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Abstract: Nowadays, smart irrigation is becoming an essential goal in agriculture, where water
and energy are increasingly limited resources. Its importance will grow in the coming years in the
agricultural sector where the optimal use of resources and environmental sustainability are becoming
more important every day. However, implementing smart irrigation is not an easy task for most
farmers since it is based on knowledge of the different processes and factors that determine the crop
water requirements. Thanks to technological developments, it is possible to design new tools such as
sensors or platforms that can be connected to soil-water-plant-atmosphere models to assist in the
optimization and automation of irrigation. In this work, a low-cost, open-source IoT system for smart
irrigation has been developed that can be easily integrated with other platforms and supports a large
number of sensors. The platform uses the FIWARE framework together with customized components
and can be deployed using edge computing and/or cloud computing systems. To improve decision-
making, the platform integrates an irrigation model that calculates soil water balance and wet bulb
dimensions to determine the best irrigation strategy for drip irrigation systems. In addition, an
energy efficient open-source datalogger has been designed. The datalogger supports a wide range of
communications and is compatible with analog sensors, SDI-12 and RS-485 protocols. The IoT system
has been deployed on an olive farm and has been in operation for one irrigation season. Based on the
results obtained, advantages of using these technologies over traditional methods are discussed.

Keywords: IoT platform; precision agriculture; irrigation model; FIWARE; soil water balance; dual
crop coefficient

1. Introduction

In Spain, as in the rest of southern Europe, water is a scarce, fragile, and unevenly
distributed resource [1]. Climate models developed by the European Environment Agency
(EEA) [2] show that, in the last 50 years, in the Iberian Peninsula, there has been a decrease
in precipitation of up to 90 mm per decade, and predict that in the next 70 years, this
decrease will be even greater, reaching a reduction of up to 40% in some areas of southern
Spain. As a result of decreased rainfall and overexploitation of water resources, the balance
between available water and water demand has already reached critical levels.

In the context of this worrying future scenario, solutions need to be found. Improving
irrigation efficiency and optimizing agricultural management practices are two of the
necessary actions, and technology is an indispensable tool to carry them out.

Precision agriculture (PA) has emerged as an approach to optimize farm management,
which involves the use of a series of sensors and actuators that allow gathering context
information from the surrounding environment [3].

Using different types of sensors and algorithms, the irrigation requirements of crops
can be calculated automatically so that the amount of water they need can be estimated
and applied at the right time.

This development has led to an increase in the number of companies offering platforms
for the visualization of sensor data, which, while useful, still requires specialized farmers
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who know how to interpret the data and apply the most appropriate management strategies.
In addition, these platforms, being mostly commercial, are characterized as closed systems,
which do not allow connection with third-party sensors and often have high costs that
prevent the farmer from installing several measurement points, which is a problem in the
analysis of spatial variability within the farm.

Several IoT (Internet of Things) platforms for agriculture can be found in the literature.
Previous researchers [4–6] created an open IoT platform developed with FIWARE [7]
for agriculture, but none of them use the linked data (LD) version that allows a greater
standardization of the API (application programming interface), which is essential for the
platform to have open data. Platform [8] uses the LD version of FIWARE and proposes a
data model to improve the management and real-time monitoring of crops in irrigation
communities. Additionally, an IoT platform based on microservices, such as FIWARE, but
with its own architecture, so it does not have a standardized API, has been proposed [9].
However, none of the above works integrates soil-water-plant-atmosphere models. [10]
propose a mobile application that incorporates an agricultural model [11] for fertilization
and irrigation scheduling, but this model does not use sensor data and is based on the
single crop coefficient (Kc) approach instead of the dual Kc for separate estimation of crop
transpiration (Tc) and soil evaporation (Es) (i.e., Kc = Kcb + Ke), introduced in FAO56 [12]
which improves the accuracy of potential crop evapotranspiration (ETc) estimation.

To solve these problems, a low-cost IoT platform for precision irrigation has been
developed in this work. Using FIWARE, more specifically the LD version, the objective is
to create an open IoT application with an architecture that allows the connection of any
type of sensor and agronomic model and with a standardized API that allows platforms
of the same type, which also use FIWARE, to connect to each other without the need for
additional configurations. The platform not only works as a dashboard, displaying the data
captured by the sensors, but also automatically calculates the crop water needs using the
dual Kc approach and allows the implementation of deficit irrigation strategies. To connect
different sensors to the platform, a low-cost, energy-efficient data acquisition device has
been developed.

2. Materials and Methods
2.1. Study Area

This project has been carried out on a farm devoted to olive groves located in Córdoba,
southern Spain.

The climate in this area is characterized by mild winters and hot summers, with mean
daily temperatures around 10 ◦C and above 26 ◦C, respectively (Table 1). The monthly mean
values of grass reference evapotranspiration (ET0; FAO-Penman-Monteith method [12])
varies between 1.1 and 7.6 mm day−1.

The average annual rainfall and ET0 for the period from 2001 to 2021 was 590 mm,
with high interannual variability, and 1409 mm, respectively (Figure 1). The year 2021,
when the project started, was a dry year, with an annual rainfall of 436 mm.

The soil is alkaline (pH = 8.7), with a high presence of carbonates (45.3%) and active
limestone (18.2%). The texture varied between loam and clay loam, with a medium
water retention capacity. The soil had no salinity problems, with an average electrical
conductivity (EC; 1:5) value of 0.14 dS/m. The average cation exchange capacity (CEC)
was 24 cmol(+)/kg, with the exchange complex dominated by the presence of Ca and a
high K and low Mg content. The total organic matter content of soil is 1.43%.

This olive farm consists of two plots of olive trees. The first of the plots is made up
of olive trees of the Arbequina variety, planted in 2017 with a planting frame of 6 × 2 m.
The second plot is made up of olive trees of the Arbosana variety, planted in 2019 with
a planting frame of 5 × 1.75 m. Both plots are irrigated by means of a pump that drives
the water from the Guadajoz River to the different irrigation sectors. Table 2 shows the
characteristics of the irrigation system.
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Table 1. Average climatic data in Córdoba (Andalusia; southern Spain) during the period from 2001
to 2021, obtained from the Córdoba agroclimatic station belonging to the Andalusian Agroclimatic
Information Network (RIA).

Month Precipitation
(mm month−1) Mean T (◦C) Mean Relative

Humidity (%)
Wind Speed

(m s−1)
Solar Radiation
(MJ m−2 d−1)

ET0
(mm day −1)

January 56.8 8.4 81.9 1.38 8.7 1.17
February 63.3 10.1 76.7 1.55 11.8 1.79

March 79.0 13.0 71.9 1.65 16.1 2.79
April 62.5 15.9 68.3 1.62 20.3 3.80
May 36.3 19.9 58.1 1.62 24.8 5.20
June 7.5 24.8 48.1 1.90 27.9 6.78
July 2.2 27.9 40.9 1.99 28.3 7.61

August 10.7 27.9 42.2 1.85 25.1 6.82
September 32.0 23.7 54.6 1.63 19.3 4.67

October 78.2 18.6 67.1 1.45 13.7 2.82
November 76.5 12.2 77.3 1.39 9.7 1.57
December 84.9 9.2 81.5 1.41 7.8 1.11

Year 590 17.7 64.1 1.62 17.8 3.86
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Table 2. Characteristics of the irrigation sectors. Sector one with the Arbequina variety and sector
two with the Arbosana variety.

Area
(ha)

Dripper Flow Rate
(L/h)

Drip Spacing
(m)

Irrigation Efficiency
(%)

Sector one 22.7 2.2 0.7 90

Sector two 19.3 2.2 0.7 90
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2.2. Iot Platform
2.2.1. General Architecture

The architecture of the developed IoT platform (Figure 2) is divided into three distinct
and independent layers that are interconnected through a set of APIs. This architecture is
made up of a set of microservices that perform a specific task. The central component of
the platform is the Orion Context Broker, which is responsible for connecting the differ-
ent microservices using the same API. This type of architecture increases the scalability
and security of the system as it allows the creation of new services that perform specific
functionalities without affecting those already in place.

Agronomy 2022, 12, x FOR PEER REVIEW 4 of 20 
 

 

from the Guadajoz River to the different irrigation sectors. Table 2 shows the characteris-

tics of the irrigation system. 

Table 2. Characteristics of the irrigation sectors. Sector one with the Arbequina variety and sector 

two with the Arbosana variety. 

 
Area  

(ha) 

Dripper Flow Rate 

(L/h) 

Drip Spacing 

(m) 

Irrigation Efficiency 

(%) 

Sector one 22.7 2.2 0.7 90 

Sector two 19.3 2.2 0.7 90 

2.2. Iot Platform 

2.2.1. General Architecture 

The architecture of the developed IoT platform (Figure 2) is divided into three dis-

tinct and independent layers that are interconnected through a set of APIs. This architec-

ture is made up of a set of microservices that perform a specific task. The central compo-

nent of the platform is the Orion Context Broker, which is responsible for connecting the 

different microservices using the same API. This type of architecture increases the scala-

bility and security of the system as it allows the creation of new services that perform 

specific functionalities without affecting those already in place. 

 

Figure 2. IoT Platform Architecture. 

2.2.2. Layer 1 (IoT Devices) 

All IoT applications need to have one or more sensors to collect data from the envi-

ronment. Sensors are essential components of smart objects. One of the most important 

aspects of the Internet of Things is context awareness, which is not possible without sensor 

technology [13]. The first layer is made up of smart and energy-efficient devices that have 

been developed with the aim of being compatible with different connections and proto-

cols. These devices have been developed to accomplish the following characteristics: 

 Wireless and with different communication protocols: The devices are usually in-

stalled in dispersed locations without internet connectivity and have therefore been 

developed to support a wide range of communications such as Low Power Wide 

Area Networks (LPWAN), including LoRaWAN, SigFox, NB-IoT, Global System for 

Mobile (GSM), Wi-Fi, and Bluetooth. Depending on the coverage and the number of 

sensors (e.g. LoRa network needs to deploy an infrastructure that is not cost-effective 

Figure 2. IoT Platform Architecture.

2.2.2. Layer 1 (IoT Devices)

All IoT applications need to have one or more sensors to collect data from the envi-
ronment. Sensors are essential components of smart objects. One of the most important
aspects of the Internet of Things is context awareness, which is not possible without sensor
technology [13]. The first layer is made up of smart and energy-efficient devices that have
been developed with the aim of being compatible with different connections and protocols.
These devices have been developed to accomplish the following characteristics:

• Wireless and with different communication protocols: The devices are usually installed
in dispersed locations without internet connectivity and have therefore been developed
to support a wide range of communications such as Low Power Wide Area Networks
(LPWAN), including LoRaWAN, SigFox, NB-IoT, Global System for Mobile (GSM),
Wi-Fi, and Bluetooth. Depending on the coverage and the number of sensors (e.g.,
LoRa network needs to deploy an infrastructure that is not cost-effective for a limited
number of sensors), one communication system or another will be chosen.

• Energy-efficient: Sensors in agriculture are usually installed in remote locations that
are difficult to access, so they must be energy self-sufficient.

• Supports different output protocols: To measure the different agronomic factors af-
fecting irrigation, the devices have to support the main protocols used by the sensors.
These protocols are SDI-12 (Serial Digital Interface at 1200 baud), RS-485 (Commu-
nication standard published by the Telecommunications Industry Association and
Electronic Industries Alliance; TIA/EIA), I2C (Inter-Integrated Circuit), and SPI (Serial
Peripheral Interface). The devices also support analog sensors.
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The devices are programmed with the open-source Arduino software, which can be
extended with C and C++ programming languages.

Hardware Architecture

The devices are made up of a set of components that together form an embedded
system. The main element of the devices is the microcontroller, which monitors the control
of power consumption, obtains data from the sensors, and communicates with layer two.
For this purpose, the Arduino MKR family of boards has been used, which are open source
and support a wide range of communication protocols. This board is based on Atmel’s
32-bit SAMD21 microcontroller.

To integrate this board with the sensors, a printed circuit board (PCB) has been
developed. A schematic is shown in Figure 3. The PCB can be divided into the following
parts, each of which performs a specific functionality.
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• Battery system: consists of a 2600 mAh, 3.7 V, rechargeable 18,650 lithium-ion battery,
which is charged by a 250 mA solar panel. To control the battery charge, the Lion
TP4056 linear charger module has been used. This module controls the overcharging
and discharging of the battery.

• Power Switch: It consists of a Logic Level Mosfet, which is used as a switch, cutting
off the power supply to the sensors during the sleep period and supplying it at the
moment of taking measurements. This reduces power consumption considerably.

• Voltage Divider: adjust the battery voltage to the MKR circuit operating voltage of
3.3 V.

• On/off button: button that turns the device on and off.
• Sensor Connectors: It has four jack connectors for easy integration with sensors. These

have a jumper that enables switching from digital to analog.

2.2.3. Layer 2 (IoT Backend)

The second layer is the backend. It is based on a microservices architecture and uses
the FIWARE framework alongside custom services. FIWARE brings a curated framework
of open source platform components that can be assembled together and with other third-
party platform components to build smart solutions faster, easier, and cheaper [7]. It is
supported by the European Union (EU) and has been developed to create open source,
standardized IoT platforms that are suitable for all sectors, such as smart cities, industry, and
agriculture, and that enable better communication between systems. The EU’s commitment
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to FIWARE is due to the need to create a common standard in the IOT world, as until then
each organization followed different paths that prevented communication between sensors
and platforms. With FIWARE, this problem is solved, and cities, industries, or agricultural
farms follow the same standard that allows them to share information in a simple way.

FIWARE is composed of a series of software blocks, called generic enabler (GE), which
perform specific functions. Each of these GEs provides open APIs, which facilitate cross-
platform communication and make it easier to develop IoT applications. This is one of the
main advantages offered by this framework since it allows integration between different
FIWARE-based platforms. This is very important both at the farm management and
research levels because it allows the integration of methods developed by research groups
and facilitates their use by farmers and the private sector, improving decision making.

In FIWARE, the state of an object in the real world is defined as context information
and is represented by an entity. Each entity has attributes that are divided into properties
and relationships, where the first defines the value of the entity and the latter defines the
relationship that this entity has with other entities. For example, in a “Device” entity, the
“SoilMoisture” attribute is a property, while the “Parcel” attribute is a relationship linking
this sensor to the crop plot where it is located. The values of this attribute represent the
current status of the device, which is the context information, and only the latest state of
the device is stored in the context broker. Therefore, to access historical data, it is necessary
to connect to external services that store the information in databases.

The components of the backend are:

• Orion Context Broker with Linked Data Extensions (Orion-LD): It represents the main
component of the platform and enables the management of the entire lifecycle of con-
text information, including updates, queries, registrations, and subscriptions [14]. This
component is based on the NGSI-LD API (Next Generation Service Interfaces—Linked
Data) [15] that supports the LD concept.

• QuantumLeap: a GE that is responsible for persistently storing temporal sensor data
in a time-series database.

• IoT Agent: a GE that allows the connection of the sensors with the context broker. It
manages the different devices and is responsible for transforming the sensor-specific
protocol into the NGSI-LD context information protocol.

• Authentication Server: a custom microservice that is responsible for authentication
and authorization of users to the platform. It is developed with Node.js, a JavaScript
runtime environment, and uses JSON Web Tokens to ensure security.

• Soil Water Balance Model: A customized microservice that calculates the soil water
balance of crop plots on a daily basis. The model has been developed with the Python
programming language, and the microservice for accessing the model with Node.js.
This model is described in more detail in Section 2.3.

• MongoDB: a No-SQL database that stores context data and user information.
• CrateDB: another No-SQL database where the sensor data is stored in a persistent way.

To connect all the services or components that are in the backend, the NGSI-LD API
provides two mechanisms called subscriptions and registrations. The first one informs
the external services that the context data has changed, and the second one connects the
services to the context broker, so that the context broker changes the context data. For
example, there is a subscription that connects Orion-LD to the QuantumLeap service. This
subscription aims to redirect to QuantumLeap the sensor data coming to the broker (via
the IoT-Agent). An example of registration is when an external service, in this case the
IoT-Agent, wants to connect to the broker to change the context data; this IoT-Agent has an
associated registration, which is responsible for changing the status of the sensors in the
broker when data from the sensor is received again.

Linked Data

Linked data concepts allow for one step further in the communication between plat-
forms as it uses the JSON-LD (JavaScript Object Notation for Linked Data) data format,
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which makes it possible to read and write structured data supported by open vocabular-
ies [16] that can be read by computers. This makes it easier to find and exchange information
with open databases, mobile apps, and IoT platforms. This is especially useful in the IoT,
where information exchange between platforms is currently very limited.

The Orion-LD broker version, currently in beta, allows users to manage and request
context information in an organized way using the NGSI-LD standards. For example, as
will be seen in the following section, the application developed in this article has an entity
called “Parcel”, which represents a crop plot within the farm. This same entity within the
FIWARE standards, which are publicly available, is called “AgriParcel”. To relate these two
concepts, FIWARE makes use of JSON-LD files, so that when our platform asks FIWARE to
return the entitiy “Parcel”, FIWARE knows that it is referring to the “AgriParcel” entity. As
these standards are unique and public, different platforms can access the same FIWARE
API using their own entity names, which may be different between applications.

Figure 4 shows how two apps can access different FIWARE servers using their own entities.
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2.2.4. Layer 3 (Frontend)

The last layer is the frontend, which can be defined as the web design and development
technologies that allow the user to interact with the backend (Layer 2). This layer consists of
a user interface that acts as an intermediary between the user and the platform, displaying
information and facilitating user interaction with the platform. To connect to the Rest API
of the backend, the frontend uses the HTTP protocol.

For the development of this layer, the ReactJS library has been used, which is based
on HTML5, JavaScript, and CSS technologies. This library allows the creation of single-
page applications (SPA), which significantly increases user experience and application
performance. The web application consists of a single HTML document, and as the user
interacts, the content changes dynamically.

The frontend, as well as serving as an interface to facilitate the user’s connection
with the server, is responsible for structuring the application. It is where the entities will
be structured so that all users will follow the same pattern (Figure 5). The main entity



Agronomy 2022, 12, 2909 8 of 19

in the application is the farm, where general aspects such as location, name, owner, etc.
are collected. Within the farms are the entities (“Parcel”) corresponding to the crop plots.
These entities contain information about the agronomic factors such as soil type, crop
characteristics, irrigation system, irrigation strategy, and user management.
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Finally, within each “Parcel”, there are the entities corresponding to the devices. These
entities represent the dataloggers installed in the farm and show the information and
historical data of each of the devices. This structure makes it possible to simulate any farm
in which there are parcels with different agronomic characteristics, on each of which one or
more sensors are installed.

Each user is assigned a role with specific permissions. Users with the role of admin-
istrator are the only ones authorized to add or delete users and administer the databases.
The other users can only manage those entities that they have created themselves.

Users can make the farms they have created public or give permission to different
users, so that any of them can see the data but cannot edit anything. In addition, each farm
has a private API-Key that can be shared to access the NGSI-LD API.

2.3. Irrigation Model

The irrigation model is responsible for calculating the amount of water that the crop
needs and when the best time is to apply it. Although it could be used for any irrigation
method, in this particular case it is focused on drip irrigation as it allows the calculation of
the wet bulb dimensions.

Figure 6 shows the different elements that make up the irrigation model developed
in this article. This diagram can be divided into two parts: the first one related to the soil
water balance model, which is calculated using the FAO-56 methodology [17], and the
second one related to the wet bulb, where the total available soil water (TAW) and the wet
bulb dimensions are calculated.

The application runs two types of models. The first one calculates the soil water
balance from previous years. The user can choose whether to make a water balance by
simulating a specific year or by making the balance using the average of the climatic values
of the last 20 years. As the user can change the irrigation strategies, this first balance
allows them to obtain the results of each of the strategies that they define and find the one
that best suits their needs. The second type uses weather forecasts to estimate the crop
water requirements in the next seven days and apply the most efficient irrigation strategy
possible. All the weather data can be obtained using an on-farm weather station or an
external meteorological API, such as AEMET and elTiempo.es, two meteorological services
operating in Spain.
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2.3.1. Soil Water Balance

The soil water balance (SWB) model uses daily climatic data, crop characteristics, and
data recorded by sensors to calculate crop water consumption (ETa) and water losses in
percolation and runoff processes.

The daily SWB, expressed as water depletion at the end of day i, is calculated using
the following equation:

Dr,i = Dr,i−1 − (P − RO)i − Ii − CRi + ETa,i + DPi (1)

where Dr,i is the soil water depletion in the root zone at the end of day i [mm]; Dr,i−1 is the
depletion in the root zone at the end of the previous day i − 1 [mm]; Pi is the precipitation
on day i [mm]; ROi is the runoff from the soil surface on day i [mm]; Ii is the irrigation
applied on day i [mm]; CRi is the capillary rise from the groundwater table on day i [mm];
ETa, i is actual crop evapotranspiration on day i [mm], and DPi is the water flowing out
from the root zone -by deep percolation on day i [mm].

ETa was calculated following the FAO56 method [17] as the product of the reference
evapotranspiration (ET0), calculated using the FAO Penman-Monteith equation, and the
actual crop coefficient (Kc act), (ETa = ET0 × Kc act), with Kc act = Ks × Kc, where Ks is
a crop water stress coefficient, and Kc is calculated using the FAO56 dual Kc method
(Kc = Kcb + Ke) [12]. Where Kcb is the basal crop coefficient and Ke is and evaporation
coefficient, which represent the ratios of crop transpiration (Tc) and soil evaporation (Es),
respectively (Tc/ET0, and Es/ET0) [18]. Thus, Kc act is calculated as follows:

Kc act = KsKcb + Ke (2)

To adopt the dual Kc approach, the methodology used in the SIMDualKc software has
been used [19]. This methodology has been validated in high-density olive groves [20–22]
and in other woody row crops, such as peach trees [23] and vineyards [24].
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For the calculation of Kcb, the differences in canopy density and crop height have to be
considered as these parameters influence crop transpiration. Kcb can be calculated using
the following equation [25]:

Kcb = Kcb min + Kd

(
Kcb f ull − Kcb min

)
(3)

where Kcb f ull represents the estimated Kcb at maximum crop growth, for conditions having
nearly full ground cover, Kcb min is the minimum Kcb for bare soil ( Kcb min ∼ 0.15) [19] and
Kd is the density coefficient (Kd) that can be found in [25,26].

Kcb f ull is calculated as a function of mean crop height and adjusted for local climate
conditions. This is because the standard Kcb values refer to a typical sub-humid climate
(with an average daily minimum RH of 45% and a wind speed of 2 ms−1) [27], so the values
of Kcb f ull are adjusted using the following equation:

Kcb f ull = Kcb, h + (0.04(u2 − 2)− 0.004(RHmin − 45))
(

h
3

)0.3
(4)

where Kcb, h is the Kcb mid for full cover vegetation under sub-humid and calm wind condi-
tions (RHmin 45% and u2 = 2 ms−1) that can be estimated (Kcb, h = min(1.0 + 0.1h, 1.20)) [25],
u2 is the wind speed at 2-m height [ms−1], and h is the mean maximum crop height [m].

Finally, Kcb is adjusted for available soil water to maintain crop ET at potential rate.
Ks can be calculated by the following function [17,18]:

Ks =
TAW − Dr

TAW − RAW
when Dr > RAW (5)

where TAW and RAW are the total available water and readily available water in the root
zone [mm], respectively, and Dr is the soil water depletion in the root zone relative to field
capacity [mm] [17].

The last step in the estimation of actual crop coefficient (Kc act) is the calculation of Ke.
This coefficient is highest when the topsoil is wet and decreases as the water content drops:

Ke = min(Kr(Kc max − Kcb), fewKc max) (6)

where Kr is the dimensionless evaporation reduction coefficient dependent on the cumu-
lative depth of water depleted from the topsoil and few is the fraction of the soil surface
wetted and exposed to solar radiation. Equations for calculating the Kr, Kc max, and few are
presented in the FAO56 report [17].

The simplified procedures used in the SIMDualKc [19] model have been used to
calculate the last three components of the SWB (DP, CR, and RO). The SIMDualKc model
calculates DP and CR using the procedure described by FAO-24 [27] and calculates RO
using the curve number method [17].

2.3.2. Wet Bulb Calculation

As the crop used is drip irrigated, a series of equations have been developed to
calculate the dimensions of the wet bulb of the soil to give more precise recommendations
on the hours that the irrigation system should be in operation.

The model uses the soil properties to calculate the wet bulb dimensions and the soil
water retention curve in order to estimate the maximum amount of water that can be
applied without percolation and the TAW, respectively. Figure 7 gives an overview of the
procedures followed.



Agronomy 2022, 12, 2909 11 of 19

Agronomy 2022, 12, x FOR PEER REVIEW 11 of 20 
 

 

calculates DP and CR using the procedure described by FAO-24 [27] and calculates RO 

using the curve number method [17]. 

2.3.2. Wet Bulb Calculation 

As the crop used is drip irrigated, a series of equations have been developed to cal-

culate the dimensions of the wet bulb of the soil to give more precise recommendations 

on the hours that the irrigation system should be in operation. 

The model uses the soil properties to calculate the wet bulb dimensions and the soil 

water retention curve in order to estimate the maximum amount of water that can be ap-

plied without percolation and the TAW, respectively. Figure 7 gives an overview of the 

procedures followed. 

 

Figure 7. Flowchart of the procedures for calculating TAW and wet bulb dimensions. Where th1500 

and th33 are the soil water content at soil matric potentials of −1500 and −33 kPa, respectively. 

Calculation of Total Available Water 

To facilitate the use of the irrigation model, the soil texture and the effective root 

depth are the only mandatory parameters to calculate TAW. To calculate the missing pa-

rameters, the Rosetta pedotransfer model, which predicts the hydraulic parameters of un-

saturated soils, has been used. This model allows the estimation of van Genuchten water 

retention parameters and saturated hydraulic conductivity using limited (textural classes 

only) to more extended (texture, bulk density, and one or two water retention points) in-

put data [28–30]. However, it is highly recommended to estimate all these soil parameters 

in the lab in order to use the extended version and get better results. 

Using the parameters calculated by Rosetta, the van Genuchten equation can be used 

to calculate the soil water retention curve [31]. 

𝜃(ℎ) =  𝜃𝑟 + 
𝜃𝑠 − 𝜃𝑟

(1 + (𝛼ℎ)𝑛)(1−
1
𝑛)

 (7) 

Figure 7. Flowchart of the procedures for calculating TAW and wet bulb dimensions. Where th1500
and th33 are the soil water content at soil matric potentials of −1500 and −33 kPa, respectively.

Calculation of Total Available Water

To facilitate the use of the irrigation model, the soil texture and the effective root depth
are the only mandatory parameters to calculate TAW. To calculate the missing parameters,
the Rosetta pedotransfer model, which predicts the hydraulic parameters of unsaturated
soils, has been used. This model allows the estimation of van Genuchten water retention
parameters and saturated hydraulic conductivity using limited (textural classes only)
to more extended (texture, bulk density, and one or two water retention points) input
data [28–30]. However, it is highly recommended to estimate all these soil parameters in
the lab in order to use the extended version and get better results.

Using the parameters calculated by Rosetta, the van Genuchten equation can be used
to calculate the soil water retention curve [31].

θ(h) = θr +
θs − θr(

1 + (αh)n)(1− 1
n )

(7)

where θ(h) is the soil water content [m3 m−3] at a matric potential h [kPa], θs is the saturated
water content, θr is the residual water content, α is related to the inverse of the air entry
suction [cm−1], and n is a measure of the pore-size distribution

Finally, with the calculated water retention curve, the soil TAW can be estimated as the
difference between the volumetric soil water content at −33 kPa, which represents the field
capacity (FC), and at −1500 kPa, which represents the permanent wilting point (PWP) [32]
multiplied by the effective root depth.

Calculation of the Wet Bulb Dimensions

To calculate how long the irrigation system should run, it is necessary to know the
dimensions of the wet bulb. There are several methods that can be used for this, which can
be divided into empirical [33–35], numerical [36] and analytical models [37].
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We have used two models to calculate bulb dimensions. The first is the Schwartzman
and Zur model [33]:

w = 1.82 V0.22
(

Ksat

Q

)−0.17
(8)

z = 2.54 V0.63
(

Ksat

Q

)0.45
(9)

where w and z are the horizontal and vertical dimensions [m], V is the total amount of
water in the soil [m3], Ksat is the saturated hydraulic conductivity [ms−1], and Q is the
emitter discharge [m3s−1]

The second is the DIPAC-DRIP model. Equations (10) and (11) were created to estimate
the horizontal and vertical dimensions of the wet bulb using a non-linear regression analysis.

w = 0.2476 ∆θ−0.5626 V0.2686 Q−0.0028 Ks
−0.0344 (10)

z = 2.0336 ∆θ−0.383 V0.365 Q−0.101 Ks
0.195 (11)

where ∆θ is the average change of SWC (∆θ ≈ θs/2, where θs is the soil water content
at saturation).

The effective root depth parameter is used to calculate the dimensions of the wet
bulb before percolation. With the volume of this wet bulb, the amount of water needed
to bring it to the target moisture content can be estimated. To calculate this volume using
the horizontal and vertical dimensions, the shape of the bulb has been assumed to be a
semi-ellipse. This assumption is not entirely correct as the shape of the bulb is not exactly
a semi-ellipse, and some studies have tried to calculate the shape more precisely [38].
However, it has been decided to use the semi-ellipse for simplification, and other studies
will be taken into consideration for future improvements of the model.

The possible overlapping of the surface wetted by drippers in linear branches has been
taken into account. Since the shape of the wet bulb is considered the same, the overlapped
area can be calculated as the area of the intersection between two equal circles:

Ac,overlaped = 4

πR2cos−1 d
2R

360
−

R
(√

d2 − R2

4

)
4

 (12)

where Ac,overlaped is the overlapping area between the circles, R is the radius of the wet bulb,
and d is the distance between the drippers. To translate this overlap area of the circles to
the overlap area of the semi-ellipse, the following equation is used

Ase,overlaped =
Ac,overlaped

( z
R
)

2
(13)

Finally, with the volume of the wet bulb, the overlapping area, and the soil humidity
data, the total time that the irrigation system should work can be estimated as:

t =
Vse

(
Ase

Ase, overlaped

) (
I

1000 z

)
Q

(14)

where I represents the irrigation needs [mm] calculated in the SWB, Vse is the volume of
the semiellipse, and Ase is the area of the semiellipse.

2.3.3. Irrigation Strategies

The irrigation model uses four types of irrigation strategies: (1) Rainfed: when there
is no irrigation; (2) Soil moisture target: define a maximum soil water depletion for each
month of the year, which is particularly useful when scheduling deficit irrigation strategies;
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(3) Predefined schedule: used if the irrigation is already defined and it is necessary to
provide an irrigation time for each day of the simulation; (4) Constant depth: a strategy
that attempts to keep soil water depletion within a specific range.

Other parameters, such as limiting the maximum irrigation time per day, the interval
between irrigation days, or the days of the week on which irrigation can take place,
are considered.

2.4. Server Implementation

Finally, once the design is finished, it is necessary to move the backend into production
mode. This consists of deploying the application on a server so that it is operational 24 h a
day. In this section, it is important to apply the corresponding security measures.

The development and deployment of the application was through Docker, a platform
for the development of software containers. Among the advantages of using this technology
are the possibility of running multiple servers on the same machine in isolation, scalability,
and ease of deployment in the cloud.

As a server, we have used a Raspberry Pi 4 with 4 GB of RAM and a 64-bit Raspbian
operating system.

3. Implementation
3.1. Device Implementation

The model described above was implemented in the IoT system that was evaluated on
the olive farm during one irrigation season. Two communication nodes have been installed
(Figure 8), one in each of the irrigation sectors or plots of olive trees. Each node consists of
three soil humidity, electrical conductivity, and temperature probes, placed at 15, 30, and
45 cm soil depth, and a soil water potential sensor placed at 30 cm.
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Figure 8. Communication node with connected soil moisture sensors.

The installation of the sensors is quite simple and intuitive. The communication node
allows the connection of sensors with a 3.5 mm jack connector. As already mentioned, the
architecture of the platform allows any type of sensor to be connected. To do this, when the
user installs a new node, a window appears on the platform where the user must specify
which sensors have been installed in each connector. Once this step is finished, the platform
adapts to that sensor and displays its data.
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3.2. User Interface

The application interface has been developed to be user-friendly and scalable. This
interface allows access to the different entities within the farm in a quick and intuitive way
(Figure 9).
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The home page allows access to the main menus of the application, such as the user
settings or the farms. The farms page shows the general characteristics of the farm and
the field plots that compose it; this entity stores weather data. The next page is the plots
page; this is the most important one because it is where the irrigation is calculated. This
page has all the crops and agronomic data, the irrigation schedules, and the sensors that are
installed there. Finally, the interface has the page sensors, where all sensor characteristics
and telemetry are displayed.

This structure allows for the separation of the different “Parcel” entities of a farm in
order to use their characteristics as input for the agronomic models.

3.3. Scheduled Irrigation

As mentioned above, the model allows multiple irrigation strategies; the use of one or
the other will depend on the soil characteristics, the crop, the limits of the irrigation system,
and the user’s management.

In this work, a regulated deficit irrigation (RDI) strategy has been chosen as the
irrigation allocation is not sufficient to replenish 100% of the irrigation needs of the olive
grove on the farm. This strategy maximizes water productivity by reducing applied water
only during the least drought-sensitive crop phenological periods [39], in which the crop
can suffer water stress without severely affecting crop yield.

For the two plots of olive trees monitored in this work, the RDI strategy evaluated in a
high-density olive grove of the Arbequina variety located in the province of Seville was
followed [40] to apply a total irrigation amount of 60% of irrigation needs (IN; Figure 10).

Agronomy 2022, 12, x FOR PEER REVIEW 16 of 20 
 

 

3.3. Scheduled Irrigation 

As mentioned above, the model allows multiple irrigation strategies; the use of one 

or the other will depend on the soil characteristics, the crop, the limits of the irrigation 

system, and the user’s management. 

In this work, a regulated deficit irrigation (RDI) strategy has been chosen as the irri-

gation allocation is not sufficient to replenish 100% of the irrigation needs of the olive 

grove on the farm. This strategy maximizes water productivity by reducing applied water 

only during the least drought-sensitive crop phenological periods [39], in which the crop 

can suffer water stress without severely affecting crop yield. 

For the two plots of olive trees monitored in this work, the RDI strategy evaluated in 

a high-density olive grove of the Arbequina variety located in the province of Seville was 

followed [40] to apply a total irrigation amount of 60% of irrigation needs (IN; Figure 10). 

 

Figure 10. RDI strategy applied in a high-density olive grove to supply 60% of the crop’s water 

needs [40]. Modified from [41]. 

To implement this irrigation scheduling, the strategy defined in the irrigation model 

as “soil moisture target” has been used. As mentioned above, with this strategy, the user 

can define a maximum soil water depletion for each month. Thus, the RDI strategy can be 

used in the water balance model. Following this strategy, the model performs two simu-

lations. The first one is an annual simulation that is run using historical data from the last 

20 years (Figure 11). This simulation shows how the water content in the soil changes 

during a normal year. The second simulation predicts the water needs of the olive crops 

in the following 7 days (Figure 12). For this, the soil water content is adjusted each day 

with the data provided by the soil moisture sensors, and the simulation of the water bal-

ance is performed using weather forecast data and the scheduled irrigation events. 

Figure 10. RDI strategy applied in a high-density olive grove to supply 60% of the crop’s water
needs [40]. Modified from [41].

To implement this irrigation scheduling, the strategy defined in the irrigation model
as “soil moisture target” has been used. As mentioned above, with this strategy, the user
can define a maximum soil water depletion for each month. Thus, the RDI strategy can
be used in the water balance model. Following this strategy, the model performs two
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simulations. The first one is an annual simulation that is run using historical data from the
last 20 years (Figure 11). This simulation shows how the water content in the soil changes
during a normal year. The second simulation predicts the water needs of the olive crops in
the following 7 days (Figure 12). For this, the soil water content is adjusted each day with
the data provided by the soil moisture sensors, and the simulation of the water balance is
performed using weather forecast data and the scheduled irrigation events.
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4. Discussion

While the use of sensors in agriculture is growing exponentially, the use of IoT plat-
forms is also growing exponentially. The problem is that these platforms often have their
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own architecture, and the API is not standardized. This makes it difficult to connect be-
tween platforms and leads to their isolation. FIWARE, in particular its Linked-Data version,
is developed with the aim of solving this problem and appears as a great alternative for IoT
applications in agriculture.

That is why the most innovative part of this platform lies in its ease of sharing data
between third-party platforms. Any platform developed with, or adapted to work with,
the Orion-LD broker can be connected with little or no configuration. This is particularly
beneficial in the public sector and in research, where data tends to become increasingly
free, encouraging cooperation between researchers.

On the other hand, it is important that irrigation platforms use agronomic models that
provide more information to the farmer. The reliability of these models depends on the
homogeneity of the sector and the accuracy of the data obtained.

One of the great advantages of open platforms is that they are easily scalable and allow
the integration of new sensors, which will be able to send real-time information to soil-
water-plant-atmosphere models and considerably improve the accuracy of the estimates.
For example, the integration of eddy covariance stations and sap flow sensors could help
to improve the accuracy of the estimation of crop water requirements.

With all this, it will be possible to integrate large amounts of information, what we
know as ‘big data’, in quite complex models while offering accurate recommendations to
farmers in a user-friendly and easy-to-understand way.

In this particular case, before the implementation of this smart irrigation system,
traditional irrigation management consisted of homogeneous irrigation of the olive farm,
without making any distinction between the different sectors, despite the fact that the
soil hydraulic characteristics and the olive varieties, as well as the planting date and tree
density, were different. Moreover, the amount of irrigation depth applied was constant
throughout the irrigation season, without taking into account the water requirements or
the phenological stage of the olive tree. This was a problem, as there were periods of
overwatering and others in which the needs of the olive trees were not supplied. By using
the web application, which displayed the results of the sensors and the application of
the irrigation model, the farmer improved his irrigation management, reducing water
losses and avoiding tree water stress. It also facilitated the application of RDI strategies,
something that is often not easy for the average farmer.

Thanks to the use of technology, this IoT platform for smart irrigation is able to know,
in real time, the state of the soil and of the crop and is able to use already validated
soil-water-plant-atmosphere models that give us current and future information on the
behavior of crops, all in an automatic way. Although it is difficult to measure the efficiency
of this system in comparison with the conventional ones, as the latter depend mainly on the
knowledge and experience of the farmer, it is clear that the information provided by this
smart irrigation system is very useful for making decisions regarding irrigation scheduling.
Furthermore, for those farmers who are not familiar with agronomic models, this system
allows them to use these models without having the necessary knowledge to understand
them. On the other hand, for those more experienced farmers who already use this type of
agronomic model, this system makes their work much easier as it allows them to automate
irrigation scheduling.

5. Conclusions

The design of a complete open-source IoT system for smart irrigation systems is already
completed. The system is a multilayer platform consisting of a series of energy-efficient
smart devices connected to an IoT platform that is based on a microservices architecture.
The platform uses the FIWARE framework alongside customized components and can be
deployed using edge computing and/or cloud systems. This allows it to be adapted to the
farmer’s needs, reducing costs and increasing safety.

To complement the platform, an energy-efficient open-source datalogger has been
designed. The datalogger supports a wide range of communications and protocols. The
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open-source availability of the data collected from the different sensors will facilitate the
integration of the data into soil-water-plant-atmosphere models and their use as decision
support systems for optimal irrigation management.

In addition, a soil-water-crop model has been developed to improve irrigation man-
agement. This model calculates the dimensions and characteristics of the wet bulb when
there is a drip irrigation system and uses the dual Kc approach to calculate the crop water
requirements. Two simulations are performed in the application: the first calculates the soil
water balance for a normal year, and the second calculates the water balance for the next
seven days.
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