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Abstract 

A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator 

material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when 

excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common 

quasi-static generalized Preisach hysteresis models available in the literature require large sets of 

experimental data for model identification at a particular operating point, and substantially more data for 

multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach 

methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a 

complete database is not yet available. A detailed description of the minor loop hysteresis model is 

presented in this paper, as well as a methodology for determination of model parameters. The model is 

then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-

temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive 

equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and 

excellent agreement to the validation data set. 

1. Introduction 

In aeronautics propulsion, the transition to an all-electric engine is desirable from reliability and 

efficiency standpoints. By replacing conventional hydraulic actuation systems with smart material 

actuators in such components as valves, vanes, nozzles, it may be possible to realize substantial 

improvements in the overall size and weight of the engine, allowing higher efficiencies to be realized. 

Furthermore, the high energy output and bandwidth of such materials enable other lucrative control 

capabilities not previously within reach, such as active inlets, variable area nozzle control, and blade tip 

clearance control in the high-pressure turbine (refs. 1 to 4). In the active clearance control example, an 

array of actuators could be used to actively position several floating turbine shroud segments to within 

close proximity of the turbine blades using closed-loop control, which expand and contract during flight. 

In such an application, the smart material actuator must be capable of high-amplitudes of motion 

(~0.1 in.) amidst large bias loads (~2000 lbf) that can vary significantly during normal operation. 

Furthermore, such actuators must be capable of moderate bandwidths (on order of 1 Hz), be robust at 

elevated temperatures (i.e., long cycle life), consume minimal energy to operate, and be compact and light 

weight. 
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The particular class of smart materials known as shape memory alloys (SMAs) has emerged in 

several application areas including robotics, control of space-borne structures, and control of helicopter 

rotor blades (refs. 5 and 6). Some SMA materials, such as Nitinol, are capable of macroscopic strains up 

to 6 percent at stresses up to 500 MPa (ref. 7). In comparison with piezoceramics, for example, these 

capabilities amount to more than an order-of-magnitude higher energy output per unit density of material. 

Consequently, SMAs are well-suited for applications where size and weight are of high importance in 

actuator feasibility, as is the case with any propulsion system. Another advantage is that SMAs have 

similar manufacturability to conventional metals and, as such, are readily produced in structurally 

necessary forms: wires, rods, and sheets. Lastly, the unique thermal activation properties of SMAs give 

them a distinct advantage over other smart actuation methods because it is possible to circumvent 

potentially costly modifications to the propulsion power system that otherwise would be required (ref. 8). 

Because hot and cool air is often diverted from various stages in the engine in order to provide cooling to 

various high-temperature components, small portions of this secondary air may be actively modulated by 

way of a proportional valve. Therefore operation of the SMA actuator via active convective cooling may 

be possible in lieu of more conventional active resistance heating methods that require large power draws. 

A functional drawback of SMAs is that the phase transitions that produce work are governed by 

hysteresis. Furthermore, with widely-available Nickel-Titanium (NiTi) alloys, phase transition 

temperatures and useable range of operation reside close to room temperature, rendering them infeasible 

for moderate- to high-temperature applications. To overcome these limitations, a Nickel-Platinum-

Titanium (Ni20Pt30Ti50) high-temperature shape memory alloy (HTSMA) has been recently developed at 

NASA Glenn Research Center. This alloy exhibits work outputs comparable to conventional NiTi alloys, 

but with transformation temperatures greater than 250 °C (480 °F) and oxidation rates that are less than 

half that of typical NiTi SMA materials (fig. 1). This is a significant advancement over conventional 

SMA materials, enabling the possibility for actuation in an engine’s hot sections. 

In partial alleviation of the hysteresis problem, HTSMA hysteresis deadband characteristics are 

narrower and hysteresis profiles shallower than many conventional NiTi alloys. Because it is not possible 

to fully eliminate inherent hysteresis, more sophisticated control strategies that guarantee stability, 

maximize HTSMA bandwidth, and maintain uniform response across the entire range of operation may 

still be required (refs 9 to 11). In any case, reliable development and evaluation of candidate actuator 

control systems usually require accurate models of the HTSMA. In addition, such models must be 

executable in a real-time environment in order for model-based control or estimation to be implemented. 

Generally speaking, SMA models consist of two parts: a hysteresis model and a constitutive model. 

To accurately model hysteresis, minor hysteresis loops in the response trajectory must be accounted for, 

although inclusion of such detail substantially complicates the model and is an active area of research 
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(ref. 12). It has been shown that the generalized Preisach model of hysteresis is suited for describing SMA 

hysteresis and obeys certain empirically-verified properties (refs. 12 to 14). The usefulness of generalized 

Preisach models is fully exploited only when a full database of empirical response data is available, 

usually in the form of probability density functions (PDFs) obtained from a population of first-order 

descending (FOD) curves (ref. 15). In the case of the HTSMA, however, this database does not yet exist 

due to the time and costs associated with conducting high temperature experiments. Furthermore, accurate 

constitutive models are still needed for estimation of internal SMA variables, leading to potential 

inaccuracies in the results. Since continuous-function PDF approximants have been shown to represent 

SMA behavior quite well under quasi-static situations (ref. 16), it is reasonable to adopt this approach for 

the HTSMA application. With these approximants, algorithmic hysteresis models that are both 

conceptually simple and easy to implement can be used as long as they are capable of capturing minor 

loop hysteresis phenomena. 

Madill and Wang (ref. 16) developed an efficient algorithm for SMA control simulations to compute 

martensite volume fraction, an internal state variable, as temperature varies between intermediate points. 

However, memory of the trajectory history was limited to only the prior hysteresis loop, not every prior 

dominant loop, and hence violates well-established Preisach properties. Efficient, yet accurate algorithmic 

hysteresis models that memorize multiple prior dominant loops have been developed for electromagnetic 

power circuits by Casoria, et al. (ref. 17). To the authors’ knowledge, however, such models have not 

been applied in a similar manner to shape memory alloys. Moreover, a thorough exposition of how these 

models were implemented has not been made widely available.  

In this work, a numerical, algorithmic realization of HTSMA hysteresis is presented as an alternative 

to analytic generalized Preisach models based upon PDF data. In its simplicity, the algorithm offers an 

intuitive approach to SMA hysteresis in lieu of the ‘black box’ approach offered by generalized Preisach 

models. As such, one can directly define physical properties of the material or directly manipulate the 

constitutive equations as an alternative to obtaining sets of PDF identification data as new HTSMA 

materials become available. Although applicable to any of the several SMA constitutive models reported, 

the Brinson phenomenological constitutive model is chosen here because it possesses the fidelity to be 

applied across a wide range of stress-strain conditions (ref. 18).  

The remainder of this paper is organized in the following manner. Section 3 describes the model 

architecture and development. In this section, the SMA constitutive equations are introduced, a 

modification to the transformation kinetics model is proposed, and incorporation of the minor-loop 

hysteresis algorithm is presented. Section 4 details experimental characterization of the HTSMA material 

and methodologies used in determining the necessary model parameters. The results of model validation 

are presented in section 5. Here, qualitative adherence to known Preisach properties and quantitative 

agreement to available experimental data is provided. A summary of the model’s capabilities and 

recommended future work is given in section 6. 

2. Nomenclature 

A region of austenite transformation 

Af temperature at which austenite transformation is completed or finished 

As temperature at which austenite transformation starts 

C stress influence coefficient 

E modulus of elasticity 

F value of ξn when dξn/dt changes sign 

Fmin vector containing past minima 

Fmax vector containing past maxima 

M region of martensite transformation 
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Mf temperature at which martensite transformation is completed or finished 

Ms temperature at which martensite transformation starts 

S region of stress-induced martensite transformation 

T temperature 

b kinetic curve bias 

dt differential element of time 

i integer 

f kinetic curve describing minor loop transformation  

k integer 

n integer 

Θ coefficient of thermal expansion 

Φ kinetic curve scaling factor 

Ω phase transformation coefficient 

ε material strain 

εL maximum recoverable strain 

ξ total martensite fraction 

ξS stress-induced martensite fraction 

ξT temperature-induced martensite fraction 

ξn normalized martensite fraction 

σ applied stress 

σcr critical stress 

 

Subscripts: 

0 referring to an initial state 

A referring to austenite transformation 

Af referring to temperature at which austenite transformation finishes 

As referring to temperature at which austenite transformation starts 

M referring to martensite transformation 

Mf referring to temperature at which martensite transformation is completed or finished 

Ms referring to temperature at which martensite transformation starts 

S stress-induced component 

T temperature-induced component 

max maximum value 

min minimum value 

s starting point 

f finish or final point  

 

Superscripts: 

A→M transformation from austenite to martensite 

A→S transformation from austenite to stress-induced martensite 

M→A transformation from martensite to austenite 
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S→A transformation from stress-induced martensite to austenite 

cr critical state 

3. HTSMA Phenomenological Model 

SMAs generally exist in the austenite phase at high temperatures and the martensite phase at low 

temperatures. Functionally, drastic shape changes may arise when transitioning between these two 

crystallographic material phases. Large macroscopic work may accompany the resulting shape change 

when the parent austenite phase is higher in strength than the lower-temperature martensite phase. In such 

cases, the parent phase exhibits high-stiffness Hooke’s law behavior while the martensite exhibits a 

lower-stiffness, pseudoplastic response. Transition paths are completely reversible, but are dominated by 

major loop hysteresis as shown in figure 2(a). Minor loop hysteresis is prevalent when transition changes 

occur before transformation is complete, as shown in figure 2(b); and is a more difficult phenomenon to 

model. The specific parameters used to model the shape memory effect are discussed in detail later in this 

section. 

The HTSMA model consists of three parts: a transformation kinetics model describing major loop 

hysteresis, a generalized Preisach hysteresis algorithm relating temperature and stress to martensite 

fractions, and a constitutive equation relating martensite fractions to strain output under tensile loading. 

The various elements of the model are implemented as shown in figure 3 using MATLAB/Simulink (The 

Mathworks, Inc.,). By adopting a modular implementation, the hysteresis model can be coupled with 

other models, such as heat transfer models or higher-fidelity constitutive models, depending on the 

particular needs facing the designer. 
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Brinson Quasi-Static Constitutive Model 

SMA actuators are typically implemented in a wire bundle arrangement due to ease of manufacture, 

fast heat transfer characteristics, failure redundancy, and conduciveness to resistive heating methods 

(ref. 19). A constitutive model based on uniaxial tensile loads representative of alloy wires is therefore an 

appropriate choice. Of the various phenomenological models available in the literature, none have broader 

applicability than the Brinson model (ref. 18) because of distinctions made between separate stress- and 

temperature-induced martensite fractions. This is especially important for predicting stress-related effects 

at low temperature. 

The region where martensite transitions between its variants independent of temperature is denoted by 

S in the stress-temperature phase plot in figure 4(a). As stress is applied through region S, the alloy 

transitions from temperature-induced martensite to stress-induced martensite, causing a pseudoplastic 

deformation and large macroscopic strains. The thermomechanical explanation of this effect is that it is 

possible for multiple randomly-oriented martensite variants to coexist when martensite is in the 

“temperature-induced” state. In contrast, when martensite becomes completely “stress-induced,” only the 

variant that corresponds to the direction of the applied stress is in equilibrium. Hence, the two-way SMA 

energy output increases substantially with applied stress. When stress is again relieved, the martensite 

remains in the stress-induced state and maintains an elongated shape. Strain restoration cannot be 

achieved unless the material is heated to austenite, a process commonly referred to as the shape memory 

effect. Regions where austenite transformation occurs, denoted A in figure 4(a), and martensite occurs, 

denoted M, have an approximate linear dependence with applied stress. Variations in stress above Af, but 

below the permanent martensite deformation temperature, result in complete strain recovery, known as 

the pseudoelastic effect.  

The Brinson model describes the thermomechanical evolution by first separating total martensite 

fraction ξ into a stress-induced martensite component ξS and temperature-induced component ξT: 

 

 TS ξ+ξ=ξ  (1) 

 

The constitutive equation relating the two martensite states and the strain ε, stress σ, and temperature 

T is as follows: 

 

 ( ) ( ) ( ) ( ) ( )000000 TTEE SS −Θ+ξξΩ−ξξΩ+εξ−εξ=σ−σ . (2) 
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Here the subscript 0 denotes the initial states, while Θ is the coefficient of thermal expansion (CTE). 

In addition, the modulus of elasticity, E, is non-constant and defined as, 

 

 ( ) ( )AMA EEEE −ξ+=ξ , (3) 

 

with subscripts A and M referring to austenite and martensite, respectively. Furthermore, the phase 

transformation coefficient used in equation (2) is defined as, 

 

 
( ) ( )ξεξ EL−=Ω , (4) 

 

where εL is the maximum recoverable strain. 

The boundaries of the stress-induced martensite region S are defined by the starting critical stress 
cr
sσ and the finish critical stress cr

fσ . Bounding stresses for the austenite region A may be defined by 

 

 ( )sAs
cr
As ATC −=σ  (5a) 

 

 ( )fAf
cr
Af ATC −=σ   (5b) 

 

Similarly, the martensite region M is bounded by 

 ( )sMs
cr
Ms MTC −=σ  (6a) 

 

 ( )fMf
cr
Mf MTC −=σ  (6b) 

 

The crosshatched region in figure 4(a) represents the location where the two martensite regions 

coincide. Here As, Af, Ms, and Mf are defined as the austenite start, austenite finish, martensite start, and 

martensite finish temperatures, respectively, evaluated at zero stress. The stress influence coefficients CAs, 

CAf, CMs, and CMf are the corresponding slopes of the transition temperature-stress boundaries. The 

hysteresis model describing the relationship between temperature and martensite fraction within the 

critical stress regions is outlined in the following sections. 

Modification to Original Brinson Model 

The cosine transformation kinetic approximant used to describe major loop behavior of both total and 

stress-induced martensite fraction was initially proposed by Liang and Rogers (ref. 20) and later modified 

by Brinson (ref. 21) to accommodate stress-induced martensite. For transitions from austenite to 

martensite, Brinson’s model describing stress-induced martensite fraction encounters discontinuities in 

situations when temperature decreases through Ms with cr
f

cr
s σ<σ<σ , as depicted by the path 1→2 in 

figure 4(a). As the kinetic equations are written, transformation of ξS progresses from finite slope to zero 

slope at a point along the kinetic curve corresponding to the instantaneous stress at Ms, instead of 

proceeding to the lower bound of the kinetic curve. To establish continuity, the relationship ξξ=ξ Sn  is 

introduced and hysteresis is instead described by martensite fraction ξ and normalized martensite fraction 

ξn. This substitution modifies the original phase transformation regions from those shown in figure 4(a) to 

those shown in figure 4(b). The modified Brinson model further enables M to be a linear function of stress 

(instead of stress-independent), permitting closer agreement between the model and data at stresses below 
cr
sσ . 
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Transformation from austenite to martensite is represented by the following: 

 

 ( ) ( ) 2

1
cos

2

1
,

11

1

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−σ+−

σ−−
π=σξ

−−

−
→

MfMsfs

MffMA

CCMM

CMT
T , (7a) 

 

 ( )
2

1
cos

2

1
, +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ−σ

σ−σ
π=σξ →

cr
f

cr
s

cr
fSA

n T . (7b) 

 

The superscripts designate the direction of transformation, i.e., A→M = austenite to martensite;  

A→S = austenite to stress-induced martensite. The cross-hatched region in figure 4(b) represents the 

intersection of all non-saturated values of MA→ξ  and all non-saturated values of SA
S
→ξ  (all nonzero 

values of SA
n
→ξ ). The only other notable difference between this model and past realizations is that 

independent stress influence coefficients are now applied to Ms and Mf.  

 For transition from M→A the transformation kinetics are represented by 

 

 ( ) ( ) 2

1
cos

2

1
,

11

1

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−σ+−

σ−−
π=σξ

−−

−
→

AsAfsf

AssAM

CCAA

CAT
T , (8a) 

 

 ( ) ( )TFT AMAS
n ,, σξ=σξ →→ , (8b) 

 

where F represents the value of nξ  at the instant when dtd nξ  changes sign. In figure 4(b), 

transformations in stress-induced martensite and total martensite to austenite are both represented by A, as 

equation (8) reflects. Because AM→ξ  and AS
S
→ξ  are coincident, F may be thought of as a scalar on 

martensite fraction in determining AS
n
→ξ . For implementation of the model, the basis variables of 

equations (7) and (8) are passed as inputs to the minor loop computation algorithm. 

Minor Loop Algorithm 

To illustrate the phenomenological behavior of minor hysteresis loops, consider trajectory 4-5 in 

figure 2(b). In this example, the trajectory initially follows the transition path that intersects point 3 as 

temperature decreases. After the intersection with 3, a new path is followed, intersecting point 1. 

Transition paths are dependent on prior extrema; however, as smaller loops are overtaken by larger ones, 

the smaller extrema are eliminated from memory. This is described succinctly by the wiping out property 

of the generalized Preisach model. Once the material reaches point 1 (also point 5), the double minor loop 

is closed and all extrema are eliminated from memory. An additional property, known as the minor loop 

congruency property, is required to complete the generalized Preisach model. 

Within the Preisach modeling paradigm, it has been shown that reasonable approximations to the PDF 

can be obtained using information contained in major loop data (ref. 15). Therefore, monotonic variations 

in temperature during minor loop formation may be described by the major loop, which is scaled and 

translated based on the past history of temperature (or martensite fraction) extrema. Representing Preisach 

hysteresis during transition from martensite to austenite is accomplished in a piecewise manner that 

depends on the direction of transformation: 
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 ( ) ( )[ ]
( )[ ]⎪⎩

⎪
⎨
⎧

<+σΦ
>+σΦ=σ →→→

→→→

0,min

0,max
,

dtdf  for   bTf

dtdf  for   bTf
Tf

AMAMAM

MAMAMA

,  (9) 

 

where the scalars and biases are 

 

 
MAMA

MA

FF

FF

→→
→

−

−
=Φ

maxmin

maxmin  

  

 
AMAM

AM

FF

FF

→→
→

−

−
=Φ

maxmin

maxmin  

 

 MAMAMA FFb →→→ Φ−= maxmax  

 

and 

 

 AMAMAM FFb →→→ Φ−= minmin  

 

Here f is used to represent both ξ and ξn, as algorithms are identical for both variables. It follows that 
MAf →  and AMf →  are the associated kinetic curves (for ξn, superscript M is replaced with S). minF  

contains the past n minima of f and maxF  contains the past n maxima of f, collected at instants when f 

changes sign. MAF →
maxmin,  and AMF →

maxmin,  are analogous vectors corresponding to MAf →  and AMf → . 

In order to satisfy the wiping out property, the hysteresis model must discard past extrema that are 

smaller in magnitude than the most recent value. Each extrema vector is subject to the following 

conditions: 

 

�For i = 1,…,n, if 0>dtdf  and ( ) ( )1minmin FiF >  (1 being the most recent), then 

 i.  Let ( ) ( )1minmin FiF =  

 ii. Let ( ) ( ){ }kFiF
k

maxmax min=  with k = 1,…,n and ik ≠  

 

This modifier is applied to the remaining two extrema vector pairs MAF →
min , MAF →

max  and AMF →
min , 

AMF →
max . 

 

�For i = 1,…,n, if 0<dtdf  and ( ) ( )1maxmax FiF <  (1 being the most recent), then 

 i.  Let ( ) ( )1maxmax FiF =  

 ii. Let ( ) ( ){ }kFiF
k

minmin max=  with k = 1,…,n and ik ≠  

 

 This modifier is applied to the remaining two extrema vector pairs MAF →
max , MAF →

min  and AMF →
max , 

AMF →
min . 

 

In the simulation, the number of memorized loops n is set to 10 to ease computational efficiency. To 

eliminate the feedback path, the sign of dtdf  for detection of the turn-around points is computed instead 

by testing the sign of dtdf MA→  and dtdf AM→ . If either one changes sign, then an extremum has 
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been detected. The algorithm may encounter situations where small input variations or noise may cause 

oscillations in the extremum detector, therefore a threshold was incorporated in the detection scheme to 

reject these oscillations. It is known that hysteresis response approaches a linear characteristic with small 

driving amplitudes, thus thresholding will not compromise the model’s accuracy. Within the 

MATLAB/Simulink environment, the hysteresis model was implemented as an Embedded MATLAB 

Function, which was called once every time a martensite fraction extremum is detected. 

4. HTSMA Characterization 

Experimentally-identified properties of the HTSMA that were used to parameterize the present model 

are given in table 1. Additional data and explanation of the properties are provided in reference 0. The 

data was collected from several forms of a Ni30Pt20Ti50 alloy that has been identified for high-temperature 

actuator applications and is undergoing additional development and optimization at NASA Glenn. It 

should be noted, however, that material properties are highly dependent on variations in 

thermomechanical processing and minor deviations in composition. 

 
TABLE I.—PHYSICAL PROPERTIES OF NI30PT20TI50 

Parameter Value Parameter Value 

Martensite start temperature Ms 510 °F Ms stress influence coefficient CMs 0.83 ksi/°F 

Martensite finish temperature Mf 463 °F Mf stress influence coefficient CMf 1.44 ksi/°F 

Austenite start temperature As 505 °F As stress influence coefficient CAs 1.78 ksi/°F 

Austenite finish temperature Af 527 °F Af stress influence coefficient CAf 0.83 ksi/°F 

Start critical stress cr
sσ  33.4 ksi Elastic modulus of martensite 200 °C) EM 10152 ksi 

Finish critical stress cr
fσ  128.6 ksi Elastic modulus of austenite 

(300 to 600 °C) 

EA 12328 ksi 

Max. recoverable strain εL 3.3 % Coefficient of thermal expansion Θ 1.02e-5 1/K 

 

The Young’s moduli and room temperature tensile properties in table I were specifically obtained 

from measurements on a 0.060-in.-diameter rod that was produced by a multiple extrusion technique from 

a 1-in.-diameter cast and homogenized billet, resulting in a uniform, fine-grained material. The sample is 

representative of the material in wire form, which is the most likely product form for actuator 

applications. Difficulties in measuring material modulus by direct techniques, i.e., extensometry or strain 

gages, arise from the extreme dependence of modulus on strain. Instead, modulus measurements were 

determined on the as-processed rod by an impulse frequency excitation technique. 

Values for critical stresses were determined in a similar manner to Epps and Chopra (ref. 23), at 

approximate points where the room temperature stress-strain characteristic deviates from linear elastic 

regimes that correspond, in theory, to the start and finish of the stress-induced martensite transformation 

( 10→=ξS ). In practice, the start critical stress cr
sσ  is an approximation to the start of the nonlinear 

regime and the finish critical stress cr
fσ , coupled with the stress-free maximum recoverable strain Lε , are 

chosen to obtain adequate model agreement to the slope of the transition region below 3 percent strain. 

Based on experience with conventional shape memory alloys, the material will experience reduced fatigue 

life at strain levels above approximately 3 percent, therefore any application utilizing these alloys should 

prevent strains from exceeding those levels. Since there is no practical way of measuring stress-induced 

martensite fraction Sξ  to make correlation with cr
fσ  and Lε  possible, the model-calculated value of Sξ  

loses physical meaning, even with a perfect model fit. If the model is indeed exercised within the valid 

strain range, the overall modeling accuracy will not be compromised.  

The tensile curve used to determine these parameters is shown in figure 5 with the model fit overlaid 

on the plot. The sample used for the experiment was a thin rod that was heat-treated at 1112 °F (600 °C) 

to regain the shape memory properties that were suppressed due to the significant level of hot-working in  
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the alloy. The tensile properties of the heat-treated rod are very similar to those for the as-processed rod 

(provided in table I), except for an increase in the yield strength in the heat-treated material. The linear 

region on the right-hand side of the model curve illustrates the material’s actual behavior when the strain 

is relieved following an initial stress increase past cr
fσ . Note that, by decreasing the stress to zero, the 

value of the modeling parameter Lε  becomes apparent.  

A plot of the phase transformation temperatures as a function of stress for the alloy is shown in 

figure 6, along with the fitted boundaries, using the values listed in table I. The data set was determined 

by measuring the strain-temperature response of the material under various levels of constant stress. 

These tests were performed on cast and homogenized ingots that were extruded at 2012 °F (1100 °C) at a 

reduction ratio of 7:1. This simple, high-temperature processing resulted in a very course grained 
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material. Coefficient of thermal expansion (CTE) was obtained via dilatometry testing using the same 

course grained rod. Figure 6 illustrates that the martensite and austenite transition temperatures have less 

overlap but tighter transformation bands at low stress, but larger overlap and wider transformation bands 

at larger stresses. Parameters in the linear stress-temperature relationships of equations (5) and (6) were 

adjusted to approximate the respective data for the transformation boundary regions. It should be noted 

that the zero-stress transition temperatures in the data were considered as outliers and were removed from 

the parameterization.  

5. Model Evaluation 

The goal of the evaluation is to validate the full model against both established hysteresis principles 

and a set of stress-cycled data. The modified Brinson major loop model was compared with responses 

with the original representation, while the minor loop hysteresis model was validated against well-

established Preisach properties. The complete model was then validated against a set of stress-cycled 

experimental data. In each of the following simulations, the CTE was set to zero and the simulation 

increment was set to 1 ms.  

Major Loop Simulation Tests 

Major loop evaluation was conducted by cycling the internal temperature between Mf and Af at 

several constant stress conditions. Figure 7 shows the result of the evaluation at the four stress conditions 

given in table II. It should be noted that test points 2 to 4 are considered to be in the extrapolated range of 

the phase plot in figure 6 and test points 3 and 4 are considered to be outside the valid strain range in 

figure 5. The figure highlights dependence on peak-to-peak strain on stress-induced martensite fraction. 

At test point 1, stress-induced martensite remains close to zero throughout the cycle, since the alloy stress 

is below the start critical stress cr
sσ . The resulting peak-to-peak strain in figure 7, or equivalently, the 

difference between martensite strain and austenite strain, is 0.05 percent. At test points 2, 3, and 4, stress-

induced martensite peaks at 0.33, 0.82, and 0.98, respectively, causing reversible peak-to-peak strains to 

grow accordingly. Due to the dependence of stress on transformation temperatures, the hysteresis curves 

shift to higher temperatures and decrease in slope as applied stress increases. Discontinuity in ξS response 

from the original Brinson model at the stress-independent intersection of M and S (at ~290 °C) is 

eliminated in the modified version by addition of the new variable ξn, as can be noted in the figure. 

 

 
TABLE II.—TEST POINTS USED FOR HYSTERESIS EVALUATION 

Test point Description Stress, 

ksi 

1 Stress below critical region, cr
sσ<σ  30 

2 Stress within critical region, cr
f

cr
s σ<σ<σ  70 

3 Stress within critical region, cr
f

cr
s σ<σ<σ  100 

4 Stress above critical region, cr
fσ>σ  130 
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High Temperature Minor Loop Simulation Tests 

The next set of tests focused on evaluating minor hysteresis loop prediction. For all temperature-

cycled evaluation tests, a constant stress from test point 1 was used. The first two tests aim to verify 

adherence to Preisach hysteresis that is described by the following two properties: minor loop congruency 

and wiping out of past extrema. The second two tests illustrate the prediction capability given more 

complex loading profiles. 

The congruency property test in figure 8 was generated from a temperature input that produces two 

opposing loops. The first loop occurs during transition along the M→A kinetic curve and the second 

occurs along the A→M curve with the same temperature reversal points as the first, designated by paths  

2-3-4 and 6-7-8, respectively. It is evident from figure 8 that the correct hysteresis trajectory is developed, 

as the two minor loops appear to be congruent in shape. Nevertheless, the scaling factors ΦA→M and ΦM→A 

are slightly different between the two minor loop segments, resulting in a small discrepancy in the sizes of 

the two minor loops. It is important to note that, although equation (9) scales minor loop segments from 

major loop bases, the algorithm does not guarantee congruency of two vertically-shifted loops. To  
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investigate congruency adherence further, a profile of minor loop congruency inaccuracies across the 

range of operation was generated by performing the congruent loop test at 1000 randomly-generated 

stresses and temperatures. Figure 9 shows differences between the minor loop scaling factors for the first 

and second loop as functions of minor loop size. The plot also shows differences between minor loop 

sizes between the two loops versus minor loop size for the same set of tests. Results indicate that scaling 

factor errors are large for small magnitude loops, but become smaller as magnitudes increase. A similar 

trend can be seen in the magnitude errors, however, large errors persist over a wider range of loop 

magnitudes. The pseudorandom nature of the errors confirms that, on average, the congruency property is 

satisfied. Based on the data it is hypothesized that truncation errors in the denominator of Φ in 

equation (9) cause differences in Φ to grow as minor loops become small. One fix to resolve this issue is 

to implement an amplitude threshold to prevent truncation errors from dominating the response with 

small loops. 

In the wiping out test, shown in figure 10, a past extrema pair that makes up a minor loop must be 

“wiped out” when one of the two points is overtaken. The property is clearly demonstrated in the figure, 

as the first two decaying minor loops (path 2-3-4-5-6-7) are replicated one-for-one with the second two 

loops (7-3-4-5-6-7). For verification, investigating the sequence shows that both extrema from the 

innermost loop are indeed eliminated from memory as the second half of the trajectory begins, resulting  
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in reconstruction of the larger minor loop. It is thus concluded that the algorithm correctly adheres to the 

wiping out property. 

Results of the multiple decaying minor loop test is shown in figure 11. These tests were performed to 

verify the algorithm’s ability to construct minor loops given a slightly more complex input sequence. In 

figure 11(a), after the three decaying minor loops are developed, the martensite fraction trajectory 

intersects the previous three extrema as temperature is decreased in the final monotonic input segment. 

After each intersection, the associated extrema pair is eliminated from memory as it approaches the 
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martensitic kinetic curve. After the third of the extrema pair is eliminated, the martensitic kinetic curve is 

traced exactly. 

This test also sheds light on how minor loop behavior in any hysteretic system can impact control 

design by virtue of the system being non-stationary. As driving amplitude decays over time, the resulting 

minor loops converge to a small slope. In the worst-case, if the trajectory evolves to a steady-state that is 

in the flat region of one of the kinetic curves (i.e., either between Ms and Af or Mf and As), then this slope 

may approach zero. With such a severe change in input-output sensitivity, it is obvious that control 

stability and robustness can be significantly compromised as steady-state is reached. Such concerns have 

been echoed by other researchers (ref. 16), who have focused on development of robust SMA control 

techniques. Having multiple minor loop fidelity, the present model can capture these important effects, 

and hence predict stability given any compensative action. 

A similar set of tests is shown in figure 11(b), except the minor loops were generated by stress cycling. 

As with temperature variation tests, the input-output profile follows partial recovery paths up to the last 

segment, during which time the trajectory eliminates the previous minor loop extrema after they are 

intersected. At each stress relief segment, the trajectory follows linear elastic theory described by EM until 

stress drops below cr
Asσ , at which point strain partially recovers. 

Low Temperature Stress-Cycled Minor Loop Tests 

A cycled stress input test was conducted to examine the stress-strain effects at temperatures below Mf 

and to validate the one-way hysteresis of the model. As shown in the room temperature results in 

figure 12, the strain follows an irreversible path during the stress relaxation phase of the cycle, returning 

to linear elasticity following the turn-around points. Hysteresis loops that appear in the data during the 

stress relief cycle are believed to be a result of partial recovery of ξS as stress reaches zero, i.e., a partial 

two-way effect. Nevertheless, it is encouraging that the stress-strain output upon stress reversal initially 

follows a slope very close to EM, as confirmed by moduli taken at the initial portions of the reversal 

curves in table III. It should be noted that, because the data was taken at room temperature, the average 

modulus more closely approximates modulus data taken on room temperature samples, a slightly larger 

value than the EM at 200 °C used in the model. 

 
TABLE III.—ELASTIC MODULI DETERMINED FROM STRESS-CYCLING TEST 

Cycle number Modulus (decreasing), 

ksi 

Modulus (increasing), 

ksi 

1 13437 13048 

2 11034 12054 

3 10616 12001 

4 10267 11199 

5 11202 10655 

6 11894 10945 

Average modulus 11529 

Mart. modulus at room temperature 12000 

 

 

In all of the phenomenological models, the two-way recovery critical stresses are in the material’s 

compression region. The Tanaka model (ref. 24), upon which the Liang & Rogers and Brinson models are 

based, uses exponential relationships that are capable of preserving the continuous nature of phase 

transformations. However the latter’s models have replaced the exponential with a piecewise continuous 

cosine relationship to avoid numerical convergence problems of the exponential. As shown in figure 13, 

the piecewise nature of the Liang & Rogers and Brinson models require that the material exhibit linear 

elasticity between cr
sσ  and cr

sσ′ , therefore permitting exclusion of cr
sσ′  from the model. Without  
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substantial modification, these models are incapable of predicting these partial recovery loops due to this 

oversimplification of linear behavior. Although problems with the piecewise model has been 

acknowledged and addressed in the literature (as it also occurs with NiTi alloys) (refs. 7, 12, and 18), as 

yet there are no reported solutions to the issue. 

6. Conclusions 

In this paper, a simple, computationally efficient numerical model of a shape memory alloy material 

is developed. The model consists of a constitutive model with transformation kinetics and a novel minor 

loop hysteresis model. In the transformation kinetics relationships, Brinson’s formulation was modified 

from original form to remove discontinuities in the response. For the hysteresis model, an algorithmic 

representation of hysteresis is proposed as an alternative to generalized Preisach methods that require a 
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database of first order descending curves to properly identify the hysteresis distribution profile. As such, 

the present model is conducive to simplified identification methods for new shape memory alloy (SMA) 

materials such as the recently-developed high-temperature SMA. The hysteresis algorithm is implemented 

as a modular component so that any supplemental models (i.e., heat transfer, transformation kinetics, 

constitutive equations) may be independently modified or freely interchanged. 

The parameterized model was empirically verified to obey two established Preisach properties: the 

minor loop congruency property and the wiping out property. These tests were sufficient to validate the 

behavior of the hysteresis model itself in comparison with existing quasi-static Preisach models. More 

complex loading profiles were also evaluated, with the outcome that the model is well-suited for controls 

analysis and evaluation. Low-temperature stress cycling was validated against a set of experimental data, 

demonstrating agreement with the model over the operating range of interest. 

As a result of this thorough evaluation of the model, insight can be gained as to the future work that 

may be pursued: 

 

1. modification of amplitude thresholding to prevent noise from producing excessive errors in scaling 

factor; 

2. inclusion of partial recovery minor loops, not captured by the present model; and 

3. thorough validation against an exhaustive data set of a “benchmark” high-temperature alloy. 

 

The present model is well adept for prototype design and evaluation of high-temperature shape 

memory alloy (HTSMA) actuators. Pending experimental validation, the model may also be used for 

proportional control system design, as a result of the inclusion of path-dependent minor hysteresis loops. 

It is envisaged that the model can be applied to simulate the behavior of a broad range of passive or active 

actuation devices utilizing HTSMA or other research-stage materials. 
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