFEA D Number of FEA
Nsub D Number of divisions (substep) of an FEA

P D Hertzian pressure
P0 D Maximum Hertzian pressure
[S] D Compliance matrix

Time D Dimensionless parameter defining the position of
the Hertzian pressure during the FEA

un D Normal relative displacement of cohesive elements
ut D Tangential relative displacement of cohesive

elements
Xi D Position of the Hertzian pressure center corre-

sponding to step number i C 1 of the FEA
dx D Prescribed displacement (x direction) on the RVE
dy D Computed displacement (y direction) on the RVE
λ D Size of the RVE: dimensionless parameter
n D Poisson’s ratio
s D Normal cohesive stress
sr D Material parameter used in damage law
t D Tangential cohesive stress

Dt D Damage criterion: variation in ISS during an FEA

Subscripts

r D Component evaluated with Reuss’s theory
v D Component evaluated with Voigt’s theory

Figure 2. Mesh and cohesive elements.
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The spatial discretization is controlled by the parameter
Nsub. The load case is divided in Nsub C 1 substeps. A first simu-
lation is performed for the initial position X0 of the Hertzian
pressure center and then Nsub other simulations are performed
by moving the pressure by a distance LHP/Nsub between each
simulation. An example (LHP D 6a) is given in Fig. 3. The posi-
tion of the Hertzian pressure is defined by a dimensionless
parameter noted Time defined in Eq. [2]. The beginning of the
first FEA corresponds to Time D 0 and the end of the first FEA
corresponds to Time D 1.

TimeD j£
i¡ 1

Nsub

1 � i � Nsub C 1 : substep number

1 � j � NFEA : FEA number
(2)

Cohesive zone model

A natural way to model GB is to use cohesive zone models (Xu
and Needleman (17); Nguyen, et al. (18); Luther and K€onke
(19)). In this study, contact elements are used (ANSYS denomi-
nation: Contact172 and target170; ANSYS (20)). Cohesive ele-
ments are inserted between each grain (Fig. 2b). The cohesive
stresses (normal, s, and tangential, t) are linked to the relative

displacements by a linear law (Eq. [3]).

sDKn £ un tDKt £ ut: (3)

Cohesive element insertion can slightly modify the structural
response by changing its global stiffness. The initial slope of the
cohesive law must be carefully chosen. On the one hand, a too
small value of this parameter decreases the global stiffness of the
structure but, on the other hand, a large value could lead to
numerical instabilities. The influence of this parameter was inves-
tigated by Espinosa and Zavattieri (21) and Blal, et al. (7). It has
been demonstrated that for values above 1010MPa/mm the model
behavior is no longer affected by cohesive elements (Noyel, et al.
(22)). As a conclusion, in the present study, the normal stiffness
Kn and the initial tangential stiffness Kt0 are set to 10

10 MPa/mm.

Damage modeling

To model the progressive deterioration of the GB, the concept
of damage introduced by Kachanov (23) and described by
Lemaitre, et al. (24) is used and applied to the GB, which is con-
sidered as a single entity. A scalar variable D characterizes dam-
age. After each FEA, the damage rate is computed for each GB.

Due to the assumption of GB failure initiation, the variation
in the intergranular shear stress (ISS) during the FEA, Dt, is
used as a damage criterion. Figure 4 illustrates the evaluation of
this criterion. In this figure, a GB located in the area of maxi-
mum orthogonal shear stress is analyzed. Figure 4a represents
orthogonal shear stress distribution during the FEA (Time D

0.35). The distribution of the ISS along this GB is presented in
Fig. 4b. Figure 4c represents the evolution of the average value

Figure 3. Rolling cycle modeling (orthogonal shear stress distribution correspond to substep i + 1).

Figure 4. ISS and evaluation of the damage criterion. Figure 5. Damage application on the tangential cohesive stiffness.
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along the GB of this ISS during the FEA. The variation in this
average value, Dt, is used as a damage criterion.

The damage evolution is computed according to the damage
law (Eq. [4]). N represents the number of cycles; sr and m are
material parameters. In this first approach, the parameters defined
by Raje, et al. (6) (mD 10.1 and srD 6,113 MPa) are used.

dD

dN
D

Dt

sr 1¡Dð Þ

� �m

: (4)

Because the GB is considered as a single entity, the damage
variable D is applied on the tangential stiffness of all cohesive
elements along the GB (Fig. 5). A natural approach consists of
applying damage directly on the tangential stiffness (Eq. [5]),
but with this method the effect of damage on the ISS is insignif-
icant (Noyel, et al. (22)). Therefore, in this study, damage is
applied on the tangential stiffness but with a specific formula-
tion in order to have a direct impact on the ISS (Eq. [6]); the
method is presented in Noyel, et al. (22).

Kt DKt0 £ 1¡Dð Þ (5)

Kt DKt0 £
1¡D

1CD £ Kt06 Ks6 2ð Þ
, tD t0 £ 1¡Dð Þ

.Ks D Shear modulus 6 Grain size/: (6)

The computational time required for simulating all life
cycles would be excessive. Therefore, a “jump in cycles”method
similar to the one proposed by Lemaitre and Desmorat (25) is

used (Noyel, et al. (22)). Using this method, an FEA corre-
sponds to a block of life cycles. The main assumption is that
damage is constant during each block. This method is con-
trolled by the parameter DD, which represents the maximum
damage increment between two blocks. Its influence on the
numerical life cycles has been investigated and a convergence
has been found for DD D 0.1.

The main characteristics of the RCF model used in this arti-
cle are summarized in Table 1.

Microcrack distribution with isotropic elasticity

The damage value associated with each GB increases after each
FEA. When the damage value is equal to one at a GB, the GB is
considered as a microcrack. Figure 6 illustrates failure initia-
tion. The first microcrack (Fig. 6b) is located in the area of
maximum orthogonal shear stress (Fig. 6a). The position of
this first microcrack depends on granular geometry. This first
microcrack affects the stress distribution and, as a result, other
microcracks appear in a close area around the first microcrack
After initiation of several localized microcracks, some of them
coalesce to produce longer cracks (Fig. 6c).

The localization of first microcracks is in good agreement with
observations. The initiation depth of cracks was shown to corre-
spond to the depth of maximum orthogonal shear stress (Long-
ching, et al. (26); Qing, et al. (27)). However, it is difficult to
proceed to experimental and model comparisons of the number
of life cycles based on microcrack initiation. Indeed, RCF depends
on a large number of parameters: the influence of inclusions, sur-
face roughness, and operating conditions was investigated by
N�elias, et al. (28); recently, Rabaso, et al. (29) showed the influence
of material properties and heat treatments and Allison, et al. (30)
demonstrated the beneficial effect of compression residual stresses.
The influence of these parameters has to be modeled for accurate
prediction of the fatigue life. However, the order of magnitude of
life cycles described in Fig. 6 is in accordance with results mea-
sured by N�elias, et al. (28).

Table 1. Main characteristics of the model.

Hertzian Pressure P0 D 3,500 MPa a D 200 mm
Granular area Size: 800 mm £ 300 mm
Grain size 25 mm
Load case LHP D 1,200 mm Nsub D 48
Cycling DD D 0.1

Figure 6. Localization of first microcracks.
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Crystal anisotropy

This section focuses on crystal anisotropy modeling. The first
part proposes a description of elastic constitutive equations for
the single crystal. Then the polycrystal behavior is presented in
the second part. The material constants used in the article are
defined in this section.

Crystal elasticity

The global objective of the project is to analyze failure initiation
mechanisms in RCF. Therefore, the developed model could be
applied to rolling element bearings, gears, or railway tracks. For
each application, the material microstructure could be different
and composed of several constituents (for example, ferrite, austen-
ite, and martensite in bearing steels). In this article, a material
composed of a single constituent, ferrite (irona), is considered.

The elastic behavior of a body-centered cubic structure like
ferrite crystals is called cubic elasticity. The cubic elasticity stiff-
ness matrix [C] (Eq. [7]) is described by three independent
constants C11, C12, and C44. In the literature, different constants
can be found to model the ferrite behavior. The ones defined by
Courtney (31) are used (Table 2) The behavior of the ferrite sin-
gle crystal is anisotropic and, therefore, the measured Young’s
modulus depends on the loading direction. This Young’s mod-
ulus is minimum when evaluated in the directions x, y, z, of the
crystal coordinate system (directions [1, 0, 0], [0, 1, 0], and [0,
0, 1]), and maximum when evaluated in the direction [1, 1, 1]
of the crystal (Table 2).
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Polycrystal behavior

A polycrystal is composed of a number of randomly oriented
grains. A polycrystal containing a sufficiently large number of
anisotropic linear elastic grains with all possible orientations
(polycrystal without texture) exhibits an isotropic behavior at
the macroscopic scale. This macroscopic behavior (isotropic
linear elasticity) is described by two constants: the bulk modu-
lus K and the shear modulus G, for example. As a method for
calculating those two constants, strain can be assumed to be

uniform in the aggregate (Voigt’s method). Another method con-
sists of assuming stress to be uniform (Reuss’s method). For an
aggregate composed of cubic crystals, those constants have been
evaluated by Hill (32) and are expressed in Eqs. [8] and [9]

Kv DKr D
1

3
£ C11 C 2C12ð Þ (8)

Gv D
1

5
£ C11 ¡C12 C 3C44ð Þ

1

Gr
D

1

5
£ 4S11 ¡ 4S12 C 3C44ð Þ:

(9)

The expression of the Young’s modulus and Poisson’s ratio
can be deduced from the shear modulus and bulk modulus
(Den Toonder, et al. (33)) and estimations can be obtained as
for the material considered in the present article (Table 3).
Reuss’s and Voigt’s theories give lower and upper bonds for the
polycrystal Young’s modulus (Besson, et al. (34)).

Representative volume element analysis

There are two key issues when modeling the crystal anisotropy: (1)
evaluating whether the material model used for crystal elasticity is
representative of the macroscopic behavior of the polycrystal and
(2) determining the influence of the polycrystal size on its macro-
scopic behavior. In order to answer those two questions, the behav-
ior of an aggregate of crystals, the RVE, is investigated. It should be
noted that macroscopic engineering constants (i.e., Young’s modu-
lus, Poisson’s ratio), except the bulk modulus, are scale dependent.
If the RVE size is not large enough, these constants depend on the
distribution of grain orientation. When increasing the RVE size,
the values of these constants should become less sensitive to the
grain orientation and converge on macroscopic values of the
polycrystal. Examples of investigations on the influence of the size
of the RVE can be found in Ranganathan and Ostojastarzewshi
(35) and El Houdaigui, et al. (36).

In this section, differences between a 2D approach and a 3D
approach are discussed.

Numerical model and analysis method

In order to evaluate the Young’s modulus of the RVE, two
numerical models (depicted in Fig. 7) are used. The crystal or
grain shape corresponds to a polygon in the 2D approach
(Fig. 7a) and to a cube in the 3D approach (Fig. 7b). It has been

Table 2. Stiffness matrix components and young’s moduli of irona.

C11 C12 C44 Emin Emax

237 GPa 141 GPa 116 GPa 132 GPa 276 GPa

Table 3. Voigt and Reuss constants.

Gv Gr Kv D Kr Ev Er nv nr

88.8 GPa 74.0 GPa 173 GPa 228 GPa 194 GPa 0.281 0.313
Figure 7. RVE models–2D approach and 3D approach.
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verified that the grain shape does not affect the macroscopic
behavior. The RVE size is characterized by the dimensionless
parameter λ, which is equal to the number of grains along each
RVE edge.

The orientation of each grain in the RVE coordinate system
is characterized by the three Euler’s angles in the 3D approach
and by the first Euler’s angle in the 2D approach. Each angle is
randomly defined between 0� and 90�. An example of crystal
orientation for the 2D approach is given in Fig. 8. The parame-
ter u corresponds to the first Euler’s angle.

The method used to evaluate equivalent isotropic elasticity
constants of the RVE is illustrated with the 2D approach. A
uniaxial tension load case is simulated. Boundary conditions
applied on the RVE are illustrated in Fig. 7a and Table 4. Con-
cerning the 3D model, boundary conditions applied in the z
direction are similar to those applied in the y direction.

Due to the boundary conditions applied on the RVE, the
right and upper edges remain straight (Fig. 9). On the right
edge, the displacement in the x direction, dx, is equal to the pre-
scribed value (2 mm in the example). On the upper edge, the
resulting displacement in the y direction, dy, is constant and
evaluated after the FEA (0.326 mm in the example). The reac-
tion force Fx due to the applied displacement dx is also evalu-
ated after the FEA (352 N in the example).

Due to the random distribution of grain orientation, stresses
and strains are not uniform in the RVE (Fig. 9). However, val-
ues of equivalent macroscopic stresses and strains can be
defined and macroscopic engineering constants can be com-
puted (Table 5).

2D approach: Results and discussion

The preliminary step consists of investigating the influence
of mesh size on the macroscopic behavior. The number of
elements along a grain edge controls the mesh size. The
Young’s modulus and Poisson’s ratio evaluated with three

different meshes are listed in Table 6. These values depend
slightly on the mesh so that a mesh with four elements
along each edge will be used.

The influence of the RVE size on its macroscopic behavior is
depicted in Fig. 10. The Young’s modulus and Poisson’s ratio
have been evaluated for four RVE sizes: λ D 4, 8, 16, and 32.
For each size, 10 simulations are performed with different ran-
dom grain orientations. The results presented in Fig. 10 illus-
trate a substantial scattering around a mean value. Two
conclusions can be drawn from these results: (1) as expected,
when the RVE size increases, the scattering of the results
decreases. With the greater size (λ D 32, which corresponds to
an RVE containing around 1,024 grains), the Young’s moduli
evaluated with each orientation are very close to each other;
and (2) with regard to the values, the results are unexpected.
The average value of the Young’s modulus is around 170 GPa,
less than the expected result: the Young’s modulus of steel is
known to be around 200 GPa. Moreover, the value should be
between the Voigt value (228 GPa) and the Reuss value
(194 GPa). Similar conclusions can be drawn with the Poisson’s
ratio, with an average value around 0.19. An analysis of this
unexpected result is given in the next paragraph.

Figure 8. RVE 2D crystal orientation.

Table 4. 2D boundary conditions.

Edge x D 0 yD 0 x D L y D L

Boundary conditions Ux D 0 Uy D 0 Ux D dx Uy free but constant
Output Reaction force Fx dy

Figure 9. Mesoscopic normal stress, sx, distribution (MPa).

Table 5. RVE equivalent properties.

Macroscopic Components

ex D
dx
L
D 2 mm

200 mm
D 0:01

ey D ¡
dy

L
D ¡ 0:326 mm

200 mm
D 0:00163

sx D
Fx
A D 352 N

0:2 mm2; D 1760 MPa

Macroscopic Engineering Constants Young’s modulus:

ED sx

ex
D 176 GPa Poisson’s ratio: nD ¡

ey

ex
D 0:163

Table 6. Mesh influence on macroscopic behavior.

Mesh: Number of Elements along Each GB E (GPa) n

2 176.09 0.1624
4 176.00 0.1628
8 175.98 0.1629
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The load case used to evaluate the Young’s modulus of
the RVE corresponds to a uniaxial tensile load case. There-
fore, the evaluated Young’s modulus corresponds to the
modulus in the x direction of the RVE. The behavior of the
single crystal is anisotropic and, therefore, its Young’s mod-
ulus depends on the direction. For the material used in this
article, the minimum value of this Young’s modulus is
132 GPa in the directions x, y, z of the crystal coordinate
system (directions [1, 0, 0], [0, 1, 0], and [0, 0, 1]), and the
maximum value is 276 GPa in the direction [1, 1, 1] of the
crystal (Table 3). In the 2D approach presented in this sub-
section, crystal orientation is defined by only one rotation
around the z-axis (Fig. 11). Therefore, the direction of the
maximum Young’s modulus does not appear in the 2D
approach, which explains why the Young’s modulus of the
RVE is less than the expected value.

In order to justify the evaluated value of the RVE Young’s
modulus, 170 GPa, the influence of the 2D crystal orientation
(parameter u in Fig. 11) on crystal uniaxial behavior is ana-
lyzed. The crystal Young’s modulus in the x direction of the
RVE is given in Eq. [10]. This equation comes from the classical
formula used for general orthotropic composite materials (Ber-
thelot (37)) and is adapted to cubic material. Figure 12 illus-
trates the evolution of that Young’s modulus related to the
crystal orientation (according to Eq. [10]). The maximum value
is 221 GPa when u is equal to 45�. The average value around
170 GPa for the RVE Young’s modulus is in accordance with
the curve represented in Fig. 12: the Young’s modulus of each

crystal in the x direction of the RVE is greater than 132 GPa
and less than 221 GPa.

1

Ex uð Þ
D

cos4u

E
C

sin4u

E
C cos2u sin2u £

1

G
¡ 2

n

E

� �� �

: (10)

3D approach: Results and discussion

The influence of the RVE size on its macroscopic behavior is
depicted in Fig. 13. As with the 2D approach, the scattering
decreases when the size increases, but the average value is in
accordance with the expected value. With an RVE size corre-
sponding to λ D 12, the average value of the Young’s modulus
is equal to 207.5 GPa and the Poisson’s ratio is around 0.3.
Therefore, the material constants defined in are representative
of the macroscopic behavior of a polycrystal.

2D approach: Influence of the load case

The actual RCF model is a 2D model, but previous subsections
on the RVE behavior illustrate the limitations of a 2D model.
Nevertheless, the evaluated Young’s modulus depends strongly
on the load case when the 2D approach is used. The load case
used in the previous 2D approach corresponds to a uniaxial (x
direction) tensile load case and the evaluated macroscopic
Young’s modulus depends only on the crystal behavior (crystal
Young’s modulus) in the x direction of the RVE. In order to be
dependent on the crystal behavior in all directions, the

Figure 10. Young's modulus of the 2D RVE.

Figure 11. Crystal and RVE coordinate system.

Figure 12. Influence of orientation on the crystal Young’s modulus.

Figure 13. Young's modulus of the 3D RVE.
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macroscopic Young’s modulus is evaluated with the triaxial
tensile load case illustrated in Fig. 14.

The RVE Young’s moduli evaluated with this load case are
summarized in Fig. 15. These values are closer to the values
from the 3D approach. Yet, in that load case, the modulus of
the RVE depends on the crystal modulus in the three direc-
tions. Even if not all grain orientations are represented in the
current 2D RCF model, the global behavior can be considered
representative of the real behavior, and the influence of cubic
elasticity will be investigated in the next section.

Application of crystal anisotropy to the RCF model

The cubic elasticity material model analyzed in the previous
section is implemented in the RCF model. The orientation of
each grain of the granular area is randomly defined.

Influence of anisotropic elasticity

The influence on the global behavior (displacement) is first
analyzed and then the influence on local behavior (stress) is
analyzed. An undamaged model with a Hertzian pressure cen-
tered on the granular area is used for this analysis.

As expected, anisotropy has almost no influence on the
global behavior of the structure. Deformations (in the y direc-
tion in the Fig. 16) are similar assuming isotropic elasticity or
assuming anisotropic elasticity. Indeed, in the previous section,
the global behavior of a 2D RVE subject to a triaxial tensile

load case is close to the macroscopic behavior. Moreover, ani-
sotropic elasticity is applied only on the granular area, which
represents a small part of the model, which explains the small
difference with isotropic modeling.

At the grain scale, anisotropic elasticity generates a heteroge-
neous stress distribution on the local behavior (Fig. 17). The
maximum stress values are higher with anisotropy than with
isotropy and concentrated near grain boundaries and particu-
larly at triple junctions.

Figure 15. Young’s modulus of the 2D RVE–triaxial load case.

Figure 16. Vertical (y direction) displacements (mm).

Figure 17. Influence of anisotropy on shear stress (MPa).

Figure 18. Influence of mesh size on maximum stresses.

Figure 14. 2D approach–triaxial tensile load case.
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Analysis of mesh size influence

The previous analysis concerning mesh size demonstrated its low
influence on the global behavior of the RVE. However, no investi-
gations were performed regarding the influence on the local

behavior. This section focuses on the influence of mesh size on (1)
the local stress in the solid and (2) the ISS along the GB.

Anisotropy generates stress concentrations at triple junctions
as illustrated in Fig. 17b. Figure 18 shows the evolution of the
maximum values of the shear stresses (orthogonal and maxi-
mum) depending on the mesh size. The maximum values of
those shear stresses do not reach a plateau when increasing the
number of elements. With anisotropic elasticity, stress singular-
ities appear at triple junctions. This phenomenon was investi-
gated in the past. For example, Tvergaard and Hutchinson (38)
analyzed stress singularities at triple junctions of polycrystalline
ceramics. They showed that triple junctions exhibit a singularity
when the ceramic is subject to anisotropic thermal expansion.
They also demonstrated that anisotropic elasticity could gener-
ate stress singularities. Recently, Fallahi and Ataee (39) investi-
gated the influence of crystal orientation on stress distribution
near a triple junction by a finite element approach.

In the present approach, the damage criterion is computed
not with the solid stress but with the ISS and particularly with
the average value of this ISS (Fig. 4). In order to determine the
influence of the mesh size on the ISS, the first rolling contact
cycle is simulated. Because only the first FEA cycle is per-
formed, the structure is undamaged.

Results evaluated with a mesh size corresponding to four
elements along each GB are presented in Fig. 19. A GB located
in the area of maximum orthogonal shear stress (isotropic elas-
ticity) is analyzed. Distribution of this ISS at Time D 0.35 is
illustrated in Fig. 19a. Anisotropy generates an irregular distri-
bution along the GB. Figure 19b depicts the evolution of the
maximum and minimum value of the ISS along this grain
boundary during the first FEA.

The influence of the mesh size on this distribution is illus-
trated in Fig. 20. By increasing the number of elements along
the GB, the distribution becomes smoother in the center of the
GB; however, stress singularities can still be observed at triple
junctions. The average values of the ISS are summarized in
Table 7. This average value appears to be globally independent
of the mesh size and can therefore be used as a damage

Figure 20. Mesh influence on ISS.

Figure 19. Influence of anisotropy on shear stress.

Table 7. Influence of mesh size on the average value of the ISS.

Mesh Size: Number of Elements along the GB 4 8 12 16

Average value of ISS (MPa) 935.7 937.5 938.1 937.1

Figure 21. Microcrack distribution–influence of anisotropy.
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criterion. To conclude, anisotropic elasticity could be imple-
mented in the model despite stress singularities at triple junc-
tions, and a mesh with four elements along each GB will be
used with a sufficient level of accuracy.

Influence of crystal anisotropy on cracks initiation

Two simulations have been performed that differ by a different
random grain orientation. Figure 21 illustrates the distribution
of microcracks obtained with both simulations. For each simu-
lation, the first microcrack is associated with a different grain
boundary, but it is always located in the area of maximum
orthogonal shear stress. Moreover, after coalescence of several
microcracks, distributions are similar considering crystal
anisotropy (Fig. 21) or assuming isotropic elasticity (Fig. 6).

Figure 21 highlights the weak effect of crystal anisotropy on
microcrack distribution. However, the number of cycles corre-
sponding to the appearance of microcracks is strongly influenced
by crystal anisotropy (Fig. 22): (1) by increasing the stress in the
structure, the introduction of anisotropic elasticity decreases the
number of cycles corresponding to microcrack initiation and (2)
the scattering results due to different grain orientation are repre-
sentative of fatigue behavior. Therefore, anisotropic elasticity has
to be included in future developments of the model.

Conclusion

This article focuses on the implementation of crystal anisotropy
in a numerical granular cohesive RCF model. The analysis of a
3D RVE proves that constants used for the cubic elasticity
model are representative of the elastic macroscopic behavior of
steel. With regard to implementation of cubic elasticity in the
RCF model, the stress distribution is very different from isotro-
pic elasticity and is highly mesh dependent. This mesh depen-
dency comes from the generation of stress singularities at triple
junctions. Nevertheless, the damage criterion used in the model
is computed not from solid stresses but from the average value
of ISS. This last value has been proved to be globally mesh inde-
pendent and therefore can be used as a damage criterion.
Finally, the influence of crystal anisotropy on life cycle has
been highlighted and the scattering results are representative of
the fatigue behavior. Therefore, anisotropy has to be taken into
account in future developments of the model.

The modeling of grain anisotropy is one of the first improve-
ments of the initial model to make it as representative as

possible of reality. The development of the model has to be
continued. Future investigations will concern the modeling of
grain behavior (influence of plasticity, for example) or damage
modeling: in the current model, damage material parameters
have been extracted from a torsion signal-to-noise curve and
are therefore are representative of a macroscopic scale. The use
of those parameters at the mesoscopic scale has to be validated
or modified. Experimental validation is an important stage in
the development of the model. However, RCF depends on a
large number of parameters and the current model is a “per-
fect” model, without friction, surface roughness, or material
heterogeneities. Therefore, those defects have to be modeled so
that the numerical results can be compared with experimental
results. This will be a next stage in the project.
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