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Abstract

Land use regression models are an established method for estimating spatial variability in gaseous
pollutant levels across urban areas. Existing LUR models have been developed to predict annual
average concentrations of airborne pollutants. None of those models have been developed to
predict daily average concentrations, which are useful in health studies focused on the acute
impacts of air pollution. In this study, we developed LUR models to predict daily NO, and NOy
concentrations during 2009-2012 in the Brisbane Metropolitan Area (BMA), Australia’s third-largest
city. The final models explained 64% and 70% of spatial variability in NO, and NO,, respectively, with
leave-one-out-cross-validation R? of 3-49% and 2-51%. Distance to major road and industrial area
were the common predictor variables for both NO, and NOy, suggesting an important role for road
traffic and industrial emissions. The novel modeling approach adopted here can be applied in other

urban locations in epidemiological studies.

Keywords: Air pollution, Land Use Regression (LUR) model, Nitrogen dioxide (NO>), Oxides of
nitrogen (NO,), Urban area.
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1. Introduction
Exposure to ambient air pollution is an important public health concern. A variety of diseases such as

lower respiratory infection, lung cancer, chronic obstructive pulmonary disease (COPD), stroke and
ischaemic heart disease are linked to ambient air pollutants (WHO, 2014). In order to accurately
assess people’s exposure to air pollutants in epidemiological studies, it is important to capture the
spatial variability in concentrations. Although air quality monitoring networks can capture large-scale
spatial variability, their sparseness means that they may not capture variability across spatial areas

of interest (e.g. cities) in epidemiological studies (Hoek et al., 2008).

To overcome this limitation, Land Use Regression (LUR) has been widely used to model spatial
variability in air pollutants (Hoek et al., 2008). The LUR modeling method includes air quality
monitoring data from fixed points along with geographical predictor variables (e.g., land use area,
road length, and population density) to predict the pollutant concentration at unmeasured locations
(Hoek et al., 2008). With the rapid development of geographic information system (GIS) to calculate
spatial predictors, LUR has emerged as an efficient tool for modeling human exposure to ambient air
pollutants (Beelen et al.,, 2013). LUR models have been applied successfully to predict various
gaseous (e.g., NO; and NOy) and particle (e.g., PM2s and PMyg) pollutants, incorporating a number of
predictor variables such as population density, land usage, and traffic characteristics in urban areas
(Hoek et al., 2008; Johnson et al., 2010). The performance of LUR models for estimating NO, and NOy
concentrations has been found to be better than a number of GIS-based interpolation methods, such
as kriging and inverse distance weighting, as most GIS interpolation methods create a smooth
concentration surface without considering underlying land use information (Lee et al., 2014; Meng

et al., 2015).

LUR models have been developed to estimate long-term exposure to NO, and NOy in China (Meng et
al., 2015), Korea (Kim and Guldmann, 2015), Taiwan (Lee et al., 2014), and Norway (Madsen et al.,
2011), among others. In the European Study of Cohorts for Air Pollution Effects (ESCAPE) project,
NO; and NOx LUR models were developed and applied in 36 study areas across Europe (Beelen et al.,
2013). Allen et al. (2011) found that the transferability of a location-specific LUR models is often
limited because of poor model performance, and that better performance has been observed in
locally-calibrated LUR models. Such models for NOy, PM,s and benzene perform better when the

number of monitoring stations also is increased (Johnson et al., 2010).

To date, most LUR models in different geographic locations were developed to predict annual
average concentrations of NO, and NOy. Therefore, LUR models capable of predicting daily average

concentrations would be useful in health studies focused on acute effects of air pollution. Moreover,
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there have been very few investigations of within-city NO, and NOx LUR models in Australia
(Dirgawati et al., 2015; Rose et al., 2011). In this study, we aimed to address the knowledge gaps
outlined above by developing and applying LUR models to predict the daily average ambient NO;

and NOy concentration across the Brisbane Metropolitan Area (BMA), in Queensland, Australia.

2. Materials and methods
Brisbane is the third-largest city in Australia, and its metropolitan area (BMA) is one of the fastest

growing urban areas in Australia, with a population of 2.3 million in 2014 (ABS, 2015). The city is
located on the Brisbane River, in the south-east corner of the state of Queensland (Figure 1). BMA
has a subtropical climate with relatively small seasonal variation, and the monthly mean
temperatures during the warmer (November — April) and cooler (May — October) months are 29.9°C

and 24°C, respectively (http://www.bom.gov.au). The major urban pollution sources in the BMA are

vehicular traffic and local non-traffic sources, mostly located in the lower reaches of the Brisbane
river, approximately 15-18 km NE of the Central Business District (CBD). The main local non-traffic
sources of air pollutants in Brisbane include aviation, a seaport, and other local industries (e.g., oil

refineries).

2.1 Air pollution monitoring data
In total, 31 sites were selected for this study across the BMA over 2009 — 2012. The sites consisted of

6 long-term and 25 short-term monitoring locations (Figure 1). The location and data availability for
each site is shown in Figure 2. All short-term sites were schools located between 1.5 and 30 km from
Brisbane city. Traffic emissions were the major emission source to the nearby sites, with significant
variability of hourly averaged vehicle counts, ranging from 44 to 1217 vehicles/hour (Laiman et al.,
2014). Further details regarding the UPTECH project and its design can be found in our previous
publication (Salimi et al., 2013). Long-term regulatory monitoring data were collected from the
Queensland Department of Environment and Heritage Protection (DEHP) (coded as sites R1 to R5)

(http://www.ehp.qld.gov.au/). DEHP provided hourly averaged NO, and NOx monitoring data. In

addition, short-term NO, and NOx monitoring data were collected at 20 (coded SO5 to S25) and 25
(coded SO1 to S25) sites, respectively, during the Ultrafine Particles from Traffic Emissions and
Children’s  Health  (UPTECH) project between October 2010 and August 2012

(https://www.qut.edu.au/research/research-projects/uptech). NO, data was not recorded at five

sites (S01-S05) due to data logging malfunction. Measurement campaigns were conducted at one
site at a time for two consecutive weeks. Also, a one-year-long ambient NO, and NO,x monitoring
campaign was conducted at an inner city site (526) as part of the UPTECH project. An outdoor NOy

monitoring station was located at each site. The NOx concentration was measured by an Ecotech NOy



90  analyzer (EC9841A). Zero checks were conducted using GasCal (Ecotech 1100) and a ZeroAir
91  Generator (Ecotech 8301LC) for the NOx analyzer. Span and zero checks were performed regularly.
92 More details on the data collection scheme and project design have been published previously
93  (Salimi et al., 2013). The NO; and NOx measurement method at the DEHP reference sites (R1 to R5)
94 used analogous methods (e.g. chemiluminescence approach. The sampling interval was 30 s.
95 Negative and zero values (2%) were considered missing and removed. All data was converted to

96 hourly averages for further analysis.
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99 Figure 1. The map (openstreetmap.org) shows the geographical location of short-term and long-term monitoring
100 stations across Brisbane Metropolitan Area (BMA), Australia.
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Figure 2. NO, and NO, monitoring campaign period and data availability at 31 sites. NO, data was not available at five
sites (S01-S05).

Four reference sites (R1, R2, R4, and R5) data were used to adjust temporal variability in short—term
monitoring sites (S01-S25), which is a similar approach to previous studies (Beelen et al., 2013;
Dirgawati et al., 2015; Hoek et al., 2002). R3 site was not considered for the adjusted average
calculation, as the data did not cover the entire period when the short—term monitoring was
conducted. Temporal variability in the short term sites was adjusted to eliminate uncertainties due
to the shortness of the measurement campaigns, as well as to calculate adjusted the yearly average
concentration of NO, and NOy, which is a similar approach to the one used in ESCAPE study (Beelen
et al.,, 2013). Adjusted hourly averaged NO, and NOy concentrations at the short—-term sites

(S01-S25) were calculated using following equation:

_ A(Long — term)

adj =g (Long — term) XS (short — term)

Where, Xaqj is the adjusted average concentration at a given short—term monitoring site, A is the
overall average concentration at the long—term sites for the entire period of short—term monitoring,

B is the average concentration at the long—term monitoring sites concurrent with the two—-weeks of
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monitoring at the short—term site (October 2010 — August 2012), and S is the hourly average

concentration at a the short—term site.

2.2 Predictor variable data
In total, 139 predictor variables were selected to develop LUR model. Table 1 summarizes all

predictor variables in 10 categories. Road length and land use variables were calculated in buffer
rings around each monitoring site (of which there were 22 — see Table 2), and other variables were

calculated at a single point.

Population density

The population density data were obtained from the Australian Bureau of Statistics (ABS) at a 1km?
grid across BMA (Australian Bureau of Statistics., 2014). The value of each cell represents Usual
Resident Population (URP) from the 2011 Census of Population and Housing.

Elevation

Elevation data (m above sea level) were obtained through the Shuttle Radar Topography Mission
(SRTM) data acquired by National Aeronautics and Space Administration (NASA) in February 2000.
SRTM data is distributed by the U.S. Geological Survey (USGS) and provides global ground surface
topography.

Land use data

We obtained data on natural and anthropogenic land use (spatial predictors) variables that have a
possible relation with measured NO, and NOyx concentrations. Land use variables were used to
improve the predictions of NO, and NO,, since their influence has been shown to be important in
other recent studies (Knibbs et al., 2014; Vienneau et al., 2013). Land use data were derived from
the Australian Bureau of Statistics census 2011. The land use types were classified into residential,
commercial, industrial, and open space ( the sum of water, parks and agricultural land) (Rose et al.,
2010). We generated 22 ring buffers (annulus buffers) from 100 m to 10 km around each monitoring
site using ArcGIS in order to capture sources of variability in NOyx concentrations over short and

longer distances (Table 1)

Road length
Roads length and classification were derived from the Transport and Topography product from the

Public Sector Mapping Agencies (PSMA), Australia (https://www.psma.com.au/). The data set

positional accuracy is £2 m in urban areas, 10 m in rural and remote areas, and attributed 99.09%
accuracy. A total, major, and minor road length in each buffer ring was calculated using ArcGlIS, as

summarized in (Table 1).
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Table 1. List of land uses predictor variables.

. . Spatial Point or
a
Variables category (units) resolution buffer b Data source
Distance to coast (km) - Point ArcGIS geoprocessing tools
Distance to port (km) - Point ArcGIS geoprocessing tools
Distance to airport (km) - Point ArcGIS geoprocessing tools
Distance to nearest major road (km) - Point ArcGIS geoprocessing tools
Distance to nearest minor road (km) — Point ArcGIS geoprocessing tools

PSMA Australia Transport and
Buffer Topography product

PSMA Australia Transport and
Buffer Topography product

Major road (km) -

Minor road (km) -

Population density (person/km?) 1x1km Point Australian Bureau of Statistics
Land use by type (km?) Mesh block?  Buffer Australian Bureau of Statistics
Elevation (m) 30m Point U.S. Geological Survey

3In total 139 variables were calculated in GIS, including 7 point variables (as shown in Table 2), 44 road length (major and
minor) buffer variables (2x22), and 88 land use (industrial, commercial, residential, and open space) buffer variables (4x22)
b 22 Ring buffers were created with radii of 100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 m, 800 m, 1000 m, 1200 m,
1500 m, 1800 m, 2000 m, 2500 m, 3000 m, 3500 m, 4000 m, 5000 m, 6000 m, 7000 m, 8000 m, and 10,000 m.

¢Land use type was classified in residential, commercial, industrial, and open space.

d A mesh block is the smallest geographical location in Australian Statistical Geography Standard.

2.3 LUR model development
In this study, the temporal model was set as log (NO, or NO,) = B, + s(yday) + factor(wday) +

g, where s(yday) is a smooth, periodic function of the day of the year, fit with penalised splines
(Eilers and Marx, 1996), and factor(wday) is a categorical term for the day of the week. The
temporal model does not adjust for any spatial effect, and makes use of the long-term monitoring
site data to estimate the city-wide annual trend. The residuals from the temporal model are then fit
with a Least Angle Regression approach (described below) with at most 50 land use variables added
sequentially. Of these 50 models, the one with the lowest Bayesian information criterion (BIC) is
selected, representing the minimum number of predictors to obtain the best model fit. This model is
then pruned with a backwards selection method that sequentially drops covariates from the model
whose 95% confidence intervals contain zero. The final spatial model therefore contains those
predictors which have led to a decrease in BIC but are found to be significant at 5%. The final
predictions were therefore constructed from adding the predictions from the spatial model of the
residuals to the predictions from the temporal model. The Least Angle Regression (LARS), a form of
forward stepwise regression (Efron et al., 2004), model started with the residuals from the temporal
model; at each step in the modelling process, the angle between the current residuals and each
predictor variable was calculated and a linear function of the variable with the least angle is added

to the model for the next step, up to a maximum of 50 included predictor variables (of the 139

7
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derived variables). LAR method was found as a robust stepwise regression with better performance
and faster computational capability compared to the traditional stepwise regression method (Capizzi
and Masarotto, 2011). As the buffers are annular in shape, the same land use variable can be
included in the model at multiple buffer sizes without including the same information multiple
times. As the land use variables did not vary temporally, and we assumed that the spatial and
temporal variability were separable (a necessary assumption due to the study design) they were only
included in the spatial residual model to account for changes over space. However, the inclusion of
the smooth effect of day of the year and day of the week in the temporal model ensures that the
long-term monitoring sites’ data explains the annual trend in NO, and NOx concentrations, which
enable the model to estimate the daily concentration of the pollutants. In this way, the spatial
variation in the schools’ baseline NO, and NOx concentrations can be identified, as the spatial effects
explain the remaining variability after accounting for the annual trend. This allows prediction for
every day of the year at every site, particularly at each short-term site for the 50 weeks of the year
when measurements were not taken. In order to allow each measurement location to contribute
equally to the estimates of the spatial effects, the data were weighted by the inverse of the number

of observations at that location.

Model choice was informed by calculating the Variance Inflation Factors (VIFs) (Kutner et al., 2004)
for each model and choosing the model which explained the most variability and for which all VIFs
were less than 5. Rogerson (2001) concluded that the VIFs>5 means potential multicollinearity in a
model. Thus the resulting model with VIFs < 5 contains the set of variables which maximize model fit
while reducing multicollinearity and rejected the noisy variables from the model To assess goodness
of fit among competing models, Akaike information criterion (AIC) was applied (Akaike, 1974). The
lower AIC values indicate the best model fit. Therefore, the variable which has limited contribution
to the model was dropped in order to choose a model that performs well with a small number of
covariates. Leave-one-out cross-validation (LOOCV) was performed to assess the final model
performance by fitting the model to N-1 stations and predicted the concentration at the left-out
station. The procedure was repeated N times and estimated LOOCV R? between observed and

predicted NO, and NOyx concentrations (Johnson et al., 2010).

3. Results

3.1 NOz and NOx measurement
The overall average NO, and NOx concentration at 31 monitoring station was 10 (SD 4) and 22 (SD

18) ppb, respectively. Figure 3 shows the overall average NO, and NOx concentrations at each site. It
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should note that adjusted concentrations were applied in short-term sites (S01-525).
shows the average hourly NO, and NOyx concentration distribution over the whole study period.
More than 75% of NO, and 60% of NOy concentrations were below 16 and 25 ppb, respectively, as
shown in Figure 4. The NO, and NOy concentration range (maximum — minimum)/mean ratios were
148% and 369%, respectively, which indicates relatively high spatial variability between investigated

sites. Analysis of variance (ANOVA) tests at all sites found that the average daily NO; and NOy

concentrations were significantly different (p<0.001).

Figure 3. NO; and NO, concentrations recorded at 31 sites. The solid circle symbols inside the boxplot represent average

concentrations.
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Figure 4. Hourly averaged NO, and NOy concentrations over the whole study period.

3.2 Model predictor variables

Table 2 summarizes the data of all 139 predictor variables, separated into 22 buffer ring and 7 point
categories at 31 monitoring stations. Commercial and residential areas were observed in all buffer
radiuses, whereas, the industrial areas were not available below 300 m buffer. Industrial areas were
located at a large extent beyond 1000 m buffer. The statistics of land use areas show that the most
of the sites were located in the residential and commercial land use category. Commercial area
density was higher (= 2.93 km?) outside the 3000 m buffer. Open space areas that include water,
park, and agricultural land were not present in 100 m buffer range at any of the sites. Open space
areas were high (> 2.32 km?) outside the 1500 m buffer radius. Both major and minor roads were
present in all buffers. The average distance of the monitoring sites to the major and minor roads
were 1.67 (SD 1.77) and 0.21 (SD 0.28) km, respectively. Overall average population density at the
study sites was 2,103 (SD 1,179) persons per km?, ranging from 217 and 6,216 persons per km?. The
population density was higher in the inner-city area sites, as expected, compared to urban
background sites. The average distance to the port and airport to the monitoring sites were 21.8 (SD
10.4) and 13.1 (SD 9.94) km, respectively, which indicate a very limited contribution from the airport
and port areas to the recorded data. Figure 5 shows the relationship between land use variables and

ring buffer radius across 31 sites.

10
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Table 2. Summary statistics of the buffer (A) and point (B) predictor variables at 31 monitoring sites.

A. Predictor variable with buffer

Order Buffer Commercial area (Km?) Industrial area (Km?) Open space area (Km?) Residential area (Km?) Major road length (Km) Minor road length (Km)

(m) Mean SD Min  Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max
1 100 0.02 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.00 0.03 002 010 0.00 0.42 0.10 0.16 0.00 0.70
2 200 0.05 0.03 0.00 0.13 0.00 0.00 0.00 0.02 0.01 0.02 0.00 0.08 0.06 0.03 0.00 0.13 0.07 024 0.00 1.02 0.44 0.52 0.00 2,51
3 300 0.08 0.07 0.00 0.28 0.01 0.02 0.00 0.08 0.03 0.04 0.00 0.8 0.17 0.07 0.00 0.28 0.12 038 0.00 1.51 0.82 0.84 0.00 3.72
4 400 0.10 0.11 0.00 0.49 0.02 0.04 0.00 0.20 0.05 0.07 0.00 0.31 0.33 0.13 0.00 0.50 0.31 0.88 0.00 3.60 1.33 1.23 0.00 5.52
5 500 0.13 0.16 0.00 0.73 0.04 0.09 0.00 0.40 0.08 0.11  0.00 0.43 0.53 0.21 0.00 0.78 0.48 1.31 0.00 5.34 1.99 1.79 0.00 8.47
6 600 0.17 022 000 1.00 0.06 0.14 000 0.67 0.12 014 000 0.58 0.77 0.30 0.00 1.12 066 1.69 0.00 6.88 2.73 231 0.00 11.2
7 700 022 029 000 1.29 0.09 021 000 1.00 0.18 0.18 0.00 0.77 1.04 0.41 0.00 1.51 0.83 2.04 0.00 8.07 3.54 3.00 0.00 14.7
8 800 028 036 0.00 1.57 0.12 029 000 1.36 0.25 0.24 0.00 1.02 1.33 0.53 0.00 1.98 1.06 248 0.00 9.93 4.63 3.92 0.00 18.8
9 1000 041 051 0.00 218 021 046 000 212 043 038 0.01 1.66 2.02 0.80 0.00 3.06 1.63 345 0.00 134 7.03 5.73 0.00 26.8
10 1200 0.58 0.69 0.00 2.88 0.33 0.69 0.00 3.02 0.69 0.52 0.07 2.36 2.80 1.13 0.00 4.34 2.50 4.73  0.00 18.4 10.2 7.79 0.00 34.1
11 1500 0.88 096 0.00 4.19 0.59 1.19 0.00 4.99 1.17 0.83 0.22 3.65 4.18 1.69 0.00 6.60 3.98 6.18 0.00 23.9 15.8 11.7 0.97 53.2
12 1800 1.24 126 0.00 5.41 0.94 1.80 0.00 7.63 1.82 1.27 0.33 5.29 5.79 231 0.00 9.13 5.89 8.02 0.00 30.4 22.4 16.0 2.12 75.4
13 2000 150 1.46 0.00 6.12 125 228 0.00 9.70 232 155 042 650 7.01 2.78 0.00 11.0 731 930 000 343 27.4 18.9 2.83 88.2
14 2500 220 2.02 0.00 844 223 366 000 158 391 241 082 110 10.5 4.10 0.00 16.5 113 119 0.00 44.0 423 26.4 6.49 117.6
15 3000 293 246 0.00 102 342 526 000 228 589 334 169 16.0 14.8 5.53 0.05 22.7 155 145 0.00 525 58.6 34.2 9.77 151.7
16 3500 3.72 3.00 0.02 121 491 6.93 0.03 29.7 8.11 425 2.50 20.4 20.1 7.02 0.71 31.1 20.9 17.5 0.00 63.6 78.7 43.0 15.6 190.3
17 4000 4.66 3.52 004 14.2 6.71 872 0.13 36.9 10.7 533 3.30 25.9 26.2 8.81 2.56 40.3 27.4 215 0.00 82.5 101.7 52.7 22.0 229.0
18 5000 6.90 454 0.27 185 10.8 125 0.24 51.8 17.2 8.04 5.64 39.5 40.5 12.58 7.42 60.0 43.3 294 0.00 1146 153.3 70.1 36.6 3129
19 6000 9.77 5.74 0.78 246 15.6 15.8 0.25 63.4 25.5 106 10.3 55.5 57.4 16.25 17.44 82.3 59.6 37.0 0.00 149.2 214.3 92.5 47.3 416.1
20 7000 13.4 7.3 1.7 312 210 186 04 76.8 364 143 165 801 76.2 20.3 254 1071 780 464 000 1925 2839 116.6 60.0 518.9
21 8000 16.8 8.9 22 378 267 213 05 87.5 49.9 189 22,6 108.0 97.8 24.2 379 1341 97.1 555 0.00 2401 358.3 1437 763 636.8
22 10000 23.7 11 4 48.1 39.0 27.8 217 1119 85.0 31.0 38.2 1743 148.9 33 68 201.8 1364 712 811 318.7 533.2 1924 1244 891.0

11



241

B. Point predictor variable

Order Predictor Variable Mean SD Min Max
1 Elevation (m) 30.65 18.41 5.00 65.00
2 Distance to Coast (Km) 16.52 10.63 3.00 4591
3 Distance to Major Road (Km) 1.67 1.77 0.01 9.56
4 Distance to Minor Road (Km) 0.21 0.28 0.02 1.41
5 Distance to Port (Km) 21.77 10.38 6.86 49.87
6 Distance to Airport (Km) 13.05 9.94 0.18 40.00
7 Population Density (person/Km2) 2103 1179 217 6216
242
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245 Figure 5. Relationship between land use variables and ring buffer radius across 31 sites. Each line correspondence to a

246 site, and the y-axis is in the log scale.

247

248 3.3 LUR model result
249
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The final NO; and NOx models are shown in Table 3. The selected NO, model includes population
density, open space area in the 0 — 100 m buffer, major road in 100 — 200 m buffer, industrial area in
400 — 500 m buffer, residential area in 100 — 200 m buffer, and distance to major road. The selected
NOx model includes open space area in 0 — 100 m and 600 — 700m buffer, industrial area in 100 —
200 m buffer, residential area 100 — 200 m buffer, distance to major road.. The fitted model for NO,
and NOy explained 63% and 70%, respectively, of spatial variability in daily NO, levels. The mean
LOOCV R? for the fitted NO; and NOyx model across BMA was 23% and 27%, respectively. We
conducted LOOCYV for the model evaluation for each site across BMA. The LOOCYV is the best-suited
approach for the model evaluation in this study as it leaves out all data from an entire site when
predicting the concentration at that site. In this way, we were able to evaluate the performance in
the spatial locations across BMA. The overall average LOOCV R2 for the fitted NO, and NOx model
was 23% (range: 3-49%) and 27% (range: 2-51%), respectively. The LOOCV R? was less than 10% at
seven short-term sites indicating that those sites have characteristics which are not common when
compared to the remaining sites and therefore result in poor predictive performance. The models
predict overall NO, and NOx concentration on each day of a year (Figure 6). The partial effect of the
modeled smooth splines ranged between -0.4 and 0.4, which are 0.67 and 1.49 in the normal scale,
respectively, centered around the average value of zero (or one in the normal scale) (Figure 6).
Partial effects for both NO, and NOy were the highest between day 150 (May) and 240 (August) of
the year. Figure 7 shows the relation between modeled and fitted daily average concentration of the
pollutants. Figure 8 shows the predicted NO, and NOx concentration at each day of the year at each

site.

To investigate the LUR model performance without long-term data, the model was run with data
from only 25 short-term sites. The results showed the adj-R? of 33.6% for NO, and 33% for NO,,
which is approximately 50% reduction of the model performance compared to the original model

that included both long-term and short-term sites data.
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Table 3. Parameter estimates, lower and upper bounds of their 95% confidence intervals, and variance inflation factors.

2

Term Buffer Estimate 2.5th 97.5th Partial? R2 (adj) R2LOOCV3
A. NO,

Day of the year? - - - -

Day of the week? - - - -

Intercept - -0.48 -0.51 -0.45

Open area (km?2) 100-200 -7.20 -8.46 -5.94 43%

Population Density

(person/Km?) - 1.15E-04 1.04E-04 1.26E-04 40%

Major road (km) 100-200 1.88 1.82 1.94 46% 64% 23 (3-49)%
Industrial area (km2) 400-500 1.74 1.54 1.93 43%

Residential area (km?) 100-200 -1.18 -1.61 -0.76 43%

Distance to major road (km) - 0.01 0.01 0.02 44%

B. NOy

Day of the year - - - _

Day of the week - - - -

Intercept -0.57 -0.63 -0.52

Open area (km2) 0-100 25.25 23.54 26.95 53%

Industrial area (km?) 100-200 11.00 8.76 13.24 51% 70% 27 (2-51)%
Open area (km?2) 600-700 -1.79 -2.39 -1.18 51%

Residential area (km2) 100-200 0.65 0.07 1.24 52%

Distance to major road (km) - 1.95E+04 1.91E+04 2.00E+04 60%

1Day of the year and day of the week term represented the temporal model (see section 2.3)

2 Spatial LUR model for NO, and NO, and estimated partial R?

3Leave out all data from an entire site when predicting the concentration at that site
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287 Figure 6. Smooth annual trend term (year of the day) from LUR model (solid line) and its 95% confidence interval (dotted
288 region). Partial effects are the contribution of that explanatory variable to the fitted value.
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293 Figure 7. Observed vs. fitted values of average daily NO, (A) and NOy (B) concentration.
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Figure 8. Observed (open circle) and predicted (solid line) NO, (A) and NO, (B) concentration at each day of the year
(with 95% prediction interval, dashed lines) at each location.
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4. Discussion
In this study, we developed LUR models to predict average daily NO, and NO, concentrations in the

Brisbane Metropolitan Area, Australia from 2009 —2012. We found the best LUR models for NO; and
NOyx explained 64% and 70% of spatial variability, respectively. This performance falls within the
range of many recent studies, which varied between 53% — 98% for NO; and 48% — 91% for NOy (as
shown in Table 4 and Table 5.The ESCAPE study developed 36 LUR models for NO, and NOy for 36
European cities (Beelen et al., 2013). The adjusted R? ranged from 59% (Marseille, France) to 90%
(Albacete-Valencia, Spain) for NO,, and 49% (Basque Country, Spain) to 91% (London, UK) for NOy
(Beelen et al., 2013). In addition, Hoek et al. (2008) reviewed LUR models for NO, and NOy from the
year 1997 to 2008, which showed significant variation between studies for NO, (R%: 51% — 90%) and
NOx (R%: 73% — 96%). It is clear from the previous studies that the LUR models performance varied
significantly in different geographical locations, which is due to unique characteristics of each study
site, variability in the effect of predictor variables on investigated pollutants, and the selection of an
LUR modeling method. Our LUR model included a day of the year term that estimated day to day
variations of NO, and NOy concentrations. It should note that the day of the year variable accounts
seasonality. Previous studies (Table 4 and 5) included only short-term monitoring campaign data in
the model to predict the annual average concentration of NO, and NOy; whereas, our model
included both long-term and short-term monitoring data and predicted the daily average
concentration of NO; and NOy. Overall, this study developed LUR models in estimating daily NO, and
NOx concentrations based on LARS in which periodic function of the day of the year fit with
penalised splines. The model under-predicted NO, and NOy concentration at a few short-term sites,
for example, the model underpredicted NO; concentration at S02, S11 and S13. The limited datasets
at short-term sites and the variability in local pollution sources are the most likely reasons of
uncertainty in the modeling performance at those sites. We note that our results, which are for daily
NO,, are not directly comparable to the majority of results in the LUR literature, which are for annual

NO..

In a recent investigation in Perth, Australia, Dirgawati et al. (2015) applied an LUR model for NO; and
NO,, which explained 69% (LOOCV R? 62%) and 75% (LOOCV R2 65%) of variation in annual mean
concentration, respectively. The modeling method and study design were identical to the ESCAPE
study. The major differences between our study and Dirgawati et al. (2015) study are the modeling
method and data collection scheme. Our LUR model is developed (based on LARS) to predict daily
NO, and NOyx concentration, incorporating six long-term air quality monitoring datasets, while

Dirgawati et al. (2015) applied the LUR model to predict annual NO, and NOx concentrations.

Lee et al. (2014) also applied an ESCAPE-based NO; and NOx LUR model to high-density traffic roads

and population area in an Asian city, Taipei, which explained 74% and 81% of the variation (Table 4
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and Table 5). The total area in BMA is 20 times higher than Taipei (786 km?) and has greater
pollutant dispersion due to strong sea breezes; those are some factors that could explain the
variability in model performance between the two studies. In a European city, Sabadell, Spain,
Aguilera et al. (2008) developed and applied annual NOx LUR model that explained a similar NOy
concentration variation (68%) to our study, although the LUR model in Spain incorporated 57 short-

term monitoring sites.

In our study, industrial areas and distance to major road, were predictor variables in the final NO,
LUR model, similar to the previous study in Perth, Australia (Dirgawati et al., 2015). Household
density, which was a predictor variable in LUR model in Perth city, was not applied in our study;
instead, we incorporated population density data in the model, and it was identified as a predictor
variable in the final LUR model for NO,. The ESCAPE study also found population density as a
predictor variable in the final NOx LUR model in 9 out of 36 European cities, including Norway,
Sweden, Lithuania, Netherlands, Belgium, Germany, Austria, Rome, and Greece (Beelen et al., 2013).
Population density is a key predictor variable in a large geographic location because it provides a

prediction of anthropogenic emission source contribution in that area.

In this study, distance to major road was one of the key predictor variables in the final model. It
represents the traffic-related contribution to the overall NO, and NOx concentration in BMA, and as
such was conspicuous in our models. Traffic related emission were identified as a predictor variable
in most previous studies, which is comparable to our findings (Table 4 and Table 5). In the ESCAPE
study, more than 65% of the final LUR models for both NO, and NO contained road length predictor
variable in different buffer radius out of 36 LUR models (Beelen et al., 2013). While road length
predictor variables were not included in a number of previous LUR models for NO, and NOy (Table 4
and Table 5), traffic counts were present in those final models, which aimed to capture the influence
of vehicle emissions. Our study applied road length data, instead of the traffic count data due to
their unavailability at all sites. The use of traffic counts in LUR models is often not possible due to the
logistics of collecting these data for all roads in a large study area (Hoek et al., 2008). Henderson et
al. (2007) incorporated road lengths and traffic count data separately in the LUR models in
Vancouver, Canada, and the results showed that the models differed by only 7% variability in the R?
values, which suggests that road length is an acceptable traffic emission proxy in LUR models for

nitrogen oxides.

Our LUR model predicted average daily NO, and NOx concentrations, which are an important
criterion in exposure assessment as part of health studies that examine short-term impacts of air
pollutants. The modeled annual trend in Figure 6 showed that during May to August (the cooler part

of the year), the NO; and NOy concentrations were the highest in BMA. The developed LUR model
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predicted daily average concentration variation over the year at both long-term and short-term
sites, and the daily modelled NO, and NOy concentration trends at short-term sites were agreed with
the long-term sites trends (Figure 8). Previously developed LUR models (Table 4 and Table 5) were
applied almost entirely to predict the annual average concentration of NO, and NO. Therefore, in
this study we focused on developing a framework for LUR models to estimating daily NO, and NOx
concentrations based on LARS, in which a periodic function of the day of the year and the day of the

week was fit with penalised splines.

The major limitation of this study is a limited number of monitoring site data (31 sites) compared
with other studies where authors used 57-80 sites (Aguilera et al., 2008; Madsen et al., 2011).
Another limitation of this study was that at short-term sites only two weeks of monitoring data were
collected, which is similar to the several recent studies (Beelen et al., 2013; Dirgawati et al., 2015). In
addition, monitoring campaigns at the short-term sites were conducted only once, which means in
one season. Although a limited number of monitoring sites (14 to 24) have successfully been applied
in Spain and Italy to develop LUR models (Beelen et al., 2013), a recent study in Spain showed that
LUR model R? and LOOCV-R? can be exaggerated when the number of measurement sites is small
and there are many predictor variables (Basagafia et al., 2012; Wang et al., 2012). This should
therefore be considered when interpreting our results. However, the LUR model in our study
incorporated six long-term continuous monitoring site data, which may increase the robustness of
the results presented here. BMA has very different weather pattern and ambient pollutant sources
compared to Europe, Asia, and America, due to its sub-tropical climate, relatively small seasonal
variability, good air dispersion due to the eastern sea breeze, limited point source industrial
emission sources. Nevertheless, the LUR models we developed explained NO, and NOx spatial

variability with reasonable performance.
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Table 4. Comparison of land use regression models for NO,

Study area T.otal Sampl!ng period at Predictor variables in final model R of the Mo.del . Reference
sites each site model validation

Oslo, Norway 80 Two weeks Altitude, total length high-traffic road (100 m), total length-medium traffic road 77% 63-71% Madsen et al. (2007)
(250 m), total length small and low-traffic roads (1000 m).

Tianjin, China 30 Daily average (2005 -  Heating seasons: Total length of major roads (2000 m), residential area (2000 m), 74% - Chen et al. (2010)

2006) population density, wind index, temperature

Non-heating seasons: Total length of major roads (2000 m), residential area (2000 61% - Chen et al. (2010)
m), agricultural land (500 m), population density, wind index

Los Angeles and 145 Two weeks Shortest distance to coastline, population density (2250 m), traffic density (250 m), 53 -54% 71-74% Wilton et al. (2010)

Seattle, USA length of primary roadway with limited access to highway (100 m), commercial
area (750 m), length of secondary roadway (25 m).

Oslo, Norway 80 Two weeks Altitude, total length high-traffic road (100 m), total length-medium traffic road 74% 67% Madsen et al. (2007)
(250 m), total length small and low-traffic roads (1000 m).

Edmonton, Alberta 50 Two 2-weeks period Industrial (2000 m), industrial (200 m), total road length (75 m), major road length 84% 77% Allen et al. (2011)

and Winnipeg, (50 m), population density (2500 m), latitude of the site

Canada

Southern California, 181 Two weeks Weighted traffic flow, weighted truck flow, atmospheric stability, local road length, 58 - 68% 55-64% Lietal. (2012)

USA minimum distance to local streets and major freeways, surface temperature,
transportation land use proportion, residential and transport land use proportion,
farm and open land use proportion.

36 European cities 14-80  Two weeks Predictor variables of 36 LUR models developed for 36 European cities are 58 - 92% 31-87% Beelen et al. (2013)

(ESCAPE study) available in the published article.

Taipei, Taiwan 40 Three 2-week period Major road length (25 m), low-density residential area (500 m), urban green area 74% 63% Lee et al. (2014)
(300 - 500 m), natural area (500 m).

Perth, Australia 43 Two weeks Traffic intensity on nearest road, household density (100 m), Industrial area (5000 69% 62% Dirgawati et al. (2015)
m), road length (50 m).

Seoul, Korea 37 One year Wind frequency weighted vehicle kilometer traveled, commercial area, residential 95- 98% - Kim and Guldmann (2015)
area (1000 m), Industrial area (4500 m), solar radiation, wind speed, temperature,
humidity, a number of dummy variables.

Veneto, Italy 40 Three 2-week period Building (5000 m), industry (1000 m), altitude, total road length (100 m), inverse 75% 64% Marcon et al. (2015)
distance to motorways

Shanghai, China 38 Annual average Major road length (2000 m), count of industrial sources (10000 m), agricultural 82% 75% Meng et al. (2015)
land (5000 m), population density

Great Britain 140 Annual average Low-density urban land (20,000 m), high-density urban land (200 m), length of 58% 51-54% Gulliver et al. (2016)
major roads (300 m), semi-natural land (200 m)

Rome, Italy 46 Two 2-weeks period Product of traffic intensity of the nearby road and inverse distance to the major 72% 69 Gaeta et al. (2016)
roads, total traffic count all roads (300 m), altitude, traffic intensity nearby major
roads, low-density residential land (1000 m)

Brisbane, Australia 26 20 short-term (two Day of the year, day of the week, population density, open space area (0 — 100 m), 64% 3-49% This study

weeks) and six long-
term (more than a
year) sites

major road (100 — 200 m), industrial area (400 — 500 m), residential area (100 —
200 m), distance to major road.
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Table 5. Comparison of land use regression models for NO,

Sampling period at

R? of the

Model

Study area Total sites . Predictor variables in final model - Reference
each site model validation
Oslo, Norway 80 Two weeks Altitude, total length high-traffic road (100 m), total length-medium traffic 73% 68 —78% Madsen et al. (2007)
road (250 m), total length small and low-traffic roads (1000 m).
Sabadell, Spain 57 Two months Altitude, land cover factor, land cover factor (500 m), road type. 77% 67 -75% Aguilera et al. (2008)
Newhaven, UK 25-285 Two months average Traffic intensity, proximity to ports and harbors, population and housing 63 -79% 28 -63% Johnson et al. (2010)
density, proximity to roadways, proximity to industrial sources.
Los Angeles and 145 Two weeks Shortest distance to coastline, population density (2250 m), length of 53-55% 45% Wilton et al. (2010)
Seattle, USA primary roadway with limited access to highway (75 m), length of
secondary roadway (25 m), traffic density (250 m)
Shortest distance to coastline, area of commercial and industrial land (900 55% 50% Wilton et al. (2010)
m), population density (2250 m), traffic density (250 m).
Los Angeles, USA 150 Three 2-week period Distance to the nearest highway, distance to coast, distance to commercial 48 - 70% - Mercer et al. (2011)
source, length of primary and secondary roads (50 m), length of primary
and secondary roads (400 m), population density (3000 m), intense land
use (3000 m)[2].
Oslo, Norway 80 Two weeks Altitude, total length high-traffic road (100 m), total length medium traffic 69% 59 -68% Madsen et al. (2007)
road (250 m), small and low-traffic roads (1000 m).
Southern 181 Two weeks Weighted traffic flow, weighted truck flow, atmospheric stability, minimum 64 - 66% 42 - 45% Lietal. (2012)
California, USA distance to local streets, surface temperature, transportation land use
proportion, farm and open land use proportion.
36 European 14-80 Two weeks Predictor variables of 36 LUR models developed for 36 European cities are 49 -91% 31-88% Beelen et al. (2013)
cities (ESCAPE available in the published article.
study)
Taipei, Taiwan 40 Three 2-week period Major road length (25 m), urban green area (300 m), urban green area (300 81% 75% Lee et al. (2014)
- 500 m), major road length (50 - 500 m), major road length (25 - 50 m),
natural area (500 m).
Perth, Australia 43 Two weeks Traffic intensity on nearest road, household density (100 m), Industrial area 75% 65% Dirgawati et al. (2015)
(5000 m), road length (50 m).
Brisbane, 31 25 short-term (two Day of the year, day of the week, open space area (0 — 100 m and 600 — 70% 2-51% This study
Australia weeks) and six long- 700), industrial area (100 — 200 m), residential area (100 — 200 m), distance

term (more than a
year) sites

to major road.
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5. Conclusion
LUR models for NOy in BMA were developed based on least angle regression method. The models

had reasonable predictive ability for average daily NO, and NOyx concentrations. Population density,
distance to major road, and land use variables in the final model captured 64% and 70%,
respectively, of NO, and NOy spatial variability. Our study is the first LUR study to predict daily
average NO; and NOy concentration in Australia. Our LUR modeling approach can be applied to other

ambient gaseous and particle pollutants in BMA and elsewhere.
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