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Abstract 

This paper reports a novel magnetorheological fluid (MRF)-based damper, which synergizes 

the attributes of variable stiffness and damping through the compact assemble of two MRF 

damping units and a spring. The magnetic field densities of the two damping units were 

analyzed. After the prototype of the new MRF damper, a hydraulically actuated MTS machine 

was used to test this damper performance, including stiffness variability and damping 

variability, amplitude-dependent responses, and frequency-dependent responses. A new 

mathematical model was developed to describe the variable stiffness and damping MRF 

damper. The successful development, experimental testing, and modelling of this innovative 

variable stiffness and damping MRF damper make the true design and implementation of the 

concept of variable stiffness and damping become feasible.  

Keywords: Magnetorheological fluids, variable stiffness and damping, damper performance, 

vibration control. 
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1. Introduction 

Speaking of the solutions to addressing the undesired vibrations, stiffness and damping are 

fundamental yet important mechanical features to be controlled for many technical systems to 

achieve a desired dynamic behavior. Vibration reduction has been inevitably connected to the 

concepts of variable damping and variable stiffness, wherein ‘variable’ means controllability, 

real-time, and reversibility. The variation of damping will induce a change on the resonance 

magnitude through adjusting the dissipated vibration energy, and the variable stiffness will 

change the vibration transmissibility by changing the natural frequencies of the controlled 

system. In view of the powerful potential on the vibration reduction, extensive research or 

studies have been conducted or carried on with the concept of variable stiffness or damping 

[1-4].  

The controllability of stiffness or damping belongs to one of the most heated vibration control 

methods, semi-active control, which fills the gap between the active control and the passive 

control by synergizing the advantages yet getting over the disadvantages of both active and 

passive control systems. One of the clear advantages of semi-active control over the passive 

control is that semi-active control can act real time control while maintaining the fail-safe 

function. In addition to offering comparable control effect, when compared to the active 

control, semi-active control also provides an energy efficient solution to reducing vibrations. 

To this end, controlling the damping or stiffness in a semi-active way has been an attractive 

research solution. And a popular and feasible way of implementing the variable stiffness or 

damping, currently, is based on the magnetorheological and electrorheological materials 

based devices [5, 6]. Magnetorheological fluid (MRF) dampers are typical semi-active 

dampers with variable damping capability and have been widely used for vibration 

attenuation due to their reliability and fast response [7-9]. Yu’s group has mounted four MR 

dampers to a full car and tested the system on different types of roads [10]. Yao et al. 

employed a skyhook control strategy to control an MR damper for a vehicle suspension 

system [11]. Their experimental results confirmed that the MRF damper is effective on 

reducing the vibrations induced by the road irregularity [12, 13]. Variable stiffness device is 

another development for vibration reduction. Youn and Hac developed a variable stiffness 



suspension by employing semi-active air spring to vary the suspension stiffness among three 

discrete values [14]. The experimental result verified the effectiveness of variable stiffness on 

vibration control. However, compared with MR technology, variable stiffness air spring is 

complicated and costly because the air pressure must be controlled by an air pump. A typical 

device for vibration reduction based on magneto-rheological technology is 

magneto-rheological elastomer (MRE) isolator which is usually used but not limited to protect 

structures from earthquake [15, 16]. For instance, Li et al. fabricated a new and highly 

adjustable MRE isolator which increased the force by up to 1579% and the stiffness by up to 

1730%.  

Based on the successful implementation of variable stiffness or damping devices, new 

research directions have been originated because of the appearance of dual controllability of 

stiffness and damping [17-19]. The effectiveness of variable stiffness and damping on 

vibration reduction has been fully verified through simulation [20-22], however, a practical 

device that stiffness and damping are controllably simultaneously has been seldom developed. 

The work reported by Spelta et al. [20] and Xu et al. [21] are the conceptual designs of 

variable stiffness and damping structure. Their simulation applied the variable stiffness and 

damping device on a vehicle suspension and the results verified that it is better at reducing 

vibrations than the suspension with only variable damping. Greiner-Petter et al. [23] presented 

a semi-active MRF mechanism which offers a variable stiffness and damping by utilizing two 

magnetorheological fluid valves and two springs. The experimental results indicate that the 

damping of this system can vary continuously but its effective stiffness has only three limited 

values. Zhang et al. [24, 25] developed a variable stiffness and damping MR valve based 

isolator, whose dynamic response showed that the stiffness of the isolator can be adjusted in a 

relative large range. However, the structure is complicated and not compact which make it 

hard to find real applications. To overcome these disadvantages, this paper is oriented to 

report an innovative MRF damper whose stiffness and damping can be controlled. Also, the 

structure of the new MRF damper is compact, which make it suitable for practical usage. The 

core design of this MRF damper is ingenious combination of two MRF cylinders and a spring. 

Its most valuable features include its compactness, dual and individual controllability of 



stiffness and damping. The paper is organized by the following manners. Section 2 gives a 

detailed introduction about the design and the working principle. Section 3 analyses the 

feasibility of its magnetic field design and the experimental setup is shown in Section 4. 

Section 5 includes the analysis and discussion of the experimental results and a model is 

explained for the MRF damper in Section 6. Section 7 draws the conclusion. 

2. Design of the innovative MRF damper 

2.1. The structure of the MRF damper 

                         

    (a) Schematic                              (b) Prototype                

Fig.1. Design drawing and prototype of the MRF damper: (a) schematic; and (b) prototype. 

Fig.1 shows the design drawing of the innovative MRF damper which is mainly composed of 

a spring, a piston rod, two pistons with two sets of electromagnetic coils, some seals, and 

connectors. The piston rod runs through two damping cylinders, namely the upper damping 

cylinder and the lower damping cylinder, each damping cylinder possessing a set of 



electromagnetic coil energizing the magnetorheological fluids (MRFs) filled in the reserves. 

The piston rod also can have relative movement with the two cylinders. The spring acts as the 

connection between the two damping cylinders and provides stiffness when these two 

cylinders have relative motions. The electromagnetic coils extend coaxially around the 

support structure, e.g. the piston, such that direct currents, I1 and I2, passing through the coil 

generates magnetic fields. The upper damping force and the lower damping force are 

controllable by the regulation of I2 and I1, respectively. 

The most innovative design of this MRF damper is the synergy of variable stiffness and 

variable damping through the compact assemble of two damping cylinders and a spring. It is 

achieved by controlling the rheological properties of MRF filled in the two damping cylinders. 

In particular, the stiffness and the damping can be controlled individually and the stiffness can 

change from the minimum stiffness of near 0 N/m. 

2.2 Working principle 

The achievement of stiffness variability and damping variability is based on the rheological 

characteristics of MRF that its damping will increase as the applied magnetic field strengthens. 

The variable damping characteristic is mainly dependent on the outputs of the lower damping 

cylinder. When the applied current I1 is small, the damping and damping force from the lower 

damping cylinder is relative small, however, tend to be bigger as I1 grows. The variable 

stiffness property is determined by the upper damping cylinder together with the spring whose 

lower connection of the spring is fixed with the lower damping cylinder. The upper damping 

cylinder works in series with spring, which makes it possible to control the effective stiffness 

of the new MRF damper by controlling the damping of the upper damping cylinder. In order 

to illuminate the working mechanism of the proposed damper in a clear way, force analysis is 

included. As shown in Fig.1(a), there are two ways of force flow: (i) one way is that force 

passes from the rod of the upper damper to the piston, then to upper cylinder and finally to the 

cylinder of lower damper through the spring (blue line in Fig. 1(a)); (ii) the other way is the 

force passes through the rod of the upper damper to the piston of the lower damper, then to 

the cylinder of the lower damper (the purple line in Fig.1(a)). These two force flows can be 

controlled independently by changing the currents of the coils. The stiffness variation of the 



damper is mainly controlled by the blue force flow while the damping is mainly controlled by 

the purple one. In terms of the stiffness variation, if I2 is zero or sufficiently small the 

damping force in the upper unit is small, which results in relative motion between the piston 

rod and the upper damping cylinder when the piston rod moves into the damper. In such case, 

as the deformation of the spring is small, it contributes very little stiffness to the damper. 

Therefore, the effective stiffness of the damper is small. On the other hand, when I2 increases 

gradually, an increasing upper damping force will be generated. It will, therefore, become 

more difficult for the piston rod to move through the upper damping cylinder. In this case, the 

upper damping cylinder moves together with the piston rod, which leads to the deformation of 

the spring and consequently varies the effective stiffness of the damper. Thus the bigger the I2 

is, the bigger the effective stiffness is. In addition, the damping of the lower damping cylinder 

is controlled by I1. The bigger the I1 is, the bigger the overall damping.  

3. Magnetic field analysis of the new MRF damper  

3.1 Analysis of the magnetic field density 

The magnetic fields generated by coils are important to induce changes to the viscosity of the 

MRF fluid. In this subsection, the magnetic fields around pistons are carefully calculated and 

analyzed. Fig. 2 illustrates the magnetic circuit for both of the two pistons because their 

structures are the same. The detailed parameters for both of the two damping units are shown 

in table 1. The magnetic resistances of each segment are calculated by the following 

equations. 

 
Fig. 2. The sketch of the damping unit 



 

Table 1. Parameters for both damping units 

  (a) Upper damping unit 

Parameters  Value  Parameters Value 

h1 4mm  L1 6mm 

h2 1mm  L2 35mm 

d1 15mm  LO 47mm 

d2 30mm  Turns of coil 800 

 

(b) Lower damping unit 

Parameters  Value  Parameters Value 

h1 3mm  L1 6mm 

h2 1mm  L2 40mm 

d1 10mm  LO 52mm 

d2 22mm  Turns of coil 500 

 

The magnetic resistance of the central axis of the two pistons can be calculated by:         𝑅1 = 𝐿1+𝐿2𝜋(𝑑1 2⁄ )2𝜇1                                                   (1) 

The magnetic resistance of the flank is: 

       𝑅2 = 𝑑2 2⁄𝜋(𝑑2 2⁄ )𝐿1𝜇1                                                   (2) 

The magnetic resistance of the gap is given by: 

     𝑅3 = ℎ2𝜋(𝑑2+ℎ2)𝐿1𝜇2                                                  (3) 

The magnetic resistance of damper cylinder is defined as 

       𝑅4 = 𝐿1+𝐿2𝜋[(𝑑2 2+ℎ1+ℎ2⁄ )2−(𝑑2 2+ℎ2)⁄ 2]𝜇1                                   (4) 

where the 𝜇 0 is the vacuum permeability and 𝜇1 is the permeability of the 10# steel, 𝜇2 is the 

permeability of MRF. 

The overall magnetic resistance is given by         𝑅𝑚 = 𝑅1+2𝑅2 + 2𝑅3+𝑅4                                           (5) 

Thus the magnetomotive force can be calculated based on Ohm’s law:       NI = 𝐵0𝑆0𝑅𝑚                                                     (6) 



Where 𝐵0 is the magnetic flux density of resistance gap and 𝑆0 is the flux area of resistance 

gap. 

3.2 Simulation analysis using the FEM method 

As shown in Fig. 2, the MR damper analyzed in this section composes of the piston body, the 

cylinder, the exciting coil, and the resistance gap. The piston body and the cylinder were made 

of No. 10 steel and its permeability is defined by the B-H curve of No. 10 steel shown in Fig.3 

(a). The exciting coil is made of copper wire whose relative permeability is 1. The resistance 

gap is filled with MR fluid (MRF-132DG) from LORD Company. Its permeability is obtained 

by the B-H curve of MRF-132DG which is shown in Fig.3 (b). 800 and 500 turns of copper 

wires with diameter of 0.5 mm are used to build the upper piston coil and lower piston coil, 

respectively. The current density in the exciting coil in this simulation was set at 2.5 A/mm
−2

.  
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(a) 10# steels                            (b) MRF-132DG 

Fig.3. The B-H curve of 10# steels and MRF 

           



(a) Distribution of the magnetic flux line              (b) Magnetic field density 

Fig.4. The simulation results of the upper damping unit 

            
(a) Distribution of the magnetic flux lines            (b) Magnetic field density 

Fig.5. The simulation results of the lower damping unit 

The simulation result of the upper damping unit with 1A current is shown in Fig. 4. Fig.4 (a) 

shows distribution of the magnetic flux lines. The lines illustrate that piston body, cylinder 

and the gaps between them enclose the magnetic circuit. Fig. 4(b) demonstrates the magnetic 

field density of the upper damping unit. This figure illustrates the magnetic field in the upper 

gap and the lower gap reaches 302 mT. The simulation result of the lower damping unit is 

shown in Fig.5. In order to clearly show the magnetic field in the gap area, the display range 

of magnetic field flux density in Fig.5 is set from 0T to 1T. The area with above 1T magnetic 

field flux density is shown in gray. The simulation result is similar to the upper damping unit 

except that its magnetic field flux density in the gap is 196mT when the current was set at 2A. 

4. Test of the Dynamic Performance 



 

Fig.6. Experimental set up. 

As shown in Fig.6, the proposed variable stiffness and damping MRF damper was clamped by 

a computer-controlled MTS machine (Load Frame Model: 370.02, MTS Systems 

Corporation), between two coaxially mounted Linear-variable Displacement Transducer 

(LVDT Part Number 39-075-102, MTS Systems Corporation). The MTS machine was driven 

by a servo hydraulic system capable of exerting large axial loads onto the test specimen. The 

damper test system provides harmonic excitation to the damper and records signals taken 

through the load cells. The signals were saved to a computer via a data acquisition (DAQ) 

board measuring various feedback data series, namely time, axial displacement, and axial 

force. During the experiments, a DC power supply was used to generate current to the coils. 

Once the damper was mounted on the MTS machine through two ends connectors, a 

predefined sinusoidal routine was programmed into the control software in order to maintain 

consistency in the testing.  

The experiment part has included testing cases for stiffness variability, damping variability, 

frequency-dependent response, and amplitude-dependent response. Sufficient cycles have 



been measured for each single testing case to ensure the performance stability and uniformity. 

The excitation signal chosen for the field-dependent testing was a sinusoidal wave with a 

single frequency of 0.1 Hz and amplitude of 10 mm. To obtain the field-dependent response in 

terms of the variable stiffness, the current (I2) applied to the upper damping cylinder was 

varied from 0A to 1A with a step of 0.5A while the current (I1) applied to the lower damping 

cylinder was set as 0A. As for the field-dependent response of variable damping, the current, 

I1, was set as 0A, 1A, and 2A, respectively, with I1 maintained as a constant of 0A. In addition 

to the field-dependent responses, the effectiveness of changing the loading frequency and 

amplitude on the device performances was also investigated. The loading frequency of the 

predefined sinusoidal routine was changed to 0.1 Hz, 0.5 Hz, and 1 Hz, respectively, to obtain 

the frequency-dependent performances; and the amplitude was changed among 5 mm, 7.5 mm, 

and 10 mm, respectively, for the amplitude-dependent responses. For these two testing cases, 

both the upper current and the lower current were set as 0A. In order to measure the spring 

deformation under different I2, a laser sensor (KEYENCE LB01) was mounted on the top of 

the spring and an aluminum plate is mounted on the bottom of the spring.  

5. RESULTS AND DISCUSSION 

5.1 Stiffness Variability 

Fig. 7 shows a series of stable force-displacement loops under the condition of I1=0A and 

I2=0A, 0.5A, and 1A, respectively. The experimental results in Fig. 7 clearly show that the 

output force is a piecewise function of the input displacement in a clockwise direction. In 

order to give a clear explanation of how the force-displacement loop progresses, the response 

under the condition of I2=0.5A and I1=0A was taken as an example. It is seen that letters are 

placed clockwisely as indicators of each inflection. In segment AB, a mutation force is 

generated because the applied external force need to overcome the rod bearing friction and 

initial damping force from the lower MRF damper so as to allow the relative motion between 

the piston rod and the lower damping cylinder even though their relative displacement is very 

small at this stage. When the external force increases gradually to overcome the lower 

damping force and its rod bearing friction, the piston rod starts to move into the lower 



damping cylinder. As the current applied to the lower damper increases, the initial damping 

force of lower damping cylinder increases, which results in the increase of the segment AB 

length. The current (I2) applied to the upper damper, however, determines whether there is a 

relative motion between the piston rod and the upper damping cylinder. When the current (I2) 

is very big, the upper damping force is accordingly big, the upper damping cylinder will move 

down together with the piston rod. As a result, the spring will be compressed and the stiffness 

of this variable stiffness and damping MRF damper can be represented by the stiffness of the 

spring at this stage, which is shown by Segment BC in Fig.7. As the spring is increasingly 

compressed, the resultant elastic force is increasing. When the elastic force increases to be 

equal to the damping force of upper cylinder, the upper damper and the spring will remain 

approximately motionless even though the piston rod keeps moving down. The stiffness of 

this stage can be regarded as zero, and that’s why segment CD is approximately parallel to 

X-axis. The effective stiffness of this MRF damper is the slope of the line AD which can be 

calculated by equation (7). And this slope will change as the value of the current (I2) changes.  

This process is reversed when the piston rod moves out of the damper. As observed from 

Fig.7, the inverse process is symmetrical to the regular process because segments AB, BC and 

CD are approximately parallel to segments DE, EF and FA, respectively. The effective 

stiffness corresponding to these three cases are calculated according to equation (7) and 

plotted in Fig.8, showing a clear increasing tendency when the current increases, which 

matches very well with the stated stiffness variability. Furthermore, Fig.7 also illustrates that 

when the current I2=1A, segment CD disappears. The reason is that there is no relative motion 

between the piston of the upper damper and the upper cylinder while the spring is always 

working. In order to verify the working principle, the spring deformations under two 

representative working conditions of I2 = 0A and I2=1A are given. The blue curve represents 

the motion of the pistons. The green curve is the deformation of the spring under I2 = 0A 

while the red curve represents its deformation with I2 = 1A. From this figure, it can be seen 

that the spring deformation under the condition of I2 = 0A is much smaller than the spring 

deformation under I2 = 1A, which means with the stiffness increases steadily with the increase 

of I2.  



           𝑘eff = 𝐹max−𝐹min𝐷max−𝐷min                                                    (7) 

where 𝐹max and 𝐹min are the maximum and minimum forces generated by the damper at the 

maximum and minimum value of the stroke, respectively; 𝐷max and 𝐷min  are the maximum 

and minimum value of the stroke, respectively. 
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Fig.7. Variable stiffness                        Fig. 8. Equivalent stiffness of MRF damper 
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Fig. 9. Spring deformation under different currents. 

It should be noticed that the stiffness variation in this test slightly induces damping variation. 

From Fig, 7, it can be seen that the damping of this damper, indicated by the enclosed area of 

each loop, decreases when the current I2 increases. The reason is when the damping of the 

upper damping cylinder is small (corresponding to low stiffness), relevant displacement 

between the piston and cylinder exists, which adds damping to this device. However, when 

the damping of the upper damping cylinder is large enough (corresponding to high stiffness), 

no relevant displacement exists, which means the damping of this device is smaller. 

5.2 Damping Variability 
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Fig.10. Variable damping                  Fig. 11. Equivalent damping of MRF damper 

Fig. 10 shows the variable damping characteristic of the damper under different currents of I1 

=0A, 1A, and 2A, respectively. It is seen that the enclosed area of the force-displacement 

loops increases with the increase of current 𝐼1 and that the peak force shows a saturation trend. 

This means that increasing I1 leads to the increase in the equivalent damping of the MRF 

damper, which can be evidenced by Fig. 11 where the equivalent damping coefficient versus 

current is shown. It can be seen from Fig. 11 that the increase in current I1 from 0A to 2A 

leads to the equivalent damping coefficient being increased from 21.55 KN/(m/s) to 51.21 

KN/(m/s). It should be noticed that the dynamic range of the damping is approximately 2 

which is lower than conventional MRF dampers due to the saturation of the magnetic field in 

the shaft of the lower damper piston. The saturation of the magnetic field in the shaft resisted 

the increase of the magnetic field in the gap area even the current keeps increasing. The 

dynamic range can be enhanced by enlarging the diameter of the shaft. 

5.3 Frequency dependent response 

-10 -5 0 5 10

-0.2

-0.1

0.0

0.1

0.2

 

 

F
o

rc
e

 (
k
N

)

Displacement (mm)

 0.1Hz

 0.5Hz

 1Hz

 



Fig.12. Response to different frequencies 

Fig.12 gives an analysis of the effectiveness of changing the loading frequency on the output 

of the MRF damper. In this test, the loading frequency was chosen as 0.1Hz, 0.5Hz, and 1Hz, 

with I1=0A, I2=0A, respectively. It is seen that, just like the traditional MRF dampers, the 

peak force and the equivalent damping (area enclosed by the force-displacement loop) 

increases slightly when the loading frequency increases, and that the effective stiffness is 

approximately independent of the loading frequency.  

5.4 Amplitude-dependent response 
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Fig.13. Response to different amplitudes 

Fig.13 shows the responses of MRF damper under different loading amplitudes, i.e. 5 mm, 7.5 

mm, and 10 mm. The testing frequency is 0.1Hz and the currents are I1=0A, I2=0A. It is 

obvious that the change of amplitude has slight influence on the peak damping force, however, 

the equivalent damping increases apparently as the amplitude increases. It also can be seen 

that the effective stiffness tends to be smaller when the amplitude changes to be bigger.  

6. MODELLING AND PARAMETER IDENTIFICATION 

6.1 Model Establishment 

A mathematic model was established to describe the proposed variable stiffness and damping 

MRF damper. As shown in Fig.14, a coulomb friction element 𝑓1 in parallel with a viscous 

dashpot 𝑐1 is used to characterize the lower damping cylinder. Similarly, another coulomb 

friction element 𝑓2 in parallel with a viscous dashpot 𝑐2, in series connection with a spring is 



used to describe the upper MRF damper. Among these four parameters, 𝑓1 and 𝑐1 vary their 

values due to the change of I1 while 𝑓2 and 𝑐2 is controlled by I2.   

If the current in the upper coil is sufficiently high, the excitation force is smaller than the 

friction force in element f2 and the element does not slide, so the viscous dashpot c2 is blocked. 

In such case, the spring will be compressed when the external force F has a displacement. The 

stiffness of the damper is, therefore, represented by the stiffness of spring. Otherwise, a 

relative motion between the piston rod and the upper damper is possible. The stiffness of the 

damper in this case can be regarded as approximately 0. To sum up, the stiffness variation is 

controlled by the regulation of c2 and f2. As for the damping variation property, it is mainly 

dependent on the viscous dashpot 𝑐1 and f1. The rheological property of viscous dashpot 𝑐1 

and f1 is adjusted by the current applied to the lower damper. In this model, 𝑥2 is the relevant 

displacement between the top connecter and the bottom connector. 𝑥1  is the relative 

displacement between the top connecter and the upper MRF damper. The equation for the 

model can be written as: 𝐹𝑒 = 𝑐1�̇�2 + 𝑓1 + 𝑘2𝑥1                                                (8) 

where 𝐹e is the excitation force to the variable stiffness and damping MRF damper. In order 

to obtain the relationship between 𝐹e and 𝑥2, 𝑥1 is needed to be eliminated. 𝑥1, thererfore, 

is required to be substituted by 𝑥2through the following equations:  𝐼𝑓  𝑓2 > 𝑘2𝑥1          𝑥2 = 𝑥1                                                        (9) 𝐼𝑓  𝑓2 + 𝑐2(�̇�1 − �̇�2) < 𝑘2𝑥1        𝑓2 + 𝑐2(�̇�1 − �̇�2) + 𝑘2𝑥2 = 0                                       (10) 



 
Fig.14. Model of the new MRF damper 

6.2 Parameters Identification 

To assess the ability to predict the behavior of the proposed damper, the model was fit to the 

measured data shown in Fig.7 and Fig.10. The first step to determine the proposed model is to 

identify the corresponding parameters. A total of four parameters, i.e. c1, c2, f1, and f2, need to 

be determined by using the least-square method in combination with the 

Trust-region-reflective algorithm available in MATLAB (R2013b). The main idea of this 

method is to minimize the value of a function which is chosen as the root mean square 

between the predicted and the experimentally obtained forces, as indicated by: 

         𝐽 = ∑ √(𝐹𝑒𝑖−𝐹𝑚𝑖)𝑁𝑁𝑖=1                                               (11) 

where Fei refers to the i
th

 predicted force, Fmi refers to the i
th

 measured force, and N is a 

neighborhood which is defined as the trust region that can reasonably reflect the behavior of 

function J. It is clear that the predicted response will approximate the measured response to 

the greatest degree only if J reaches its minimum value.  

As described in section 6.1 that the lower damping unit (c1 and f1) mainly presents the 

property of variable damping and the upper damping unit (c2 and f2) presents the property of 

variable stiffness, therefore, in the identification process, c1 and f1 need to be determined 

while c2 and f2 remain constants for the case of variable damping, conversely, c2 and f2 have to 

be identified while c1 and f1 remain constants for the case of variable stiffness. Table 2 lists 

the optimized values for these two cases and Fig.15 and Fig.16 shows the comparison 

between the predicted and experimentally obtained responses for the stiffness variability and 



damping variability, respectively. From an overall point of view, the proposed model predicts 

the behavior of the damper very well. Fig.15 shows the proposed model has reasonably 

modeled the property of variable stiffness that the increase of the current increases the 

effective stiffness of the force-displacement loops, and Fig.16 shows the capability of the 

model to describe the property of damping variability referring to the increasing enclosed 

areas of the force-displacement loop induced by the increasing currents.  
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Fig.15. Identification results of variable stiffness 
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Fig.16. Identification results of variable damping 

 

 Table 2. Identification results 



Parameters c1 f1 c2 f2  Parameters c1 f1 c2 f2 

I1=0, I2=0 54 89 11 89  I1=0, I2=0 54 89 11 89 

I1=0.5, I2=0 72 169 11 89  I1=0,I2=0.5 54 89 17 323 

I1=1, I2=0 153 237 11 89  I1=0, I2=1 54 89 23 512 

I1=2, I2=0 159 271 11 89   

In order to fully verify the capability of the proposed model to predict the performance of the 

damper and evaluate the validity of the identified parameters shown in Table 2, different data 

sets were used to see the effectiveness of the model by using those identified values for the 

parameters. As shown in Fig.17 (a), the model with those parameters was fitted to difference 

responses under different amplitudes. It can be seen from Fig.17 (a) that excellent agreement 

was found between the predicted and measured responses, which means the parameters listed 

in Table 2 can also precisely describe the new testing results. As shown in Fig.17 (b), the 

testing results with I1=0.5A and I2 =0A, 0.5A, 1A were further used to verify the model 

performance. As parameters c1 and f1 are independent of c2 and f2, the parameters c1 and f1 

were chosen as 72 and 169 according to the identification results of I1=0.5, I2=0 while the 

parameters c2 and f2 were chosen from the identification results of I1=0, I2=0A, 0.5A, 1A. 

From the fitting results in Fig.17 (b), it can be seen that the identification results in table 2 are 

also suitable for the new testing results. To conclude from the above analysis and comparison, 

the proposed model is appropriate for the description of the dynamic performance of the 

damper. 
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Fig.17. Fitting results of model verification 

7. Conclusion  

This study designed, developed, tested, and modelled a compact variable stiffness and 

damping MRF damper. The analysis and test results verified that both the stiffness and the 

damping properties of the damper can be controlled. The stiffness of the damper can vary 

from 11.3kN/m to 30.5kN/m when the current applied to the upper damping cylinder is 

increased from 0A to 1A. The equivalent damping coefficient has the ability to change from 

21.55 KN/(m/s) to 51.21 KN/(m/s). It should be noticed that the stiffness cannot be changed 

totally independent of the damping due to the fact that the spring stiffness is constant and not 

variable. An innovative model was established and identified to describe the proposed MRF 

damper. The successful development of the variable stiffness and damping proves the concept 

of variable stiffness and damping feasible.  
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