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ABSTRACT

This paper analyses the hydrodynamic behaviour of electrochemical reactors by simulating

stimulus–response experiments. The experiments were performed with a simple experimental

arrangement to generate data (Residence Time Distribution (RTD) curves) from electrolytic

conductivity measurements. The multiparametric model proposed and the Matlab program

developed allow the study of electrochemical reactors using three-dimensional electrodes, providing

values of characteristic parameters of the materials, such as porosity and compressibility. The study

of the reactor also permits modelling of the electrochemical reactions that will be produced inside it.

Key words | characterization, electrochemical reactor, filterpress cell, hydrodynamics, mathematical

model, RTD

INTRODUCTION

Filter-press cells (Walsh 1993) are one of the most used

reactor systems in electrochemical applications due to

their many benefits. Their advantages can be seen from an

industrial, research or practical point of view: wide avail-

ability of its components; ease of scale-up, versatility,

which enables the electrolysers to be used in different

configurations for a wide variety of processes; growth

in the successful application of pilot and full scale

electrochemical filter-press reactors (Pletcher 1991);

wide variety of commercial electrochemical filter-press

reactors from laboratory to industrial scale; simplicity of

construction; uniform potential distribution; ease of

operation and minimal maintenance problems; possibility

of electrical monopolar or bipolar connection; and incor-

poration of turbulence promoters and incorporation of

three-dimensional electrodes (Ponce de Leon & Pletcher

1996).

The implementation of three-dimensional electrodes

in electrochemical reactors provides an effective method

for improving the efficiency of some electrochemical pro-

cesses, such as wastewater treatment, electrosynthesis and

energy storage. The increase in surface area due to the

high porosity of these materials is of special interest in

diffusion–convection controlled processes. The flow dis-

tribution inside the reactor compartments is highly influ-

enced by the characteristics of the porous material. It has

been observed by Lopez de Atalaya (1991) that the ratio of

felt thickness to cell thickness has an influence on the flow

distribution, pumping power and electrode–contact

losses. The general hydrodynamic behaviour of this kind

of reactor is presented in Figure 1. Note that two different

pathways inside the reactor are present. Other important

aspects are noted in Figure 1.

This paper presents a model for the reactor and a

program, written in Matlab 5, that optimizes the par-

ameters of the model. The optimization includes the reso-

lution of a system of two equations in partial derivatives.

The conditions for the convergence of the system are

discussed and implemented. The program is then used for

the modelling of an experimental reactor, previously

described by González-Garcı́a et al. (2000), and the results

are discussed. Recently, this program has been used for the

modelling of an industrial size electrochemical reactor

(Frias-Ferrer et al. 2001).
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MODELLING THE REACTOR: MASS BALANCE AND

MODEL

Total mass and species mass balances

For any fluid, we require that the total mass flow into some

element of volume minus the out flow is equal to the rate

of accumulation of mass and we either write these

as integral balances (stoichiometry) or as differential

balances on a differential element of volume:

where r is the density, and the term in bold italic is a

vector with x, y and z coordinates, i.e. the velocity u has

three components. The usual forms of the balances

are concerned with uz, the velocity component in the

direction of flow down the tube.

When we assume a steady-state density-constant

reactor, we obtain the simple form of this equation:

(ru) = 0 or ru = constant (2)

which is a statement of mass conservation, as required by

stoichiometry.

This equation applies to the total mass density of

the system, while we use the amount of material when

describing any chemical reactions.

For a multicomponent fluid (the only case of interest

for chemical reactions) we next have to solve the mass

balance for each individual chemical species. The species

balance is written as ‘flow in’ minus ‘flow out’ plus ‘change

due to chemical reaction’ equals the ‘accumulation of that

species’. There is, of course, an equation for each species,

subject to the conservation of total mass given by the

continuity equation. The species balance equations are

In the derivation of this equation we assume that the

density is constant and the diffusivity Dj is independent

of composition, and we simplify the convection term

somewhat. a and (a2 are the gradient and Laplacian

operators, respectively.

For a tubular reactor, assuming variation in only one

spatial dimension, the direction of flow z, we obtain

where u is the velocity in the direction of flow (the z

direction), and all the gradients are assumed to be in the

axial (not the radial) direction. The units of the last term

represent the moles of the species per (metre)3 per second

that leaves the reactor due to the chemical reaction.

Model of the reactor

The reactor considered in this work has been character-

ized using input tracer experiments to measure the resi-

dence time distribution (RTD). The form of this function is

shown in Figure 1. To develop a model for the observed

behaviour, different non-ideal flow models have been

tested. These models are based on the combination of the

dispersed plug-flow reactor and tank-in-series models.

Levich et al. (1967) consider the hydrodynamic mixing in a

Figure 1 | Description of the curves.

282 J. González-Garcı́a et al. | Characterization of fluid dispersion in electrochemical reactors Journal of Hydroinformatics | 04.4 | 2002

Downloaded from http://iwaponline.com/jh/article-pdf/4/4/281/392496/281.pdf
by guest
on 05 August 2022



porous medium with the help of a model containing a

series of perfect mixers with stagnant areas, and studied

the relationship between this model and the usual diffu-

sional one. They concluded that the distribution (for a run

with only one peak in the RTD) can be represented as the

sum of two distributions (a normal distribution and an

exponentially decaying one) and determined the par-

ameters of the porous medium from the experimental

results.

In our case, and due to the existence of two peaks in

the RTD, the model proposed considers two possible paths

along which the electrolyte may flow. A scheme of this

model is shown in Figure 2.

For one of the paths (path 1, occupying a volume V1) it

is assumed that the electrolyte flows according to a dis-

persed plug-flow model. It is also assumed that the volume

V1 is partially occupied by a stagnant area. The electrolyte

in the stagnant areas is slowly refreshed by the freely

flowing electrolyte that can be considered as an axially

dispersed plug flow. The electrolyte hold-up in this zone,

btot = m3(liquid)/m3(column), is divided into a dynamic

hold-up, bdyn and a static or stagnant hold-up, bstat (see

Figure 2). The local rate of exchange between the dynamic

(d) and static (s) hold-up is assumed to be proportional to

the concentration difference in the dynamic and static

phases, and it can be characterized by an exchange

coefficient, am (s − 1), defined by

where cd and cs are the concentrations in the dynamic and

static phase respectively. am can be considered as the

product of a mass transfer coefficient and the specific

interfacial area between the flowing and the stagnant

zones, kLa.

The model equations can be found by applying the

mass balance equation (4) to the dynamic and the static

phases over a thin slice perpendicular to the direction of

the flow. We assume the density and other variables to be

constant over the length of the reactor:

where S = cross sectional area of the reactor (m2);

Dd = dispersion coefficient in dynamic phase (m2 s − 1);

ud = velocity in the dynamic phase (m s − 1) of volume

V1 = Q1/Sbdyn and Q1 = electrolyte flow through volume

V1 (m3 s − 1).

If we introduce some dimensionless units, we find

from Eqs (6) and (7)

where Z = z/L, with L being the total length of the reactor;

UB = bdyn/btot; Na = (amL)/(UBu1); Ped = (u1L)/Dd; O = t/

t, with t = L/(UBu1); Cs = cs/c and Cd = cd/c. In this way,

Na is the number of mass transfer units for the mass

exchange between the dynamic and the static phase, and

Ped is the Peclet number for the dynamic phase. For the

calculation of the RTD due to this pathway, we will solve

the pair of Eqs (8) and (9) with the appropriate boundary

conditions.

Figure 2 | Two pathways model.
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For the other path (path 2, occupying a volume V2),

the dispersed plug-flow model, assuming a small disper-

sion grade, is applied. The curve representing the distri-

bution of residence times for path 2 (E2) (Levenspiel 1999)

is

In this equation, Pe2 is the Peclet number for path 2, t is

the time from the injection of a tracer and t2 is the mean

residence time for path 2.

Considering that the model proposed for path 1 may

be applied to a volume V1 that has a flow rate Q1, and the

model for path 2 may be applied to a volume V2, with a

flow rate Q2, we write

Vtot = V1 + V2 (11)

Q = Q1 + Q2 (12)

and the mean residence times will be given by the

equations

ti = Vi/Qi i = 1,2. (13)

The total RTD is calculated using the following equation

(Levenspiel 1999):

For the evaluation of the parameters, an objective function

is defined:

In this equation, r represents each experiment at a differ-

ent flow rate, k represents the data collected at each time,

and the sub-indexes ‘cal’ and ‘exp’ correspond to the

calculated and experimental data, respectively.

The values that must be optimized are: t1, UB, Ped, Na,

t2 and Pe2. Note that the minimum number of parameters

is used, using expressions such as Eq. (13) (i.e. the volume

and the flow rate are not optimized, because there is a

known relationship between them).

SOLUTION OF THE SYSTEM OF PARTIAL

DIFFERENTIAL EQUATIONS

In the program the method used to solve the system of

equations is the finite difference method (Finlayson 1980).

If we develop Eq. (9) in terms of this method, we find

and rearranging:

For Eq. (8), following the same procedure, it is found that

To study the stability of the equations we can use the

following theorem (Finlayson 1980):

Applying the theorem to Eq. (18), we found that, if A>0,

then

and if B>0 then
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Bearing in mind Condition 1, Condition 2 results in

This expression is always true if the product Ped∆z is

positive. The other two conditions, D>0 and

(A + B + D)≤1, are always true for Eq. (18).

Let us now develop the conditions for Eq. (17) to be

stable. In this case, the most restrictive condition is when

B>0, i.e.

Rearranging we find

So, for the system of differential equations to be stable, we

will need to compare the time increments given by

Conditions 2 and 3, and choose the lower one.

Boundary conditions for the partial differential

equations

For a ‘closed’ reactor (i.e. when a portion of fluid that

enters the reactor cannot leave it by the same way),

consideration of flux balances at the entrance and at the

exit provide what are usually termed the ‘Danckwerts

boundary conditions’ (Danckwerts 1958):

where CA0 is the input concentration of species A and the

point 0 + represents the first differential point inside the

reactor. If we apply Eq. (20) to our case, we have

Rearrangement gives

For the calculation of the E curve (or RTD curve), an input

signal as a step experiment is considered:

This would give the so-called F curve, related to the E

curve by the relationship given in Levenspiel (1999):

In this way, the input signal used in the calculations is a

step function that is later differentiated to obtain the E

curve. The reason for this is the simplicity of the step

boundary condition, compared to the pulse input.

The equation system proposed before has been solved

by Villermaux & Van Swaaij (1969) using the Laplace

transformation. Due to the complexity of an analytical

solution, the equation system has been solved numerically

in this paper.

STRUCTURE OF THE PROGRAMS

For the purpose of this paper, two Matlab programs are

used. These are, on the one hand, the main module

(OPTIMISE.M), and, on the other, the function module

(OBJECTIVE.M). The code of the programs is given at the

end of the paper. A flow chart of the program is given in

Figure 3.

In the main module, the experimental data is read, and

the order to minimize the objective function is given. Also

initial values of the six parameters are given. The calcu-

lation loop includes orders to save the calculated data

every 75 iterations. Two files are generated, the first

containing the experimental time, the experimental and

calculated values of E, and the second file containing the

optimized parameters.
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The module with the objective function begins with

reading the experimental set-up variables (flow rate, vol-

ume of the reactor, etc.). The next lines in the program

calculate the experimental mean residence time

( = volume/flow rate) and the mean time obtained from

the experimental E curve, i.e.

with the purpose of comparing them, in order to prevent

possible errors.

The calculation begins with the parameters that the

main module considers. The next step is to solve the

system of partial differential equations. The values of time

increment and position increment are selected according

to the conditions presented before.

At this point in the program, the conditions for the

step experiment are introduced, and later the derivative

will be calculated, in order to obtain the E curve. The

program continues by applying the finite difference

method for the resolution of the equations. It is possible to

plot the concentration of the species versus the length of

the reactor in each iteration, as we see in the codes, but

this considerably slows the calculation.

The calculation of the contribution of the second

pathway and the sum with the first are quite simple,

considering the simple form of Eqs (10) and (14).

The problem now is that the E is calculated at times

that do not match the experimental ones, so we must find

the E values at the times that we have experimental data

for, in order to compare them using Eq. (15). Interpolating

at the times we have data, as explained in the program,

solves this situation.

The program plots the results of E versus time, calcu-

lated and experimental, in order to have a visualization

of the fitting in each iteration. If we would like to speed

the calculation up, we must eliminate these lines in the

program.

Finally the objective function is calculated and

returned to the main module.

APPLICATION TO AN EXPERIMENTAL REACTOR

As an example, the programs described have been applied

to the reactor UA200.08 implemented with carbon felt

RVC 4002 (Le Carbon Lorraine). The properties of the

reactor are described elsewhere (González-Garcı́a et al.

2000). The runs considered here are performed at a flow

rate of 33 L h − 1 and using a cell thickness of 8 mm (Figure

4), whereas the carbon felt thicknesses were 8, 9, 10 and

13 mm. Taking into account the thickness of the cell, a felt

thickness value of less than 8 mm would not produce a

good electrical contact. On the other hand, a felt thickness

above 13 mm would produce a very high-pressure drop, so

it is not economically viable.

Figure 3 | Flow chart of the Matlab program.
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Figures 5–8 show the experimental and calculated

RTD curves obtained by the injection of a maker pulse of

KCl at the inlet of the reactor accompanied by detection of

the solution conductivity at the outlet (Harrel & Perona

1968) for ratios of felt thickness/cell thickness equal to

8/8, 9/8, 10/8 and 13/8. In the figures we can also see the

contribution of each of the pathways inside the reactor to

the total residence time distribution. As we can see, the

fitting of the experimental data is satisfactory, except

maybe in the long tail present in some curves. The fitting in

this zone could be improved by modifying the objective

function appropriately, for example increasing the relative

weights of the differences in this zone, but a fit of these

characteristics will not represent the whole experimental

data.

The fitting parameters are presented in Table 1. Some

other variables, calculated from the parameters fitted, are

also presented in the table. It is important to note that all

the calculated parameters have a useful and clear physical

Figure 4 | (I) View of compartment (or chamber) showing details of flow distributors and

geometric dimensions, in mm. (II) Exploded view of the UA200.08 reactor in

the divided mode showing (a) backplate, (b) polypropylene block with flow

channels, (c) flat plate, (d) compartment (or chamber), (e) separator.

Figure 5 | Experimental and calculated curves for the 8/8 configuration.

Figure 6 | Experimental and calculated curves for the 9/8 configuration.
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meaning from the point of view of reactor characteriz-

ation. The values of Pe and ti provide a clear statement of

the hydrodynamic behaviour of the reactor. The ratio

between the flow rates in each pathway is also illustrative

of the reactor hydrodynamics. The values of btot are quite

useful, because this parameter could be considered as the

felt porosity. The porosity is quite easy to measure in rigid

porous media, but presents a great complexity to measure

in materials such as felt, so the calculation describes a very

good way to estimate it. The values obtained in the

simulation of the RTD are in accordance with those

proposed in the literature.

CONCLUSIONS

A model for a continuous flowing reactor has been devel-

oped that allows the characterization of the hydrodynam-

ics. Mathematical development has been described in

detail, from the total mass and species mass balances to

the differential equations governing the behaviour of our

particular reactor. There is a controversy between

researchers relating to the use of multi-parameter models

due to the loss of physical meaning in the parameters.

However, in some cases, such as the present paper, the use

of a multi-parameter model is fully justified since it gives

information about physical properties that are difficult to

obtain by other methods. This is the case of the parameter

Figure 7 | Experimental and calculated curves for the 10/8 configuration.

Figure 8 | Experimental and calculated curves for the 13/8 configuration.

Table 1 | Parameters of the fit and calculated variables

Ratio 8/8 9/8 10/8 13/8

Parameters t1 (s) 20.9 37.4 37.9 46.1

t2 (s) 33.8 21.5 19.3 20.0

Ped 20.1 5.6 4.4 2.5

Pe2 227.5 47.6 260.0 134.4

UB 0.4431 0.8455 0.8254 0.9137

Na 1.66 1.37 4.37 0.21

Calculated

variables

bdyn 0.4359 0.7149 0.8052 0.8866

btot 0.9838 0.9800 0.9755 0.9703

Q1/Q 0.89 0.49 0.48 0.40

Q2/Q 0.11 0.51 0.52 0.60
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btot that may be correlated with the felt porosity and these

values of btot may be compared with other values obtained

by other methods (González-Garcı́a et al 1999).

The program developed is a useful tool to study and

characterize chemical reactors. Apart from identifying the

number of possible pathways and quantify their pro-

portion, the program can also be used to determine the

value of the porosity of the medium. Nevertheless, the

program cannot identify the nature of the different path-

ways, so it is not possible to affirm if the different pathways

are physically separated, or, in contrast, if the liquid

presents sub-layers close to the micro-skeleton of the

material that retard the flowing of the liquid.
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NOTATION

a Specific interfacial area between the flowing

and stagnant zones, m − 1.

c Concentration, mol m − 3.

cd Concentration in dynamic phase for path 1,

mol m − 3.

cs Concentration in static phase for path 1,

mol m − 3.

Cd Normalized concentration in dynamic phase for

path 1.

Cs Normalized concentration in static phase for

path.

Dd Dispersion coefficient in dynamic phase,

m2 s − 1.

E1 Residence time distribution (RTD) for path 1

(s − 1).

E2 Residence time distribution (RTD) for path 2

(s − 1).

kL Mass transfer coefficient, m s − 1.

L Length of the compartment in the direction of

flow, m.

Pe Peclet number, dimensionless.

Ped Peclet number for path 1, dimensionless.

Pe2 Peclet number for path 2, dimensionless.

Q Volumetric flow rate, m3 s − 1.

Q1 Volumetric flow rate through path 1, m3 s − 1.

Q2 Volumetric flow rate through path 2, m3 s − 1.

r Rate of the reaction, mol m − 3 s − 1.

S Cross sectional area of volume 1, m2.

t Time, s.

u Vector of velocities, m s − 1.

u1 Lineal flow rate for path 1, m s − 1.

V1 Volume of reactor for path 1, m3.

V2 Volume of reactor for path 2, m3.

Vtot Total volume of reactor, m3.

z Coordinate in the direction of flow, m.

Z Normalizated coordinate in the direction of

flow.

Greek letters

am Exchange coefficient between dynamic and

static hold-up for path 1, s − 1.

UB Fraction of dynamic zone for path 1.

btot Liquid hold-up for path 1.

bdyn Dynamic hold-up for path 1.

bstat Static hold-up for path 1.

nij Stoichiometric coefficients.

O Dimensionless time.

t Averaged residence time, s.

t1 Averaged residence time for path 1, s.

t2 Averaged residence time for path 2, s.

a Gradient operator.

a
2 Laplacian operator.
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PROGRAMS

Main module: OPTIMISE.M

%PARAMETERS: TAU1, ThETA-B, PEd, NA, TAU2, PE2

global fichero % Definition of global variables

load(’c:\juan\eq\pb700b.txt’); % Reading the experimental data

% pb700b(:,1)==time

% pb700b(:,2)==experimental RTD

fichero=pb700b; % Renaming the variables containing experimental data

global fichero objectivefunction commontime eexp ecal % Definition of global

% variables

Contador=0 % Counts the number of iterations

Yousave=0 % Indicates if the program must save the results

Initial=[40 8.7756e-001 1.1240e+001 1.0023e+000 15 3.7533e+001] %Initial

values of the parameters shown in the first line

while funcionobjetivo>1e-4 z contador<500; %Begins the calculation loop

opciones(1)=1; % Options of the Matlab function FMINS. Option(1)=1

% means show the intermediate calculations

opciones(2)=1e-6; %==termination tolerance for the input vector

opciones(3)=1e-6; %==termination tolerance on function

opciones(14)=75; %==maximum number of iterations before saving
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minimise=fmins(’objetivo’,Inicial, opciones) %Minimization of the

% function. The final results will be stored in a variable called

% ’minimise’

if contador==Yousave; %The program periodically saves the results

filetosave=[commontime(:,1) eexp(:,1) ecal(:,1)]

save general.txt filetosave -ascii

save optima.txt minimise -ascii;

% The file ’general.txt’ will contain the time and experimental and

% calculated values of the RTD. The file ’optima.txt’ will contain the

% best parameters for the optimization.

Yousave=Yousave +1;

end

Inicial=minimise;

contador=contador+1;

end

% End of the program

save general.txt filetosave -ascii

save optima.txt minimise -ascii;

pause

Function module: OBJECTIVE.M

function objectivefunction=objective(X) %definition of the function

global fichero objectivefunction commontime eexp ecal % Definition of global

% variables

% EXPERIMENTAL SETUP:

flowrate=(583/1000)*(1/3600); % Experimental value of the flow rate

ancho=18/100; % Dimensions of the reactor

alto=12/100; % Dimensions of the reactor

largo=0.8/100; % Dimensions of the reactor

volume=ancho*alto*largo; % Volume in m3

tresid=volume/flowrate; % Experimental residence time(s)

final=length(fichero); % Number of time intervals

% NORMALIZATION OF THE DATA READ:

integral=trapz(fichero(:,1),fichero(:,2)); % Integrates using trapezoid method

fichero(:,2)=fichero(:,2)/integral; % Experimental E normalized

finalt=fichero(length(fichero),1); % Final time in ’fichero’
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% CALCULATION OF THE MEAN RESIDENCE TIME WITH THE DATA READ:

Ct=fichero(:,2).*fichero(:,1);

integraCdt=trapz(fichero(:,1),Ct);

tresidcurva=integraCdt;

% VALUES OF THE PARAMETERS:

% X=vector of values of the parameters that are used in each calculation

Tau1=X(1), % Renaming the variables

TB=X(2), if TB>1; TB=0.999; elseif TB<0; TB=0.01;end % No phisical

% meaning of values of theta-b higher than 1

Ped=X(3), % Renaming the variables. Peclet number of dynamic phase

Nalfa=X(4), if Na<0, Nalfa=0.01; end % No phisical meaning of values

% of Na minor than zero

Tau2=X(5), % Renaming the variables. Mean residence time path 2

Pe2=X(6), % Renaming the variables. Peclet number of path 2

% CALCULATION OF VARIOUS PARAMETERS NEEDED FOR THE MODEL

Btot=Tau1*flowrate/volume;

Bdyn=Btot*TB;

Velocd=caudal/(largo*ancho*Bdyn); % Lineal velocity in dynamic phase

Flow1=(volume-Tau2*flowrate)/(Tau1-Tau2); % Flow rate through path 1

Flow2=flowrate-Flow1; % Flow rate through path 2

Volume1=Tau1*Flow1; % Volume of path 1

Volume2=Tau2*Flow2; % Volume of path 2

Alpha=Na*TB*Velocd/alto;

% RESOLUTION OF THE SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS:

% ’F’ CURVE. PATH 1=PATH 1=PATH 1=PATH 1

tf=finalt/Tau1; % Dimensionless final time

N=max([round(1.5*Ped),20]); % Number of position increments for each

% time calculation. It is selected the maximum between 1.5 times the

% Peclet number and 20. This value is partially due to Condition 1

% (see the text for more details)

incx=1/N; % Position increment, value given by Condition 1

inctiA=tb*incx/(2/(Ped*incx)-1+Na*incx); % Time increment as

% calculated following Condition 2 (stability of the first eq.)

inctiB=(1-tb)/Na; % Time increment as calculated following Condition 3

incti=min([inctiA, inctiB]); % Selection of the minimum

%Initial values of the concentration in dynamic and static zones:

Cd(1:N+1)=zeros(size(1:N+1)); % Dynamic phase conc. at a given time t

Cda(1:N+1)=zeros(size(1:N+1));% Dynamic phase conc. at a given (t-1)
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Cs(1:N+1)=zeros(size(1:N+1)); % Static phase conc. at a given time t

Csa(1:N+1)=zeros(size(1:N+1)); % Dynamic phase conc. at a given (t-1)

Cdo=1; %Initial value of the concentration in the dymanic phase at t=0

% and the inlet of the reactor (step experiment)

Cs(1)=0; % Initial value of the concentration in the static phase

Cd(1)=(Cdo*Pe*incx+Cd(2))/(Pe*incx+1); % The inlet value is afected by

% the flux. Application of Danckwerts boundary condition

% CALCULATION- FINITE DIFFERENCES METHOD

fCd=[ ];

fCs=[ ];

t=[ ];

ecal1=[ ];

ecal2=[ ];

ecal=[ ];

time=0;

while time<tf

time=time+incti;

i=2;

while i<N+1

A=incti/(Pe*tb*incx̂ 2)-incti/(tb*incx);

B=-2*incti/(Pe*tb*incx̂ 2)+incti/(tb*incx)-Na*incti/tb+1;

D=incti/(Pe*tb*incx̂ 2);

Cda(i)=A*Cd(i+1)+B*Cd(i)+D*Cd(i-1)+Na*incti/tb*Cs(i);

k1=-Na/(1-tb)*(Cs(i)-Cda(i))*incti; % Runge-Kutta 1st constant

k2=-Na/(1-tb)*(Cs(i)+k1/2 -Cda(i))*incti; % Runge-Kutta

k3=-Na/(1-tb)*(Cs(i)+k2/2 -Cda(i))*incti; % Runge-Kutta

k4=-Na/(1-tb)*(Cs(i)+k3 -Cda(i))*incti; % Runge-Kutta

Csa(i)=Cs(i)+1/6*(k1+2*k2+2*k3+k4); % Conc. Increment

i=i+1;

end

Cd=Cda;

Cs=Csa;

fCd=[fCd,Cd(N)]; % fCd vector=saves the values of concentration

% in dynamic phase at the exit of the reactor

fCs=[fCs,Cs(N)]; % fCs vector=saves the values of concentration

% in static phase at the exit of the reactor

t=[t,time];
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Cd(1)=(Cdo*Pe*incx+Cd(2))/(Pe*incx+1);

Cs(1)=0;

Cd(N+1)=Cd(N);

Cs(N+1)=Cs(N);

% The next four lines draw Cs and Cd in the reactor at each time, and

% are with a ’%’ for calculation purposes

% x=linspace(0,1,N);

% plot(x,Cd(1:N),x,Cs(1:N))

% axis([0,1,0,1])

% drawnow

end

% CALCULATION OF THE ’E’ CURVE FROM THE ’F’ CURVE:

ecal1=diff(fCd)./diff(t); % Differentiates numerically

ecal1=[ecal1 0]; % The last point that is not calculated

% CALCULATION OF THE SECOND PATH WAY

% ’E’ CURVE. PATH 2=PATH 2=PATH 2=PATH 2

time=0;

i=1;

while time<tf

time=time+incti;

time2=time*Tau1/Tau2; % Dimensionless time for path 2. The number of time

intervals has to be the same that with path 1.

ecal2(i)=1/(2*(3.1416*time2/Pe2)× 0.5)*exp(-(1-time2)× 2/(4*time2/Pe2));

% Equation that defines the RTD

i=i+1;

end

% Normalization of the calculated curves:

integral1=trapz(t,ecal1);

integral2=trapz(t,ecal2);

ecal1=ecal1/integral1;

ecal2=ecal2/integral2;

% Adding the two contributions:

ecal=(ecal1’.*Flow1+ecal2’.*Flow2)./flowrate;

% This ’ecal’ is calculated at times that do not match the

% experimental ones, so we must find the ’ecal’ values at the times

% that we have experimental data, in order to compare.
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commontime=t*Tau1;

ecalready=interp1(commontime,ecal,fichero(:,1)’); % Interpolates the

% vectors ’ecal’ and ’fichero(:,1)’ at the times given by ’commontime’

eexp=fichero(2:final,2);

ecal=ecalready(2:final)’;

otrav=abs(eexp-ecal); % Differences between experimental and calculated

% values of the ’E’ curve.

objectivefunction=sum(otrav) % Objective function

% PLOTTING THE RESULTS:

figure(1)

plot(commontime,eexp,’--’,commontime,ecal);

drawnow
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