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Abstract 

 
While diagnosing schizophrenia by physicians 

based on patients' history and their overall mental 

health is inaccurate, we report on promising results 

using a novel, fast and reliable machine learning 

approach based on electroencephalography (EEG) 

recordings. We show that a fine granular division of 

EEG spectra in combination with the Random Forest 

classifier allows a distinction to be made between 

paranoid schizophrenic (ICD-10 F20.0) and non-

schizophrenic persons with a very good balanced 

accuracy of 96.77 percent. We evaluate our approach 

on EEG data from an open neurological and psychi-

atric repository containing 499 one-minute recordings 

of n=28 participants (14 paranoid schizophrenic and 

14 healthy controls). Since the fact that neither diag-

nostic tests nor biomarkers are available yet to diag-

nose paranoid schizophrenia, our approach paves the 

way to a quick and reliable diagnosis with a high 

accuracy. Furthermore, interesting insights about the 

most predictive subbands were gained by analyzing the 

electroencephalographic spectrum up to 100 Hz. 
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1. Introduction  

 
Mental disorders represent a global growing issue 

that affects approximately one in two people in their 

lifetime [1]. Schizophrenia is considered to be one of 

the most frequent neuropsychiatric disorders with a 

lifetime risk of one percent in the general population 

[2, 3]. It can cause a significant burden on both the 

individuals affected and society [4]. Additionally, it is 

associated with substantial premature mortality [5, 6] 

and morbidity [7]. Affected persons suffer heavily 

under the wide range of symptoms including positive 

ones (delusions, hallucinations and disorganized 

speech), which can be treated with antipsychotic drugs 

effectively [8, 9], and negative ones (social with-

drawal, self-neglect, loss of emotional responsiveness 

and motivation together with mild cognitive impair-

ment) [8-11]. Unemployment levels of schizophrenic 

persons are extremely high at 80-90 percent and life 

expectancy is reduced by 10-20 years [4, 12-14]. 

Schizophrenia can lead people to harm themselves or 

even commit suicide. Drug abuse and homelessness are 

known as possible side effects of psychotic disorders 

[15]. However, little is in fact known about the origin 

of this particular disease. Schizophrenia is considered a 

disorder of abnormal brain connectivity [16] caused by 

genetic or environmental factors, or both [4]. Schizo-

phrenic disorders are categorized by nine different 

types: paranoid schizophrenia (ICD-10 F20.0), hebe-

phrenic schizophrenia (F20.1), catatonic schizophrenia 

(F20.2), undifferentiated schizophrenia (F20.3), post-

schizophrenic depression (F20.4), Residual schizo-

phrenia (F20.5), simple schizophrenia (F20.6), other 

schizophrenia (F20.8) and schizophrenia, unspecified 

(F20.9). Since paranoid schizophrenia is the most 

common type of schizophrenia in most parts of the 

world, this work focuses on this type [17]. 

The major problem in detecting schizophrenia is 

that so far neither diagnostic tests nor biomarkers are 

available. Clinical diagnosis is instead made based on a 

patient’s history and their overall mental condition [4]. 

IT-based healthcare has undergone a dramatic up-

swing in the past years, largely driven by increases in 

computational power and the availability of huge new 

datasets [18, 19]. The field has witnessed spectacular 

advances in the ability of machines to understand data 

and this could thus be accompanied by great successes 

in medicine, in particular for diagnosing diseases [20, 

21] or IT-generated recipes [22]. The application of 

most modern machine learning using big data within 

the healthcare domain fosters this success [18-22].  

Despite this immense progress, only minimal in-

sights have been obtained about schizophrenia as one 
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of the most frequent neuropsychiatric disorders [1-3]. 

For instance, animal models show that developmental 

hippocampal lesions may cause abnormal connectivity 

of the prefrontal cortex [16] and in the human brain ir-

regular recordings (glutamate-mediated neurotransmis-

sion) have been detected in neuropsychiatric disorders 

such as schizophrenia [23]. In general, a lot of studies 

have shown that schizophrenia patients often show 

unspecific abnormalities in their EEG recordings [1]. 

The most prominent theory explaining the schizo-

phrenic disorder is the disturbed functional connectivi-

ty theory between small-world brain networks [24-26]. 

According to this theory, disturbances in functional 

connectivity are the major pathophysiological mecha-

nism for schizophrenia, and, in particular, for cognitive 

disorganization. It was found that these disturbances to 

functional connectivity are reflected in atypical and 

unspecific EEG recordings of schizophrenic patients, 

but EEG analysis based on the standard large EEG 

bandwidths are insufficient to make use of functional 

connectivity theory to diagnose schizophrenia [24]. 

However, from a modern machine learning point of 

view, we make use of this theory and propose a 

machine learning based classification system analyzing 

fine-graded EEG spectra to diagnose schizophrenic 

patients. Such a fast, automatic classification system 

with a high accuracy for detecting schizophrenia is 

highly useful in daily clinical practice. That is why in 

this paper we aim to evaluate the possibility of reliably 

distinguishing people with schizophrenia from non-

schizophrenics based on fine-graded EEG spectra. 

Research question: Can we build an artifact to 

distinguish schizophrenic from non-schizophrenic 

persons based on fine-graded EEG spectra? 

In order to identify schizophrenic persons from 

non-schizophrenics, we made use of the Random 

Forest classifier. The classifier uses aperiodic time 

series data that quote the registration of electrical 

activity of brain waves at the skull surface. 

The most important contributions are: 

1) We build a highly effective classifier to distinguish 

schizophrenic from non-schizophrenic persons 

based on EEG data with a very good balanced 

accuracy of 96.77 percent. 

2) By using the Random Forest machine learning 

method, a fast classification using only one-minute 

of EEG recording is possible. 

3) The extension of the analysis spectrum from up to 

50 Hz to 100 Hz leads to a further improvement in 

diagnostic accuracy (96.01 % versus 96.77 %). 

4) In addition to the current state of knowledge, the 

upper gamma frequency band (96.5 Hz to 99.5 Hz) 

is also very relevant for differentiating schizo-

phrenic from healthy people, something that may 

stimulate theory-building work (e.g. by extending 

functional connectivity theory [24-26]).  

The paper is organized as follows: Next we present the 

procedure of our research methodology by first arguing 

for the data set used. Furthermore, we set out the data 

preparation and the Random Forest method. After that, 

we demonstrate the machine learning results concern-

ing the performance evaluation. Then, we discuss the 

results and include practical implications, before con-

cluding with limitations and future work. 

 

2. Methodology 

 
In order to show methodological rigor in covering a 

relevant topic and thus finally contribute an applicable 

artifact for medicine and research, the work in this 

paper is done in accordance with the Information 

Systems design science approach [27]. The procedure 

covers the following steps (Fig. 1): Reading the data-

set, applying Independent Component Analysis (ICA) 

on the data, calculating mean values over all sensors, 

performing a spectral analysis with 200 equally ranged 

frequency bands, and conducting the classification. 

 
Figure 1: Method overview. 

 

2.1. Dataset 

 
The dataset comprised of 14 patients (7 males: 27.9 

± 3.3 years, 7 females: 28.3 ± 4.1 years) with ICD-10 
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F20.0 diagnosed paranoid schizophrenia, who were 

hospitalized at the Institute of Psychiatry and 

Neurology in Warsaw, Poland, and 14 healthy controls 

(7 males: 26.8 ± 2.9, 7 females: 28.7 ± 3.4 years) [28]. 

The patients had to undergo a medication washout of at 

least seven days. Study protocol was approved by the 

Ethics Committee of the Institute of Psychiatry and 

Neurology in Warsaw. All participants received a 

written description of the protocol and provided written 

consent to take part in this study. Inclusion criteria 

were a minimum age of 18, the ICD-10 diagnosis 

F20.0, as well as medication washout period of a 

minimum of seven days. Exclusion criteria were 

pregnancy, organic brain pathology, epilepsy, 

Alzheimer’s, or Parkinson disease, presence of a 

general medical condition, or very early stage of 

schizophrenia [28]. The control was matched in gender 

and age to the 14 patients completing the study [28]. 

The dataset consists of data from 64 electrodes 

placed on the scalp, scanned at 250 Hz [28], using the 

internationally standardized 10-20 EEG montage [29]. 

This designation relates to the positioning of the 

electrodes on the scalp as it measures the distance from 

Nasion to Inion and defines it as 100 percent. The EEG 

data were recorded for approximately fifteen minutes 

in all subjects during an eyes-closed resting state 

condition with 19 EEG channels: Fp1, FP2, F7, F3, Fz, 

F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, 

O2. The full dataset is held in a public repository and is 

available at https://repod.pon.edu.pl/dataset/eeg-in-

schizophrenia [30]. 
 

2.2 Preprocessing 

 
This part of the paper covers the data preparation of 

the collected EEG data. The EEG mirrors many 

thousands of simultaneous brain processes in specific 

frequency bands and their associated frequency 

bandwidth [31]. During the EEG data collection, noise 

disturbances such as muscle activities, blinking, 

movements of the eyes and the heartbeat are recorded. 

The ICA algorithm, which has to be implemented to 

remove these artifacts, performs well if the following 

requirements are satisfied: 
1) Mixing medium is linear and propagation delays 

are negligible. 

2) The time courses of the sources are independent. 

3) The number of sources is the same as the amount of 

sensors. 

For applying ICA on EEG data, the first and second 

assumptions are clearly met. The recording is linear 

and instantaneous. Also, the sources of blinking, 

muscle activities and heartbeat are not generally time 

locked. Since we do not know the exact amount of 

statistically independent brain signals, the third 

requirement is questionable. Nevertheless, simulations 

have confirmed that ICA works very well on EEG data 

[32]. In the case of EEG data analysis, the recorded 

signals must be the rows of the Input Matrix x. The 

Output Matrix u = Wx contains the time series of the 

ICA components. As a result of the ICA, we get the 

corrected EEG signals x’ = W-1 u’ [33]. The ICA 

algorithm used for pre-processing is provided with 

eegkit v.1.0.4 within R x64 3.5.3. 
In addition, we conducted a dimensional reduction 

by calculating the mean values over all 19 EEG 

channels per recording.  The preprocessed recordings 

of the 28 participants with a total recording time of 499 

minutes are separated into one-minute chunks each. 

This step leads to a total of 499 recordings, which 

builds the foundation of our subsequent analysis and 

hence produces a more accurate result. 

 

2.3 Machine Learning Method 

 
The machine learning method comprises the 

following three steps: 

 

2.3.1. Spectral Analysis and Feature Extractions. In 

order to transform the cleaned EEG data set from time 

series data into frequency range data, the EEG spectral 

analysis is conducted. An appropriate approach is the 

Fast Fourier Transformation (FFT), which decomposes 

the EEG signals as a function of frequencies. The 

Spectral Analysis is provided using eegkit v.1.0.4 

within R x64 3.5.3. The simplified process of the FFT 

is shown in figure 2.  
1) First the original signal is broken down into many 

sinusoidal oscillations. 

2) Then the strength of each frequency, within the 

original signal, is calculated. 

 

 Figure 2: Fourier Transformation [34]. 
 

In this work, the commonly used division of 

frequency bands into alpha, beta, theta, delta and 

gamma bands, as shown in table 1, was not used as a 

feature extraction criterion [31]. According to the study 

of Rieg et al. [34], we decided to apply their method on 

EEG data of schizophrenic and non-schizophrenic 

persons. To take the upper gamma frequency bands 

into account, we additionally decided to extend the 

frequency range up to 100 Hz. Thus, 200 frequency 

bands from the same width are considered in this work. 
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Frequency 

Band 
Frequency 

range in Hz

Characterization

Delta 0.5–3.5 Hz Deep sleep 
Theta 3.5–7.5 Hz Sleep and dream.

Alpha 7.5–12.5 Hz Relaxed awake, closed 

eyes 
Beta 12.5–30 Hz Inner restlessness, 

stress, concentration

Gamma > 30 Hz Extreme concentration
Table 1: Standard EEG bandwidths [34]. 

 

2.3.2. Classification. We used the Random Forest 

classifier. This classifier shows substantial improve-

ments in classification accuracy that results from 

growing collections of trees and letting them vote for 

the most popular class. The process works as illustrated 

in figure 3, and is described as follows [34-37]: 

 

1) ntree bootstrap training samples are randomly 

produced from the original data.  

2) Each training sample generates the corresponding 

decision tree. For each leaf node, the mtry of the 

predictors are randomly sampled and the best split 

among all variables is chosen. 

3) Each tree expands unpruned. 

4) The corresponding category is determined by using 

each test sample decision for testing. 

5) According to majority voting, the class is picked. 

 
Figure 3: Random Forest method [36]. 

To classify the dataset of schizophrenic and non-

schizophrenic persons, the Random Forest of the caret 

package was chosen. The dataset was divided in a  

75 % training set (375 recordings) and a 25 % test set 

(124 recordings). The amount of trees is ntree = 500. 

 

2.3.3. Validation. To complement and improve the 

Random Forest classifier we made use of k-fold cross 

validation with 10 iterations. This method is 

particularly suitable as it provides information about 

the ruggedness of a model. Within this operation, the 

training set is divided into 10 randomly chosen folds. 

Nine of them are used to train the model, whereby the 

remaining one is used to test it. The result of the 10-

fold cross validation is the mean value of all trials. 

Correspondingly, we get a confusion matrix with the 

following fields: 

 True positive: The subject suffers from 

schizophrenia and the model identified correctly.  

 False negative: The subject suffers from 

schizophrenia, but the model has wrongly identified 

the subject as a non-schizophrenic person.  

 False positive: The subject is not suffering from 

schizophrenia, but the model has wrongly detected 

the subject as a schizophrenic person.  

 True negative: The subject is not suffering from 

schizophrenia and this has been detected by the 

model correctly. 

The outcome is a valid model, which can be used for 

prediction on the actual test set. 

 

3. Results  

 
For Random Forest algorithm we applied the caret 

package v.6.0.82 within a R x64 3.5.3 environment. 

To train and evaluate the model, we split the 499 

recordings into a training partition (nT = 375) and an 

evaluation partition (nE = 124). The classifier was built 

using 500 voting trees. Data from 19 sensors in each 

recording were summarized. Subsequently, we first 

built 99 power bands with a range of 0.5 Hz each and 

gained a balanced accuracy of 96.01 percent. By 

repeating the process, expanding the spectrum up to 

100 Hz, we improved our result to a balanced accuracy 

of 96.77 percent. The validity of our classifier is 

ensured by the 10-fold cross validation. Only two non-

schizophrenic samples were misclassified as 

schizophrenic and two schizophrenic samples were 

misclassified as non-schizophrenic using the extended 

method (Fig. 4). The remaining 120 samples were 

classified correctly. 

We evaluated our classifier in terms of accuracy, 

positive predictive value, negative predictive value and 

balanced accuracy. As shown in table 2 the classifier 
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achieved excellent performance. The results show that 

the trained classifier has a balanced accuracy of 96.77 

percent. Thus, we are able to distinguish a 

schizophrenic from a non-schizophrenic person with a 

very high performance and balanced accuracy. 
 

 
Figure 4: Confusion Matrix. 

  
Performance indicator Value

Accuracy 96.77%

Positive predictive value 96.77%

Negative predictive value 96.77%

Balanced accuracy 96.77%

Kappa 0.9355

Table 2: Performance of classifier. 

 

In addition we detected that, beyond the current 

state of our knowledge, specific frequency subbands in 

the high gamma range are highly relevant for the 

diagnosis of schizophrenia. We identified the four most 

important frequencies for prediction. The most 

predictive frequency band is 50-50.5 Hz, which is 

scaled to a value of 100 and serves as a basis for the 

calculation of the importance of the remaining bands. 

The following results are obtained for the respective 

important frequency bands: 96-96.5 Hz has a value of 

65.35, 8.5-9 Hz has a value of 58,64 and 96.5-97 Hz 

has a value of 56.10. Overall 196 frequency bands are 

below an importance of 50. In comparison to the 

classical frequency divisions the most important 

subbands can be assigned to the following bands: three 

subbands are in the gamma range, and one subband is 

in the alpha range. 
 

4. Discussion  

 
Our artifact for distinguishing schizophrenic from 

non-schizophrenic persons performs very well as 

demonstrated in table 2. While previous studies using 

other datasets achieved accuracies between 80.5 and 

90.48 percent (see table 3), our approach outperforms 

this with a balanced accuracy of 96.77 percent in terms 

of classification [38-41]. Boostani et al. [38] used the 

AdaBoost and the Boosted version of Direct Linear 

Discriminant Analysis (BDLDA) method for their 

classification. Based on a dataset with 13 

schizophrenic patients and 18 age-matched control 

participants they achieved an accuracy of 85.41 percent 

(AdaBoost) and 87.51 percent (BDLDA). Based on 

samples of 780 EEG recordings Zhang et al. [39] 

attained an accuracy of 90 percent by using a high 

order pattern discovery algorithm. Laton et al. [40] 

used Naïve Bayes, Decision Tree and Adaboost as 

classifiers. The dataset is based on 54 patients with 

schizophrenia and 54 healthy control participants. They 

reached an accuracy of 81.6 (Naïve Bayes), 80.5 

(Decision Tree) and 81.3 percent (AdaBoost). With a 

combined Linear Discriminant Analysis and Support 

Vector Machine (LDA/SVM) method Li et al. [41] 

gained an accuracy of 90.48 percent based on a total 

amount of 48 participants, including 23 schizophrenic 

persons and 25 healthy persons.  

 

Author Year Method Accuracy Sample 

size 

Boostani 

et al. [38] 
2009 AdaBoost 

BDLDA 
85.41 % 

87.51 % 
31 

Zhang et 

al. [39]

2010 HOPD 90.00 % 22 

Laton et 

al. [40] 
2014 Naïve Bayes 

Decision Tree 

AdaBoost

81.60 % 

80.50 % 

81.30 % 

108 

Li et al. 

[41]

2019 LDA/SVM 90.48 % 48 

Table 3: Related work. 

 

Klimesch et al. [42] as well as Olejarczyk et al. [28] 

state that within the delta, theta and alpha bands, 

anomalies have been localized using the EEG data of 

schizophrenic patients. This insight was supported by 

Howells et al. [43]. For this reason we first decided to 

apply the unmodified method from the study of Rieg et 

al. [34] considering the frequency range up to 50 Hz. 

Thus, we achieved a balanced accuracy of 96.01 %.  

In contrast, Uhlhaas et al. [44] refer to findings of 

abnormalities in the gamma band by investigating EEG 

data. Taking this into account, we extended the method 

and investigated the data up to 100 Hz. This enabled us 

to further improve our balanced accuracy to 96.77 %. 

In order to gain more information about predictive 

frequency bands, we expanded our analysis from the 

four most important frequency bands to the most 

important 10 percent of frequencies. Thus, we found 

that informative frequency subbands are distributed 

over the entire spectrum of EEG data (Fig. 5). 
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Figure 5: Most important subbands. Predictive frequencies are distributed over the entire EEG spectrum. 

 

These 20 relevant frequency subbands are 

distributed as follows: One in the delta band, two in 

the theta band, three in the beta band, four in the 

alpha band and ten in the gamma band. The 

corresponding distribution of the subbands can also 

be seen in figure 5. 

 

 
Figure 6: Importance of predictive EEG frequencies. 

 

To provide a clear visualization, the values of 

importance are normalized by the value of the most 

important frequency band. The threshold for the 10 

percent of the most important subbands is visualized 

by the red line (see figure 6). Consequently, besides 

the alpha band, the upper gamma band (96.5 Hz to 

99.5 Hz) has a high significance. These findings can 

lead to an intensification of medical research on EEG 

data based diagnostics of paranoid schizophrenia.  

Due to the very good results we achieved with our 

classifier, and since so far neither diagnostic tests nor 

biomarkers are available for detecting schizophrenia 

[4], our approach can be practically implemented as a 

diagnostic test into daily medical life. Technical 

assistance could help to make faster and more 

detailed decisions. This not only provides relief for 

physicians but, as diagnosing is based on machine 

learning algorithms; it also reduces the likelihood of 

human errors [45] in medical environments. The 

steps of the diagnosis process are visualized in figure 

7 and described as follows: 

Step 1: A physician examines a patient and cannot 

assess whether the patient is suffering from 

schizophrenia or not. 
Step 2: A 10/20 EEG examination is performed. 

Only one-minute of EEG recording is required. 
Step 3: Our fast method works within seconds and 

can be used to process the EEG data. 
Step 4: Our artifact can distinguish with an accuracy 

of 96.77 percent whether the patient is suffering from 

schizophrenia or not. 
Step 5: According to these results the doctor can 

determine any further treatments. 

 

 
Figure 7: Diagnosis process in daily medical life. 

 

5. Conclusion  

 
In the context of this work we built an efficient 

Random Forest classifier for identifying whether a 

person is suffering from schizophrenia or not, based 

on EEG data. By investigating 499 recordings, with a 

duration of one-minute respectively, our classifier 

yields a very good balanced accuracy of 96.77 

percent. As demonstrated in figure 4, in total only 

four misclassifications were made. In comparison to 

other available works, using different approaches, our 
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classifier outperforms producing an even better 

result. Furthermore, we showed that a finer 

separation of the commonly used frequency bands 

(alpha, beta, theta, delta and gamma) into 200 

frequency bands, with a range of 0.5 Hz each, yields 

new insights about the most predictive subbands. 

 

5.1 Limitation 

 
While we intensively evaluated other traditional 

machine learning approaches such as clustering [46] 

and also most modern convolutional neural networks, 

which are outstanding in other domains such as 

image recognition [47-49], we achieved the best 

results here with our novel tree-based method 

proposed in [34]. However, the method of choice 

always limits scientific understanding. Hence our 

study has these limitations: 

While our classification model achieves a good 

level of accuracy, the classifier is not yet trained and 

tested on patients suffering from other mental 

illnesses, which could have one or more symptoms 

also associated with schizophrenia and thus 

eventually bias the data. That is why more extensive 

experimentation is necessary using datasets that 

contain similar data to schizophrenia behavior. 

Furthermore, it is sufficiently apparent that 

medication and personality [50-52] influence the 

EEG data of schizophrenic patients, and as a result, 

our classifier. While the internal validity of our 

model is very high due to the rigorous k-fold-cross-

validation, improving external validity by training 

with additional datasets is also an important step to 

improve the model. Also, the influence of individual 

differences in brain activity on EEG e.g. other mental 

disorders need to be analyzed and considered in 

future studies. 

Another limitation is, that so far the dataset has 

not been used for this type of classification, which 

leads to limited grounds for comparability of the 

performance indicators. 
 

5.2 Future work 

 
In future work we will report common method 

bias evaluations [53, 54]. In addition, we will 

triangulate EEG sensor data with other physiological 

sensor data (i.e., electrocardiogram [55, 56], electro-

dermal activity [57, 58], eye fixation [59-61], eye 

pupil diameter [62-65]). Furthermore, we will 

experimentally evaluate whether our novel approach 

is also robust under various conditions of a user's 

cognitive workload [66-68] and related concepts [69-

71], concentration [72], and mindfulness [73. 74]. In 

addition, we will report results on successfully 

applying our novel procedure to other schizophrenia 

data [75], and other diseases such as epilepsy [76, 77] 

and sleep disorder [78, 79]. 

In terms of implementing the approach in real 

clinical environments we will conduct an implemen-

tation study to evaluate acceptance [80-82] and trust 

[83, 84] by physicians and patients and if the 

automated approach improves the coordination [85, 

86] between physicians more efficiently. 

Since our analysis is based on professionally 

recorded data from a public repository future work 

could not only replicate but also enhance our work. 

In addition, we want to re-evaluate our classifier on 

other datasets to increase external validity. In 

addition, despite achieving good results based on one 

minute recordings, future work could systematically 

analyze adjusted time periods.  
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