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Background: The significant difference in prognosis between IDH1 wild-type

and IDH1 mutant glioblastoma multiforme (GBM) may be attributed to their

metabolic discrepancies. Hence, we try to construct a prognostic signature

based on glycolysis-related genes (GRGs) for IDH1-associated GBM and further

investigate its relationships with immunity.

Methods: Differentially expressed GRGs between IDH1 wild-type and IDH1

mutant GBM were screened based on the TCGA database and the Molecular

Signature Database (MSigDB). Consensus Cluster Plus analysis and KEGG

pathway analyses were used to establish a new GRGs set. WGCNA, univariate

Cox, and LASSO regression analyses were then performed to construct the

prognostic signature. Then, we evaluated association of the prognostic

signature with patients ’ survival , cl inical characterist ics, tumor

immunogenicity, immune infiltration, and validated one hub gene.

Results: 956 differentially expressed genes (DEGs) between IDH1 wild-type and

mutant GBM were screened out and six key prognostically related GRGs were

rigorously selected to construct a prognostic signature. Further evaluation and

validation showed that the signature independently predicted GBM patients’

prognosis with moderate accuracy. In addition, the prognostic signature was

also significantly correlated with clinical traits (sex and MGMT promoter status),

tumor immunogenicity (mRNAsi, EREG-mRNAsi and HRD-TAI), and immune

infiltration (stemness index, immune cells infiltration, immune score, and gene

mutation). Among six key prognostically related GRGs, CLEC5A was selected

and validated to potentially play oncogenic roles in GBM.
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Conclusion: Construction of GRGs prognostic signature and identification of

close correlation between the signature and immune landscape would suggest

its potential applicability in immunotherapy of GBM in the future.
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Introduction

Glioblastoma multiforme (GBM) is the most malignant brain

tumor in the central nervous system (CNS) (1, 2). Currently, the

most effective treatment of GBM is gross total surgical resection

and standard postoperative chemoradiotherapy. However, this

treatment still delivers an insufficient therapeutic effect (3, 4).

Isocitrate dehydrogenase 1 (IDH1) is a critical metabolic enzyme

in the Krebs cycle (5). Importantly for the diagnosis of GBM, the

determination of IDH1 mutation status has been included,

resulting in distinct subgroups, namely, IDH1 mutant type

(IDH1 MUT) and IDH1 wild type (IDH1 WT), since the 2016

WHO classification of CNS tumors was released (6). Numerous

studies reported that IDH1 MUT GBM patients have better

prognosis than IDH1 WT patients, but the specific mechanisms

at a molecular level are still unknown. GBM arises in a hypoxic

environment, being forced to modify its metabolic pathways to

obtain nutrients (7–9). Altered cellular metabolism is a relevant

hallmark of GBM (10). As a key enzyme in the Krebs cycle, IDH1

itself plays an important role in the metabolism of GBM (11).

Thus, the difference in prognosis between IDH1 MUT and WT

patients may be closely related to the metabolic difference between

these two subgroups of GBM cells. Glycolysis is the metabolic

pathway by which glucose is broken down into two molecules of

pyruvate, while producing energy in the form of adenosine

triphosphate (ATP) and nicotinamide adenine dinucleotide

(NADH) (12). One of the best-known alterations in GBM cell
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metabolism is the capacity for aerobic glycolysis (13). So, this

study will first try to find the reasons for the differences in

prognosis by analyzing the DEGs related to glycolysis between

IDH1 MUT and WT GBM patients.

In addition, aerobic glycolysis can promote apoptosis of GBM

cells, induce GBM cells to differentiate into astrocytes, and destroy

the immune microenvironment of tumors (14, 15). It was reported

that 2-hydroxyglutarate (2-HG), which is generated by IDH1MUT

GBM cell’s glycolysis, could influence the tumor microenvironment

and pH value and further suppress the action of immune cells (16).

This means that glycolysis is closely related to GBM patients’

prognosis and therapeutic effect of immune treatment, especially

in IDH1 MUT patients. Because the routine treatment strategy for

GBM patients is not fully, some new methods, such as immune

therapy, are applied in clinical practice.

Accumulating evidence has revealed that GRGs were

differentially expressed in a number of malignant tumors and

played critical roles in tumor initiation and development. For

instance, Kimberly et al (17). reported that high expression of

GRGs hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2) was

significantly associated with an increased risk for GBM formation

and predicted a dismal outcome for GBM patients. Moreover,

inhibitors targeting HK2 could be utilized to selectively kill cancer

cells (18). To the best of our knowledge, more and more studies

focusing on the relationships between glycolysis and GBM

occurrence and development have received considerable attention

in recent years, and underlying mechanisms of increased glycolytic

activity in GBM has already been determined. However, there is

currently no glycolysis-related prognostic model for GBM.

Therefore, the present study aims to explore the possible reason

for different prognosis between IDH1MUT andWTGBM patients

at basic research level and provide a prognostic prediction model

and theoretical basis for new potential adjuvant postoperative

treatment methods such as immune therapy in the future.
Materials and methods

Data preparation and collection

See Appendix S1 for details.
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Differential expression and functional
enrichment analysis

Limma R package and ClusterProfiler R package were used

in screening and analyzing of differentially expressed genes

(DEGs) between IDH1 MUT and WT GBM samples. See

Appendix S1 for details.
Cluster analysis

Consensus Cluster Plus R package was used for subgroup

cluster analysis based on the differential expression profiling of

glycolysis-related genes. The cluster distance was “euclidean”

and the cluster method was “km”. This analysis was repeated 100

times so as to ensure the stability of subgroup classification.
Co-expression modules construction
and hub genes identification

WGCNA was used to construct co-expression modules. Hub

genes were identified through protein–protein interaction (PPI)

network. See Appendix S1 for details.
Construction and validation of
prognostic model

The hazard ratio (HR) and prognostic significance of differential

expressed genes were determined by univariate Cox regression

analysis, and the genes with p-value <0.05 were selected as

prognosis-related genes. The least absolute shrinkage and selection

operator (LASSO) regression was analyzed using “glmnet” R

package to further screen prognostic factors. Detailed descriptions

of calculation of risk score are provided in Appendix S1.
Annotation of the immune infiltration
microenvironment

The “estimate” R package was utilized to evaluate immune

infiltration microenvironment. See Appendix S1 for details.
Prediction of immunotherapy response

See Appendix S1 for details.
Tissue samples and cell culture

Six IDH1 wild-type and IDH1 mutant GBMs were all

obtained from the Department of Neurosurgery, Xinhua
Frontiers in Immunology 03
Hospital, affiliated with Shanghai Jiaotong University School of

Medicine from November 2017 to July 2021. The

histopathological features of these specimens were identified

by two neuropathologists in accordance with the WHO

criteria. Clinical information and molecular features of those

GBM patients was shown in Table S1. The study protocol was

reviewed and approved by the Human Ethics Committee of

Xinhua Hospital and it conformed to the provisions of the

Declaration of Helsinki. All patients had signed their written

informed consent. Detailed method of cell culture is shown in

Appendix S1.
Lentiviral and plasmid transfection

See Appendix S1 for details on lentiviral and plasmid

construction, and transfection.
Western blotting

Western blotting was performed as described previously

(19). Detailed descriptions of the methods are provided in

Appendix S1. Uncropped images of Western blotting are

provided in Figure S9.
Cell proliferation assay

Detailed methods are provided in Appendix S1.
Transwell invasion assay and wound
healing assay

Transwell invasion assay and wound healing assay were

performed as previously described (20). See Appendix S1

for details.
Statistical analysis

Statistical analyses and visualization were mainly performed

using R version 3.6.0 and GraphPad Prism version 9.0.0. Sources

and versions of software and R packages used in this study were

provided in Table S6. Wilcoxon test and Student’s t test were used

to estimate the differences between two groups. Kruskal-Wallis

analysis was used to estimate the differences betweenmore than two

groups. Two-sided p-value<0.05 was regarded as statistically

significant. (ns: p>0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001,

****: p ≤ 0.0001)
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Results

Determination of a new glycolysis-
related gene set based on DEGs

The design of our study is shown in Figure 1. DEGs were

screened and listed by “limma” R package according to difference

multiple and significance threshold. A total of 409 GBM samples,

including 375 IDH1 MUT and 34 IDH1 WT samples, from the

TCGA database were used for analysis. Results showed that the

expression of 310 genes was upregulated and the expression of 646

genes was downregulated (Figures 2A, B). Original GRG set, which

includes 200 genes, was downloaded from the MSigDB (http://

www.gsea-msigdb.org/gsea/index.jsp). The number of intersection

genes between DEGs (956 genes) and GRG set (200 genes) was 37.

KEGG analyses of the 37 intersecting GRGs were conducted by

using “ClusterProfiler” R package. The results showed that these 37

genes are mainly involved in seven signaling pathways (Figure 2C).

The “glycolysis-related candidate gene set 1” including 665 genes

was then obtained after combining all the genes involved in the

above-mentioned signaling pathways and removing redundancy.

Cluster analysis was conducted based on the expression profiles of

37 intersecting GRGs. Subsequently, 409 GBM samples were

divided into two different subtypes (Figures 2D, E). We named

these two subtypes “cluster 1” (167 samples) and “cluster 2” (242

samples). To be noted, the prognosis of samples of these two kinds
Frontiers in Immunology 04
of subtypes was significantly different (Figure 2F). According to the

difference in multiple and significance threshold, 671 DEGs

between “cluster 1” and “cluster 2” were screened out by

“Limma” R package (Figure 2G). Principal component analysis

was used to compare the two subtypes. Results indicated that the

principal components of DEGs can clearly distinguish the two

subtypes (Figure 2H). Thus, we named these 671 DEGs “glycolysis-

related candidate gene set 2”. Then, a whole new glycolysis-related

gene set (1417 genes) was constructed as a union by combining

original GRG set (200 genes), “glycolysis-related candidate gene set

1” (665 genes), and “glycolysis-related candidate gene set 2” (671

genes) (Figure 2I).
Identification of the key modules and
hub genes using WGCNA

Among 1417 GRGs mentioned above, only 1281 genes can be

found in the TCGA database. Thus, based on these 1281 genes,

WGCNA was performed by R package. Results showed that the co-

expression network conformed to the scale-free networks, and the

correlation coefficient was greater than 0.8. In order to ensure that

the network was scale-free, we chose the optimal b= 7 (scale

independence >0.85) (Figure 3A). Next, we performed cluster

analysis on the modules according to dynamic cutting method

and then determined eight modules (Figure 3B). As shown in
FIGURE 1

The flow diagram of this study.
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Figure 3C, we calculated module eigengenes which summarize the

gene expression profile of each module and corresponding heat

map of module eigengenes was also provided. Pearson correlation

coefficient between each module and phenotypic characteristics of

the sample was calculated. The numbers in each cell represented the

correlation coefficient between the gene module and the phenotypic

characteristics of the sample, and the numbers in brackets

represented the significance p value (Figure 3D). Then, the gene

significance (GS) value of each gene module was calculated. The

greater the GS value was, the more relevant the module was to the

IDH1 mutation status (Figure 3E). Hence, turquoise, yellow, and

black were selected as the key modules. According to module

membership (MM) > 0.5 and GS > 0.31, 96 module core genes

were screened out from the three above-mentioned modules

(Figures 4A–C). Protein-protein interaction (PPI) of genes in

three modules was obtained based on the STRING database

(https://www.string-db.org/). When the degree was greater than

or equal to 5, 114 network core genes were acquired (Figure 4D).
Frontiers in Immunology 05
The intersection of module core genes and network core genes was

taken, and the 23 genes in the intersection were used as glycolytic

core genes for subsequent analysis (Figure 4E). In addition, we also

constructed a glycolytic core gene-centered multi-factor regulatory

network, which was composed of 55960 edges and 10873 nodes,

including 9847 lncRNAs, 969 miRNAs, 23 mRNAs, and 34

transcription factors (Figure S1).
Screening of overall survival–associated
glycolytic core genes and construction
of the glycolysis-related
prognostic model

The prognostic value of the 23 glycolytic core genes was defined

by univariate Cox regression analysis (Table S2). In this analysis,

genes were regarded as significant at p <0.05.We found that 14 genes

were significantly associated with GBM patients’ overall survival (OS)
B C

D E F

G H I

A

FIGURE 2

Determination of GRG set based on DEGs between IDH MUT and WT GBM. (A) The volcano plot for DEGs between IDH MUT and WT GBM
from the TCGA database. (B) Heatmap of DEGs expression levels. (C) KEGG functional enrichment analysis of 37 differentially expressed
GRGs. (D) 409 GBM samples were classified into two subtypes according to 37 differentially expressed GRGs, named cluster 1 and cluster 2.
(E) Consensus cumulative distribution function. (F) Kaplan-Meier survival curves for cluster 1 and cluster 2 subtypes. (G) Heatmap of DEGs
between cluster 1 and cluster 2 subtypes. (H) Cluster 1 and cluster 2 are clearly distinguished using principal component analysis (PCA).
(I) Construction of a whole new GRG set (1417 genes).
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B C

D E

A

FIGURE 3

Identification of key modules associated with clinical traits of GBM based on the TCGA database by WGCNA. (A) Analysis of network topology
for various soft-thresholding powers. (B) Clustering dendrograms of genes, with dissimilarities based on topological overlap, with assigned
module colors. (C) The module eigengenes adjacency presented by hierarchical clustering (upper panel) and heat map (lower panel). The gene
expression level of each module was represented with module eigengenes. (D) Module-trait relationships. Each row represents a module
eigengene, each column corresponds to a clinical trait of GBM. The corresponding correlation coefficient and p-value are shown in each cell.
(E) Distribution of average gene significance in the modules associated with IDH status of GBM.
B C

D E

A

FIGURE 4

Protein-protein interaction (PPI) network construction and identification of hub genes. A-C. The scatterplot of gene significance vs. module
membership in the key co-expression modules, presented with turquoise (A), yellow (B), and black (C) colors respectively. (D) Establishment of
PPI network based on genes from key modules. Yellow color represents network core genes. (E) The Venn diagram shows the intersecting
genes of module core genes and network core genes.
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(Figure 5A). The survival curves of 14 prognostic genes were shown

in Figures 5B–O, which indicated that high expression of these genes

all correlated with a poor outcome for GBM. Interestingly, GUSB and

LDHA were included in the original glycolysis-related gene set (200

genes). Next, six key prognostic genes were further screened out by

LASSO method (Figures S2A–C). By weighting the expression of

these six genes with LASSO regression coefficient, a risk score model

for predicting prognosis was established by the following algorithm

(exp: expression value of gene for each patient). Risk score =

(CLEC5A exp * 0.16) + (TNFAIP6 exp * 0.03) + (PLCB1 exp *

(-0.055)) + (MAPK8 exp * (-0.28)) + (TMBIM1 exp * 0.017) +

(LDHA exp * 0.012).
Evaluation and validation of our
established model

According to the median cut-off value of risk score, the GBM

patients were divided into high- and low-risk groups (n = 204/205).

Kaplan-Meier curves were used to evaluate the performance of our

established model in OS prediction. Results demonstrated that

patients in the high-risk group had a worse prognosis compared

with those in the low-risk group (Figure 6A). ROC was used to

evaluate the prediction results of the model. The AUC of samples in

0.5 year, 1 year, 1.5 years, 2 years, 2.5 years, and 3 years reached

0.615, 0.641, 0.676, 0.712, 0.735, and 0.747 respectively (Figure 6B),
Frontiers in Immunology 07
indicating that the prediction effect of the model was satisfied. We

also observed that the number of patients in the high-risk group and

the number of dead patients grew when the risk scores increased

(Figures 6C, D). As shown in Figure 6E, six key prognostic

glycolytic core genes expression heat map in the TCGA database

was also presented.

To determine whether the risk model had similar predictive

values in different populations, two validation datasets were used,

including CGGA_325 and CGGA_693 datasets. We found that

samples in the high-risk group also showed a worse prognosis than

those in the low-risk group (Figure S3A). The AUC values indicated

a moderate prediction efficiency of the risk score model (Figure

S3B). In addition, results showed that the number of patients in the

high-risk group and the number of dead patients grew with the

increase of the risk scores (Figures S3C, D). Expression heat map of

six key prognostic glycolytic core genes in the CGGA_325 dataset

was shown in Figure S3E. Further, similar results were obtained in

the CGGA _693 dataset (Figure S4). Taken together, the risk score

model we established can predict the prognosis of GBM well.
Correlation between the prognostic
model and clinical characteristics

The clinical characteristics of the TCGA dataset samples

were grouped. Kaplan Meier survival analysis was used to
B C D E

F G H I J

K L M N O

A

FIGURE 5

Screening of overall survival–associated glycolytic core genes. (A) 14 genes significantly associated with GBM patients’ OS among 23 glycolytic
core genes. (B) Survival analysis of 14 genes for GBM patients in the TCGA database, including HRH1 (B), TNFAIP6 (C), TNFRSF1A (D), HEXB (E),
MAPK8 (F), (G), PTX3 (H), CLEC5A (I), GUSB (J), TIMP1 (K), PLCB1 (L), SPRY2 (M), CHI3L1 (N), and LDHA (O).
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evaluate the prognostic differences of high-risk and low-risk

groups after samples with different clinical characteristics were

grouped. We found that the risk score model had significant

prognostic differences between groups with different gender

(Figures 7C, D) and methylation status in O6-methylguanine-

DNA methyltransferase (MGMT) promoter region

(Figures 7E, F), and there were significant prognostic

differences between groups in samples who were younger

than or equal to 60 years (Figures 7A, B), indicating that the

prediction ability of the risk score model was stable.

Furthermore, this prognostic model was verified in other

cancers of TCGA dataset. The results showed that there were

significant prognostic differences only in low-grade gliomas,

indicating the heterogeneity of this model (Figure S5). We

next tried to compare the distribution of risk scores in

different characteristic groups. The results demonstrated that

the risk scores of samples in the “cluster 2” group were

significantly higher than those in “cluster 1” group, the risk
Frontiers in Immunology 08
scores of samples aged less than or equal to 60 years were

significantly lower than those aged more than 60, and the risk

scores of unmethylated samples in MGMT promoter region

were significantly higher than those in methylated samples in

MGMT promoter region (P<0.05, Figures 7G, I, J). And, no

significant differences were found in risk score distribution

between females and males (Figure 7H). All these results

indicated that the prognostic model was markedly associated

with clinical characteristics for GBM patients.
Association between the risk score and
immune landscape

We sought to further study the correlation between immune

landscape and risk score. Our study results indicated that risk

score significantly negatively correlated with the mRNA

expression-based stemness index (mRNAsi), epigenetically
B

C

D

E

A

FIGURE 6

Evaluation and validation of the prognostic model in the TCGA database. (A) Kaplan-Meier survival curves for high- and low-risk groups stratified
by the risk score model in the TCGA database. (B) ROC curves for predicting 0.5-year, 1-year, 1.5-year, 2-year, 2.5-year, and 3-year OS for GBM
patients based on the risk score in the TCGA database. (C–E) Risk score distribution, GBM patients’ survival status, and six key prognostic
glycolytic core genes expression heat map in the TCGA database.
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regulated mRNAsi (EREG-mRNAsi), and homologous

recombination deficiency-telomeric allelic imbalance score

(HRD-TAI) (p<0.05, Figure 8A). The infiltration scores of 22

kinds of immune cells were calculated by CIBERSORT R

package. The results showed that there were significant

differences between high- and low-risk groups in enrichment

scores of some kinds of immune cells, such as T cells CD4

memory resting, plasma cells, and T cells CD8 (p<0.05,

Figure 8B). Further analyses showed that the high-risk group

had a markedly higher estimate score, immune score, and

stromal score than those in the low-risk group. And the tumor

purity score in the high-risk group was lower (p<0.05,

Figure 9A). Then, we compared the differences of somatic cells

mutations between the two groups. Study results showed that 11

genes with mutation frequency in the top 20 simultaneously

appeared in the high-risk (Figure 9B, left panel) and low-risk

group (Figure 9B, right panel). In addition, we presented the

distribution of copy number variation (CNV) frequency and

discovered lower CNV frequency of the high-risk group than the

low-risk group (Figure S6). Together, these results revealed that

risk score correlated with immune landscape.
Frontiers in Immunology 09
Relationship between immunotherapy
and chemotherapy and risk score

The candidate IMvigor210 data set, which contains

immunotherapy information of urothelial carcinoma, was selected

to study whether the risk score can be used as a marker of

immunotherapy response due to a shortage of six prognostic

GRGs-related specific GBM immunotherapy data set. However,

the results displayed no significant differences between high- and

low-risk groups (Figure S7A). We analyzed the relative proportion

of complete response/partial response (CR/PR) and stable disease/

progressive disease (SD/PD) after patients received

immunotherapy. Then, we found that the differences in

distribution of immune response between high- and low-risk

groups was not statistically significant (Figure S7B). And there

were also no significant differences in the distribution of risk score

in each immune response, including PR, PD, CR, and SD. (Figure

S7C). Honestly, these results did not coincide with our expectations.

Hence, we decided to assess the immune properties of risk score we

established in IDH1-associated GBM by using the

immunophenoscores of GBM patients from the Tumor Immune
B

C

D

E

F

G H I J

A

FIGURE 7

Association between the prognostic model and clinical traits for GBM patients. A–F. Subgroup analysis of GBM patients according to age> 60 or ≤60,
sex, and the status of methylation. The prognostic model we constructed retained its stable prognostic value in multiple subgroups of GBM patients,
including patients aged ≤60 years (B), male or female patients (C, D), and patients with/without methylation (E, F). G–J. Patients with different clusters
(cluster 1 or 2) and clinical features (including age> 60 or ≤60, with or without methylation) had different levels of risk scores, calculated according to
the prognostic model.
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Dysfunction and Exclusion (TIDE) database. As shown in

Figure 10, our results demonstrated that patients in the high-risk

group had a higher TIDE score compared with those in low-risk

group (p < 0.001), indicating a potential worse efficacy and more

dismal outcome after acceptance of the immunotherapy treatment

in the high-risk than low-risk group. And, we speculated that this

result may be related to a higher probability of immune escape in

the high-risk group. Taken together, our results demonstrated that

the risk score model we constructed could be utilized to predict the

potential clinical effects of immunotherapy for GBM patients. Next,

we investigated whether the risk score can be used as a marker of

chemotherapy response. Among the five commonly used

chemotherapy drugs, there were significant differences in the drug

resistance of samples in high- and low-risk groups to doxorubicin,
Frontiers in Immunology 10
vinblastine, and sorafenib (P<0.05, Figure S8A). In addition,

Pearson correlation coefficient between each module and five

commonly used chemotherapeutic drugs was also calculated. The

numbers in each cell represented the correlation coefficient between

the gene module and the chemotherapeutic drug, and the numbers

in brackets represented the significance p value (Figure S8B).
Independent prognostic value of
prognostic model

Based on the TCGA dataset, the risk scores of clinical

features (gender, MGMT. Promoter, age) and prognostic

model were grouped for univariate cox and multivariate cox
B

A

FIGURE 8

The association between the risk score and genetic characteristics and infiltration immune cells. (A) Correlation between risk score and some potential
factors which determine tumor immunogenicity, including stemness index, chromosome instability level, homologous recombination defect,
neoantigen load, and mutation load. (B) Compositions of infiltration immune cells between high‐ and low‐risk groups in the TCGA dataset. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001. ns, no significance.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.950917
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2022.950917
B

A

FIGURE 9

Comparison of immune stromal score and somatic cells mutation between high- and low-risk groups. (A) Differential distribution of estimate
score, immune score, stromal score, and tumor purity between high- and low-risk groups. (B) 11 genes with mutation frequency in the top 20
simultaneously appeared in the high-risk group (left panel) and low-risk group (right panel).
FIGURE 10

Prediction of risk score-related immune responses of immunotherapy. Prediction of risk score-related immune responses of immunotherapy.
Distribution of risk score in TIDE scores by TIDE dataset.
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regression analysis respectively (Table S3). The results showed

that the constructed prognostic model was an independent

prognostic factor in the TCGA dataset (Figure 11A). The same

analysis was conducted based on the verification set CGGA_325

(Table S4) and CGGA_693 (Table S5), and the results showed

that the constructed prognostic model was also an independent

prognostic factor in the validation set (Figures 11B, C). To

further elucidate the predictive accuracy of the prognostic

model and the above clinical features, we next performed an

ROC analysis. The AUC of the risk score model was 0.5152

compared to 0.5088, 0.4767, and 0.5123 calculated for gender,

MGMT. promoter status, and age respectively, which indicated

that the risk score model can predict the OS of GBM patients

with moderate sensitivity and specificity (Figure 11D). Then, we

constructed a nomogram incorporating the abovementioned

three clinical features and risk score to quantitatively estimate

the 0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year OS possibility of patients

with GBM. As shown in Figure 11E, risk score contributed the

most to prognosis, followed by age, gender and MGMT.

promoter status. The total score was generated by summing
Frontiers in Immunology 12
the scores corresponding to each clinical feature to assess the

probability of survival for each patient. The calibration curves

also showed a favorable consistency between the nomogram

predictions and actual observed outcomes of the 0.5-, 1-, 1.5-, 2-,

2.5-, and 3-year OS, indicating good prognostic accuracy of the

model (Figures 11F–K).
Evaluation of the function of CLEC5A
in vitro

The top two genes with the biggest regression coefficient in

our constructed risk model were CLEC5A and MAPK8.

Previous studies revealed that CLEC5A was included in a risk

signature which served as an independent prognostic indicator

for GBM (21, 22). In addition, a study by Fan et al (23). further

demonstrated that CLEC5A participated in the regulation of

PI3K/Akt signaling pathway and then promoted GBM

malignant progression. Hence, we selected CLEC5A as a

candidate gene and validated its function in GBM. We first
B C
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FIGURE 11

Assessment of independent efficacy of the prognostic model. A-C. Univariate (upper panel) and multivariate (lower panel) Cox regression
analysis of the prognostic model and clinical features in the TCGA (A), CGGA_325 (B), and CGGA_693 (C) datasets, respectively. (D) Nomogram
for predicting the prognosis of GBM patients, integrating three clinical features and the prognostic model we established. (E) Multi-ROC curves
for predicting 0.5-year, 1-year, 1.5-year, 2-year, 2.5-year, and 3-year OS for GBM patients based on three clinical features and the prognostic
model. F-K. The calibration curves of the nomogram model for predicting GBM patients’ 0.5-year (F), 1-year (G), 1.5-year (H), 2-year (I), 2.5-year
(J), and 3-year (K) survival.
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tried to assess the expression level of CLEC5A in three IDH1

WT and three IDH1 MUT GBM specimens. As shown in

Figure 12A, the expression level of CLEC5A in IDH1 WT

GBM samples was significantly increased compared with that

in IDH1 MUT GBM samples. To determine whether IDH1

R132H overexpression altered CLEC5A expression level, we

overexpressed this protein in U87 and U138 cells. Results

showed that CLEC5A protein level markedly decreased in

IDH1 R132H-overexpressing GBM cells compared with

corresponding control GBM cells (Figure 12B). Next, different

experiments were performed to evaluate the change of GBM cell

proliferation, invasion, and migration when CLEC5A expression

was inhibited. Consistently with the experimental results of the

previous study (23), silencing of CLEC5A remarkably retarded

the growth of GBM cells (Figure 12C). Accumulating evidence

demonstrated that the strong ability of tumor cells to invade

adjacent and distant tissues constituted the major hindrances in

GBM treatment (24). Hence, we next evaluated whether

CLEC5A knockdown affected the invasion and migration of
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GBM cells. As shown in Figures 12D, E, depletion of CLEC5A

significantly inhibited GBM cells invasion compared with the

controls. Likewise, the wound coverage of the shCLEC5A-

transfected GBM cells was also dramatically lower 24 h after

plating, indicating that its migration ability was markedly

decreased compared to the control group (Figures 12F, G).

Taken together, these results suggest that CLEC5A showed

differential expression level between IDH1 WT and MUT

GBM and regulated GBM cell proliferation, invasion,

and migration.
Discussion

IDH1 is a key enzyme which can catalyze the oxidative

decarboxylation of isocitrate to a-ketoglutarate (a-KG) in the

Krebs cycle (5). It is generally accepted that IDH1 MUT GBM

patients had better prognoses than IDH1 WT patients, but its

specific mechanism is unclear. In GBM, it is proven that mutant
B

C
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A

FIGURE 12

Evaluation of expression level and the function of CLEC5A in vitro. (A) Detection of the expression level of CLEC5A in IDH1 WT and MUT human
GBM tissues by Western blotting. (B) Western blotting showing CLEC5A and IDH1 R132H protein levels in U87 and U138 GBM cells transduced
with IDH1 R132H or vector control. (C) Percentage of viable U87 and U138 cells transfected with shCtrl or shCLEC5A. *p < 0.05. (D, E)
Representative images of transwell invasion assays using U87 and U138 cells transfected with shCtrl or shCLEC5A. Quantification of transwell
invasion assays is shown, scale bar = 100mm. (F, G) Wound healing assays using U87 and U138 cells transfected with shCtrl or shCLEC5A.
Wound coverage was detected and photographed after 24h. Quantification of wound healing assays is shown, scale bar = 200mm.
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IDH1 participates in a different metabolic pathway from wild

type IDH1. The mutant IDH1 can catalyze a-KG into 2-HG,

which has a similar molecular structure to a-KG. It means that

2-HG can competitively inhibit many a-KG dependent enzymes

and then play an important role in the development of GBM (16,

25, 26). Although the effect of 2-HG on GBM is still

controversial, the above conclusions all consistently suggest

that IDH1 MUT GBM and IDH1 WT GBM have different

metabolic modes, and their different prognosis may also be

closely related to theifferrent metabolic modes. Therefore,

finding the DEGs between IDH1 MUT and WT GBM,

especially the metabolic related DEGs, will help to explain the

reasons for the different prognosis between these two

pathological types of gliomas.

Temozolomide (TMZ) is a kind of alkylating agent and

currently recognized as a first-line chemotherapy drug for GBM

(27). However, owing to the inherent or acquired resistance to

TMZ, the overall effect of this drug in clinic is still unsatisfactory

(28). Hence, exploration of new chemotherapy drugs which can

be applied to GBM treatment is urgent. Study results from Peng

et al. demonstrated that doxorubicin in combination with

chemosensitizer lonidamine showed great anti-glioma efficacy

in vitro and in vivo (29). A retrospective analysis (30) indicated

that a combination agent with carboplatin and vinblastine shows

similar efficacy compared with other single-agent and

combination chemotherapy regimens in pediatric low-grade

glioma. Furthermore, the chemotherapy agent sorafenib also

exerted potent anti-glioma ability via inhibiting activation of

multikinase (31). In the present study, we identified DEGs

between IDH1 MUT and IDH1 WT GBM in several datasets,

and confirmed six prognostic related GRGs which were

significantly correlated with prognosis including CLEC5A,

TNFAIP6, PLCB1, MAPK8, TMBIM1, and LDHA. Next, we

incorporated these six hub genes and constructed a risk score

model. Correlation analysis between the risk score and

chemotherapy showed high-risk group GBM patients are more

sensitive to doxorubicin and sorafenib compared with those in

the low-risk group. In addition, stronger drug resistance of

vinblastine was found in the high-risk group. Hence, our risk

score model provides a potential theoretical basis for selection of

chemotherapy drugs other than TMZ to treat GBM. This may

open a new avenue for extension of GBM patient survival time,

especially for those who show no response to TMZ. Among these

six identified genes, PLCB1 plays critical roles in intracellular

transduction and regulating signal activation, which are

important to tumorigenesis (32). In GBM, PLCB1 was

reported as one of the gene signatures related to chromosomal

instability and phosphoinositide pathway (33). High TNFAIP6

expression is significantly positively associated with aggressive

pathological characteristics, suggesting its roles in tumor

development and progression (34, 35). However, the role of

TNFAIP6 in GBM is still unknown and whether it has the same

effect needs further study. Study results pointed out that
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MAPK8, a member of the JNK kinase family, was a protective

factor for GBM patients’ survival (36). Loss of promotor

methylation in glycolytic genes, especially LDHA, is associated

with a more aggressive phenotype in IDH1 MUT GBM (37).

Silencing of LDHA and downregulation of other glycolytic genes

may help to explain the slower progression and better prognosis

of IDH1 MUT GBM (37). TMBIM1 is demonstrated to

attenuate GBM cell apoptosis and decrease the sensitivity of

GBM cells to TMZ by inhibiting p38 phosphorylation (38).

CLEC5A, encoding a C-type lectin, was found to be involved in

GBM pathogenesis via regulation of the PI3K/Akt pathway (23).

In addition, downregulation of CLEC5A can inhibit the

capabilities of proliferation, migration, and invasion, and can

promote apoptosis and G1 arrest in GBM cell lines (23). It was

noteworthy that CLEC5A expression was higher in IDH1 WT

GBM than IDH1 MUT GBM. Hence, we decided to validate its

expression and function experimentally in GBM. Our results

showed higher CLEC5A expression in IDH1 WT than MUT

GBM and depletion of CLEC5A dramatically reduced GBM cell

proliferation, invasion, and migration, further confirming its

potential oncogenic role in GBM progression.

Immunotherapy has been proven to be effective in the

treatment of multiple types of cancers, such as lymphoma (39)

and melanoma (40). However, its efficacy for GBMwas not ideal.

The alterations in tumor metabolism and their subsequent

influence on immune regulation has become increasingly

recognized as important factors contributing to tumor growth

and progression (41, 42). The shift to aerobic glycolysis in

tumors has both active and passive consequences on

the immune microenvironment (42–44). It was reported that

IDH1 WT GBM exhibits more pronounced immunosuppressive

characteristics than IDH1 MUT GBM, which may contribute to

the different degrees of aggressiveness (45, 46). Thus,

modulating the immunosuppressive microenvironment

(ISME) is a promising strategy for improving the efficacy of

immunotherapy. In this study, T cells CD8, plasma cells, T cells

CD4 memory resting, T cell follicular helper, NK cells resting,

NK cells activated, dendritic resting, dendritic cells activated,

eosinophils, and neutrophils were significantly differentially

expressed between high- and low-risk groups which were

divided based on the score of our prognostic model.

The ISME has been demonstrated in the central nervous

system tumors, especially for GBM (47). Some frontline

immunotherapies were successfully applied in the clinic, which

specifically target metabolic pathways and change the ISME.

Also, metabolic pathways in GBM and their interactions with

ISME and immune cells have the potential to exploit precise

treatment approaches for GBM. For example, accumulation of

regulatory T cells (Tregs) in the ISME resulted from high levels

of co-stimulatory and co-inhibitory molecules expressed by

effector CD8+ T-cells promote GBM progression through

ameliorating auto-immunity (48). It is worth noting that 2-HG

represents a unique metabolic pathway in a variety of tumors,
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including GBM. Mutations in the catalytic domains of IDH1

contribute to accumulation of 2-HG and modulation of anti-

tumor immunity in GBM. Bunse et al. reported that 2-HG

inhibits activity of critical enzymes or transcription factors

such as ornithine decarboxylase, NF-kB p65, and NFATC1 so

as to achieve the goal of impairing T cell function, especially

CD4+ T cells (45). More importantly, IDH1 mutations also

regulate anti-tumor immunity via decreasing PD-L1 expression

and reducing immunosuppressive cell infiltration, indicating its

potential possibility in GBM immunotherapy (49). Given the

immunometabolic importance of IDH1 mutations, we establish

a novel gene signature composed of several DEGs related to

glycolysis between IDHMUT and IDHWT GBM. Although the

association between the prognostic model and immunotherapy

score is of no significance in the candidate IMvigor210 data set

which contains immunotherapy information of urothelial

carcinoma, the risk score model we construct could be utilized

to predicate the potential clinical effects of immunotherapy for

GBM patients based on the TIDE dataset. And, our results show

that the risk signature significantly associated with patients’

outcome, clinical characteristics, tumor immunogenicity,

immune infiltration, copy number variation, and immune

matrix score, indicating its important role in immunity. Taken

together, this gene model is not only able to predict patients’

prognosis, but also provide several possible gene targets of

immunotherapy for IDH MUT and WT GBM based on their

different immunometabolic pathways.
Study limitations

Overall, this study utilized a bioinformatic approach to

construct a risk model for prognosis prediction and risk

stratification in the IDH1-associated GBM. However, there

were several limitations in the present study. First, GS-MM

correlation was not strong enough during determination of the

key gene modules and hub genes. Perhaps a further analysis with

a finer module splitting might help and we are eager to improve

our methods in future. Second, the lack of six prognostic GRG-

related specific GBM immunotherapy data sets forced us to

adopt the IMvigor210 data set instead, which could perhaps bury

differences in response to immunotherapy in high- and low-risk

groups stratified by our model. In contrast, we used the TIDE

dataset to evaluate the potential clinical effects of

immunotherapy for GBM patients. The results indicated that

patients in the high-risk group had a higher TIDE score

compared with those in the low-risk group, suggesting a

potential worse efficacy and more dismal outcome after

acceptance of the immunotherapy treatment in the high-risk

group than low-risk group, which confirmed a good prediction

efficacy of our risk score model. Third, although in vitro
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functional studies of CLEC5A were performed here, an in vivo

experiment was lacking. Further deep basic research is needed to

verify the other five genes included in our risk model in future.

Finally, we constructed a GRG-related prognostic signature to

predict GBM patient survival by using TCGA dataset and

validated our results through CGGA dataset and in vitro

functional experiments in this study. Nonetheless, further

validation in a larger GBM patient cohort is still warranted.
Conclusion

In summary, we constructed and validated a novel risk score

model of six prognostic GRGs based on the MSigDB, TCGA,

and CGGA datasets for prognosis and risk stratification in IDH1

MUT and IDH1 WT GBM. Nomograms and ROC curves for

0.5-, 1-, 1.5-, 2-, 2.5-, and 3-year OS rate predictions were

established and showed moderately excellent predictive efficacy

in training and validation cohorts. Our established risk score

model significantly associated with clinical characteristics,

tumor immunogenicity, immune infiltration, copy number

variation, and immune matrix score. And, the relationship

between this model and immunotherapy was also

demonstrated via the TIDE database. However, more deep

basic research is needed to validate this prognostic model in

IDH1-associated GBM.
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F, Rodrıǵuez-Blanco J, et al. Regulation of cancer cell glucose metabolism is
determinant for cancer cell fate after melatonin administration. J Cell Physiol
(2021) 236:27–40. doi: 10.1002/jcp.29886

10. Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for
cancer therapy: progress and prospects. Mol Cancer (2013) 12:152. doi: 10.1186/
1476-4598-12-152

11. Cairns RA, Mak TW. Oncogenic isocitrate dehydrogenase mutations:
mechanisms, models, and clinical opportunities. Cancer Discovery (2013) 3:730–
41. doi: 10.1158/2159-8290.CD-13-0083

12. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic
requirements of cell proliferation. Annu Rev Cell Dev Biol (2011) 27:441–64. doi:
10.1146/annurev-cellbio-092910-154237

13. Chinnaiyan P, Kensicki E, Bloom G, Prabhu A, Sarcar B, Kahali S, et al. The
metabolomic signature of malignant glioma reflects accelerated anabolic
metabolism. Cancer Res (2012) 72:5878–88. doi: 10.1158/0008-5472.CAN-12-
1572-T

14. Xing F, Luan Y, Cai J, Wu S, Mai J, Gu J, et al. The anti-warburg effect
elicited by the cAMP-PGC1alpha pathway drives differentiation of glioblastoma
cells into astrocytes. Cell Rep (2017) 18:468–81. doi: 10.1016/j.celrep.2016.12.037
15. Kesarwani P, Kant S, Prabhu A, Chinnaiyan P. The interplay between
metabolic remodeling and immune regulation in glioblastoma. Neuro Oncol (2017)
19:1308–15. doi: 10.1093/neuonc/nox079

16. MG L, Boulay K, Topisirovic I, Huot ME, Mallette FA. Oncogenic activities
of IDH1/2 mutations: From epigenetics to cellular signaling. Trends Cell Biol (2017)
27:738–52. doi: 10.1016/j.tcb.2017.06.002

17. Stanke KM, Wilson C, Kidambi S. High expression of glycolytic genes in
clinical glioblastoma patients correlates with lower survival. Front Mol Biosci
(2021) 8:752404. doi: 10.3389/fmolb.2021.752404

18. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for
cancer therapy. Nat Rev Drug Discovery (2013) 12:829–46. doi: 10.1038/nrd4145

19. Feng S, Cai X, Li Y, Jian X, Zhang L, Li B. Tripartite motif-containing 14
(TRIM14) promotes epithelial-mesenchymal transition via ZEB2 in glioblastoma
cells. J Exp Clin Cancer Res (2019) 38:57. doi: 10.1186/s13046-019-1070-x

20. Cai X, Feng S, Zhang J, Qiu W, Qian M, Wang Y. USP18 deubiquitinates
and stabilizes Twist1 to promote epithelial-mesenchymal transition in glioblastoma
cells. Am J Cancer Res (2020) 10:1156–69.

21. Fan F, Zhang H, Dai Z, Zhang Y, Xia Z, Cao H, et al. A comprehensive
prognostic signature for glioblastoma patients based on transcriptomics and single
cell sequencing. Cell Oncol (Dordr) (2021) 44:917–35. doi: 10.1007/s13402-021-
00612-1

22. Wang Y, Liu X, Guan G, Zhao W, Zhuang M. A risk classification system
with five-gene for survival prediction of glioblastoma patients. Front Neurol (2019)
10:745. doi: 10.3389/fneur.2019.00745

23. Fan HW, Ni Q, Fan YN, Ma ZX, Li YB. C-type lectin domain family 5,
member a (CLEC5A, MDL-1) promotes brain glioblastoma tumorigenesis by
regulating PI3K/Akt signalling. Cell Prolif (2019) 52:e12584. doi: 10.1111/cpr.12584

24. Sanai N, Berger MS. Surgical oncology for gliomas: the state of the art. Nat
Rev Clin Oncol (2018) 15:112–25. doi: 10.1038/nrclinonc.2017.171

25. Jezek P. 2-hydroxyglutarate in cancer cells. Antioxid Redox Signal (2020)
33:903–26. doi: 10.1089/ars.2019.7902

26. Unruh D, Schwarze SR, Khoury L, Thomas C, Wu M, Chen L, et al. Mutant
IDH1 and thrombosis in gliomas. Acta Neuropathol (2016) 132:917–30. doi:
10.1007/s00401-016-1620-7

27. McBain C, Lawrie TA, Rogozinska E, Kernohan A, Robinson T, Jefferies S.
Treatment options for progression or recurrence of glioblastoma: a network meta-
analysis. Cochrane Database Syst Rev (2021) 5:CD013579. doi: 10.1002/
14651858.CD013579.pub2

28. Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy:
updated approaches from recent biological insights. Ann Oncol (2017) 28:1457–72.
doi: 10.1093/annonc/mdx106
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.950917/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.950917/full#supplementary-material
https://doi.org/10.1056/NEJMra043666
https://doi.org/10.1126/science.1226929
https://doi.org/10.1001/jama.2013.280319
https://doi.org/10.1038/nrclinonc.2016.204
https://doi.org/10.1038/s41388-020-01639-8
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1038/cddis.2016.318
https://doi.org/10.1038/cddis.2016.318
https://doi.org/10.3390/cells6040045
https://doi.org/10.1002/jcp.29886
https://doi.org/10.1186/1476-4598-12-152
https://doi.org/10.1186/1476-4598-12-152
https://doi.org/10.1158/2159-8290.CD-13-0083
https://doi.org/10.1146/annurev-cellbio-092910-154237
https://doi.org/10.1158/0008-5472.CAN-12-1572-T
https://doi.org/10.1158/0008-5472.CAN-12-1572-T
https://doi.org/10.1016/j.celrep.2016.12.037
https://doi.org/10.1093/neuonc/nox079
https://doi.org/10.1016/j.tcb.2017.06.002
https://doi.org/10.3389/fmolb.2021.752404
https://doi.org/10.1038/nrd4145
https://doi.org/10.1186/s13046-019-1070-x
https://doi.org/10.1007/s13402-021-00612-1
https://doi.org/10.1007/s13402-021-00612-1
https://doi.org/10.3389/fneur.2019.00745
https://doi.org/10.1111/cpr.12584
https://doi.org/10.1038/nrclinonc.2017.171
https://doi.org/10.1089/ars.2019.7902
https://doi.org/10.1007/s00401-016-1620-7
https://doi.org/10.1002/14651858.CD013579.pub2
https://doi.org/10.1002/14651858.CD013579.pub2
https://doi.org/10.1093/annonc/mdx106
https://doi.org/10.3389/fimmu.2022.950917
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2022.950917
29. Peng Y, Lu J, Li R, Zhao Y, Hai L, Guo L, et al. Glucose and
triphenylphosphonium Co-modified redox-sensitive liposomes to synergistically
treat glioma with doxorubicin and lonidamine. ACS Appl Mater Interfaces (2021)
13:26682–93. doi: 10.1021/acsami.1c02404

30. Nellan A, Wright E, Campbell K, Davies KD, Donson AM, Amani V, et al.
Retrospective analysis of combination carboplatin and vinblastine for pediatric low-
grade glioma. J Neurooncol (2020) 148:569–75. doi: 10.1007/s11060-020-03549-x

31. Siegelin MD, Raskett CM, Gilbert CA, Ross AH, Altieri DC. Sorafenib exerts
anti-glioma activity. Vitro vivo Neurosci Lett (2010) 478:165–70. doi: 10.1016/
j.neulet.2010.05.009

32. Ngoh A, McTague A, Wentzensen IM, Meyer E, Applegate C, Kossoff EH,
et al. Severe infantile epileptic encephalopathy due to mutations in PLCB1:
expansion of the genotypic and phenotypic disease spectrum. Dev Med Child
Neurol (2014) 56:1124–8. doi: 10.1111/dmcn.12450

33. Waugh MG. Chromosomal instability and phosphoinositide pathway gene
signatures in glioblastoma multiforme. Mol Neurobiol (2016) 53:621–30. doi:
10.1007/s12035-014-9034-9

34. Chan TC, Li CF, Ke HL, Wei Y-C, Shiue Y-L, Li C-C, et al. High TNFAIP6
level is associated with poor prognosis of urothelial carcinomas. Urol Oncol (2019)
37:293.e211–293.e224. doi: 10.1016/j.urolonc.2018.12.009

35. Zhang X, Xue J, Yang H, Zhou T, Zu G. TNFAIP6 promotes invasion and
metastasis of gastric cancer and indicates poor prognosis of patients. Tissue Cell
(2021) 68:101455. doi: 10.1016/j.tice.2020.101455

36. Wang Y, Zhao W, Xiao Z, Guan G, Liu X, Zhuang M. A risk signature with
four autophagy-related genes for predicting survival of glioblastoma multiforme. J
Cell Mol Med (2020) 24:3807–21. doi: 10.1111/jcmm.14938

37. Chesnelong C, Chaumeil MM, Blough MD, Al-Najjar M, Stechishin OD,
Chan JA, et al. Lactate dehydrogenase a silencing in IDH mutant gliomas. Neuro
Oncol (2014) 16:686–95. doi: 10.1093/neuonc/not243

38. Cai J, Gao L, Wang Y, Li Y, Ye Z, Tong S, et al. TMBIM1 promotes proliferation
and attenuates apoptosis in glioblastoma cells by targeting the p38 MAPK signalling
pathway. Transl Oncol (2022) 19:101391. doi: 10.1016/j.tranon.2022.101391
Frontiers in Immunology 17
39. Kline J, Godfrey J, Ansell SM. The immune landscape and response to
immune checkpoint blockade therapy in lymphoma. Blood (2020) 135:523–33. doi:
10.1182/blood.2019000847

40. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and
immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol
(2017) 14:463–82. doi: 10.1038/nrclinonc.2017.43

41. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the
warburg effect: the metabolic requirements of cell proliferation. Science (2009)
324:1029–33. doi: 10.1126/science.1160809

42. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and
quiescence. Immunity (2013) 38:633–43. doi: 10.1016/j.immuni.2013.04.005

43. Biswas SK. Metabolic reprogramming of immune cells in cancer
progression. Immunity (2015) 43:435–49. doi: 10.1016/j.immuni.2015.09.001

44. Ghesquière B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal
and immune cells in health and disease. Nature (2014) 511:167–76. doi: 10.1038/
nature13312

45. Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi K, Friedrich M, et al.
Suppression of antitumor T cell immunity by the oncometabolite (R)-2-
hydroxyglutarate. Nat Med (2018) 24:1192–203. doi: 10.1038/s41591-018-0095-6

46. Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the
M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J
Pathol (2008) 216:15–24. doi: 10.1002/path.2370

47. Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, et al.
Sequestration of T cells in bone marrow in the setting of glioblastoma and other
intracranial tumors. Nat Med (2018) 24:1459–68. doi: 10.1038/s41591-018-0135-2

48. Friebel E, Kapolou K, Unger S, Gonzalo Núñez N, Utz S, Rushing EJ, et al.
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