
Hydrol. Earth Syst. Sci., 19, 209–223, 2015

www.hydrol-earth-syst-sci.net/19/209/2015/

doi:10.5194/hess-19-209-2015

© Author(s) 2015. CC Attribution 3.0 License.

Development of a large-sample watershed-scale hydrometeorological

data set for the contiguous USA: data set characteristics and

assessment of regional variability in hydrologic model performance

A. J. Newman1, M. P. Clark1, K. Sampson1, A. Wood1, L. E. Hay2, A. Bock2, R. J. Viger2, D. Blodgett3, L. Brekke4,

J. R. Arnold5, T. Hopson1, and Q. Duan6

1National Center for Atmospheric Research, Boulder CO, USA
2United States Geological Survey, Modeling of Watershed Systems, Lakewood CO, USA
3United States Geological Survey, Center for Integrated Data Analytics, Middleton WI, USA
4US Department of Interior, Bureau of Reclamation, Denver CO, USA
5US Army Corps of Engineers, Institute for Water Resources, Seattle WA, USA
6Beijing Normal University, Beijing, China

Correspondence to: A. J. Newman (anewman@ucar.edu)

Received: 17 April 2014 – Published in Hydrol. Earth Syst. Sci. Discuss.: 28 May 2014

Revised: 23 November 2014 – Accepted: 1 December 2014 – Published: 14 January 2015

Abstract. We present a community data set of daily forc-

ing and hydrologic response data for 671 small- to medium-

sized basins across the contiguous United States (median

basin size of 336 km2) that spans a very wide range of hy-

droclimatic conditions. Area-averaged forcing data for the

period 1980–2010 was generated for three basin spatial con-

figurations – basin mean, hydrologic response units (HRUs)

and elevation bands – by mapping daily, gridded meteoro-

logical data sets to the subbasin (Daymet) and basin poly-

gons (Daymet, Maurer and NLDAS). Daily streamflow data

was compiled from the United States Geological Survey Na-

tional Water Information System. The focus of this paper is

to (1) present the data set for community use and (2) provide

a model performance benchmark using the coupled Snow-

17 snow model and the Sacramento Soil Moisture Account-

ing Model, calibrated using the shuffled complex evolution

global optimization routine. After optimization minimizing

daily root mean squared error, 90 % of the basins have Nash–

Sutcliffe efficiency scores ≥ 0.55 for the calibration period

and 34 % ≥ 0.8. This benchmark provides a reference level of

hydrologic model performance for a commonly used model

and calibration system, and highlights some regional varia-

tions in model performance. For example, basins with a more

pronounced seasonal cycle generally have a negative low

flow bias, while basins with a smaller seasonal cycle have a

positive low flow bias. Finally, we find that data points with

extreme error (defined as individual days with a high fraction

of total error) are more common in arid basins with limited

snow and, for a given aridity, fewer extreme error days are

present as the basin snow water equivalent increases.

1 Introduction

With the increasing availability of gridded meteorological

data sets, streamflow records and computing resources, large-

sample hydrology studies have become more common in the

last decade or more (i.e., Nathan and McMahon, 1990; Perrin

et al., 2001; Maurer et al., 2002; Beldring et al., 2003; Merz

and Bloschl, 2004; Andreassian et al., 2004; Lohmann et al.,

2004; Duan et al., 2006; Oudin et al., 2006, 2010; Samaniego

et al., 2010; Martinez and Gupta, 2010, 2011; Nester et al.,

2011, 2012; Livneh and Lettenmaier, 2012, 2013; Kumar et

al., 2013; Oubeidillah et al., 2013). Within the United States

there have been several studies to produce large-sample hy-

drometeorological data sets (Maurer et al., 2002; Lohmann et

al., 2004; Duan et al., 2006; Thornton et al., 2012; Xia et al.,

2012; Livneh et al., 2013). Many of these data sets provide

gridded data and may need to be further processed by the

end user for their specific hydrologic model configuration.

Published by Copernicus Publications on behalf of the European Geosciences Union.



210 A. J. Newman et al.: Regional variability in hydrologic model performance

Figure 1. (a) Contiguous United States (CONUS) with states

(gray), rivers (blue) and major hydrologic regions (red). Text in-

dicates major geographic regions discussed in text. (b) Location

of the 671 HCDN-2009 basins across the contiguous US used in

the basin data set with precipitation shaded. Circles denote basins

with > 90 % of their precipitation falling as rain, squares with black

outlines denote basins with > 10 % of their precipitation falling as

snow as determined by using a 0 ◦C daily mean Daymet tempera-

ture threshold. State outlines are in thin gray and hydrologic regions

in thin red.

The Model Parameter Estimation Project (MOPEX) data set

does provide basin mean hydrometeorological data and ob-

served streamflow records for 438 basins across the contigu-

ous United States (CONUS; Schaake et al., 2006) for over

more than 30 years; making it one of the few, high-quality,

freely available hydrometeorological data sets with immedi-

ate applicability to catchment-type hydrologic models.

Gupta et al. (2014) emphasize that more large-sample hy-

drologic studies are needed to “balance depth with breadth”;

most hydrologic studies have traditionally focused on one or

a small number of basins (depth), which hinders the ability

to establish general hydrologic concepts applicable across re-

gions (breadth). Gupta et al. (2014) go on to discuss practi-

cal considerations for large-sample hydrology studies, noting

first and foremost that large data sets of quality basin data

need to be available and shared in the community. In support

of this philosophy, we present a large-sample hydrometeo-

rological data set and modeling tools to understand regional

variability in hydrologic model performance across the con-

tiguous US (Fig. 1). The development of the basin data

set presented herein takes advantage of high-quality, freely

available data from various US government agencies and re-

search laboratories. It includes (1) daily forcing data for 671

basins for multiple spatial configurations over the 1980–2010

time period; (2) daily streamflow data; (3) basic metadata

(e.g., location, elevation, size, and basin delineation shape-

files) and (4) benchmark model performance which contains

the final calibrated model parameter sets, model output time

series for all basins as well as summary graphics for each

basin. This builds on the MOPEX data set by providing basin

mean forcing data for 233 more basins along with two other

spatial configurations and the benchmark model performance

parameter sets and model output.

This data set and benchmark application is intended for

the community to use as a test bed to facilitate the evalu-

ation of hydrologic modeling and prediction questions. To

this end, the benchmark consists of the calibrated, coupled

Snow-17 snow model and the Sacramento Soil Moisture Ac-

counting Model (SAC-SMA) for all 671 basins using the

shuffled complex evolution (SCE) global optimization rou-

tine. Development of a large-sample hydrologic data set such

as this will allow for exploration into many important scien-

tific questions. We provide some basic analysis relating to

questions such as (1) what is the model performance across

a large sample of basins and how does model performance

vary across basin hydroclimatic conditions? (2) How do er-

ror characteristics relate to basin calibration performance and

hydroclimatic conditions? This basic analysis is intended to

highlight some of the important questions that can be an-

swered through large-sample hydrologic studies and provide

example results for further exploration.

The next section describes the development of the basin

data set from basin selection through forcing data genera-

tion. It then briefly describes the modeling system and cal-

ibration routine. Next, example results using the basin data

set and modeling platform are presented. Finally, concluding

thoughts and next steps are discussed.

2 Basin data set

The development of a freely available large-sample basin

data set requires several choices and subsequent data acqui-

sition. Three major decisions were made and are discussed in

this section: (1) the selection process for the basins, (2) the

various basin spatial configurations to be developed, and

(3) selection of the underlying forcing data set used to de-

velop forcing data time series. Additionally, aggregation of

the necessary streamflow data is described.

2.1 Basin selection

The United States Geological Survey (USGS) developed an

updated version of their Geospatial Attributes of Gages for

Evaluating Streamflow (GAGES-II) in 2011 (Falcone et al.,

2010; Falcone, 2011). This database contains geospatial in-

formation for over 9000 stream gages maintained by the
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USGS. As a subset of the GAGES-II database, a portion

of the basins with minimal human disturbance (i.e., mini-

mal land use changes or disturbances, minimal human wa-

ter withdrawals) are noted as “reference” gages. A further

subsetting of the reference gages were made as a follow-on

to the Hydro-Climatic Data Network (HCDN) 1988 data set

(Slack and Landwehr, 1992). These gages, marked HCDN-

2009 (Lins, 2012), meet the following criteria: (1) have at

least 20 years of complete flow data between 1990 and 2009

and were active as of 2009, (2) are a GAGES-II reference

gage, (c) have less than 5 % imperviousness as measured by

the National Land Cover Database (NLCD-2011; Jin et al.,

2013), and (d) passed a manual survey of human impacts in

the basin by local Water Science Center evaluators (Falcone

et al., 2010). There are 704 gages in the GAGES-II database

that are considered HCDN-2009 across the CONUS. This

study uses that portion of the HCDN-2009 basin set as the

starting point since they should best represent natural flow

conditions. After initial processing and data availability re-

quirements, 671 basins are used for analysis in this study

(Fig. 1b). Because these basins have minimal human in-

fluence they are almost exclusively smaller, headwater-type

basins.

2.2 Forcing and streamflow data

Hydrologic models are run with a variety of spatial con-

figurations, including entire watersheds (lumped), elevation

bands, hydrologic response units (HRUs), or grids. For this

data set, forcing data were calculated (via areal averaging)

for watershed, HRU and elevation band spatial configura-

tions. The basin spatial configurations were created from

the base national geospatial fabric for hydrologic modeling

developed by the USGS Modeling of Watershed Systems

(MoWS) group (Viger, 2014; Viger and Bock, 2014). The

geospatial fabric is a watershed-oriented analysis of the Na-

tional Hydrography Data set that contains points of interest

(e.g., USGS streamflow gauges), hydrologic response unit

boundaries and simplified stream segments (not used in this

study). This geospatial fabric contains points of interest that

include USGS streamflow gauges and allowed for the de-

termination of upstream total basin area and basin HRUs

(Viger, 2014; Viger and Bock, 2014). A digital elevation

model (DEM) was applied to the geospatial fabric data set

to create elevation contour polygon shapefiles for each basin.

The USGS Geo Data Portal (GDP) developed by the USGS

Center for Integrated Data Analytics (CIDA) (Blodgett et al.,

2011) was leveraged to produce area-weighted forcing data

for the various basin spatial configurations over our time pe-

riod. The GDP performs all necessary spatial subsetting and

weighting calculations and returns the area-weighted time se-

ries for the specified inputs.

The Daymet data set was selected as the primary gridded

meteorological data set to derive forcing data for our stream-

flow simulations (Thornton et al., 2012). Daymet was cho-

sen because of its high spatial resolution, a necessary re-

quirement to more fully estimate spatial heterogeneity for

basins in complex topography. Daymet is a daily, gridded

(1 × 1 km) data set over the CONUS and southern Canada

and is available from 1980 to present. It is derived solely

from daily observations of temperature and precipitation.

The Daymet variables used here are daily maximum and min-

imum temperature, precipitation, shortwave downward ra-

diation, day length, and humidity; additionally, snow water

equivalent is included (not used in this work). These daily

values are estimated through the use of an iterative method

dependent on local station density and the spatial convolution

of a truncated Gaussian filter for station interpolation, and the

Mountain Climate Simulator (MT-CLIM) to estimate short-

wave radiation and humidity (Thornton et al., 1997; Thorn-

ton and Running, 1999; Thornton et al., 2000). Daymet does

not include estimates of potential evapotranspiration (PET),

a commonly needed input for conceptual hydrologic models

or wind speed and direction. Therefore, PET was estimated

using the Priestly–Taylor (P–T) method (Priestly and Tay-

lor, 1972) and is discussed further in Sect. 3. Data quality is

an ever-present issue in hydrologic modeling, and while the

input data to Daymet are subject to rigorous quality control

checks (Durre et al., 2008, 2010) potential errors may remain

(Menne et al., 2009, 2010; Oubeidillah et al., 2013). Addi-

tionally, the Maurer et al. (2002) and National Land Data As-

similation System (NLDAS) (Xia et al., 2012) 12 km gridded

data sets were processed to provide daily forcing data for the

basin lumped configuration, resulting in three distinct data

sets available for future forcing data impact studies.

Daily streamflow data for the HCDN-2009 gages were

obtained from the USGS National Water Information Sys-

tem server (http://waterdata.usgs.gov/usa/nwis/sw) over the

same forcing data time period, 1980–2010. While the pe-

riod 1980–1990 is not covered by the HCDN-2009 review,

it was assumed that these basins would have minimal hu-

man disturbances in this time period as well. For the portion

of the basins that do not have streamflow records back to

1980, analysis is restricted to the available data records. The

USGS provides streamflow data flags to identify periods of

estimated flow and are included here. However, other data

quality information is unavailable without further investiga-

tion and not available in this data set. For reference, 90 %

(604) of the basins have 20 % or fewer flow days estimated

and 75 % (503 basins) have 10 % or less flow values esti-

mated.

The 671 basins span the entire CONUS and cover a wide

range of hydroclimatic conditions. They range from wet,

warm basins in the southeastern (SE) US to hot and dry

basins in the southwestern (SW) US, to wet, cool basins in

the northwestern (NW) and dry, cold basins in the intermoun-

tain (Rocky Mountains in Fig. 1a) western US. Figure 1b dis-

plays the basin annual precipitation (colored shading) along

with symbols to denote rain- and snow-dominated basins. In

terms of annual mean CDFs (cumulative density functions),

www.hydrol-earth-syst-sci.net/19/209/2015/ Hydrol. Earth Syst. Sci., 19, 209–223, 2015
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Figure 2. Annual CDFs of runoff (mm day−1) (black, bottom x

axis), precipitation (mm day−1) (blue, bottom x axis), potential

evapotranspiration (mm day−1) (green, bottom x axis), and temper-

ature (◦C) (red, top x axis).

Daymet-estimated basin mean temperatures range from −2

to 23 ◦C with precipitation amounts of 0.7–9.4 mm day−1

(Fig. 2). Annual observed mean runoff ranges from 0.01

to 9.3 mm day−1 with PET estimates ranging from 1.9 to

4.8 mm day−1. Interestingly, this implies that Daymet precip-

itation itself is not enough to balance the observed runoff in

some basins and is consistent with other recent large-sample

hydrologic studies (Oubeidillah et al., 2013). Seasonal vari-

ations in these four variables are large as well, with some

basins reaching mean winter time temperatures lower than

−10 ◦C and summer time mean temperatures higher than

25 ◦C (not shown). The seasonal water balance varies greatly

with some basins experiencing much higher precipitation

and runoff rates in one season versus another (e.g., spring

runoff peaks in mountain snowmelt-dominated basins). As

expected, PET varies seasonally with a minimum in winter

and a maximum in summer.

Figure 3 gives CDFs for various physical descriptors of

the basin set. The basins range in size from roughly 1 to

25 800 km2 with the median basin size being about 335 km2

and have mean elevations spanning from nearly sea level

(10 m) to high alpine elevations (3570 m) with a median el-

evation of 462 m. Notably, 75 basins have mean elevations

> 2000 m. Corresponding to the large range of elevations

in the basin set, the mean slopes vary considerably, span-

ning over 2 orders of magnitude from near zero to over

200 m km−1. The basin set covers a wide range of basin

shapes with aspect ratios ranging from 0.08 to about 11. Fi-

nally, there is a large range of forest covers across the basin

set which may have implications for hydrologic similarity

(Oudin et al., 2010) with 20 % of the basins having less than

Figure 3. Cumulative density functions of basin size (km2) (black),

basin mean elevation (m) (red), mean slope (m km−1) (blue), and

fractional forest cover (green) for the basin set.

(more than) 14 % (98 %) forest cover and the median basin

having about 80 % forest cover (NLCD-2011).

This basin set allows us to simulate a variety of energy-

and water-limited basins with different snow storage, eleva-

tion, slope, and precipitation characteristics. Figure 4a shows

runoff ratio (USGS streamflow / Daymet precipitation) ver-

sus the aridity index (Daymet Precipitation / PET). Immedi-

ately, it can be seen that some basins lie above the water limit

line (Y = 1) indicating more runoff than precipitation, and

many basins are near it (Y > 0.9). In these cases the model

calibration process would struggle to produce an unbiased

calibration, or never in basins above the water limit, because

the basic water balance requires nearly zero evapotranspira-

tion (ET) or is not satisfied. This requires a modification to

incoming precipitation, which is discussed in the next sec-

tion. Not coincidentally, the basins near and above the water

limit are colder basins (mean annual T < 10 ◦C) with frozen

precipitation during colder months. Additionally, two basins

lie to the right of the curved line (Y = 1–1/aridity) indicat-

ing a surplus of water. These basins may also require mod-

ifications to input precipitation, but it is less clear in this

case as observations of precipitation are generally underesti-

mates, especially for snowfall (e.g., Yang et al., 1998). Exam-

ining the basin set using model output terms in the Budyko

framework, there are many energy-limited basins with dry-

ness ratios as small as 0.2 and many water-limited basins

with model estimated dryness ratios as large as 4.5 (Fig. 4b).

Note that now no basins lie above the water limit, indicating

bulk precipitation corrections were applied as needed during

the calibration process. Examination of hydrometeorlogical

forcing data sets across a large spatial extent through the lens

of water and energy balance draws attention to gross errors

Hydrol. Earth Syst. Sci., 19, 209–223, 2015 www.hydrol-earth-syst-sci.net/19/209/2015/
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Figure 4. (a) Runoff ratio of observed runoff to Daymet-estimated

precipitation versus ratio of Daymet-estimated precipitation to

Priestly–Taylor-estimated PET. (b) Model-derived Budyko analy-

sis using model ET, PET and total surface water input (rain plus

melt, RAIM) for the 671 basins and three derivations of the Budyko

curve (dashed lines). Basin mean temperature is shaded (coloring)

in both panels.

in the forcing or streamflow data sets and permits any iden-

tified errors to be placed into spatial and temporal context, a

benefit of large-sample studies.

As noted above, no additional quality control was per-

formed on the candidate basins before calibration. For com-

pleteness and to more fully highlight some of the benefits

and tradeoffs made when performing large-sample hydro-

logic studies, all basins are kept for analysis in this work.

3 Hydrologic modeling benchmark

As stated in the introduction, the intended purpose of this

data set is a test bed to facilitate assessment of hydrologic

modeling and prediction questions across broad hydrocli-

matic variations, and we focus here on providing a bench-

mark performance assessment for a widely used calibrated,

conceptual hydrologic modeling system. This type of data

set can be used for many applications including evaluation of

new modeling systems against a well known benchmark sys-

tem over wide ranging conditions, or as a base for compre-

hensive predictability experiments exploring the importance

of meteorology or initial basin conditions. To this end, we

have implemented and tested an initial model and calibration

system described below, using the primary models and objec-

tive calibration approach that have been used by the US Na-

tional Weather Service River Forecast Centers (NWSRFCs)

in service of operational short-term and seasonal streamflow

forecasting.

3.1 Models

The HCDN-2009 basins include those with substantial sea-

sonal snow cover (Fig. 1b), necessitating a snow model in ad-

dition to a hydrologic model. Within the NWSRFCs, the cou-

pled Snow-17 and SAC-SMA system is used. Snow-17 is a

conceptual air-temperature-index-based snow accumulation

and ablation model (Anderson, 1973). It uses near-surface air

temperature to determine the energy exchange at the snow–

air interface and the only time-varying inputs are typically air

temperature and precipitation (Anderson, 1973, 2002). The

SAC-SMA model is a conceptual hydrologic model that in-

cludes representation of physical processes such as evapo-

transpiration, percolation, surface flow, and subsurface lat-

eral flow. Required inputs to SAC-SMA are potential evap-

otranspiration and water input to the soil surface (Burnash

et al., 1973; Burnash, 1995). Snow-17 runs first and deter-

mines the partition of precipitation into rain and snow and the

evolution of the snowpack. Any rain, snowmelt or rain pass-

ing unfrozen through the snowpack for a given time step be-

comes direct input to the SAC-SMA model. Finally, stream-

flow routing is accomplished through the use of a simple two-

parameter, Nash-type instantaneous unit-hydrograph model

(Nash, 1957).

3.2 Calibration

We employed a split-sample calibration approach follow-

ing Klemes (1986): assigning the first 15 years of available

streamflow data for calibration and the remainder for vali-

dation, then repeating the calibration using the last 15 years

and the initial remaining period for validation; thus, approx-

imately 5500 daily streamflow observations were used for

each calibration. To initialize the model calibration moisture

states on 1 October, we specified an initial wet SAC-SMA

www.hydrol-earth-syst-sci.net/19/209/2015/ Hydrol. Earth Syst. Sci., 19, 209–223, 2015
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soil moisture state that was allowed to spin down to equilib-

rium for a given basin by running the first year of the calibra-

tion period repeatedly and assumed no initial snowpack. This

was done until all SAC-SMA state variables had minimal

year over year variations, which is a spin-up approach used

by the Project for Intercomparison of Land-Surface Process

Schemes (e.g., Schlosser et al., 2000). Determination of opti-

mal calibration sampling and spin-up procedures is an area of

active research. Spin-up was performed for every parameter

set specified by the optimization algorithm, then the model

was integrated for the calibration period and the RMSE (root

mean square error) for that parameter set was calculated.

Objective calibration was done by minimizing the RMSE

of daily modeled runoff versus observed streamflow us-

ing the SCE global search algorithm of Duan et al. (1992,

1993). The SCE algorithm uses a combination of probabilis-

tic and deterministic optimization approaches that systemat-

ically spans the allowed parameter search space and also in-

cludes competitive evolution of the parameter sets (Duan et

al., 1993). Prior applications to the SAC-SMA model have

shown good results (Sorooshian et al., 1993; Duan et al.,

1994). In the coupled Snow-17 and SAC-SMA modeling sys-

tem, 35 potential parameters are available for calibration, of

which we calibrated 20 parameters having either a priori es-

timates (Koren et al., 2000) or those found to be most sen-

sitive following Anderson (2002) (Table 1). The SCE algo-

rithm was run using 10 different random seed starts for the

initial parameter sets for each basin, in part to evaluate the

robustness of the optimum in each case, and the optimized

parameter set with the minimum RMSE from the 10 differ-

ent optimization runs was chosen for evaluation.

For Snow-17, six parameters were chosen for optimiza-

tion (Table 1): the minimum and maximum melt factors

(MFMIN, MFMAX), the wind adjustment for enhanced en-

ergy fluxes to the snowpack during rain on snow (UADJ),

the rain/snow partition temperature, which may not be 0 ◦C

(PXTEMP), the snow water equivalent for 100 % snow cov-

ered area (SI), and the gauge catch correction term for snow-

fall only (SCF). These six parameters were chosen because

MFMIN, MFMAX, UADJ, SCF, and SI are defined as major

model parameters by Anderson (2002). PXTEMP was also

shown to be important in the Snow-17 model by Mizukami

et al. (2013). The SCF is critical in many snow-dominated

basins as precipitation is generally underestimated in these

types of basins (e.g., Yang et al., 1998) and is certainly un-

derestimated in some basins in Daymet as shown in Figs. 3

and 4.

The areal depletion curve (ADC) is considered a major

parameter in Snow-17. However, to avoid expanding the

parameter space by the number of ordinates on the curve

(typically 10), we manually specified the ADC according

to regional variations in latitude, topographic characteristics

(e.g., plains, hills or mountains) and typical air mass char-

acteristics (e.g., maritime polar, continental polar) (as sug-

gested in Anderson, 2002). The remaining Snow-17 parame-

ters were set in the same manner. Following the availability

of a priori parameter estimates for SAC-SMA from a vari-

ety of data sets and various calibration studies with SAC-

SMA (Koren et al., 2000; Anderson et al., 2006; Pokhrel and

Gupta, 2010; Zhang et al., 2012), 11 parameters from SAC-

SMA are included for calibration (Table 1). We use an in-

stantaneous unit hydrograph, represented as a two-parameter

gamma distribution for streamflow routing (Sherman, 1932;

Clark, 1945; Nash, 1957; Dooge, 1959), the parameters of

which were inferred as part of calibration. .

Finally, the scaling parameter in the Priestly–Taylor PET

estimate is also calibrated. The P–T equation (Priestly and

Taylor, 1972) can be written as

PET =
a

λ
·
s · (Rn − G)

s + γ
. (1)

Where λ (MJ kg−1) is the latent heat of vaporization, Rn

(MJ m−2 day−1) is the net radiation estimated using day of

year, all Daymet variables and equations to estimate the vari-

ous radiation terms (Allen et al., 1988; Zotarelli et al., 2009),

G (MJ m−2 day−1) is the soil heat flux (assumed to be zero

in this case), s (kPa ◦C−1) is the slope of the saturation vapor

pressure–temperature relationship, γ (kPa ◦C−1) is the psy-

chrometric constant and a (unitless) is the P–T coefficient.

The P–T coefficient replaces the aerodynamic term in the

Penman–Monteith equation and varies by the typical condi-

tions of the area where the P–T equation is being applied

with humid forested basins typically having smaller values

and exposed arid basins having larger values (Shuttleworth

and Calder, 1979; Morton, 1983; Jensen et al., 1990). Thus,

the P–T coefficient was included in the calibration since it

should vary from basin to basin.

4 Benchmark results

4.1 Assessment objectives and metrics

Assessment of the models will focus on overall performance

across the basin set, regional variations, and error character-

istics. Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe,

1970) and two of the decomposition components of NSE,

variance bias (α) and total volume bias (β) (Gupta et al.,

2009), are the first metrics examined in two variations. Be-

cause NSE scores model performance relative to the ob-

served climatological mean, regions in which the model can

track a strong seasonal cycle (large flow autocorrelation) per-

form relatively better when measured by NSE, and this sea-

sonal enhancement may be imparted when using NSE as

the objective function for both the calibration and validation

phases (e.g., Schaefli and Gupta, 2007). Additionally, basins

with higher streamflow variance and frequent precipitation

events have better model performance. Therefore, to give

a more standardized picture of model performance across

varying hydroclimatologies, the NSE was recomputed using

Hydrol. Earth Syst. Sci., 19, 209–223, 2015 www.hydrol-earth-syst-sci.net/19/209/2015/
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Table 1. Table describing all parameters calibrated and their bounds for calibration.

Parameter Description Units Calibration range

Snow-17

MFMAX Maximum melt factor mm ◦C−1 6 h−1 0.8–3.0

MFMIN Minimum melt factor mm ◦C−1 6 h−1 0.01–0.79

UADJ Wind adjustment for enhanced flux during rain on snow km 6 h−1 0.01–0.40

SI SWE for 100 % snow covered area mm 1.0–3500.0

SCF Snow gauge undercatch correction factor – 0.1–5.0

PXTEMP Temperature of rain/snow transition ◦C −1.0–3.0

SAC-SMA

UZTWM Upper zone tension water maximum storage mm 1.0–800.0

UZFWM Upper zone free water maximum storage mm 1.0–800.0

LZTWM Lower zone tension water maximum storage mm 1.0–800.0

LZFPM Lower zone free water primary maximum storage mm 1.0–1000.0

LZFSM Lower zone free water secondary maximum storage mm 1.0–1000.0

UZK Upper zone free water lateral depletion rate day−1 0.1–0.7

LZPK Lower zone primary free water depletion rate day−1 0.00001–0.025

LZSK Lower zone secondary free water depletion rate day−1 0.001–0.25

ZPERC Maximum percolation rate – 1.0–250.0

REXP Exponent of the percolation equation – 0.0–6.0

PFREE Fraction percolating from upper to lower zone free water storage – 0.0–1.0

Others

USHAPE Shape of unit hydrograph – 1.0–5.0

USCALE Scale of unit hydrograph – 0.001–150.0

P–T Priestly–Taylor coefficient – 1.26–1.74

the long-term monthly mean flow instead of mean flow (de-

noted MNSE hereafter), thus preventing climatological sea-

sonality from inflating the NSE and more accurately rank-

ing basins by the degree to which the model added value

over climatology in response to weather events (Garrick et

al., 1978; Martinec and Rango, 1989; Schaefli et al., 2005).

MNSE in this context is defined for each day of year (DOY)

via a 31-day window centered on a given DOY. The long-

term flow for that 31-day “month” is computed giving rise to

a “monthly” mean flow. Using this type of climatology as the

base for an NSE-type analysis provides improved standard-

ization in basins with large flow autocorrelations. This defi-

nition is similar to the one proposed by Garrick et al. (1978)

but with the addition of the 31-day smoother, which is done

to provide a smoother reference climatology.

Also, several other advanced, more physically based, met-

rics of model performance are provided. First, three diag-

nostic signatures based on the flow duration curve (FDC)

from Yilmaz et al. (2008) are computed: (1) the top 2 %

flow bias, (2) the bottom 30 % flow bias, and (3) the bias

of the slope of the middle portion (20–70 percentile) of the

FDC. Second, examination of the time series of squared error

contribution to the RMSE statistic was performed to high-

light events in which the model performs poorly following

Clark et al. (2008). This analysis was performed to gauge

the representativeness of performance metrics over the model

record by using the sorted (highest to lowest) time series of

squared error to identify the N number of the largest error

days and determine their fractional error contribution to the

total. Finally, we extend this analysis to introduce a simple,

normalized general error index for application and compari-

son across varying modeling and calibration studies. We coin

the index, E50, the fraction of calibration points contributing

50 % of the error. This captures the number of points deter-

mining the majority of the error and thus the optimal param-

eter set.

4.2 Spatial variability

It is informative to examine spatial patterns of the afore-

mentioned metrics to elucidate factors leading to weak (and

strong) model performance. This also allows for identifica-

tion of outlier basins and characterization of contributing fac-

tors (i.e., forcing or streamflow data issues or poor calibra-

tion). Poorly performing basins are most common along the

high plains and desert southwest (Fig. 5a, Sect. 3c). When

examining MNSE (Fig. 5b), basins with high nonseasonal

streamflow variance and frequent precipitation events (SE

and NW US) have the highest model MNSE, while most of

the snowmelt-dominated basins see MNSE scores reduced

www.hydrol-earth-syst-sci.net/19/209/2015/ Hydrol. Earth Syst. Sci., 19, 209–223, 2015



216 A. J. Newman et al.: Regional variability in hydrologic model performance

Figure 5. (a) Spatial distribution of NSE, (b) NSE using MNSEs rather than the long-term mean flow, (c) MNSE – NSE for the validation

period, and (d) weekly flow autocorrelation.

relative to NSE, particularly in the validation phase (Fig. 5c).

This indicates that RMSE as an objective function may not be

well suited for model calibration in basins with high flow au-

tocorrelation (Kavetski and Fenicia, 2011; Evin et al., 2014).

This is confirmed by comparing Fig. 5d to Fig. 5c, basins

with large flow autocorrelations (1 week mean flow for ex-

ample) generally have lower MNSE scores.

Areas with low-validation NSE and MNSE scores have

generally large biases when looking at FDC metrics as well

(Fig. 6). Focusing on the high plains, high flow biases of

±50 % are common. Extreme negative low flow biases are

also present along the high plains and desert SW along with

a general model trend to have large negative FDC slope bi-

ases, consistent with a poorly calibrated model. For the 72 %

of basins with validation NSE > 0.55 (basins with yellow-

green to dark red colors in Fig. 6a), there is no noticeable

spatial pattern across the CONUS in regard to high flow peri-

ods. However, basins with a more pronounced seasonal cycle

(e.g., snowpack-dominated watersheds, central west coast)

generally have a negative low flow bias, while basins with a

smaller seasonal cycle have a positive low flow bias (Fig. 6b).

Correspondingly, basins with a pronounced seasonal cycle

generally have a near zero or positive slope of the FDC bias,

while basins with a smaller seasonal cycle have a negative

slope bias (Fig. 6c).

Past applications with similar conceptual snow and hydro-

logic modeling systems across the CONUS have shown com-

parable spatial performance patterns. Clark et al. (2008) ap-

plied many conceptual models to a subset of the MOPEX

basin set and found poor performance in arid regions. Mar-

tinez and Gupta (2010), using a monthly water balance

model, found the best performance generally along the east

coast, most of SE CONUS, and along the west coast with

scattered good performance in the Rocky Mountains. They

found that many basins along the high plains and north side

of the Appalachian Mountains perform poorly. They also

note that arid regions have high variability error (variability

bias term in KGE – Kling–Gupta efficiency).

4.3 Cumulative performance

Two basic cumulative thresholds for model performance are

highlighted here, NSE values of 0.55 and 0.8. An NSE of

0.55 indicates some model skill, and an NSE of 0.8 sug-

gests reasonably good model performance. For the calibra-

tion period, 90 % (604) of the basins have a NSE greater than

0.55, while 72 % (484) of the basins had a validation period

NSE > 0.55 (Fig. 7a). At the NSE > 0.8 level, 34 % (225) of

the basin models perform better during calibration and 12 %

(78) of the basin models meet that criteria during the valida-

tion phase. When using MNSE, 85 and 57 % (568 and 385)

of the basins lie above 0.55, and 1 and 4 % (114 and 29) of

the basins lie above 0.8 during the calibration and validation

phases. The decomposition of the NSE (Gupta et al., 2009)

shows that 90 % of the basins have a calibration (validation)

model–observation flow correlation > 0.75 (0.68) and 30 %

(12 %) of the basins have a model–observation flow correla-

tion > 0.9 (Fig. 7b). However, nearly all basins have too little

modeled variance (values less than one) for both the calibra-

tion and validation phases (Fig. 7c). The total volume biases

are generally small with 94 % (79 %) of the basins having a
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Figure 6. (a) Spatial distribution of the high flow bias, (b) low flow

bias, and (c) flow duration curve bias for the validation period.

calibration (validation) period total flow bias within 10 % of

the observed flow (Fig. 7d). These are expected results when

using RMSE for the objective function (Gupta et al., 2009)

and reaffirm that our implementation of the SCE calibrates

the model properly.

Figure 8 highlights the full split sample approach for cal-

ibration following Klemes (1986). It is seen that the calibra-

tion and validation statistics give quite similar results regard-

less of which time period is used for calibration and vali-

dation using the Daymet data. This could indicate that both

halves of the data are equally challenging to model with this

modeling system. We have also included basin calibrations

using only the first 15 years for the Maurer et al. (2002)

and NLDAS-II (Xia et al., 2012) data sets. It can be seen

that the Daymet forcing provides better model performance

overall than both Maurer et al. and NLDAS forcing data.

This likely relates to the coarser resolution of the Maurer et

Figure 7. (a) CDFs of the model NSE (solid) for the calibration

(red) and validation periods (blue) and NSE using the MNSEs (dark

shaded and dashed). CDFs for (b) simulated–observed flow corre-

lation in the decomposition of the NSE, (c) for the variance bias

in the decomposition of the NSE, and (d) total volume bias in the

decomposition of the NSE.

al. (2002) and NLDAS data (12 km) and the somewhat small

basin sizes in this basin set. More importantly, the inclusion

of the Klemes (1986) split-sample approach provides users

of this data set two parameter estimates for each basin using

different calibration periods, while the inclusion of three total

forcing data sets begins to allow for ensemble-type forcing

data impact studies across a large basin sample size. In the

remaining discussion, only model performance results using

the first half of the split sample for calibration are presented.

With respect to advanced diagnostics, the model under-

predicts high flow events in nearly all basins during calibra-

tion and slightly less so for the validation period (Fig. 9a).

This is an expected result when using RMSE as the objec-

tive function because the optimal calibration underestimates

flow variability (Gupta et al., 2009). Low flow periods are

more evenly over- and underpredicted (Fig. 9b) for both the

calibration and validation time frames with 58 and 61 % of

basins having more modeled low flow. Finally, the bias in

the slope of the FDC is generally underpredicted with about

75 % of the basins having a negative model bias (FDC slope

is negative, thus a negative bias indicates the model slope

is more positive and that the modeled flow variability is too

compressed). The slope of the FDC indicates the variance of

daily flows, which primarily relate to the seasonal cycle or

the “flashiness” of a basin. Again this indicates model vari-

ability is less than that observed, at both short and longer

timescales. In aggregate, these results agree with Fig. 5 and

are expected based on the analysis of Gupta et al. (2009).

Optimization using RMSE or NSE as the objective func-

tion generally results in underprediction of flow variance and
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Figure 8. Cumulative density functions for model Nash–Sutcliffe

efficiency for the calibration (solid) and validation (dashed) periods

using three different forcing data sets (Daymet, Maurer, NLDAS).

The Daymet data set was calibrated using the first 15 years (Split

1st) and validated against the remaining data and also calibrated

using the last 15 years (Split 2nd) and validated against the initial

streamflow data. Maurer and NLDAS calibrations performed using

the first 15 years of observed streamflow only.

near-zero total flow bias (Fig. 7). This manifests itself in the

simulated hydrograph as underpredicted high flows, gener-

ally overpredicted low flows and a more positive slope to the

middle portion of the FDC (Fig. 9). It is worth repeating that

the goal of this initial application is to provide to community

with a benchmark of model performance using well known

models, calibration systems and widely used, simple objec-

tive functions, thus the use of RMSE.

4.4 Error characteristics

When examining fractional error statistics for the basin set,

15 basins have single days that contribute at least half the

total squared error (potential outlier basins), whereas at the

median, the largest error day contributes 8.3 % of the total

squared error for the median basin (Fig. 10). The fractional

error contribution for the 10, 100 and 1000 largest error days

for the median basin are 33, 70 and 96 % of the total squared

error respectively. This indicates that for nearly all basins,

there are 100 or fewer points that drive the RMSE and there-

fore optimal model parameters. This type of analysis can be

undertaken for any objective function to identify the most

influential points and allow for more in-depth examination

of forcing data, streamflow records, and calibration strate-

gies (i.e., Kavetski et al., 2006; Vrugt et al., 2008; Beven and

Westerberg, 2011; Beven et al., 2011; Kauffeldt et al., 2013),

or if different model physics are warranted.

The spatial distribution of fractional error contributions

show that the issue of model performance being explained

Figure 9. (a) CDFs for model high flow bias for the calibration

(red) and validation periods (blue), (b) model low flow bias, and (c)

model flow duration curve slope bias.

by a relatively small set of days is more prevalent in arid re-

gions of the CONUS (desert SW US and high plains) as well

as basins slightly inland from the east coast of the CONUS

(Fig. 11a, b). The arid basins are generally dry with sporadic

high precipitation (and flow) events, while the Appalachian

basins are wetter (Fig. 1b) with extreme precipitation events
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Figure 10. Fractional contribution of the total squared error for the

1, 10, 100, 1000 largest error days. The box plots represent the

671 basins with the blue area defining the interquartile range, the

whiskers representing reasonable values and the red crosses denot-

ing outliers. The median is given by the red horizontal line with

the notch in the box denoting the 95 % confidence interval of the

median value.

interspersed throughout the record. Basins with significant

snowpack tend to have lower error contributions from the

largest error days (Fig. 11a, b). The E50 metric highlights

mean peak snow water equivalent (SWE) and frequent pre-

cipitation basins as well. These regions contain and order of

magnitude more days than the high plains and desert SW,

giving insight into how representative of the entire stream-

flow time series the optimal model parameter set really is.

Additionally, ranking the basins using their fractional er-

ror characteristics provides a similar insight. As the aridity

index increases, the fractional error contribution increases

for basins with little to no mean peak SWE. For basins with

significant SWE, the fractional error contribution decreases

with increasing aridity (Fig. 12). Alternatively, for a given

aridity index the fractional error contribution for N days will

decrease with increasing SWE. This dynamic arises because

more arid basins with SWE produce a relatively greater pro-

portion of their runoff from snowmelt, without intervening

rainfall. This implies that the optimized model produces a

more uniform error distribution with less heteroscedacity in

basins with more SWE. Moreover, as the fractional error

contribution for the 10 largest error days increases, model

NSE generally decreases in the validation phase (Fig. 13).

This indicates fractional error metrics are related to overall

model performance and that calibration methods to reduce

extreme error days should improve model performance. This

is not unexpected due to the fact that the residuals from an

RMSE-type calibration are heteroscedastic. Arid basins typ-

ically have few high flow events, which are generally subject

Figure 11. (a) Spatial distribution of the fractional contribution of

total squared error for the largest day during the validation period,

the (b) 10 largest error days, and (c) the number of days contributing

50 % of the total objective function error, E50.

to larger errors when minimizing the RMSE. Using advanced

calibration methodologies that account for heteroscedasticity

(Kavetski and Fenicia, 2011; Evin et al., 2014) may produce

improved calibrations for arid basins in this basin set and pro-

vide different insights into model behavior using this type of

analysis.

4.5 Limitations and uncertainties

One interesting example of the usefulness (and a potential

limitation) of large-sample hydrology stemming from this

work lies in the identification of issues with forcing data

sets. Figures 3 and 4 show Daymet has too little precipita-

tion in certain regions, which is also seen in Oubeidillah et

al. (2013). When examining calibrated model performance in
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Figure 12. Ranked fractional squared error contribution for the 100

largest error days for the 671 basins versus the aridity index with

mean maximum SWE shaded. Each dot represents a 32-basin bin

defined by the rank of the fractional error contribution for the 100

largest error days for all basins. The dashed vertical black lines de-

note the 95 % confidence interval for the mean of the fractional error

contribution for a given bin.

the Pacific northwest, it is seen that several basins along the

west coast have low outlier NSE scores. Tracing this unex-

pected result, we find the Daymet forcing data available for

those basins has a negative temperature bias, preventing mid-

winter rain and melt episodes in the modeling system, iden-

tifying scope for improvement in the Daymet forcing. More-

over, winter periods of observed precipitation and streamflow

rises coincide with subzero Tmax in the Daymet data set, also

suggesting areas to improve the Daymet forcing. The large-

sample of basins in this region (91) allowed for identification

of the outlier basins and the underlying causes.

This may also limit interpretation of these results and

other large-sample hydrologic studies. As noted by Gupta

et al. (2014), large-sample hydrology requires a tradeoff be-

tween breadth and depth. The lack of depth may inhibit dis-

covery and identification of all data quality issues and the

underlying causes of outliers in any analysis (e.g., Fig. 13).

Explanation of these outliers is sometimes difficult and not

complete in the initial development and analysis due to

the lack of familiarity with specific basins and any forc-

ing or validation data peculiarities. However, providing forc-

ing data, model parameters and model output permits ad-

ditional focused studies and helps reduce these limitations.

Additional prescreening using the methods of Martinez and

Gupta (2011) can also help identify outliers due to data qual-

ity issues and help identify basins and regions where model

physics errors are present.

Figure 13. Nash–Sutcliffe efficiency versus the fractional error of

the 10 largest error days for the validation period for all basins with

basin mean peak snow water equivalent (mm) colored.

5 Summary and discussion

Most hydrologic studies focus in detail on a small number

of watersheds, providing comprehensive but highly local in-

sights, and may be limited in their ability to inform gen-

eral hydrologic concepts applicable across regions (Gupta

et al., 2014). To facilitate large-sample hydrologic studies,

large-sample basin data sets and corresponding benchmarks

of model performance using standard methodology across all

basins need to be freely available to the community. To that

end, we have compiled a community data set of daily forcing

and streamflow data for 671 basins and provide a benchmark

of performance using a widely used conceptual a hydrologic

modeling and calibration scheme over a wide range of con-

ditions.

Overall, application of the basin set to assessing an ob-

jectively calibrated conceptual hydrologic model representa-

tion of the 671 watersheds yielded calibration NSE scores of

> 0.55 (0.8) for 90 % (34 %) of the basins. Performance of

the models varied regionally, and the main factors influenc-

ing this variation were found to be aridity and precipitation

intermittency, contribution of snowmelt, and runoff seasonal-

ity. Analysis of the cumulative fractional error contributions

from the largest error days showed that the presence of sig-

nificant SWE offset the negative impact of increasing aridity

on simulation performance. This study has identified poten-

tial outlier basins for this modeling system and has provided

insights into potential forcing data limitations. Although this

modeling application utilized a conceptual hydrologic model

with a single-objective calibration strategy, the findings pro-

vide a baseline for assessing more complex strategies in each

area, including multiobjective calibration of more highly dis-

tributed hydrologic models (e.g., in Shi et al., 2008). The un-

usually broad variation of hydroclimatologies represented by
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the data set, which contains forcing and streamflow data ob-

tained by consistent methodology and retains outlier basins,

makes it a notable resource for these and other future large-

sample watershed-scale hydrologic analysis efforts.

This data set and the applications presented are made

available to the community (see http://ral.ucar.edu/projects/

hap/flowpredict/subpages/modelvar.php or http://dx.doi.org/

10.5065/D6MW2F4D).
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