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ABSTRACT Coronavirus Disease 2019 (COVID-19) has spread the world resulting in detrimental effects

on human health, lives, societies, and economies. The state authorities mostly take non-pharmacological

actions against the outbreak since there are no confirmed vaccines or treatments yet. In this paper,

we developed Suspicious-Infected-Death with Non-Pharmacological policies (SpID-N) model to analyze

the properties of the COVID-19 casualties and also estimate the future behavior of the outbreak. We can

state the key contributions of the paper with three folds. Firstly, we propose the SpID-N model covering

the higher-order internal dynamics which cause the peaks in the casualties. Secondly, we parametrize the

non-pharmacological policies such as the curfews on people with chronic disease, people age over 65, people

age under 20, restrictions on the weekends and holidays, and closure of the schools and universities. Thirdly,

we explicitly incorporate the internal and coupled dynamics of the model with these multi-dimensional non-

pharmacological policies. The corresponding higher-order and strongly coupled model has utterly unknown

parameters and we construct a batch type Least Square (LS) based optimization algorithm to learn these

unknown parameters from the available data. The parametric model and the predicted future casualties are

analyzed extensively.

INDEX TERMS COVID-19 casualties, non-pharmacological approaches, pandemic, parametric model,

prediction, SIR model, SpID model, SpID-N model.

I. INTRODUCTION

An epidemic of cases with unexplained low respiratory infec-

tions are classified as ‘‘pneumonia of unknown etiology’’

detected in Wuhan, was first reported to the World Health

Organization (WHO) country office in China on Decem-

ber 31, 2019. This new virus, whose etiology is attributed

to the coronavirus (CoV) family, was named ‘‘COVID-19’’,

which stands for ‘‘coronavirus disease 2019’’ by the WHO

[1]. CoVs are classified as alpha-(infected from bats), beta-

(infected from bats), gamma-(infected by birds and pigs),

and delta- (infected by birds and pigs) coronaviruses [2], [3].

In the past two decades, several viral outbreaks that pose a

serious public health risk have been reported by the WHO.

The Severe Acute Respiratory Syndrome (SARS) coron-

avirus from 2002 to 2003, Influenza A (H1N1) in 2009, and

the Middle East Respiratory Syndrome (MERS) coronavirus
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in 2012 have been reported [1], [4]. The current COVID-19

outbreak has both similarities and differences when com-

paring to SARS and MERS outbreaks where they had both

zoonotic transmission (SARS: likely from bats via palm

civets, MERS: likely from bats via dromedary camels). All

3 viral infections usually occur with fever and cough causing

the lower respiratory [5]. COVID-19 is considered a deadlier

epidemic than SARS andMERS because it has affected more

people over a period of time compared to the other two

outbreaks (SARS; 8,437 cases, 813 deaths, 9.63% mortality

rate. MERS; 2,499 cases, 861 deaths, 34.45% mortality rate,

according to the report on March 3, 2020) [6], COVID19;

19,131,120 cases (increasing), 714,873 deaths (increasing),

3.73% mortality rate, by 8 August 2020) [7]).

In the early stages of an infectious outbreak, understand-

ing the transmission dynamics of the infection can provide

insights about its behavior and determine whether the out-

break control measures are yielding a significant impact on

the casualties [8],[9]. Mathematical and statistical modelling
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is a valuable tool to comprehensively analyze the dynamics

of infectious diseases, population behavior, the availability of

public health resources, and the effectiveness of public health

interventions (such as social distancing) [10], [11]. Such

modelling based analysis can provide predictions about the

future growth potential of the epidemic, guiding estimation

of risk to other countries, and planning the alternative poli-

cies [12]–[14]. To develop models, training data (epidemi-

ological, non-pharmacological, population, and travel) and

model validation data are required where the resultingmodels

can estimate the local and global spread of the infectious

diseases [15]. There are several mathematical approaches to

perform parametric modelling of the outbreaks (e.g. CoVs

family: COVID-19, SARS, MERS) such as Susceptible-

Infectious (SI), Susceptible-Infectious-Susceptible (SIS),

Susceptible-Infectious-Recovered (SIR), which is one of the

most widely considered mathematical models for predict-

ing the spread of pandemics, and the variants of SIR are

Susceptible-Infectious-Recovered-Susceptible (SIRS), and

Susceptible-Exposed-Infectious-Recovered (SEIR) models

[16]–[18].

SEIR model-based infection model characterization of

pandemic disease is shown in Fig. S1 [18]. Ignoring the

exposed people reduces the SEIR model to the SIR model.

The SI model is the simplest form of all disease models and

matches the behavior of diseases such as cytomegalovirus

(CMV) or herpes. In this model, susceptible individuals

remain infected and infectious throughout their lives and

remain in contact with the susceptible population if they are

infected and receive no treatment [18], [19]. The SIS model

is suitable for infections recurring frequently, such as the

common cold (rhinoviruses) or sexually transmitted diseases

such as gonorrhea or chlamydia, where infected individuals

return to a susceptible state after infection [18], [19]. SIRS

representing the transmission of an infectious disease through

individuals has 4 possibilities such as susceptible, infectious,

recovered, and again being susceptible where susceptible is

monitored and large epidemics affecting the world can be

modelled more effectively compared to SI and SIS models.

Recovery rate and the time scale of infection are the two key

quantities that govern epidemic dynamics at the population

level for SIS, SIR, and SEIR. The time scale of the infection

is measured by the infectious period of SIS and SIRmodels or

by a mixture of exposed and infectious periods of the disease

with the SEIRmodel [18]. In the SISmodel, individuals move

from susceptible to infections and then return to susceptible

upon recovery, and recovery does not provide immunity.

If individuals recover and gain permanent immunity, the

model becomes a SIR model. If individuals recover with

transient immunity and eventually become susceptible again,

the model becomes a SIRS model, whereas if individuals do

not recover, the model is an SI model [20]. A study mod-

eling the exposure of residential areas to epidemics by syn-

thesizing climatic, environmental, demographic, and health

risk factors with an Index c whose value ranges from 0 to

1 and defines the severity of transmission of the epidemic

was proposed [21]. A stochastic transmission model param-

eterized to the COVID-19 was developed to investigate if

the contact tracing and the isolation of cases could control

the SARS-CoV-2 pandemic [22]. Kucharski, et.al., in their

study, modeled the stochastic transmission dynamics of the

infection as a geometric random walk process implementing

COVID-19 data in amathematical model SARS-CoV-2 trans-

mission. They made inferences for transmission rate and for

the numbers of cases and recovers over time using sequential

Monte Carlo simulation [23]. The potential for continued

human-to-human transmission of COVID-19 can be modeled

by estimating the basic reproduction number [24]. The effects

of air pollution-to-human transmission and human-to-human

transmission on COVID-19 dynamics were investigated for

epidemiological data arranged by The Ministry of Health in

Italy. The data analysis was performed based on statistical

methods with a multiple regression model such as the linear

log-log method and the quadratic model for considering the

relationship between dependent (like infected individuals)

and independent (predicted from dependent) variables [25].

The effects of strict bans to prevent the transmission of

COVID-19 in Italywere examined based on testing of the spa-

tially explicit type that takes into account the spreading wave

of infection leaping from the first exit point to all areas. The

critical contribution of asymptomatic and presymptomatic

transmission was estimated by analyzing the mobility net-

work parameters of 107 provinces with the SEIR-like model,

in which the epidemiological reporting uncertainty and the

time dependence of human mobility matrices were taken into

account [26].

In our recent paper, we introduced the SpID model which

includes second-order suspicious (Sp), infected (I ), and death

(D) sub-models [27]. The developed SpID model is homoge-

nous since its sub-models do not consider any external

impacts such as the non-pharmacological policies. However,

Suspicious-Infected-Death with Non-Pharmacological poli-

cies (SpID-N) model proposed in this paper is inhomoge-

neous as its sub-models consider the non-pharmacological

policies (N) as external impacts. Therefore, with the SpID-N

model, it is possible to incorporate the role of the non-

pharmacological policies and analyze the contribution of the

each policy.

Although the casualties of the outbreaks all over the world

vary in terms of the numbers, peak times, and settling times;

they also carry similar characters such as having a peak

value and known or unknown uncertainties. Moreover, state

authorities apply policies such as curfews on people having a

chronic disease, age over 65, and school closures to annihilate

the viruses. In this paper, without losing the generality of

the developed model, we refer to COVID-19 casualties in

Turkey, but since the developed SpID-N model is adaptive

and the unknown parameters are learned from the available

data, it can be easily modified for the casualties in other

countries.

We can summarize the key contributions of the

paper as
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1) The SpID-N model covers the higher order internal

dynamics together with the coupling dynamics,

2) The SpID-N model takes into account the multi-

dimensional uncertain non-pharmacological policies,

3) The SpID-N model has completely unknown parame-

ters and the LS-based optimization algorithm is formed

to learn these unknown parameters from the available

data,

4) The SpID-N model is parametric; hence, it allows

extensive analysis of the future casualties and impacts

of each non-pharmacological policy on the casualties.

In the rest of the paper, Section II reviews the SIR model

and then introduces the proposed SpID-N model, Section III

presents the parameterized models of the multi-dimensional

non-pharmacological policies, Section IV formulates the

LS-based parameter learning approach, Section V analysis

the COVID-19 casualties in Turkey, Section VI provides the

key insights of the SpID model and presents the predicted

future casualties for Turkey, Section VII mentions the limi-

tations of the study and finally, Section VIII summarizes the

work.

II. THE SpID-N MODEL

In this section, we firstly review the SIR model, which is

extensively considered for estimating casualties of the various

outbreaks such as SARS and COVID-19. Then, we express

the proposed SpID-N model, which is a comprehensive form

of the SIR model, covering the non-pharmacological policies

in an explicit way.

A. THE SIR MODEL

Highlighting the key properties of a well-known model plays

an important role in developing a new model. Thus, in this

sub-section, we provide the SIR model and its properties that

we take into account in the proposed SpID-N model.

1) REPRESENTATION OF THE SIR MODEL

The SIR model is represented with ordinary differential

equations (ODE) as

Ṡ (t) = −βS (t) I (t)

İ (t) = −βS (t) I (t) − γR(t)

Ṙ (t) = γR(t) (1)

where

• S (t) is the number of the Susceptible (S) individuals,

• I (t) is the number of the Infected (I ) individuals,

• R(t) is the number of the Recovered (R) individuals,

• β is the transmission rate,

• γ is the infectious rate.

2) PROPERTIES OF THE SIR MODEL

The SIR model given by Equation (1) has these properties;

Property 1: It consists of the first order ordinary differential

equations (ODEs), where the total order of the model is three.

Property 2: It has certain dynamics (without parametric

or non-parametric random variables), since the β and γ

parameters are known constants.

Property 3: It is homogenous (does not consider external

impacts such as curfews on the weekends), as the model does

not have forcing terms which can be a function of the S, I ,R

or utterly independent.

Property 4: It has time-invariant dynamics since β and γ

are constants, where these two parameters play the key roles

in shaping the character of the model.

Property 5: It has slightly coupled dynamics because S and

I ODEs feed each other, but not the R.

Property 6: The SIR is continuous, implying there are

infinite amount of available data between two-time intervals

t and t + 1t , where 1t is a small amount of time increment.

Next sub-section introduces the SpID-N model.

B. THE SpID-N MODEL

In this part of the paper we introduce the SpID-N model by

considering the properties of the SIR model discussed in sub-

section A.2). We can briefly summarize the key properties

of the SpID-N model as 1) It takes into account the number

of the suspicious Sp casualties rather than the number of

the susceptible S casualties as in the SIR model since the

proposed model focuses on estimating the future tests and

quarantine requirements instead of the whole population,

2) It considers the death D rather than the recovered R casu-

alties to use the model as the background parametric model

for the artificial intelligence-based policy-making algorithm

which aims to minimize a cost function consisting of the

pandemic casualties, 3) Its sub-models are second-order

rather than first-order since the pandemic casualties exhibit

second-order properties such as the distinctive peaks in the

casualties, 4) Its sub-models are discrete since the pandemic

casualties are reported daily.

1) SpID-N MODEL: SUSPICIOUS Sp

The suspicious Sp part of the SpID-N model is

Spk+2
= a1Spk+1

+ a0Spk + b3Ik + c1uk (2)

where
• a1 is the internal unknown parameter for the first mode

of the suspicious Sp,

• a0 is the internal unknown parameter for the second

mode of the suspicious Sp,

• b3 is the unknown coupling parameter of the infected I ,

• c1 is the unknown parameter of the non-pharmacological

policies,

• uk is the sum of the multi-dimensional non- pharmaco-

logical policies,

• k is the sample of discrete time (here k is the days)

These unknown parameters will be learned from the avail-

able Sp, I , and D data in Section IV. In the next sub-section,

we introduce the infected part of the SpID-N model.

2) SpID-N MODEL: INFECTED I

The infected I part of the SpID-N model is

Ik+2 = b1Ik+1 + b0Ik + a3Sk + d3Dk + c2uk (3)

where

• b1 is the internal unknown parameter for the first mode

of the infected I ,
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• b0 is the internal unknown parameter for the second

mode of the infected I ,

• a3 is the unknown coupling parameter of the suspicious

Sp,

• d3 is the unknown coupling parameter of the death D,

• c2 is the unknown parameter of the non-pharmacological

policies uk ,

Similarly, these unknown internal, coupling, and policy

parameters will be learned in Section IV. Finally, in the next

sub-section, we express the death part of the SpID-N model.

3) SpID-N MODEL: DEATH D

The death D part of the SpID-N model is

Dk+2 = d1Dk+1 + d0Dk + b4Ik + c3uk (4)

where

• d1 is the internal unknown parameter for the first mode

of the death D,

• d0 is the internal unknown parameter for the second

mode of the death D,

• b4 is the unknown coupling parameter of the infected I ,

• c3 is the unknown parameter of the non-pharmacological

policies uk ,

Again, these unknown internal, coupling, and policy

parameters will be learned in Section IV by using the

LS-based optimization algorithm. In the next section, we con-

struct the parametrized non-pharmacological policies uk
step-by-step.

III. SpID-N MODEL: THE NON-PHARMACOLOGICAL

POLICIES N

In this section, we construct the multi-dimensional

non-pharmacological policies step by step which can be

easily modified for different cases. Parametrizing these non-

pharmacological policies is necessary since their correspond-

ing data are not directly available. Therefore, by using the

well-known facts and intuitive insights about the pandemic

diseases, parametric models of the non-pharmacological poli-

cies are derived by using signal processing and mathematical

approaches.

A. THE NON-PHARMACOLOGICAL POLICIES

The multi-dimensional non-pharmacological model covers

curfews on people 1) with chronic disease, 2) people age over

65, 3) people under age 20, 4) restrictions on weekends and

holidays, 5) closure of the schools and universities.

1) THE NON-PHARMACOLOGICAL POLICIES: CURFEWS ON

PEOPLE WITH CHRONIC DISEASE

State authorities primarily focus on protecting people with

chronic diseases as they are much more vulnerable to out-

breaks. Therefore, curfews on them are implemented for a

duration of time. Note that the symptoms of being infected

can appear in 14 days where the peak point of probability

occurs around day 7, which is reported by the WHO [28],

as shown in Fig. 1.

As can be seen in Fig. 1, when an action is taken against the

outbreak, its positive impact (response) will appear in 14 days

FIGURE 1. The probability distribution of appearance of the symptoms,
where k is the day that the curfew starts.

with a possible transient ascent and a transient descent part.

The transient ascent part of the response can be mathemati-

cally modelled as

uck = nc
(

1 − αk
)

(5)

where

• uck is the response of the curfew on the people with

chronic disease,

• nc is the scaling factor of the number of the people with

chronic disease,

• α is the discount factor of the impact,

• k is the sample of discrete time (here k is the days)

• c represents chronic disease

Note that for α = 0.71 and k = 7, the response (impact)

in Fig. 1 reaches its maximum. In reality, since the response

is not certain, we add random non-parametric uncertainty σ c

in Equation (5) as

uck = nc
(

1 − αk−ki + σ c
)

, for k = ki, . . . , kn (6)

where ki represents the start day of the curfew, kn = ki+7 for

this case. In terms of the transient descent part of the response

in Fig. 1, the mathematical model is

uck = nc
(

αk−kn−1
+ σ c

)

, for k = kn + 1, . . . kt (7)

where kt = kn + 7.

So far in this sub-section,

• We have modelled the impacts (response) of only a

one-day curfew, which has an impulse effect on fighting

the COVID-19 (Fig. 1).

• However, curfews on the people with chronic disease

have been implemented for a duration of time, which has

a constrained step input effect on fighting the COVID-19

(Fig. 2).

In Fig. 2;

• Step input represents the duration of the curfews on

people with chronic diseases.

• The impact (response) is now uncertain due to

added randomness σ c in Equations (6) and (7). This

uncertainty represents the unmeasured or undetected

casualties and people who violate the curfew.
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FIGURE 2. Impact of the curfew on the people with chronic disease,
where k is the day that the curfew starts.

• To extend the model with steady-state, modifying

kn = kci +k
c
n , with k

c
i is the start day and k

c
n is the duration

of the curfew, is enough.

• In this case, kt = kn + 14.

The next sub-section presents the non-pharmacological

model for the curfew imposed on people age over 65.

2) THE NON-PHARMACOLOGICAL POLICIES: CURFEWS ON

PEOPLE AGE OVER 65

A further group of people prone to be infected from the out-

breaks is age over 65. Thus, the state authorities implement

curfews on these people primarily. The model of the curfew

on the people age over 65 is closely related to the model

for people with chronic diseases. Henceforth, we can slightly

modify the model transient ascent and steady-state parts as

u65k = n65
(

1 − αk−k
65
i + σ 65

)

, for k = k65i , . . . , kn

(8)

where

• u65k is the response of the curfew on the people age over

65,

• n65 is the scaling factor of the number of people with age

65,

• α is the discount factor of the impact,

• σ 65 is the random uncertainty in the response,

• kn = k65i + k65n where k65i is the start day and k65n is the

duration of the curfew,

• 65 represents age over 65

Now we can present the transient descent part as

u65k = n65
(

αk−kn−1
+ σ 65

)

, for k = kn + 1, . . . kt (9)

where kt = kn + 14. The next sub-section provides the

modified model for the curfew on people age under 20.

3) THE NON-PHARMACOLOGICAL POLICIES: CURFEWS ON

PEOPLE AGE UNDER 20

Even though the young people are much more resistant to

the outbreaks, since they spread the virus more than others,

curfews on people aged under 20 have been implemented.

The model of the curfew on the people age under 20 is closely

affiliated with the model for the people with chronic diseases.

Therefore, we can slightly modify the transient ascent and

steady-state parts of the model as

u20k = n20
(

1 − αk−k
20
i + σ 20

)

, for k = k20i , . . . , kn

(10)

where

• u20k is the response of the curfew on the people age under

20,

• n20 is the scaling factor of the number of people age

under 20,

• α is the discount factor of the impact,

• σ 20 is the random uncertainty in the response,

• kn = k20i + k20n where k20i is the start day and k20n is the

duration of curfew,

• 20 represents age under 20

The transient descent part as

u20k = n20
(

αk−kn−1
+ σ 20

)

, for k = kn + 1, . . . kt

(11)

where kt = kn+14. The next sub-section expresses the model

for the curfews applied on weekends and holidays.

4) THE NON-PHARMACOLOGICAL POLICIES: CURFEWS ON

WEEKENDS AND HOLIDAYS

Since people travel and visit each other during the weekends

and holidays, viruses can spread to the mass populations.

Therefore, curfews are taken into account during the week-

ends and holidays. Since this kind of curfews are imple-

mented at certain intervals, it is modelled with piecewise

impulses as

uwhi,k = nwh
(

1 − αk−k
wh
i + σwh

i

)

δi,

for











k = kwhi , . . . , kn

δi = 0, curfew

δi = 1, without curfew

(12)

where
• δi is the impulse representing the existence of the cur-

fews,

• uwhi,k is the response of the curfew on the weekends and

holidays,

• nwh is the scaling factor of the number of the people

under curfews on weekends and holidays,

• α is the discount factor of the impact,

• σwh
i is the random uncertainty in the response,

• kn = kwhi + kwhn where kwhi is the start day and kwhn = 7

is the half duration of the impact,

• wh represents weekends and holidays

The transient descent part as

uwhi,k = nwh
(

αk−kn−1
+ σwh

)

δi,

for











k = kn + 1, . . . kt

δi = 1, curfew

δi = 0, without curfew

(13)
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FIGURE 3. Total response of the curfews on weekends and holidays,
where k is the day that the curfew starts.

where kt = kn + 14. Fig. S2 shows the weekend and holiday

curfews and their corresponding individual responses.

The total response uwhk is the sum of each response uwhi,k as

uwhk =
∑k

i=k−14
uwhi,k (14)

Fig. 3 shows the sum of the responses at each sample k .

As can be seen from Fig. 3, the response of the curfews on

the weekends and holidays has multiple peaks and multiple

steady-states due to their impulse type effects. The next sub-

section expresses the model for the schools and universities

closure.

5) THE NON-PHARMACOLOGICAL POLICIES: SCHOOLS AND

UNIVERSITIES CLOSURE

As the school and universities are the mass gatherings places

for the students where they actively engage with each other,

the schools and universities’ closure plays a crucial role to

control the spread of the virus. Since it is not a curfew, its

role is mainly removing a negative effect and acting positively

for a duration of time. Therefore, it has a similar modelling

approach of single positive impulse as

usuk = nsu
(

1 − αk−k
su
i + σ su

)

, for k = ksui , . . . , kn

(15)

where

• usuk is the response of the single impulse representing the

schools and universities closure,

• nsu is the scaling factor of the number of students,

• α is the discount factor of the impact,

• σ su is the random uncertainty in the response,

• kn = ksui + ksun ,where ksui is the start day and ksun is the

duration of the curfew,

• su represents schools and universities

The transient descent part as

usuk = nsu
(

αk−kn−1
+ σ su

)

, for k = kn + 1, . . . kt (16)

where kt = kn+7. The next sub-section expresses the overall

responses of the non-pharmacological policies.

B. TOTAL RESPONSES OF THE NON-PHARMACOLOGICAL

POLICIES

To form a base in Section IV, we should specify the uk in

the sub-models given by Equations (2), (3), and (4). The total

responses of all non-pharmacological policies introduced in

Section III. A.1)-5) as

uk = uck + u65k + u20k + uwhk + usuk (17)

Even though they are summed up with equal importance in

Equation (17), their importance is shaped by the unknown

but learned c1, c2, and c3 parameters in Equations (2), (3),

and (4). The next sub-section expresses the key properties of

the developed SpID-N model.

C. KEY PROPERTIES OF THE SpID-N MODEL

The key features of the SpID-N model are;

Property 1: Each ODE of the SpID-N model given by

Equations (2), (3), and (4) is the second order. So that together

with the stable and unstable modes of the COVID-19, damp-

ing and natural frequencies of the outbreak can be considered.

Property 2: The model of the non-pharmacological poli-

cies has non-parametric uncertainties σ c, σ 65, σ 20, σwh, and

σ su. So that the SpID-N model covers the random variations,

too.

Property 3: The SpID-N model takes into account the

non-pharmacological actions against the outbreaks such

as the curfews and restrictions. Therefore, the ODEs are

inhomogeneous.

Property 4: The SpID-N model does not cover the known

parameters such as the transmission rate β and infectious

rate γ which are likely to change seasonably. However, the

SpID-N model assigns all the parameters as unknown and

learns them from the available Sp, I , andR data by performing

an LS-based optimization.

Property 5: The number of suspicious people affects the

number of infected people and also the number of recovered

and dead people. Henceforth, the model is strongly coupled.

Property 6: Since it is a fact that the casualties are revealed

daily, not every moment of time 1t , the SpID-N model is

discrete-time instead of continuous-time.

In the next section, we provide an LS-based optimization

approach to determine the unknown parameters of the pro-

posed SpID-N model.

IV. LS-BASED PARAMETER LEARNING

This section formulates the bases and the unknown parameter

vectors of the SpID-N model together with the labeled real

output. This section also provides a derivation of the batch

type LS-based unknown parameter estimation approach to

learn the unknown parameters offline.

A. CONSTRUCTION OF THE BASES

To learn the unknown parameters of the SpID-N model,

we perform the LS-based optimization. Therefore, we cre-

ate unknown functions with unknown parameters, but with

the known bases, which carry crucial information about the

unknown parameters. In terms of the basis of the suspicious
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model, consider the right-hand side of the discrete model

given by Equation (2) and form the corresponding basis ∅Sp
as

∅Sp =
[

Sp (2, . . . ,N − 1) Sp (1, . . . ,N − 2)

I (1, . . . ,N − 2) uk (1, . . . ,N − 2)]T (18)

where N is the length of the data. Similarly, to construct the

basis for the infected ∅I , consider the right-hand side of the

discrete model given by Equation (3) which yields

∅I =
[

I (2, . . . ,N − 1) I (1, . . . ,N − 2) Sp (1, . . . ,N − 2)

D (1, . . . ,N − 2) uk (1, . . . ,N − 2)]T (19)

Lastly, take into account the right-hand side of the discrete

model given by Equation (4) to construct the basis for the

deaths ∅D as

∅D = [D (2, . . . ,N − 1)D (1, . . . ,N − 2)

I (1, . . . ,N − 2) uk (1, . . . ,N − 2)]T (20)

The bases (18), (19), and (20) are multi-dimensional

and carry information about the internal dynamics of the

COVID-19 and also the non-pharmacological policies. Since

these bases are constructed by utilizing the facts-based

insights, the unknown model parameters associated with

these bases are exact as discussed next.

B. ESTIMATED AND PARAMETRIZED CASUALTIES

The estimated model consists of the unknown parameter

vectors representing the unknown parameters of the highly

coupled SpID-N model defined as

wSp = [a1 a0 b3 c1]
T

wI = [b1 b0 a3 d3 c2]
T

wD = [d1 d0 b4 c3]
T (21)

where wSp , wI , and wD are the unknown parameter vectors of

the suspicious, infected, and death models respectively. The

estimated individual models are

ŷSp = wTSp∅Sp

ŷI = wTI ∅I

ŷD = wTD∅D (22)

where ŷSp , ŷI , and ŷD are estimated outputs or future casual-

ties for the suspicious, infected, and deathmodels. To perform

the LS optimization, the next step is to label the real outputs

presented next.

C. THE REAL OUTPUTS

To construct the real outputs, which carry correlated

information about the past casualties and non-pharmacological

policies, consider the left-hand sides of the discrete mod-

els (2), (3), and (4). The real outputs (non-parametrized) are

ySp = S(3, . . . ,N )T

yI = I (3, . . . ,N )T

yD = D(3, . . . ,N )T (23)

where ySp , yI , and yD are the real outputs. Finally, the next

sub-section formulates the LS approach.

D. LS FORMULATION

Consider the real outputs (23) and estimated outputs (22) by

reducing the indices of the parameters and variables. The

error between the real and estimated outputs reveals infor-

mation about the unknown parameter vector (21). The error

vector e is

e = y− ŷ (24)

where y =
[

ySpyI yD
]T

and ŷ =
[

ŷSp ŷI ŷD
]T
. To ensure

positive definiteness in the estimates, square the error e in (24)

and expand as

e2 =

(

y− wT∅

)T (

y− wT∅

)

= yT y− w∅
T y− yTwT∅ + w∅

TwT∅ (25)

The slope in error determines both the direction and mag-

nitude of the unknown parameters w and moving towards the

direction of the error slope minimizes the squared error (25).

For the gradient descent based optimization, take the gradient

of (25) as

∂e2

∂w
= −2∅T y+ 2∅T∅w (26)

The unknown parameter vector w setting (26) to zero is

obtained as

w =

(

∅
T
∅

)−1
∅
T y (27)

This formulation of the unknown parameter vector (27) can

now be used to analyze the developed model and to predict

the future casualties of the COVID-19 in Section VI.

E. PSEUDO-CODE FOR THE SpID-N MODEL

Inputs: Reported casualties Sp, I , and D with length N

Constructed non-pharmacological policies uk
Initialized unknown parameters in Equation (21)

Outputs: Estimated parameters of the SpID-N model

1. Construct the bases in Equations (18), (19), and (20).

2. Construct the unknown parameters in Equation (21).

3. Construct the estimated outputs in Equation (22).

4. Construct the real outputs in Equation (23).

5. Determine the unknown parameters with

Equation (27).

V. ANALYSIS OF THE DATA: COVID-19 CASUALTIES IN

TURKEY

We shortly provide and analyze the COVID-19 casualties

in Turkey between 12 of March 2020 to 8 of August 2020.

This section is mainly for gaining insights about the COVID-

19 casualties and reflecting these insights into the compre-

hensive model derivation process in Sections II, III, and IV.

In addition, the discussions in this section help understanding

the analysis of the model and predicted future casualties in

Section VI.

A. SUSPICIOUS CASUALTIES

Fig. 4 shows daily suspicious casualties, which is only the

number of daily tests, reported by the Health Ministry of

Turkey [29]. It can be clearly seen that the number of sus-

picious people has risen sharply without a distinctive peak.
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FIGURE 4. Daily suspicious casualties of Turkey, Sp represents the
number of the suspicious casualties.

FIGURE 5. Daily infected casualties of Turkey, I represents the number of
the infected casualties.

Even though there is a small reduction in the suspicious

casualties between 40 and 70 daily samples as a result of

various curfews and restrictions, it continues to be large.

However, considering the infected casualties shown

in Fig. 5 and death casualties in Fig. 6, it can be deduced that

the suspicious casualties are mostly for searching people who

might be infected or taking pre-cautious actions to prevent

people such as the military stuff. It is expected that this fact

reduces the coupling effect among the suspicious, infected,

and death casualties.

B. INFECTED CASUALTIES

Fig. 5 shows daily infected casualties reported by the Health

Ministry of Turkey [29]. Fig. 5 also shows a distinct and sharp

peak with random oscillations due to uncertainties. This peak

implies the second-order dynamics discussed in Sections II

and III. It is also noticeable that after the peak, infected

casualties settle down a region as a result of the impacts

of the non-pharmacological policies. However, the infected

casualties do not converge zero and they fluctuate around a

bounded equilibrium. This is highly likely due to removing

all the restrictions and curfews on 1 of June. This has caused

improving uncertainty as well.

C. DEATH CASUALTIES

Fig. 6 shows the number of deaths stemmed from the COVID-

19 reported by the Health Ministry of Turkey [29]. It is

clear that the number of deaths (Fig. 6) and the number of

infected people (Fig. 5) have a significantly similar character

as opposed to the number of suspicious people (Fig. 4). It is

clear that the number of deaths has reduced from 130s to 20s,

but it fluctuates around a non-zero equilibrium point.

FIGURE 6. Daily death casualties of Turkey, D represents the number of
the death casualties.

TABLE 1. Population characteristics of Turkey [30].

VI. ANALYSIS OF THE SpID-N MODEL

This section provides an insightful analysis of the coupled

and higher-order parametric SpID-N model.

A. PARAMETERS OF THE SpID-N MODEL

We provide parameters of the SpID-N model for the case

of casualties in Turkey to make insightful comments about

the COVID-19 analysis. However, since the developed model

is flexible, providing corresponding parameters yields a

specific model for that country.

Based on the knowledge given by Table 1 [30], we can now

specify the corresponding SpID-N parameters in Table 2 [30].

B. COMMENTS ON THE SpID-N MODEL

The learned parameters of the SpID-N model with the LS

estimator (27) are

Spk+2
= 0.9453Sk+1 + 0.0047Spk + 0.5794Ik + 0.0153uk

Ik+2 = 1.0545Ik+1 − 0.0443Ik − 0.0004Spk

−0.5334Dk − 0.0001uk

Dk+2 = 1.0465Dk+1 − 0.1576Dk + 0.0033Ik + 0.00002uk

(28)

Insight 1: Correlation among the internal effects of the Sp,

I , D casualties get stronger from Sp to I and D, respectively.

This can be seen from the 0.0047Spk , 0.0443Ik , and 0.1576Dk
which grow 10 folds of each other. This confirms the consis-

tency of the infected I and deathD data, but not the suspicious

Sp data since it covers the tests performed without strong

suspicions.

Insight 2: The infected number of people has quite strong

effects on the number of suspicious people due to 0.5794Ik
in (28).
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TABLE 2. Parameters of the SpID-N model [30].

Insight 3: However, the role of the number of the

suspicious people on the number of the infected people is

FIGURE 7. Eigenvalues of the discrete SpID-N model.

FIGURE 8. Estimated future COVID-19 casualties for Turkey, a) suspicious,
b) infected, c) death.

limited (0.0004Spk ) due to widely performed precautious

tests for the people who start their duties (i.e. soldiers,

workers).

Insight 4: In terms of non-pharmacological policies uk ,

it plays an important role in all the casualties. Note that even

though it has small coefficients such as 0.0153uk , 0.0001uk ,

0.00002uk since the uk have large bases weighted with the

corresponding populations, its impact is significant.

C. EIGENVALUE BASED ANALYSIS OF THE SpID-N MODEL

Eigenvalues of the coupled and 6th order discrete model (28)

can be used to reveal important knowledge about the future

behavior of the COVID-19 casualties (decrease or increase

unboundedly and the time to reach a certain level). Therefore,

in Fig. 7 we provide the eigenvalues of the model without the

external non-pharmacological effects.

As the model is discrete, any eigenvalue larger than unity

leads all coupled outputs to blow up. Thus, all the eigenvalues

of the model must be inside the unit circle for convergent

outputs. As can be seen from Fig. 7, all the eigenvalues

of the SpID-N model are inside the unit circle. However,

two of the eigenvalues inside the dashed rectangle are close

to 1; henceforth, with slight incremental changes either

in the internal dynamics or external effects, the eigenval-

ues might move towards the unstable region. In this case,

if no non-pharmacological actions are taken, the casualties

increase unboundedly.

D. ESTIMATED FUTURE COVID-19 CASUALTIES

We provide the estimated future COVID-19 casualties

in Fig. 8 for Turkey by using the model given by Equa-

tion (28).

It is clear that all the Sp, I , and D casualties decrease to

zero around 100 days, but they jump back. This reveals two

properties of the COVID-19:
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FIGURE 9. Expanded future casualties, a) suspicious, b) infected, c)
deaths.

1) The natural frequency of the model is large: This

implies that the rise time of the virus is small and also

it has an aggressive response.

2) The damping factor of the model is small: This

implies that the lately removed restrictions and cur-

fews have reduced the damping factor of the casualties.

If no non-pharmacological policies are imposed, then

fluctuations in casualties are expected.

To clearly see the convergent regions of Fig. 8, we provide

its expanded form around the convergent regions in Fig. 9.

It can be seen that the suspicious casualties reach zero at day

100, but it jumps back to 480s casualties (Fig. 9a). In 300

days, it reduces to 30s and its slope information confirms

the convergent behavior of the future suspicious casualties

in the further days. In terms of the infected casualties, it hits

zero around day 70 and rises back to 62 casualties (Fig. 9b).

Similarly, the death casualties reach zero around day 60 and

rise back around 2 casualties (Fig. 9c). Both the infected and

death casualties seem to converge zero around 300 days under

the current conditions.

Next sub-section analyzes the impacts of the individual

non-pharmacological policies on the future estimates of the

COVID-19.

E. ANALYSIS OF THE NON-PHARMACOLOGICAL POLICIES

Fig. 10 shows differences in casualties without an individual

non-pharmacological policy where the numbers represent the

curfews on people

1) with chronic disease,

2) age over 65,

3) under age 20,

4) during the weekends and holidays,

5) impacts of closures of the schools and universities

and

• Sa represents the average impacts of all non-

pharmacological policies on the suspicious casualties,

• Si represents the impact of the non-pharmacological

policies on the suspicious casualties without the ith

non-pharmacological policy,

• Ia represents the average impacts of all

non-pharmacological policies on the infected casualties,

FIGURE 10. Average differences for the future COVID-19 casualties
without individual non-pharmocological policies. 1) with
chronic disease, 2) age over 65, 3) under age 20, 4) during the
weekends and holidays, 5) impacts of closures of the schools and
universities.

• Ii represents the impact of the non-pharmacological

policies on the infected casualties without the ith

non-pharmacological policy,

• Da represents the average impacts of all

non-pharmacological policies on the death casualties,

• Di represents the impact of the non-pharmacological

policies on the death casualties without the ith

non-pharmacological policy,

As can be seen from Fig. 10,

1) Without the curfews imposed on the people with chronic

disease:Although its contribution to the number of sus-

picious casualties is significantly limited, its impacts on

the number of the infected and also deaths casualties

are significant. This shows that people with chronic

diseases are more vulnerable to COVID-19 (number 1).

2) Without the curfews imposed on the people age over 65

without a chronic disease: Despite their moderate role

in the number of suspicious casualties, their impacts on

the infected and death casualties are not strong. This

is because of the population of the people age over

65 (1.517.000 over 83.000.000 population as presented

in Table 1) (number 2).

3) Without the curfews imposed on the people age under

20: It is clear that the young people cause a consid-

erable increment in suspicious casualties. However,

since they are less prone to be infected, its impacts on

infectious and deaths are insignificant (number 3).

4) Without the curfews imposed on the weekends and hol-

idays: Since this type of restriction is for everyone, its

role on all the casualties is consistent (number 4).

5) Without the closures of the schools and universities:

Its impacts are consistent on all the casualties due to

two reasons: a) as can be seen from Table 1, almost

1/3 of the Turkish population is student, b) as can be

seen in Table 2, when the schools and universities were

closed, it was the only non-pharmacological policy

(number 5).

VII. LIMITATIONS OF THE STUDY

In the proposed model, the suspicious, infected, death

casualties, and non-pharmacological policies were taken into

VOLUME 8, 2020 225281



O. Tutsoy et al.: Development of a Multi-Dimensional Parametric Model With Non-Pharmacological Policies

consideration, however, the intensive care and intubation

casualties, pharmacological policies, and unknown uncertain-

ties were not taken into account. In addition to this, the study

does not focus on the risks of infections depends on some

factors such as the environmental effects, the demography of

cities, and the mobility of nations.

VIII. CONCLUSION

In this paper, we have proposed the SpID-N model to predict

and analyze the future COVID-19 casualties. Firstly, we pro-

vide an insightful analysis of the well-known SIR model

and we have determined the internal and coupled structure

of the SpID-N model. Secondly, we have derived the math-

ematical models of the non-pharmacological policies and

represented them in terms of known bases and their unknown

contributions to each part of the SpID-N model. Thirdly,

we formulate the LS-based optimization approach to obtain

the unknown parameters of the SpID-N model. The predicted

model parameters confirm that the COVID-19 casualties in

Turkey are inside the stable region, but two of the modes are

close to the instability region. The model also provides that

the number of infected and death casualties will converge zero

in 300 days, whereas the number of suspicious casualties will

require more time. In addition, we have analyzed the impacts

of the individual non-pharmacological policies and showed

that people with chronic diseases are considerably prone to

be infected and even deaths. However, even though young

people spread the virus, the number of infected and death

casualties among young people is low.

Thus, by using our developed and proposed SpID-Nmodel,

authorities of the countries can plan new measures against

the virus in the short-medium-long term, and accordingly,

update their regulations in the fields of economy, travel, and

health systems according to the data analysis of the model we

propose.

In our future studies, it will be possible to develop new

versions that take the problemsmentioned in the section of the

limitations of the study into account in the model, according

to our current proposed approach. Models to be developed

should be combined with artificial intelligence approaches in

order to determine policies for other future pandemics that

humanity may encounter.
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