

City, University of London Institutional Repository

Citation: Rybynok, V., Kyriacou, P. A., Binnersley, J. & Woodcock, A. (2010). Development

of a personal electronic health record card in the United Kingdom. Conference

proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and

Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, pp. 4431-

4435. doi: 10.1109/IEMBS.2010.5626004 ISSN 1557-170X doi:

10.1109/IEMBS.2010.5626004

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13345/

Link to published version: https://doi.org/10.1109/IEMBS.2010.5626004

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

Development of a personal electronic health record

card in the United Kingdom.
V O Rybynok, P A Kyriacou, Senior Member, IEEE, J Binnersley, A Woodcock

Abstract—In most emergency situations, health professionals
rely on patients to provide information about their medical
history. However, in some cases patients might not be able to
communicate this information, and in most countries, including
the UK an on-line integrated patient record system has not
been adopted. Therefore, in order to address this issue the on-
going project MyCare Card (MyC2, www.myc2.org) has been
established. The aim of this project is to design, implement
and evaluate a prototype patient held electronic health record
card. One of the tasks involved in the project was to develop
a Graphical User Interface (GUI) software, which provides
access to the data stored on the card. The requirements for
this software had to be established via questionnaire surveys
and end user evaluations, conducted simultaneously with the
software development. This paper is addressing development of
the MyCare Card GUI software. It also overviews the hardware
and open-source software solutions selected for the MyCare Card
implementation.

Index Terms—health care, patient care, personal health record,
GUI, Python.

I. INTRODUCTION

IN many areas of health care in the UK, particularly

emergency care, health professionals rely on patients to

provide information about their medical history. However,

reliable information may be difficult to acquire from patients

who are unwell, confused, or have communication difficulties.

It has been suggested that patients taking responsibility for

their records would be able to manage their health better by

keeping continually updated and informed of all changes and

provide means of security and safety [1].

An electronic form of patient held records was successfully

trialled in the UK, between 1989-1992 [2]. In this, over

13,000 patients were provided with smart cards containing

health information that only they and health professionals

treating them were able to access. The results showed that

the majority of participants were in favor of having the cards.

However, their use was not continued, as the technology was

not sufficiently mature at this time.

Few studies have identified the design requirements for pa-

tient held health records in the UK, such as the preferred form

of device, methods of data entry, access rights or the infor-

mation content, and compared these requirements to those of

health professionals. However, surveys carried out at Coventry

University identified such requirements and these were used

The research has been funded by the EPSRC grant number FP/F00323411
28/02/2007.

V. O. Rybynok and P. A. Kyriacou are with the School of Engineering and
Mathematical Sciences, City University London, London, UK.

J. Binnersley and A. Woodcock are with the School of Art and Design,
Coventry University, Coventry, UK.

in this project to produce a prototype system (records media

and access software) which is being continuously evaluated

and refactored. The system code name utilized for this project

is MyCare Card, abbreviated as MyC2.

This project aims to design and implement a system, which

will be intuitive and transparent for users of almost any

computer literacy. Therefore, from the beginning, the project

development had to be focused on the end user interface and

not on the internal program structure or the database formats.

Thus, the software GUI had to be developed first.

To control the project’s complexity, MyCare health record

system development was split in two sub-projects: MyCare

Card – medical records storage media device; and MyCare

Card Browser – GUI and database software which allows

card owners and health professionals to view and edit, where

appropriate, information stored on the MyCare Card. The

focus of this paper is MyCare Card Browser development.

MyCare Card design and hardware are only reviewed to the

extent required to justify some of the solutions proposed in

software. Refer to [3], [4] for further information.

GUI-driven and agile development styles provoked some

stability and refactoring issues during MyCare Card Browser

development. These were related to the lack of explicit sep-

aration in the source code between the following software

parts: GUI layout; composite components (e.g. Forms, Panels);

common components view and behavior customizations; and

the binding code between data model and GUI interfaces. Such

separation was mandatory due to the source code changes

induced by the end user evaluations conducted simultaneously

with the software development. Different approaches were

reviewed concerning how such code could be organized.

Considerable effort was made to follow good development

practices and to keep the data model and view codes separate.

Despite these measures, the card browser software had to

undergo at least three major evaluation-refactoring cycles

aimed to redefine the source code internal structure.

Eventually, when the source code stabilized, it became

possible to recognize certain patterns in its components or-

ganization and to form a general object-oriented framework.

This framework is suitable for a simple declarative layout

definition, chosen components customization, and fine model-

view code separation. The major concepts comprising the GUI

framework are exposed in the current paper.

The programming language and cross-platform GUI toolkit

used in this project are Python [5] and wxPython [6]. However

all examples shown in this paper are written in Python, the

concepts of the presented framework can be used with almost

any object-oriented programming language and GUI toolkit.

2

II. METHODS AND MATERIALS

A. Initial requirements

In order to establish preliminary end user requirements of

the MyCare Card, two ’similar’ questionnaire surveys were

designed to collect attitudes, to patient held records and

requirements for an electronic patient held record device, from

the public and health professionals. Over 500 participants took

part in the survey. Approximately half of these were members

of the public and half were health care professionals. Ethical

clearance was obtained to consult health care professionals.

Data was collected in different areas of the UK in order to

include participants from different geographical locations and

working environments [3], [7].

The combined results were used to derive an initial set

of development requirements for the user interface software,

the data which needed to be stored and the preferred stor-

age device. When initial development requirements became

available, software tool chain, programmatic libraries and

development model were selected. Issue tracking and source

code version control systems were also established [4].

To reduce the cost of the development and to minimize

its dependency on the major computer systems manufacturers,

Open Source (OSrc) software tools and programmatic libraries

were utilized.

Projects which gain most from the OSrc are network-

ing projects and community-based projects. MyCare is a

community-based project, as its success is directly related to

its popularization and wide acceptance of its communication

and data storage standards. Therefore, MyCare project might

achieve its maximum development performance under the

OSrc development model.

B. Software development tools

The Python has been utilized in this project as a major

language, run-time environment and a common algorithms

infrastructure. C++ programming language was selected for

security-related and low-level access algorithms implementa-

tion. SWIG (Simplified Wrapper and Interface Generator) is a

software development tool that connects programs written in C

and C++ with a variety of high-level programming languages

including Python. SWIG was chosen in this project to join

low-level C++ code components with a high level Python code.

Python library py2exe and the Windows programs installation

packages builder named Inno Setup were utilized to make

software distribution packages familiar to MS Windows users.

In the development of the MyCare Card Browser wxPython

was used as a primary GUI toolkit. The core component of

wxPython is wxWidgets toolkit. At base, wxWidgets is a

GUI components library implemented in C++, which means

it is a set of C++ classes that encapsulate a wide range of

features. The goal of wxWidgets is to allow a C++ program to

compile and run on all supported platforms with only minor

changes to the source from platform to platform, and with

a reasonably consistent look and feel between the platforms.

Both wxWidgets and wxPython are open source libraries.

The software part of MyCare project, MyCare Card Browser

aims to be user-friendly, OSrc, easily extensible, cross-

platform, portable, stable and secure. The toolchain described

above allows MyCare project to achieve its aims within

reasonable development resources and time.

C. Card device interface

In this prototyping work, conventional USB mass storage

protocol was utilized to store user’s medical data, security

and authentication data, and the browser software itself on

the MyCare Card. All data is stored on the card in files,

which are available to the Operating System (OS) services

via standard portable disk drivers. USB mass storage devices

are natively supported by nearly any user OS available today.

In further development, for security reasons, additional USB

device protocols will need to be implemented. Those protocols

will protect MyCare Card user medical data and software

files from unauthorized access and from accidental corruption.

Therefore, files access algorithms implemented in MyCare

Card Browser software are isolated into interface classes to

allow future embedding of such security protocols, without

affecting other software parts or the overall source code

structure.

III. RESULTS

A. Establishing types of data records

85% of the public said they would find an electronic patient

held medical record device useful, especially if they were too

ill to give information to a health professional. Approximately

half of this group had used some form of patient held health

record, and cited the major benefit of doing so as being access

to health information. The concerns of this group related

to inaccuracy of information (74%), loss of records by the

patients (80%) and unauthorized access (75%). Some 94% of

the health professionals said they would find a patient held

record useful and, in this case, the most common reason was

to overcome communication problems.

Regarding the types of information that should be stored

on the device, most of the members of the public surveyed

thought that: current medication; name; allergies; blood group;

and long term conditions should be included, and that all

health professionals should be able to access these items.

However, over three quarters also agreed that access to other

information should depend on the role of the health care

professional.

For health care professionals the most important pieces of

information to be held on the device are related to: allergies;

current medication; name; long term conditions; age; major

health problems in the past; and next of kin. The majority of

these participants thought that all health professionals should

be able to access the most important pieces of information.

Again, the majority of participants supported the use of a

restricted access system, where the viewing of certain pieces

of information was restricted to particular groups of profes-

sionals.

3

B. MyCare Card Browser framework

MyCare Card Browser source code framework has been

originated in this project. This framework allows the source

code development and maintenance while adding the new

software features and modifying existent ones, under the end

user evaluations feedback. MyCare Card Browser software

built on this framework should have looked and felt like an

end product to allow the end user group evaluations from

the early development stages. The implemented framework

can be used to perform the following steps in a systematic

way, without destroying the source code execution stability

and maintainability:

• adding new data fields, new field types and formats or

removing and modifying existent ones;

• associating GUI components, designed to display and edit

user data, and corresponding data records, available via

the data model interface;

• changing validation and formatting rules for the entered

data;

• moving GUI components around and between container

windows;

• adding new GUI components, which may (or may not)

be connected to the data model;

• modifying existent GUI components views and behaviors;

• centralized controlling of the common GUI parameters,

such as font types, proportions or sizes.

The major design pattern forming the core of the MyCare

Card Browser framework is DataAware GUI components.

C. DataAware GUI components

Based on the list of the data record types (see Section III-A)

which are expected to be stored on the MyCare Card, the user

medical data model has been designed. In the current version

of MyCare Card Browser this data model is represented by

the native Python type dict. dict is the class used to create

mapping objects, i.e. such objects which contain key: value

pairs. Another dict object can be assigned to the value, making

it possible to create nested data records or tree-like structures.

As dict data type is embedded in Python, it does not require

additional access drivers. For this type of applications however,

the dict class has the major disadvantage – it has to keep the

whole data set in the main memory. Even if a single record

needs to be displayed or modified from the user medical data,

the whole dict object should be loaded into the main memory.

At this prototyping stage of MyCare project development, the

user medical data was relatively small, and dict was sufficient

to store and process it without causing significant memory

overhead or operation delays.

As the project and its data requirements grow, the dict

approach may become inadequate. Therefore, to abstract the

data model from the details of its implementation as the dict

class, the data model interface – DataAccessor class has been

implemented. It effectively isolates access to the dict from

other parts of the software which require access to the data

model. Such interface allows modular replacement of dict by

another class or even by a full database system.

In order to make DataAccessor independent of the underling

data model, the concept of DataPath was introduced. This path

idea is similar to the path used in conventional file systems. It

seemed reasonable to directly associate GUI components with

the paths to records in the data model. In wxWidgets, objects

of GUI component classes are related to each other via logical

parent-child relationships. Components which are visually

containing other components are parents to the components

which they are containing. For example, the text box which is

visually contained on the panel is panel’s child. These visual

and logical relationships can be used to compute relative paths

to the records in the data model.

For example, there might be a name editor component. This

name editor component may be represented by a panel class

which contains four text boxes to edit title, first name, middle

name, and last name. User’s name in the data model may

be located at /personal/name path. The name parts may be

accessed by their relative paths, such as title, first_name etc.

Then, path to the name might be associated with the panel,

and the individual name part paths might be associated with

the text boxes. Thus, each text box knows its parent’s path

and its own path and can compute its full path to the field in

the data model, e.g. /medrec/personal/name/title.

Such representation of the relative paths by the logical

child-parent relationship allows implementation of the generic

composite GUI controls which are connected to the data

model. The described name component, for example, might

be used to edit card owner name, next of kin name or any

other name used in the program by changing its path to the

record in the data model.

In order to avoid separate maintenance of GUI components’

behavior logic and their paths to the data model, it was found

convenient to edit such associations via a visual GUI editor.

At the same time, components’ behavior and data model

access algorithms should have been kept separate to allow

their modifications independently of each other. In order to

meet those requirements DataControl polymorphic class and

its derivatives have been introduced in this project:

class DataControl:

def UpdateControlFromData(self):

Abstract function - raise NotImplementedError.

DataAccessor is an object of the data model

interface class providing access to the

MyCare Card user data.

def SetDataAccessor(self, value):

Set DataAccessor field to value.

def ResetDataAccessor(self)

Set DataAccessor field to None.

def IsDataAvailable(self):

Return True if DataAccessor field is not None,

or False otherwise.

DataPath is the path to the record in the

data model, available via DataAccessor.

def SetDataPath(self, value):

Set DataPath field to value.

def GetDataPath(self, relative=False)

Return DataPath.

def SetRelative(self, value=True)

Set Relative field to value,

i.e. path is [not] relative to the parent’ path.

def ResetRelative(self)

Set Relative field to False.

def _GetData(self):

Get data from the data model, located

4

at DataPath via DataAccessor.

To reduce size of listings in this paper, class members

related to the access control and logging are not shown. Please,

refer to [4] for the full source code of MyCare Card Browser.

All classes inherited from DataControl will have

DataAccessor and DataPath properties. They will also be

able to call self._GetData() function to obtain record from

the data model, associated with them via DataAccessor and

DataPath.

To support the concept of relative paths and to call

DataControl.UpdateControlFromData() member functions when

a control update is required, the DataControlContainer poly-

morphic mixin class has been defined:

class DataControlContainer(DataControl):

Overload DataControl.UpdateControlFromData()

def UpdateControlFromData(self):

Iterate through all children of

this control.

for ctrl in self.GetChildren():

if isinstance(ctrl, DataControl):

ctrl.UpdateControlFromData()

OnShow() member function is the event handler

for control’s show event.

def OnShow(self, event):

Begin event processing.

Get reference to the object,

which raised this event.

evtsrc = event.GetEventObject()

if isinstance(evtsrc, DataControlContainer):

evtsrc.UpdateControlFromData()

End event processing.

All GUI control classes inherited from DataControlContainer

will update their DataControl-based children on container’s

show event.

Controls which are designed to view associated records

from the data model are usually different from the controls,

designed to edit those records. View controls generally display

their data record in a very compact form, and depending on

their setting may not show all record parts. Edit controls are

normally bigger on the screen and display all record parts.

DataViewControl and DataEditControl polymorphic classes were

introduced to reflect this difference:

class DataEditControl(DataControl):

def UpdateDataFromControl(self):

Abstract function - raise NotImplementedError.

def _SetData(self, value):

Set record in the data model to value;

the record is located at DataPath via

DataAccessor, and raise data changed

command event.

For simplicity, in this paper DataViewControl is just an alias

for the DataControl. In MyCare Card Browser it also adds

member functions and properties, intended to format displayed

data. DataEditControl adds UpdateDataFromControl() member

function to update corresponding record in data model, and

_SetData() member function, intended to change correspond-

ing record in the data model.

gui.styles module has been implemented in MyCare Card

Browser to support the concept of styles and parametric

control of GUI components. The concept of styles is similar to

the one used in typesetting programs. For example, instead of

using generic text box class dirrectly, it can be inherited and

extended by the SingleLineTextView class. SingleLineTextView

can define fonts, colors, borders, cursors and other prop-

erties, which control the component view and behavior.

SingleLineTextView can refer to the global configuration object,

which holds parameters, common for the whole application,

including its GUI appearance.

Such common GUI controls ‘style’ wrapping has three

main advantages: it allows to control software GUI appearance

properties, such as fonts, colors, etc. from a single place – the

global configuration object; it gives common GUI controls se-

mantical meaning and allows modifying existent GUI controls

view, shapes, sizes and behaviors, depending on their purposes;

it allows replacing underling common GUI controls with the

new ones and introducing new controls without interfering

with other parts of the software. See [4] for the full source

code of the gui.styles module.

The following source listing shows three examples of the

data aware and styled GUI components, implemented by

multiple inheritance of a class from the gui.styles module

and from a class based on the DataControl:

Data aware panel with background

common to its logical parent.

class DaPanel(gui.styles.CommonBackgroundPanel,

DataControlContainer):

def __init__(self, parent, id=-1):

gui.styles.CommonBackgroundPanel.__init__(self,

parent, id)

DataControlContainer.__init__(self)

Data aware single line text view control.

class DataViewTextCtrl(gui.styles.SingleLineTextView,

DataViewControl):

def __init__(self, parent, id=-1):

gui.styles.SingleLineTextView.__init__(

self, parent, id, value="")

DataViewControl.__init__(self)

def UpdateControlFromData(self):

Call self._GetData(), implemented by

DataControl to obtain the record,

in the data model with which this

control is associated.

Data aware single line text edit control.

class DaSingleLineTextEntry(gui.styles.SingleLineTextEntry,

DataEditControl)

def __init__(self, parent, id=-1):

gui.styles.SingleLineTextEntry.__init__(

self, parent, id, value="")

DataEditControl.__init__(self)

Associate text changed event with self.OnText().

def UpdateControlFromData(self)

Call self._GetData() implemented by

DataControl to obtain the record,

in the data model with which this

control is associated.

def UpdateDataFromControl(self)

Call self._SetData() from DataEditControl

to update the record, in the data model

with which this control is associated.

OnText() member function is the event handler

for control’s text entry event.

def OnText(self, event):

Begin event processing.

self.UpdateDataFromControl()

End event processing.

The implemented data aware and styled GUI components

can be used by a visual GUI designer to layout top windows

and composite components. Due to the polymorphic and

mixin implementation of the data aware GUI components,

the designer-generated code is isolated from the data model

5

Fig. 1. MyCare Card Browser GUI software screen example. Fig. 2. MyCare Card working prototype with USB interface.

structure and from the components implementation (i.e. it

needs to know only about data paths).

D. MyCare Card implementation

MyCare Card Browser has been developed utilizing the

software framework, which major concepts were described in

the previous section. Example of the typical MyCare Card

Browser screen is shown in Fig. 1. On this screen the browser’s

main window is displayed. The tab-panel opened in the main

window is the current medication records editor.

According to the conducted survey (see Section II-A), smart

card media type was preferred over other proposed devices

such as USB sticks, key fobs, jewelry and devices linked to a

mobile phone.

Considering the technical advantages and disadvantages of

traditional smart cards and modern USB sticks, the use of

USB sticks is preferable for MyCare Card implementation [3].

However, given the public’s preference for a smart card, a

compromise had to be found between the two media types.

This compromise was a USB card, example of which is shown

in Fig. 2. The USB card design combines the advantages of

both smart card and USB stick media types.

IV. CONCLUSION AND FURTHER WORK

The special software framework has been implemented in

this project to preserve MyCare Card Browser source code

stability and maintainability during its changes induced by the

end user evaluations, conducted simultaneously with the soft-

ware development. The core design pattern forming the base

of this framework is DataAware GUI controls. The underlying

concepts used to implement DataAware GUI controls are the

styled GUI controls and DataControl-based classes, described

in this paper.

Utilizing this software framework, MyCare Card system has

been successfully developed. This system is a prototype of

the credit card-sized personal medical record USB device and

the GUI software, designed to provide access to the medical

data, stored on the card to the MyCare Card owner and health

professionals.

Small lot of 50 MyCare Card units has been manufactured.

Those manufactured cards are currently being tested in a real

life trial by potential users in the UK.

The research highlights that the initial barriers to the use

of electronic health record devices will be the security of

information. In the proposed system, data can only be accessed

using a personal identification number, and will only include

information that the individual is willing to enter and share

with others. A similar level of authentication will be required

by health professionals to read it and, therefore, such fears

appear to be exaggerated.

Additionally the device will be independent of centrally

held records, so will not provide a route in to more sensitive

information. The developed MyCare Card Browser interface

classes allow embedding of the user authentication and data

encryption algorithms minimizing the potential for fraudulent

use of devices that have been reported as lost or stolen.

Future stages of the research will entail the development

of more detailed usage scenarios, testing of the MyCare Card

and evaluation of the usability of the MyCare Card Browser

user interface. The final stage of the research will use the

experiences of the project as a starting point for a series of

dissemination activities across the UK, which will broaden

discussion of the personal and shared responsibilities for health

care.

REFERENCES

[1] J. Hall, “Workshop discussion paper: what roles for the patient in patient
safety research?” in Patient Safety Research Conference ‘Shaping the

European Agenda.’, Sep. 24-26, 2007.
[2] NHS Management Executive, “The care card: evaluation of the exmouth

project,” London: HMSO, 1990.
[3] V. Rybynok, P. Kyriacou, J. Binnersley, A. Woodcock, and L. Wallace,

“Mycare card development: the patient held electronic health record
device,” in ITAB. 9th International Conference on, Nov. 4-7, 2009.

[4] MyCare Card dev. site. [Online]. Available: http://www.myc2.org/
[5] G. van Rossum. Python programming language – official website. Python

Software Foundation. [Online]. Available: http://www.python.org/
[6] R. Dunn. wxPython GUI toolkit – official website. wxPROs. [Online].

Available: http://www.wxpython.org/
[7] J. Binnersley, A. Woodcock, P. Kyriacou, and L. Wallace, “Establishing

user requirements for a patient held electronic record system in the
united kingdom,” in Human Factors and Ergonomics Society 53rd Annual

Meeting, Oct. 2009.

