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Abstract

Our objective was to develop a DNA biobank linked to phenotypic data derived from an electronic

medical record (EMR) system. An “opt-out” model was implemented after significant review and

revision. The plan included (i) development and maintenance of a de-identified mirror image of

the EMR, namely, the “synthetic derivative” (SD) and (ii) DNA extracted from discarded blood

samples and linked to the SD. Surveys of patients indicated general acceptance of the concept,

with only a minority (~5%) opposing it. As a result, mechanisms to facilitate opt-out included

publicity and revision of a standard “consent to treatment” form. Algorithms for sample handling

and procedures for de-identification were developed and validated in order to ensure acceptable

error rates (<0.3 and <0.1%, respectively). The rate of sample accrual is 700–900 samples/week.

The advantages of this approach are the rate of sample acquisition and the diversity of phenotypes

based on EMRs.

The notion that common human traits, such as susceptibility to disease, include a genetic

component is ingrained in human history and literature. The idea that genetic factors might

similarly modulate response to exogenous substances, including drugs and food, was

proposed in the early twentieth century by the great English physiologist Garrod in his

studies of “inborn errors of metabolism.”1 This notion preceded by 50 years the first

descriptions of striking variability in response to drug therapy caused by single gene

variants,2–5 and the second half of the twentieth century has seen a dramatic increase in our

understanding of the way in which such variants cause human disease6–10 and modulate

responses to drugs.11,12
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These ideas are now evolving from mere intellectual curiosities applicable to only a few

clinical settings to part of the fabric of modern medical practice. The rapid evolution of

technologies capable of acquiring and analyzing high-dimensionality data (genomes,

proteomes, and images) now holds the potential for dramatically extending this line of

reasoning to make it the centerpiece of a widely heralded era of personalized medicine13,14

in which not only disease treatment but also preventive therapies will be applied in a

personalized fashion.

Identifying robust genotype–phenotype relationships is a key challenge in the process of

making this vision a reality. This requires very large sample sets for discovery and

validation.6–10 This challenge, in turn, is the compelling rationale for the establishment of

interoperable biobanks across the world.15–17 The extent to which such resources represent

the populations from which they are drawn is uncertain; however, coupling these biobanks

to electronic medical record (EMR) systems has the potential to enable investigators in the

field of genomics to search, record, and analyze phenotypic information pertaining to large

numbers of patients in a “real world” context.18,19 We describe here a method to generate an

“opt-out” system based on the use of blood samples collected for clinical purposes and

subsequently discarded. The approach is predicated on extensive ethics and community

input and unprecedented systematic de-identification of an entire EMR.

RESULTS

Regulatory and ethics review

The Vanderbilt Institutional Review Board (IRB) reviewed the initial project plan and

agreed that it met the criteria to be designated as “nonhuman subjects” research. However,

given the anticipated scale of the project and its potential impact on the community, the IRB

advised additional safeguards. These included ongoing institutional and IRB oversight;

evaluation by the Medical Center’s Ethics committee; and establishment of Ethics,

Scientific, and Community Advisory Boards. The Medical Center Ethics Committee review

generated recommendations (Table 1) for modifications and further evaluation of the

program before its launch, and these are described later. All of these reviews were

transparent and available to other advisory bodies. Specific Office for Human Research

Protections opinions were sought during the setting up of the resource and immediately

before the launch in its final form so as to ensure that the resource was consistent with

federal regulations for exempt research.

Surveys of patients—In response to the mail survey sent out to patients,20 90% of the

respondents were comfortable with the idea of anonymized genetic information being used

for research, and a smaller group (~5%) was opposed to it. This finding suggested a need for

notification. In-person interviews with patients post-phlebotomy suggested that only a

minority (32%) of the patients who had seen the poster could recall it; however, after they

had been read a brief statement about the program, most of them (93%) reported that they

were comfortable with the idea of the DNA databank concept.21 The findings from these

studies underlined the need to communicate with patients about the program, as well as to

allow an easy and permanent opt-out mechanism.

Changes in the standard “consent to treatment” form—On the basis of the data

from the survey of patients and the interpretation of these data by the advisory boards, the

standard “consent to treatment” form was modified to include a statement in bold lettering

describing the DNA databank concept; also, a box to check for opting out was placed

directly above the signature lines. In addition, a new institutional policy was introduced so

that this form is now signed not only at each hospital admission but also by each outpatient
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on an annual basis. Patients can also opt out by calling a specific phone number. The sample

handling program was modified to include only subjects with a signed “consent to

treatment” document that did not include a tick in the box. The opt-out rate is ~2.5% of all

patients who sign the form.

Interactions with the community

A Community Advisory Board was established to ensure community involvement and input

into the design and function of the repository operations, with the goal of evaluating and

ultimately supporting acceptance among broader medical as well as lay audiences. The

Board has 12 members representing diverse sections of the community, who play an active

role in the community through employment, parenting activities, church groups, civic

groups, educational activities, or extracurricular activities. A familiarity with technology,

science, or genetics is not expected. Their specific responsibilities are to evaluate the ethical

conduct of the repository’s operations in the context of the security and privacy measures

that are in place; to act as the voice of the community on any issues relating to the use of

genetic information for research; and to identify core ethical or social dilemmas and propose

concrete and practical measures toward resolving them.

Tests of sample handling and interface with the synthetic derivative

The gender-matching test identified 8/384 gender mismatches between the electronic record

and the genotyping results. On review, these mismatches were found to include three

patients who had received hypertransfusion in the recent past, three with a history of bone

marrow/stem cell transplant, and one with no information in the associated medical record

(this can occur, for example, with “research only” samples sent to the medical center). The

residual error rate was therefore 1/384 (0.26%). On the basis of this analysis, sample

handling procedures were altered so as to flag subjects who had undergone hypertransfusion

or bone marrow transplant for the information of investigators requesting those samples/

data.

In an experiment dealing with sickle cell/macular degeneration, there were 296/300 (98.7%)

concordant results and 4 mismatches; of the mismatches, 1 patient had received blood

transfusions in the recent past and 2 had very limited data in the synthetic derivative (SD)

(likely “research only” patients), leaving a residual error rate of 0.3%.

The results with gender typing and allele identification in sickle cell disease and age-related

macular degeneration suggest that the resource should, on a large scale, be evaluated for the

analysis of complex genotype–phenotype relationships.

The SD

The developed de-identification algorithm removed 5,378 of the 5,472 identifiers, with an

error rate for complete Health Insurance Portability and Accountability Act (HIPAA)

identifiers of <0.1%. The aggregate error rate—which includes any potential error, including

non-HIPAA items, partial items, and items that are not inherently related to identity—was

1.7% (95% confidence interval: 1.4–2.1%). Examples of over- and underscrubbing are

shown in Figure 1. The names of patients would typically be the most inherently identifying

part of the record. The process by which names are scrubbed involves a complementary

utilization of census-derived name dictionaries as well as a matching function based on the

name information contained in the header files of the original, unscrubbed EMRs. In the

initial analysis, the error rate for all names contained in the record was 3% (95% confidence

interval: 2.1–3.8%). However, all the unscrubbed names were those of health-care providers,

and no names of patients were unscrubbed. After that result, a copy of the institutional

employer dictionary was added to the name-scrub process. Given the very large number of
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records, it is possible that a patient’s name will be undermarked within a given scrubbed

record; however, such undermarking would be either the first name or the last name and

would be very unlikely to include both names. Because de-identification algorithms are not

(and never can be) perfect, the resource is considered to be a limited dataset as defined by

the HIPAA privacy rule, and its use is therefore governed by the terms of a data use

agreement signed by investigators when they query the SD, as described later in this article.

In addition, when individual undermarking errors are uncovered and reported, they can be

permanently fixed. This general concept of re-identifiability is generic to the routine use of

de-identified health-care information in research and is not unique to the Vanderbilt DNA

databank.

Because the de-identification procedures can discover and suppress identifiers with a high

degree of accuracy, the IRB judged them to be consistent with an OHRF “nonhuman

subjects” designation. The algorithms were applied to the EMR to create the SD, and

information accrued in the EMR is added to the SD once a week. Figure 2 illustrates the

scrubbing applied to an SD record.

Status

Sample collection was launched in February 2007 after a 3-year planning process to develop

and refine the project. The accrual rate has been 700–900 samples/week, adding up to

33,463 samples as of April 2008; by the end of 2010, the resource will include >130,000

samples. The de-identified SD records of the first 16,102 samples that were accepted

contained a mean of 14 ± 18 ICD-9 codes. The most common diagnoses were hypertension

(15.7%), type II diabetes (11.8%), hyperlipidemia (11.5%), coronary artery disease (7.8%),

and anemia (5.9%). The records have a mean of 6.5 ± 6.2 years of history, with just over

half the records (55%) containing documentation of an inpatient stay. Most (88%) records

have at least one medication indicated, with an average of 8.0 ± 6.8 medications per record.

In addition, 69% have one or more procedure codes. The vast majority have at least one lab

report, consistent with the fact that the samples were collected from leftover blood from

pathology.

A first-generation web-based tool has been developed that can determine the number of

cases with specific investigator-defined attributes that are present among the cases in the

SD, and it can be accessed by any individual with a Vanderbilt web access password. A

computer screen view of the first-generation query tool that examines cases identified by

these queries is shown in Figure 3.

Proposals for research projects that intend to use the DNA databank are IRB-reviewed and

the potential users are required to sign the data use agreement, including an

acknowledgement that genetic information comes with potential pathways for re-

identification. Accordingly, users agree not to disclose data and to implement safeguards to

prevent disclosure of the data. Unauthorized use, including any attempt to re-identify the

information contained in the dataset or to perform unapproved research even on an approved

dataset, carries administrative and institutional penalties. SD searches that return very small

sample sets (currently ≤5) will not be released. The data use agreement further stipulates that

all genotypic information generated will be re-deposited in the SD, thereby facilitating

studies of genotype–phenotype relationships as the resource becomes increasingly well

populated with genomic data.

DISCUSSION

A major focus in contemporary genome science has been the analysis of common

phenotypes in large populations in order to determine alleles associated with risk. This
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effort, propelled by the rapid emergence of tools for genome-wide association, has been

remarkably successful but requires very large study and replication sets.6–10 The obvious

functions that can be fulfilled by the diagnosis-agnostic resource we describe include both

hypothesis generation and replication.

In addition, the emergence of sets of many-times-replicated robust genotype–phenotype

relationships poses the new challenge of establishing how this information can be integrated

into routine health care. In this context, a second rationale for the resource we describe—

that links a rich EMR to genomic information—is the development of tools and new

knowledge in diverse areas such as biomedical informatics, evidence-based personalized

medicine, point-of-care information delivery, ethics, and health-care economics that can

help in bringing about such an integration.

Advantages of the opt-out approach

Two designs were initially considered, a conventional “opt-in” (consent) model, and the

“opt-out” model that was ultimately adopted. An absolute requirement for the opt-out model

is an EMR coupled to extensive informatics resources that allow the requisite de-

identification. This was enabled at Vanderbilt by a well- established and locally developed

EMR specifically designed for clinical care as well as clinical research and data

mining.22–27

The generation of prospectively ascertained study populations by the opt-in approach is

resource-intensive and therefore often focuses on specific diseases or therapies. In contrast,

the opt-out approach can generate very large datasets that include a rich diversity of

phenotypes. Further, surveys indicate that the opt-in model may exclude large segments of

the population,28–30 whereas, in the opt-out model we describe here, the resource has the

potential to be more broad-based and is not limited by prospectively designed research

questions. Indeed, a default opt-out recruitment approach has been advocated for all “low-

risk” studies.31

Research involving DNA generates uneasiness among some sections of both science and lay

communities because of the perceived potential for re-identification and the attendant

potential for the unintended use of such identification (e.g., genetic discrimination or

coercion by law courts to reveal DNA samples or data).32–34 An opt-in model allows

participants to agree to the use of identified information for research; however, data

containing genetic information housed within a de-identified resource has far less potential

for unintended discriminatory use than an identified resource, even in the event of unlawful

release. We therefore believe that there are specific advantages (despite the inconvenience

and the cost, which are not inconsiderable in either model) to the approach we describe. We

also recognize that the ability to utilize this resource would further safeguard the

confidentiality of patients’ data by replacing fully identifiable records with IRB-approved

protocols under a waiver-of-consent authorization.

There are other important challenges (e.g., technological, informatic, biostatistical) that must

be addressed in order to achieve the goal of personalized medicine, and the resource we

describe provides a test bed for implementing potential solutions.

Limitations of the opt-out approach

Because of date shifting we adopted while generating the SD, events tied to specific dates

(e.g., studies of seasonal allergies) cannot be evaluated.

A concern raised during the design was that if specific alleles linked to a disease are

discovered in a de-identified sample, there is no way to inform the patients who have
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contributed those samples. On the other hand, there are only a few genotype–phenotype

relationships that are sufficiently well understood to warrant clinical intervention on the

basis of information from a genotyping assay; when this occurs, such testing should become

part of routine clinical care. In fact, progress in identifying and validating genotype–

phenotype relationships worthy of clinical intervention has suffered,11,12,35 in part because

of the lack of DNA-clinical resources large enough to provide sufficient statistical power to

allow the study of complex diseases and pharmacogenomic trends involving matrices of

genetic variants.

Because there is no recontact with the patient for acquiring additional samples, the

collection of serum samples for proteomic analysis is not possible. Although this may

become feasible in the future, issues such as sample handling and stability will need to be

addressed. Similarly, very rare phenotypes, such as those associated with certain adverse

drug reactions, are unlikely to be well represented in this resource. Targeted databases, often

requiring participation by multiple centers with specific expertise or patient populations,

may be required in order to address some of these issues;35 any large resource like this

cannot address all questions for all investigators.

The portion of the SD that is simplest to use in research is structured data such as laboratory

values and diagnostic codes. The SD also includes extensive unstructured data such as

patients’ histories. Natural language processing and other tools will be required for

exploiting these data fully. Our early results with gender typing and allele identification in

sickle cell disease and age-related macular degeneration suggest that the resource, when

populated with larger numbers of samples, will become useful for identifying complex

genotype–phenotype relationships. Indeed, the extent to which the mining of EMR

information can be carried out to ascertain “real-world” phenotypes represents a major

challenge as well as an opportunity for those working in the field of clinical

informatics.36–40 Further, plans are under way for future genome-wide association studies

that will use this resource and characterize its overall reliability and validity in the context of

EMR-derived phenotypes (http://www.gwas.net), but these are beyond the scope of this

paper.

The development of this DNA databank project has required extensive institutional

resources, including long-term investment in information technology and specific costs such

as an expanded DNA extraction and storage capability, review and implementation of new

policies around the “consent to treatment” document, and support for community

engagement and extensive internal and external review.

Although notification methods continue to be enhanced, we expect that a small minority of

patients who would have chosen to opt out might not have done so because they overlooked

the option box provided to them.

We describe here a complex plan for the implementation of a large de-identified DNA

databank linked to extensive de- identified medical records. We believe this model provides

advantages over an opt-in (consent) model, in not only scalability and richness of content,

but also in terms of protection of genetic information. The development of the resource has

required an institutional commitment to continuous investment in clinical genomics and

biomedical informatics, both as clinical resources and investigational priorities. Further, the

SD and DNA biobank resources—derived from actual EMRs—provide a test bed for the

development and evaluation of new informatics and de-identification tools that will

ultimately be required for implementing the vision of genome-based personalized medicine

as part of the health-care system.

Roden et al. Page 6

Clin Pharmacol Ther. Author manuscript; available in PMC 2013 September 05.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.gwas.net


METHODS

Resource design

Over the past decade Vanderbilt University Medical Center, through its Department of

Biomedical Informatics, has developed a comprehensive EMR system that covers all

inpatient and outpatient data entry in the health system, including labs, drug ordering, and

diagnostic imaging.22–27

The Vanderbilt EMR is a state-of-the-art clinical and research resource that includes >1.4

million records and provides a platform for the development of tools, such as natural

language processing approaches, to optimally mine structured data and unstructured (free-

form) text in the medical records.

The major components of the Vanderbilt DNA databank initiative were developed on the

basis of this resource, and these are presented in Figure 4. These include acquisition and de-

identification of discarded blood samples and the creation of a “mirror image” of the entire

EMR, termed the SD, which is similarly de-identified but retains a link to the DNA samples.

In order to accomplish the goal of linking the clinical and DNA information in a de-

identified fashion, the medical record number that labels each sample and each entry in the

EMR is replaced with a research unique identifier (RUI) generated by the secure hash

algorithm (SHA-512) developed by the National Security Agency of the US Federal

Government (http://www.nsa.gov/about/index.cfm). SHA-512 is a publicly available hash

function, an algorithm that produces a string of 128 characters that is unique to a particular

input; in other words, it will always generate the same output (RUI, in this case) given the

same input (medical record number, in this case). It is important to note that the original

input (the medical record number) cannot feasibly be regenerated from the hash output (the

RUI).41 No link is maintained between the RUI and the medical record number.

Regulatory and ethics review

The approach adopted is based on the guideline issued on 10 August 2004 by the Office for

Human Research Protections (the branch of the US Department of Health and Human

Services that is charged with protecting volunteers in research that is conducted or supported

by the department). The document (http://www.hhs.gov/ohrp/humansubjects/guidance/

cdebiol.pdf) concludes that use in research of discarded samples that are de-identified and

not readily re-identified does not involve human subjects and so is not subject to the federal

regulations for human subjects research (45 CFR 46, also called the Common Rule).

The design process is illustrated in Figure 5. The project was reviewed at multiple levels,

including the IRB, ethics committee, community board, legal department, and Office for

Human Research Protections. The Vanderbilt DNA databank is compliant with the

regulations relating to the protection of human subjects as set forth by the Office for Human

Research Protections and the Vanderbilt IRB. In addition, given the seminal nature of the

program and the multitude of ethical domains affected, the protection model includes

ongoing institutional and IRB oversight; evaluation by the Medical Center’s Ethics

committee; and the establishment of Ethics, Scientific, and Community Advisory Boards.

The review of the design among the various boards was iterative: after initial review and

recommendations, the overall project, its components, and the results of preliminary

validation studies were re-reviewed, leading to further recommendations for program

adjustment. The studies described here, initiated on the basis of these reviews, evaluated the

efficacy of sample handling and de-identification procedures and explored community

response. Each was separately reviewed and approved by the IRB.
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Interactions with the community

Three projects were conducted to gauge the community’s reaction to a planned biobank: (i)

a series of focus groups with lay members of the community (patients and nonpatients of

varying socioeconomic, racial, and ethnic backgrounds); (ii) a mail survey consisting of a

pretested, 38-item questionnaire sent to a random sample of 5,000 inpatients, outpatients,

and emergency department patients; and (iii) an evaluation of the impact of placing posters

describing the databank at blood-drawing stations.

Sample handling and interface with the SD

Clinical laboratories at Vanderbilt University Medical Center routinely retain blood samples

(generally for ~3 days) before discarding them. Programs were developed to screen blood

samples, obtained for routine clinical care and about to be discarded, for eligibility. The

samples that are included are immediately transferred to tubes and relabeled with the 128-

character RUI. Exclusion criteria are listed in Table 2. Duplicate blood samples are excluded

by executing the hash function in real time on an individual sample that meets all other

inclusion criteria. At the time the hash value is generated, it is checked against the table of

existing values. If the identical string of characters exists, the sample is deemed a duplicate

and blocked from acceptance. A proportion of the eligible records (currently, ~50%) is

randomly excluded so as to further ensure that it is never known which patients’ samples (of

those that could be included) are actually in the databank.

Two tests of the sample handling procedures and their interface with the SD were

conducted. In the first, a set of 384 randomly selected samples that met the acceptance

criteria were processed and genotyped for a gender-specific marker, using the Taqman

amelogenin insertion/ deletion polymorphism assay. The second test of sample handling

involved genotyping a set of 24 samples with a diagnosis of sickle cell disease based on the

medical record and 33 samples with a diagnosis of age-related macular degeneration and an

associated common complement H susceptibility42 nested in a test collection of 243 control

samples from patients who did not have either condition. The hemoglobin gene (HBB) was

resequenced from 200 base pairs upstream from the start codon to 300 base pairs into the

coding sequence, a segment that includes the majority of sickle cell mutations. The age-

related macular degeneration complement H susceptibility allele (rs1061170) was assayed

using a Taqman assay on an ABI 7900HT instrument (Applied Biosystems).

The SD

The SD is a database containing all clinical information in the EMR and its associated entry-

order relational database but stripped of personal identifiers. The clinical systems have been

in use since the mid-1990s and have been undergoing further development. They contain

~120 gigabytes (not including images) of information and >300,000,000 observations

relating to 1.4 million subjects. On any given workday, there are between 4,200 and 5,200

concurrent users of the EMR, who are health-care providers such as doctors and nurses.

Both structured (e.g., name–value pairs of laboratory tests, ICD9/10 diagnosis codes) and

unstructured but searchable data (e.g., narrative progress and procedure notes) are included.

The SD can be used for searching and aggregating sets of patients for genomic analysis or as

a stand-alone clinical research resource. The SD was generated by applying multiple and

iterative processing steps to the data in the EMR system. The first step was to replace the

medical record number with the 128-character RUI, using the one-way hash function

described earlier. The SD is updated regularly, relying on the constancy of the RUI (i.e., that

the same input will always be mapped to the same hash output). In this way, as new entries

are accumulated daily in the clinical information system, the scrubbing process is applied to
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the new additions and they are linked to the existing information within the EMR-derived

SD record, thereby updating the SD.

Additionally, commercially available software (DE-ID, DE-ID Data Corp) was

supplemented with preprocessing and postprocessing to “scrub” medical records of personal

identifiers. The de-identification methodology is based primarily on the removal of the fields

that are specified in Section 164.514 of the HIPAA privacy rule. These include:

1. Names;

2. All geographic subdivisions smaller than a State;

3. All elements of dates (except year) for dates directly related to an individual,

including birth date, admission date, discharge date, date of death; and all ages >89

and all elements of dates (including year) indicative of such age, except that such

ages and elements may be aggregated into a single category of ≥90 years of age;

4. Telephone numbers;

5. Fax numbers;

6. Electronic mail addresses;

7. Social security numbers;

8. Medical record numbers;

9. Health plan beneficiary numbers;

10. Account numbers;

11. Certificate/license numbers;

12. Vehicle identifiers and serial numbers, including license plate numbers;

13. Device identifiers and serial numbers;

14. Web universal resource locators;

15. Internet protocol address numbers;

16. Biometric identifiers, including finger and voice prints; and

17. Full face photographic images and any comparable images.

With the removal of those items the data are said to be de-identified; however, de-

identification is not synonymous with anonymization. Anonymization is generally

considered a binary process: samples are anonymized or are not. For the DNA databank, the

outcome of de-identification is not binary; rather, it is continuous and recognizes that

biological data are so inherently rich in attributes that the re-identification potential is never

zero. Accordingly, a data use agreement has been put in place that permits only approved

queries and data analyses, and specifically prohibits attempts at re-identification at the risk

of institutional sanctions.

The system also shifts all dates and replaces each of the remaining HIPAA safe harbor

provision identifiers with corresponding tags. All dates in the EMR are shifted 1–364 days

into the past; the shift is different across records but constant within the records of each

patient, thereby allowing temporal analyses such as the development of adverse effects after

a drug. The initial SD was generated in the fall of 2006 and is currently updated regularly as

described earlier.
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The efficacy of this “scrubbing” process was initially evaluated by examining prescrubbed

and postscrubbed records with an average size of 915 kilobytes. The instances of under- and

overscrubbing were identified by reviewing manual charts, and the algorithms were

modified accordingly. The process was iterative until an undermarking rate of <0.1% for

complete HIPAA identifiers was achieved as assessed by a manual comparison between the

original and the scrubbed records.
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Figure 1.
Examples of under- and overmarking. The original text is shown on the left and the result of

the scrubbing process is shown in the middle. The target text and the result of scrubbing are

highlighted in red. (Lortab; Mikart, Atlanta, GA.)
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Figure 2.
A descriptive example of a record in the synthetic derivative (SD) described in the text. The

arrows indicate examples of scrubbing: the medical record number has been removed

(black), the social security and phone numbers have been masked (blue), names have been

changed (purple), and dates have been shifted (red) as described in Methods.
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Figure 3.
Synthetic derivative interrogation tool. Search criteria are entered in the blue box, and

entries and potential records are returned, with the “keywords in context” shown below. The

user then has the option of including the record in the sample set to be analyzed.

(Ciprofloxacin; Bayer HealthCare, West Haven, CI.)
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Figure 4.
Mechanism for linking DNA samples and patient-related information in a de-identified

fashion. The approach depends on the use of a one-way hash, an algorithm that always

generates the same 128-character code (the research unique identifier, RUI) when the same

medical record number is used as input. The medical record number on barcoded blood

samples that are about to be discarded is scanned, eligible samples are relabeled with the

RUI, and DNA is extracted and stored. The medical record number in each patient’s record

is replaced by the RUI, and the record is de-identified to create the synthetic derivative

described in the text.
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Figure 5.
Program review. The program plan was reviewed by the Office for Human Research

Protections (OHRP) and the Institutional Review Board (IRB). The IRB recommended

further review from the standpoint of ethics, and the Ethics Review recommendations

included the formation of a Community Advisory Board. The IRB, Ethics, and Community

reviews resulted in program revisions, and these are ongoing.
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Table 1

Key steps in implementations of the Vanderbilt DNA databank

Develop sample handling programs

Develop the synthetic derivative

 Implement and validate de-identification methodology

Convene ethics review and act on recommendations:

 Ongoing IRB oversight

 All patients should receive information about the project

 Patients should have the right to refuse to participate

 Develop a comprehensive education plan

 Ongoing external evaluation

 Assess the content and functionality of the database before enrolling participants

 Establish Ethics Advisory Board and Scientific Advisory Board

Involve clinical operations and legal staff

IRB, Institutional Review Board.
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Table 2

Inclusion and exclusion criteria

Manual exclusions

 Poor quality

 Insufficient blood volume

Automated exclusions

 Minors

 No signed consent to treatment form (includes the emergency department)

 Samples from individuals who opted out

 Non-Vanderbilt samples

 Duplicate samples

 A percentage randomly selected
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