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PREFACE 

On 1 October 1993, the Naval Civil Engineering Laboratory (NCEL) and the 
Naval Energy and Environmental Support Activity (NEESA) were consolidated 
with four other Naval Facilities Engineering Command (NAVFAC) components 
into the Naval Facilities Engineering Service Center (NFESC). Due to publishing 
timeframes, this document may have references to NEESA or NCEL instead of 
NFESC. 
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1. SCOPE 

The overall research project consisted of studies carried out by 
the principal investigator and three graduate students. In order to 
keep this report to a reasonable length, wherever possible, 
duplication of contents between this report and the doctoral 
dissertation of Dr. James Cox (Cox 1994), and the M.S. theses of Mr. 
Ko-Tao Chang (Chang 1992) and Mr. Larry McMichael (McMichael 
1993) has been avoided. The information contained in their theses 
will  be  referenced  as   appropriate. 

2. INTRODUCTION 

A survey of the literature on the bond between concrete and 
reinforcement, and the modeling of bond behavior is reported by Cox 
(1994); those items directly needed for the description of the work 
reported  here  will  be  referenced  as  needed. 

The finite element analysis of reinforced concrete structures 
requires mathematical models for the properties of concrete 
(including behavior due to cracking), properties of the reinforcement 
and of the bond between the concrete and reinforcement. The 
modeling of the elastic-plastic properties of steel is fairly well 
established. Considerable research effort has been expended and 
progress has been made in the development of inelastic 
characterizations of concrete; still much work remains to be done on 
the modeling of crack initiation and propagation, and aggregate 
interlock across partially open cracks. It is widely agreed, however, 
that the area in which the least is known is in the modeling of the 
bond   between   the  reinforcement  and  concrete. 

Numerous experiments have been conducted to try and 
measure the bond behavior between reinforcement and concrete. 
Many of the investigators have attempted to fit analytical 
expressions to their experimental data with the hope that the results 
could be used to predict bond behavior for analysis purposes. 
Unfortunately these bond models have been less than successful in 
predicting bond behavior for conditions markedly different than 
what was used in the test set-up. 

What is needed is a universal bond model, i.e., one that can not 
only reproduce the experimental data base on which it is built but 
also  predict,  with  acceptable  accuracy,  the  response  of a wide range 
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of tests and actual structures. Such broad predictive capabilities 
should not depend on any recalibration of the model when the 
conditions of the test or field structure differ markedly from 
conditions previously considered (other than using the proper 
physical parameters  such  as  concrete  strength,  bar diameter,  etc.). 

The objective of the research described in this report was the 
development, calibration and verification of a more comprehensive 
model to describe the interaction between reinforcing bars and the 
surrounding concrete for reinforced concrete. Both monotonic and 
cyclic loading conditions were considered. The model relates the 
bond stresses to the deformations that occur in the bond layer. The 
scale of the model is macroscopic, i.e., the stresses are averages, of 
the microscopic stresses, over one lug spacing (a unit cell) of the bar. 
Hence no distinction is made between the local bond stresses that 
exist at a lug and the bond stresses occurring between lugs. Both 
elastic  and  inelastic  deformations  are  considered. 

3.     EXPERIMENTAL EVIDENCE 

3.1.   Available     Experimental     Data 

In most situations, physical models are motivated, calibrated 
and verified using experimental data for the system in question. 
Because this study does not contain an experimental component it 
relies on available experimental evidence. The first step is to briefly 
review  the  most  pertinent  evidence   available. 

There are several different levels of investigation at which 
experimental evidence is needed. The first is to define the general 
problem and to suggest a broad framework for its solution. Nearly 
all experimental evidence related to the subject is valuable for this 
phase of the investigation, including experimental studies which are 
not sufficiently well documented to be of value in quantitatively 
establishing a physical model. A comprehensive review of available 
experimental evidence for concrete-reinforcement bond is given by 
Cox (1994). 

For experimental evidence to be of value in quantitatively 
establishing a physical model it must be thoroughly documented; 
unfortunately, many of the past bond studies do not meet this 
criterion.       For   bond   studies   the   required   documentation   should 



include: (a) all physical dimensions of the reinforced concrete sample, 
(b) the properties of the concrete and the reinforcement including 
lug characteristics, (c) a description of the loading rate, the type of 
control used for the independent variables and the instrumentation 
used to measure the dependent variables and finally (d) some 
indication of experimental scatter. In addition the test specimen 
must be sufficiently simple so that it can be easily analyzed. 

Few of the studies reported in the literature meet the above 
criteria to a sufficient degree to be of quantitative value. The studies 
that were found to be useful for detailed analysis include the ones 
reported by Rehm (1979), Eligehausen (1983), Gambarova (1989) 
and  Malvar  (1991). 

3.2.   Scatter     in     Experimental      Data     Base      and     Modeling 
Uncertainties 

When developing a physical model it is absolutely imperative 
that information be available concerning the degree of scatter 
present in the experimental data. Without such evidence a great 
deal of time may be wasted in attempting to describe apparent 
physical phenomena which are in fact only the result of experimental 
anomalies. 

Local failure takes place in the vicinity of the lugs very early in 
the response of reinforced concrete bond (most likely even before 
the peak stress is reached). Because failure is inherently a random 
process one should expect a great deal of scatter in bond behavior. 

Eligehausen (1983), performed, with a great deal of care, a total 
of 125 tests on pullout specimens designed to simulate beam-column 
joints. For a given test series he normally performed only one 
repetition unless the results varied significantly from the original 
test in which case he performed a third test. He found significantly 
more scatter when the specimens were cast from different batches of 
concrete rather than a single batch. In Figs. 1 and 2, the results 
(bond shear vs. bond slip) of three tests for samples taken from a 
single batch are shown. Figure 3 compares results when the samples 
were cast from different batches of concrete. 
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Figure  1.     Example of Experimental Scatter 
(taken from Fig. 4.5 of Eligehausen 1983). 
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Figure 2.     Example of Experimental  Scatter 
(taken from Fig. 4.7 of Eligehausen 1983) 
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Figure 3.     Inter-batch   Experimental   Scatter 
(taken from Fig. 4.8 of Eligehausen 1983) 



Edwards and Yannopoulos (1978) carried out a series of bond 
tests for the expressed purpose of studying the experimental scatter 
in bond test data. For each of eight basic test series they reported a 
minimum of five different tests results. Two of the reported figures 
are shown in Figs. 4 and 5. Figure 4 has the least amount of scatter 
of any of their plots while Fig. 5 has nearly the most. The scatter 
reflected in Fig. 5 is more representative of most of their results. 

The above two sited studies reported average bond stress 
versus bar end slip (embedment lengths of 9.5 lug spacings in the 
first case and 4 in the second). Even greater scatter is to be expected 
when measurements of a more local nature are made. The variation 
in scatter has two sources. First, the results given in Figs. 1-5 are all 
averages over the embedded length, a process that tends to reduce 
scatter. Second, reported local measurements of bond quantities are 
usually made by placing strain gages along the length of the bar to 
determine the axial strain distribution, the local bond shear stress is 
then found by numerically differentiating the results and using 
equilibrium    considerations     (see     Appendix     A). Numerical 
differentiation, of course, is well known for magnifying experimental 
scatter. Some appreciation of the problem can be obtained from 
noting the irregularities of the curve given in Fig. 6 which was taken 
from the report by Cowell (1982). 

A second major source of uncertainty in this study arises 
because of the difficulty of interpreting the experimental results. 
The quantities of interest are the bond stresses and deformations; 
unfortunately, no test has been devised which unambiguously 
measures these quantities. Instead certain related quantities are 
measured, e.g., surface forces and displacements, strains in the 
reinforcement bar, etc. Then an analysis must be used to try and 
relate these quantities to the items of interest. Unfortunately this is 
far from a straight forward task. The problem is two fold. Firstly, 
the development and break down of bond involves local failure of 
concrete. The ability to analyze the behavior of concrete under 
failure conditions is severely restricted because of our very 
incomplete understanding of the multi-axial stress-strain behavior of 
concrete out to and including failure, and our limited ability to 
perform analyses which include localizations such as crack initiation 
and propagation. Secondly, many of the devised bond tests are 
exceedingly complicated in nature, e.g., see Morita (1979) and 
Eligehausen   (1983). 
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In many ways it is a "catch 22" situation. The more one 
attempts to reduce uncertainty by realistically modeling the 
geometry of the tests, the more one is required to include poorly 
understood phenomena such as multi-axial stress-strain behavior of 
concrete,  crack propagation,  etc. 

Thus, when assessing the confidence level for the developed 
bond model both the uncertainties of the underlying experimental 
data base and the uncertainties of interpretation of individual test 
results  must  be  considered. 

4.      FRAMEWORK FOR GENERAL MODEL 

The scale of interest for this development is phenomenological, 
i.e., large with respect to the size of the aggregates in the concrete 
and the spacing of the lugs on the reinforcing bar. The concrete- 
reinforcement interface is idealized as shown in Fig. 7. The "bond 
zone" consists of the interface between the concrete and the 
reinforcement and possibly a layer of concrete immediately 
surrounding the reinforcing bar in which severe local deformations 
occur due to the bond stresses. 

The physical thickness of the bond zone will change during the 
course of the loading process. However, there appears to be little 
experimental evidence concerning the evolution of this quantity. In 
addition, it would seem that for most situations the bond zone 
thickness will be very small compared to the dimensions of the finite 
elements used to model the surrounding concrete. Thus, in this 
study, the bond zone will effectively be taken to have zero thickness. 
The local deformations of the bond zone will still be included in the 
bond behavior by concentrating them at the zero thickness interface. 
The approximation of zero thickness is consistent with the common 
modeling idealization of treating reinforcing bars as lines. The zero 
thickness idealization will most likely have adverse effects in some 
special cases such as the modeling of a lap splice of two bars. For a 
more detailed investigation of the bond zone thickness question the 
reader is referred to Cox (1994). 

The bond stresses consist of the normal component Gn, the 
longitudinal shear stress Tnz (often just referred to as "the bond 
stress") and the circumferential  shear stress Tne-      The bond stresses 

1 1 
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will be given the generalized notation {Q}, i.e., Qi = Tnz, Q2 = On, and Q3 
= Tne (when a thick bond zone is considered it may be desirable to 
include the other three stress components GQ, Gz and Tez to describe 
the internal forces). A tensile, normal, bond stress is defined to be 
positive. 

The corresponding deformation quantities will be denoted as 
{q}. Where q2 is the dilation of the bond layer (due to cracking and 
crushing of the concrete in the bond layer and the overriding of the 
lugs by the surrounding concrete as it slips by; see the quantity 8 in 
Fig. 8). The shear deformation quantities are denoted as q{ and q3. 
The quantity q: is made up of the axial slip of the reinforcement 
relative to the concrete (see Fig. 8) and the local shear deformation 
(yrz) that takes place in the bond layer. Because slip will dominate 
this deformation quantity, it will be referred to simply as "slip". In 
the circumferential direction  a  similar interpretation  is given to q3. 

In order that s and 8 of Fig. 8 should have the units of 
deformation they must be divided by a characteristic length 
quantity. While the thickness of the bond zone might appear to be a 
logical choice there are two arguments against it. Because the 
dilation is distributed throughout the bond zone, dividing 8 by the 
bond zone thickness gives a meaningful average strain quantity. 
However, the interface slip component of s is concentrated at the 
interface and thus normalizing s with respect to the bond zone 
thickness is less rational. The main reason, however, for not choosing 
the bond zone thickness is the fact that it is not explicitly 
determined. 

If the behavior of a single bar embedded in a very large mass 
of concrete is considered, the only length scales present are those 
associated with the reinforcing bar (assuming the concrete is treated 
as homogeneous so that a length scale related to aggregate size is not 
present). The three bar scales are the bar diameter (Db), the lug 
height and the lug spacing. If the ratios of these three quantities 
remain nearly the same for a series of bars then there is only one 
scale and any one of the three can be selected. For these ideal 
conditions, bond behavior will be independent of bar size if s and 8 
are non-dimensionalized with respect to Db- Shima (1987) reported 
that he experimentally observed this to be true. However, 
Eligehausen (1983) suggests that this is not the case. The difference 
in the two observations may be due to the fact that Eligehausen's test 
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apparently introduces multiple scales due to the nature of the test 
specimen (e.g., proximity of the column reinforcement). For some 
applications (e.g. those having a characteristic element size greater 
than the bond zone size) other length scales (such as spacings 
between adjacent bars, cover depth, etc.) may exist; in these cases 
relying on only Db may not be sufficient. 

Following the convention adopted by Shima (1987) and others, 
s and 5 are normalized with respect to the bar diameter, e.g. q} = 
s/Db, etc. Under some circumstances the bond zone thickness would 
be expected to be correlated to the bar diameter (assuming that the 
lug height and spacing are correlated to bar diameter) and, thus, the 
defined deformations will be directly related to the average strains 
that would be obtained if one normalized with respect to bond zone 
thickness. 

The goal of this research is the development of a 
comprehensive constitutive model for the relationship between {Q} 
and {q}. A consideration of the inelastic nature of deformation in 
concrete, the permanence of the local failures that takes place in the 
concrete in the vicinity of the lugs, the frictional component of bond 
behavior and experimental observations, leads to the conclusion that 
the behavior is elastic-plastic with a yield surface that evolves with 
"damage." For example, the cyclic bond tests reported in Fig. 9 
clearly show classic elastic-plastic behavior and the yield states 
plotted in Fig. 10 indicate a strong dependency on damage. The 
several components of elastic-plastic theory must now be identified 
for   reinforcement-concrete   bond. 

It is becoming increasingly accepted that the behavior of 
concrete can be described by constitutive law where the elastic 
moduli are damage dependent (elasto-plastic coupling); hence, it 
would seem reasonable to include this behavior in an elasto-plastic 
bond law. Unfortunately, bond tests to date have not been conducted 
with the goal or necessary precision to isolate the elasto-plastic 
coupling behavior. In addition this refinement would seem not to 
have a significant impact on bond behavior, hence, it will not be 
considered at this time. Instead the elastic component of the 
deformation {q}e is simply expressed in terms of {Q} by an assumed 
linear elastic law 

{q}e = [A]{Q} (1) 

15 
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Figure 9.     Bond Stress-Slip Relationship for Cyclic Loading 
(taken from Fig. 4.26 of Eligehausen 1983) 
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Figure  10.   Bond Shear Stress - Bond Normal Stress Envelopes 
(taken from Fig.  12 of Gambarova 1989) 
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where the total deformation has been additively decomposed into 
elastic  and  plastic  components: 

{q} = {q}e+(q}p (2) 

The coefficients of the compliance matrix [A] are taken to be 
constants. 

The yield function is written in the form 

0(Qi,Dk) = 0 (3) 

where Dk are internal variables whose values determine the 
instantaneous position of the yield surface in stress space. The Dk 

will be called "damage measures" even though they may initially 
lead to a hardening of the yield surface. The damage measures will 
be functions  of the plastic deformation: 

Dk = Dk(qjp) (4) 

Because    friction    is    an    important   component   of   interface 
behavior it is expected that the plastic flow will be "non-associative": 

{q}p = X* {grad*F} (5) 

The potential function is denoted as XF. 

The determination of the desired elastic-plastic model requires 
the identification of the quantities [A], O.Dkand**'. 

The above discussion has been in terms of three bond stress 
and three deformation components, however, currently there does 
not appear to be enough evidence to permit this degree of generality 
and in fact such a model would probably find little use in analysis at 
present. For the remainder of this work the theory will be limited to 
the case where q3 = Q3 = 0. This situation occurs exactly for 
axisymmetric conditions. For non-axisymmetric conditions qi, q2, Qi, 
and Q2 will be circumferential averages of the corresponding 0 
dependent   quantities. 

The determination of [A], O, Dk and *P for the restricted 
condition   of   axisymmetry   still   is   a   formidable   task.      Before   this 
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calibration process is undertaken, the necessity of numerically 
implementing the model must be addressed in preparation for 
interpreting   the   experimental   data   base. 

5 .     SPECIMEN MODEL IMPLEMENTATION 

5.1.   Ideal     Test 

The numerical modeling of each test specimen will vary, 
however, certain common features do exist. The analysis of an ideal 

test that incorporates these common features will be considered first 
followed by applications to specific tests in the data base. 

The ideal test is defined as a homogeneous, axisymmetric test 
in which qi (slip) is specified and an external constraint, dependent 
on Qi and Q2, is placed on the dilation q2, i.e., 

qi = given (6) 

q2 = H(Qi). (7) 

It will be assumed for now that qi is an ever increasing function 
(monotonic conditions) which results first in elastic response 
followed by continuous plastic behavior. The nature of H will depend 
upon the type of test and will be addressed when specific tests are 
considered. The assumption of homogeneous response (along the 
length of the bar) is rigorously met if the embedment length of the 
bar is of the order of one lug spacing (one unit cell). Cox (1994) 
investigated variations in the response along the lengths of longer 
bars. 

First consider the magnitude of qi required to reach first 
yielding, denote it by qiy, etc.   Eqs. (1), (3), and (7) give: 

{q}y=[A]{Q}y (8) 

O(Qiy,0) = 0 (9) 

q2y = H(Qiy) (10) 

Equations (8), (9) and (10) constitute a set of 4 simultaneous 
nonlinear equations  in four unknowns qiy, q2y, Qiy and Q2y.   This set 
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of   equations   can   be   solved   by   any   number   of   standard   nonlinear 
equation   solving  methods,  the  simplest  being   successive   substitution. 

For monotonic conditions, beyond the yield point it is expected 
that the stress state will continuously remain on the yield surface. 
This will require for each solution step that AO = 0 (for simplicity 
AON of step N has been written as AO). For purposes of evaluating 
test results computational efficiency is not important, however, 
accuracy and simplicity are, thus, a simple midpoint method with 
very small time steps is used to enforce consistency. This results in 
the following approximation for AO: 

2    ao 
AO =   1 

i=l  ** 

J  ao 
AQi +   X 

j = l   aDJ 
ADi = 0 

c      J (11) 

The c indicates that the derivatives are evaluated at the midpoint of 
the step, also Qic = QiN_i +AQi/2, etc. In Eq. (11) it has been 
assumed  that there  are J  damage  variables. 

Similar approximations are used for the constraint Eq. (7) 

AQi (12) 
2     9H 

Aq2 =    I 
i=l 3<2' 

and for the evaluation of Eq. (4): 

ADj=   I 
2      9D 

i=l  a<lPi    c 
A(Ipi (13) 

The incremental forms of Eqs. (1) and (2) are: 

{Aq}e= [A] {AQ} 

{Aq}={Aq}e+{Aq}p 

The incremental form of Eq. (6) is simply: 

(14) 

(15) 

Aqi= given (16) 
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Finally an incremental form of Eq. (5) is needed; with only two 
unknowns it is convenient to write it in the form 

Aqip=X (17) 

Aq2P= *> gc (18) 

where g is a function of the state of the material (i.e., a function of 
the quantities Qj and Dk) and the c denotes its value at the 
increment's midpoint. (The quantity A, is just the value of Aqip, while 
g is the ratio of Aq2P to Aqip  for non-associative  flow.) 

Now Eqs. (11) through (18) constitute a set of 9+J simultaneous 
equations in the 9+J unknowns, Aqi, Aq2, Aqie, Aq2e, Aqip , Aq2P, AQi, 
AQ2, ADi... ADj and X. These nonlinear equations can be solved using a 
standard nonlinear solver. In the actual solution of these equations a 
number of the quantities can be eliminated analytically before a 
numerical  analysis  scheme  is  applied. 

5.2.   Eligehausen's     Test 

Eligehausen's (1983) test specimen and setup are shown in Fig. 
11. Because no local measurements were made along the length of 
the bar it is necessary to assume that the bonded length (5 bar 
diameters = 9.5 lug spacings) is sufficiently short that the behavior 
can be approximated as homogeneous over the embedded length; for 
additional discussion on response gradient effects in short specimens 
see Cox (1994). The test configuration is not axisymmetric about the 
center line of the bar, hence, it is assumed that the model applies 
(approximately) to circumferential averages of Qi, Q2, qi and q2 as 
well as to true  axisymmetric conditions. 

The measurement of the axial slip of the bar relative to the 
concrete (s = qi *Db) was made at the unloaded end. It is assumed 
that this value is approximately equal to the average value over the 
embedded length of the bar. Because the strains in the bar and 
concrete are small, it is expected that this is a reasonable 
approximation, see Cox (1994).    The bond shear stress reported by 
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Eligehausen  was found by dividing  the  total force  applied  to the  bar 
by  the circumferential contact area thus  giving  an  average value. 

Making the above assumptions, Eligehausen's test fits the 
specification of the ideal test provided that the constraint to the bond 
zone dilation can be expressed in the form of Eq. (7). The specimen 
was designed so that very early in the test a splitting crack would 
form. Figure 12 shows an idealized free body of the transverse 
forces acting on the lower portion of the concrete column stub 
assuming that the splitting crack has formed and no external forces 
are applied to the column (only a very small part of the normal bond 
stress Q2 = Gn is shown). The quantity Fv denotes the average force, 
at the crack level, in the vertical steel. The bonded length of the 
horizontal bar is L = 5Db-    Equilibrium gives: 

-DbLQ2=4Fv (19) 

or Fv = -1.25Db
2Q2 (20) 

Each vertical bar will be modeled as a semi-infinite reinforcing 
bar embedded in a large piece of concrete. The force Fv applied to 
this steel will cause it to pull some distance 8C1 out of the concrete. 
In Appendix B an empirical relationship, based on experimental data 
taken from Shima (1987), between 8C1 and Fv is found (combining 

Eqs. B-5 and B-12): 

Üül  _   ^h.   r      /       Fvmax       v   L62     (Fvmax - Fv) -, 
Db= * LAKEJ    '    Eun    J 

(21) 

where Er is the modulus of the vertical reinforcement; Dbv is its 

diameter; r\ and Eun are defined in the Appendix, and FVmax is the 
maximum value of Fv experienced in the test to the point in question. 

The increase in the size of the cavity due to the splitting crack 
is shown in Fig. 13. The average radial enlargement of the cavity can 
be found from the integral: 
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Figure  12.   Idealized Free Body of Lower Half of Eligehausen's 
Concrete  Sample 
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Figure  13.   Dilation of Bond Layer due to a Splitting Crack 
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8C1 9     K/2 2    
n/2 6ci 

—— = —    i   8i(6) d6 = —-    J   8C1 sine de - .64 :=-        (22) 
Db mDb    0 7rDb    o M) 

In addition to the above, there is local deformation of the 
concrete that immediately surrounds the reinforcing bar. This 
concrete will be approximately modeled as a thick walled-cylinder of 
outer radius equal to the distance to the center-line of the vertical 
bars, i.e., b = 3a = 3(Db/2). For the purpose of calculating the 
additional deformation contributed by the thick-walled cylinder, the 
displacement is taken to be zero at its outer surface. Using the 
elastic, thick-walled, cylinder solution for the case of plane stress 
(e.g., see Timoshenko 1987), it is easy to show that the radial 
deformation at the inner surface of the cylinder of concrete can be 
written  in the form: 

8C2/Db = (5/Ec) On (23) 

If no cracking is assumed: 

For a Poisson's ratio of concrete of 0.17  and b/a = 3:  t, = 0.45.    If 

instead complete cracking  of the cylinder is assumed then 

% = .5 ln(b/a) (25) 

which gives t, = 0.55.   Because the value of \ varies over such a small 
range, a constant value of \ = 0.55 is used. 

Due to the axial stress Gz, and the radial and hoop stresses 
a r = a e = o n = Q2 in the reinforcement, the diameter of the bar 
changes by (for linear, isotropic, elastic behavior): 

D^ = 2k [(1 " Vr)Q2 " Vr °z] (26) 
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Poisson's ratio of the bar is denoted as vr. The axial stress in the bar 
is required to balance the shear bond stress Qi- Recalling that Qi is 
taken here to be the average bond stress, the axial stress in the bar 
at the center of the embedment is  approximately: 

Gz = 2LQ!/Db (27) 

Substituting into Eq. (26) gives: 

5b 1 2vrL 
^ = 2Et  Kl-v^-^Qü (28) 

The quantity q2 is the dilation of the bond layer (normalized by 
the bar diameter). Compatibility requires that this dilation be 
accommodated by a combination of a decrease in bar diameter and 
an increase in the diameter of the cavity in the concrete. The 
decrease in bar diameter is -8b while the increase in the cavity size is 
8ci + 8c2-    Thus compatibility gives: 

q2 = (-8b + .64 8C1 + 8C2)/Db (29) 

Comparing this expression to Eq. (7) yields 

H(Qi) = (-8b + .64 8C! + 8C2)/Db (30) 

where 8b/Db, 8C1/Db and 8C2/Db are given by Eq. (28), Eq. (21), and 

Eq. (23). 

Having an expression for H now permits the analysis of 
Eligehausen's test as an ideal test. The principal approximations in 
this analysis are: (1) the slip measured at the free end of the bar is 
approximately the average of qi, (2) the averages of the stress and 
deformation quantities satisfy the point plasticity model (i.e., 
assuming homogeneous conditions over the embedded length), and 
(3) the expression used for H. 

The expression given in Eq. (30) is obviously quite approximate 
and, thus, the analysis of Eligehausen's tests must be considered as 
less than exact. 
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The analysis of Eligehausen's cyclic tests requires only a slight 
extension of the solution procedure outlined for the ideal test under 
monotonic conditions. Between each plastic segment of a cyclic test 
there is an elastic phase whose extent is determined by a process 
similar to that described for the initial elastic behavior; see the 
description of the ideal test. For these subsequent elastic phases, the 
damage variables are not zero but equal to the values found at the 
end  of the preceding plastic  segment. 

5.3.   Gambarova's     Test 

The details of the test performed by Gambarova (1989) are 
shown in Figs. 14 and 15. The length of the bar embedment is 3 bar 
diameters = 5 lug spacings. The concrete specimen is pre-cracked 
(splitting crack) with a prescribed crack opening (width). The 
normal force N required to maintain the selected crack opening (as 
observed on the surface of the specimen) is measured during the 
course of the pull-out test. 

The sample is not axisymmetric and, thus, again one must deal 
with circumferential averages of the stresses and deformations. An 
idealized free body of the transverse forces and stresses acting on 
one quarter of the cross-section of the sample is shown in Fig. 16 
(the shear stress Tne is assumed to be negligible). Because no 
information is available concerning the distribution of Gn, it is 
approximated as  a constant.    Equilibrium gives: 

Q2 = an =-N/(DbL) (31) 

Gambarova   used   the   following   formula   to   define   a   generalized 
normal  stress quantity (for distinction, in this report it will be called 

Ggam): 

CJgam = (2N)/(7TDbL) (32) 

Comparing these two expressions it is seen that: 

Q2 = - n Ggam/2 (33) 
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Figure  14.   Details of the Testing Machine used by Gambarova 
(taken from Fig. 8 of Gambarova 1989) 
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Again the relative slip between the bar and the concrete was 
measured at the free end of the bar; this value is taken to be the 
average value of qi. 

The dilation of the bond zone q2 is accommodated by the 
prescribed splitting crack (80), the decrease in diameter of the bar (- 
8b of Eq. 28), and local deformation of the concrete in the vicinity of 
the bar (8con). A two-dimensional (plane stress) finite element 
analysis of one quarter of the cross-section of the concrete (see Fig. 
16) was performed. The distribution of the normal bond stress was 
taken to be a constant, and the concrete was treated as linear elastic 
(vc = 0.17). The average radial growth (8con) of the cavity was 
calculated and correlated to the bond stress Q2 as: 

8COn = -.59 Q2/Ec (34) 

The constraint H of Eq. (7) is found by combining all the above 
effects  as: 

H(Qi) = (-8b + 8con + .64 80/2)/Db (35) 

where 8b is given by Eq. (28), 8con by Eq. (34) and 80 is the specified 
opening of the splitting crack. (Eq. 22 is used in determining the 
average dilation due to the spitting crack.) 

With the exception of Eq. (9), Gambarova's test can now be 
analyzed as an ideal test. Depending upon the nature of the 
expressions for the damage measures Dj, they may have some initial 
values Di0 due to the introduction of the splitting crack prior to the 
beginning of the pull-out test; this will be discussed in more detail. 

Finally it is noted that in comparing the model predictions for 
normal bond stress to the reported values by Gambarova that Eq. 
(33) is used. 

5.4.   Rehm's    Test 

The test specimen is shown in Fig. 17 (see Rehm 1979). For the 
test of interest here the embedded length was 3 bar diameters = 5 
lug spacings.    The configuration is initially axisymmetric and will be 
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Figure   17.   Test Specimen for Rehm's Test 
(taken from Fig. 1 of Rehm 1979) 
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assumed to remain so during the course of the test. (Strictly 
speaking this would require infinitely many radial cracks to form 
which only differed in their orientation (6); the best one can hope for 
is that a reasonable number form at equal intervals around the 
circumference.) Thus, the forces and deformations need only be 
averaged in the length direction. Again the slip is measured at the 
free end of the configuration. lto' 

The identification of the constraint function H, see Eq. (7), 
requires the determination of the stiffness of the concrete cylinder 
surrounding the bar. There are two difficulties. Firstly the cylinder 
is considerably longer than the embedded length of the bar and 
secondly  the cylinder develops  radial  cracks. 

How much of the total length of the cylinder is actually 
effective in resisting the normal bond stress Q2 is a question for 
which no easy answer is available. Before cracking begins, one might 
perform a simple linear elastic finite element analysis to determine 
the effective length, however, this is not a straight forward matter 
once cracking is initiated. Because of the other modeling 
assumptions used in the consideration of the ideal test, it is felt that 
such a refinement is not justified at this time. Instead it is assumed 
that the entire length L* of the concrete cylinder is effective; for a 
2-D analysis of this specimen see Cox (1994). 

To determine the constraint offered by the concrete an 
idealized thick walled cylinder of concrete subjected to an internal 
pressure G[= -(L/L*)Q2 is considered, see Fig. 18. The extent of 
cracking at a given stage of the test is denoted by X = Dcr/Dcyi. The 
concrete will be treated as an idealized linear elastic material (Ec,vc) 
which cracks when the maximum principal stress reaches the tensile 
strength (ft) of concrete. For later use an external pressure (zero for 
Rehm's test) a0 will be included in the analysis of the cylinder. The 
analysis is similar to that developed by Tepfers (1979). The values 
of Ec and ft for concrete are correlated with the compressive strength 
fc' (see Appendix C). 

For the present, considerations are limited to the case where a0 

is a constant and G; is an ever increasing function. From 
manipulation of the classical thick-walled cylinder solution of 
elasticity, e.g., see Timoshenko (1987), several important results can 
be easily found. 
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Figure  18.   Idealized Thick-Walled Cylinder of Concrete 
Surrounding the Reinforcing Bar in Rehm's Test 
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The first cracking of the cylinder occurs when the internal 
pressure reaches a value Gj*, and when the cracking progresses to X** 
(caused by an internal pressure Gj**) the situation becomes unstable 
and cracking proceeds through the wall thickness without any 
further  increase  in  the  internal  pressure: 

r   1 - cc2 + 2ß _ 

«i'=f'[        l+«2 1 <36> 

Db 
where a = ^ (37) 

JL>cyl 

°0 
ß = ^ (38) 

and X**= V-2 - ß + V 5 + 6ß + ß2 (39) 

ftX**      l - X**2 + 2ß -. 
°**=~^l    i + x**2     ] (40) 

For values of Gi between o* and Gi**, the corresponding values  of X 
(extent of cracking) can be found by solving the following equation: 

r 1 - X2 + 2ß n 
cxoi-ftX [    x + x2      ] =0 (41) 

The   radial   displacements   of   the   inner   and   outer   surfaces   of   the 
cylinder are denoted by 8C and 8Co (note: for <5\ less than Gi*, X = a): 

5C i [d-vc)X2 + (l+vc)]o.-2(X/a)o0] 

D^ = 2i; { Gi ln(X/a) + (TT^2) ) (42) 

5, ! 2X2o..[(l -vc) + (l +vc)X2]a0 

 l 77T^ 1 (43) Db  " 2aEc 
l (1 - X2) 
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The first term in the expression for 8C is due to the radial 
deformation of the concrete in the cracked zone; this term is derived 
by requiring that the hoop stress G e be zero in that zone and 
integrating  the  equations  of elasticity. 

The dilation of the bond layer q2 is accommodated by a change 
in the bar diameter (-8b, see Eq. (28)), and the expansion of the 
cavity in the concrete (5C); hence the constraint is given by: 

H(Qi) = (-8b+ 8C)/Db (44) 

Rehm's test (the external pressure G0 is zero) now can be 
treated as an ideal test. In actual application it was found 
convenient to break the analysis into two behavioral regimes, i.e., 
"pre-crack initiation" and "post-crack initiation". In addition, Q2 was 
treated as the specified quantity instead of qi. In the "pre-crack 
initiation" regime Q2 was incremented from 0 to -G[*, while in the 
"post-crack initiation" regime it was incremented from -G* to -Gi**. A 
failure to converge in the second regime indicated that -Q2 had 
reached a maximum value of less than Gj** and as a result complete 
cracking of the cylinder did not take place. 

5.5.   Malvar's     Test 

Malvar's (1991) test specimen consisted of a reinforcing bar 
surrounded by a cylinder of concrete. The embedded length is 3.5 
bar diameters = 5 lug spacings. The ratio (L*/L) of the total cylinder 
length to the embedded length is 1.5 and the diameter of the 
cylinder of concrete is 3.8 times that of the bar. Unlike Rehm's test 
an external pressure G0 is applied to the cylinder. 

Malvar's test has two phases. In the first phase an external 
pressure G01 is applied and the bar is pulled until the cylinder is split 
completely through by one or more cracks. At this point the bar is 
unloaded. A residual slip s0 remains. In the second phase the 
external pressure is changed to G02 and the bar is then reloaded and 

pulled out of the concrete. 

The analysis of the first phase follows that given for Rehm's 
test. It is assumed that the unloading is entirely linear elastic. For 
the   second   phase   it  is   assumed   that:   (1)   there   is   no   longer   any 
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constraint on the dilation and (2) the value of the normal bond  stress 
is given by: 

Q2 = Q20 = -(^f^)C7o2 (45) 

Eq. (45) takes the place of Eq. (7) and AQ2 = 0 takes the place of Eq. 
(12). 

In the numerical analysis of Malvar's test (the results will be 
discussed later) two problems arise. The first problem stems from 
the use of the simple cracking criterion of Ge = ft. This criterion does 
not account for the stress concentration introduced by the 
longitudinal lug that runs the length of the bar, nor the stress 
concentration at the tip of an existing crack, nor the inherent scatter 
in the failure process. Thus, the analysis does not always predict 
cracking of the concrete cylinder at the proper time. In an attempt 
to overcoming this problem, in the analysis of the first phase of 
Malvar's test, when the predicted plastic slip exceeds the measured 
residual slip value (s0), the end of the phase is assumed. The second 
difficulty arises for the higher values of G02; during the course of the 
analysis of the second phase, closure of the splitting crack is 
predicted. When this occurs a third phase is instigated in which the 
constraint condition (Eq. 44) is again used, however, ft is now taken 
to be zero in recognition of the fact that the cylinder is fully cracked. 

6.     MODEL IDENTIFICATION AND CALIBRATION 

The identification of the two degree of freedom, elastic-plastic 
model for the bond in reinforced concrete requires determination of 
[A], O, Dkl and g, see Eqs. (1), (3), (4), and (18). 

The development of the model was carried out in two steps. 
Initially only monotonic conditions were considered and then later 
the model was extended to cyclic situations. The extension of the 
model to cyclic conditions involved only very minor modification of 
what had been previously developed for the monotonic case, 
followed by the addition of certain features unique to cyclic 
conditions. 

In the first of the following two sub-sections the development 
of the  monotonic  model  will  be  discussed.     The  identification  of a 
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given model component (e.g., the yield function) was an evolving 
process involving may intermediate steps; for the sake of brevity 
only the final forms of the expressions are reported here (some steps 
in the development of a slightly more general version of the model 
are given in detail in Cox 1994). In the second sub-section the 
extensions  necessary  for cyclic  conditions  are described. 

6.1.       Monotonie   Model 

6.1.1.    Elastic properties 
Because the elastic behavior of the bond depends for the most 

part upon local elastic deformations in the concrete of the bond zone, 
it is expected that the components of the compliance matrix [A] will 
be proportional to the reciprocal of the concrete modulus Ec: 

[A] = [a]/Ec (46) 

In Malvar's test once the concrete cylinder had cracked the 
sample was unloaded and then reloaded with the external pressure 
being held constant (i.e. Ch remaining a constant and Qi varying). 
From Eq. (1) the elastic changes in deformation during the reloading 
process are Aqi = (an/Ec)AQi and Aq2 = (a2i/Ec)AQi. Comparing 
these expressions to Malvar's experimental results gave ai i = 25 and 
a2i - 0.8, see Cox (1994). 

For the unloading portion of Eligehausen's cyclic tests a 
reasonable value is assumed for AQ2, i.e., AQ2 ~ -0.5 AQi. Using this 
assumption the unloading curves (Qi vs. qi) reported by Eligehausen 
gave   an ~ 7.8 + 0.5 ai2- 

In Gambarova's test the initial splitting crack is held at a 
constant width, if this is assumed to be the major contribution to q2, 
Aq2 will be zero during the initial portion of the pull-out test. This 
assumption gives AQi = Eca22/lal Aqi and AQ2 = -Eca2i/lal Aqi. Using 
these expressions to interpret the initial slopes of Gambarova's 
curves gave a2i/lal = 0.025 and a22/lal « 0.05 (where lal denotes 
the determinant of [a]). Combining these two expressions yields a2i = 
0.5a22 and an « 20 + 0.5ai2- 

In Appendix D an idealist theoretical argument is given which 
suggests   that: 
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an = a2i   and   an - a22 (47) 

The considerable differences (scatter) in the above 
experimental and theoretical observations are at least partially due 
to difficulties in making accurate measurements when the 
deformations are small (as they are in the elastic range). It is also 
likely that neglecting of the damage dependency of the elastic 
properties  also  contributes  to  the  scatter. 

For the remainder of this study it is assumed that [A] is 
symmetric, an = a2i. To begin the calibration process, compliance 
values of an = 10, aJ2 = a2i = 1 and a22 = 4.5 were selected from the 
range of observed values discussed above. These values were 
refined as comparisons of model predictions were made with the 
experimental data base. (It is interesting to note that an unweighted 
least squared error fit to the above experimental and theoretical 
observations gives an= 19.7, ai2 = 7.7, a2i = 5.9 and a22 = 18.1; if 
symmetry is enforced an = 19.0, ai2 = a2i = 5.9 and a22 =  17.6). 

6.1.2.    Yield function 
In determining the yield function, ideally as a first step one 

would like to establish the shape of the initial yield surface by 
picking yield points from various virgin loading curves and plotting 
these   points   in   stress   space. Unfortunately,   for   bond   between 
concrete and reinforcement there are two obstacles to this step. The 
first is the relative scarcity of reinforced concrete bond test data for 
which the complete bond stress state is known. An even more 
severe problem is the experimental scatter in the data which renders 
recognition of the yield point very difficult. The determination of the 
shape of the evolving yield surface from similar observations for 
reloading curves is equally difficult. Making simplifying assumptions 
about the evolution of the yield surface, Cox (1994) analyzed the 
data of Malvar (1991) establishing the general form of the yield 
surface presented here. An alternative procedure (which considers 
the data of Gambarova's tests) to establish bounds on the yield 
surface is presented in the following. 

For Gambarova's test, once the yield surface is reached, it is 
expected that each remaining stress state (pair of values of Qi,Q2) 
will lie on the evolving yield surface. Of course it is not the initial 
yield  surface as some damage has  occurred.     Thus, if all such points 
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are plotted in stress space they must lie within the region swept by 
the yield surface as it evolves from its initial shape to a shape 
corresponding to complete damage,  see Fig.  19. 

For Malvar's tests once the concrete cylinder is completely split 
the value of Q2 is known (see Eq. 45), and points (Qi,Ch) can be added 
to the plot of the previous paragraph. 

In Fig. 19 the first four curves are Gambarova's data with the 
numbers in parenthesis giving the openings of the prescribed 
splitting crack (units of mm). For Malvar's tests (the remaining 
experimental curves) the first number indicates, once splitting has 
occurred, the normal bond stress (psi) while the second number 
indicates  the test  series. 

For the moment the stress values have been normalized with 
respect to the compressive strength of the concrete fc (more will be 
said on this matter later). 

The plotted stress states are a subset of all the stress states 
which occur on the yield surface during its evolution. The assumed 
boundaries to this set of points (i.e., two bounding curves) are shown 

on the graph.    The equation of the upper curve is Qi/fc   = (X3(Q2/fc ) 
where (Xi = 0.26 and the equation of the lower curve is Qi/fc   = OC4P- 
exp(-0C2(Q2/fc'))] where a 2 = 3.    These bounds suggest the writing of a 
yield function in the form: 

IQi/fs|= C(Dk){[l-h(Dk)] a3(-Q2/fs)
ai + h(Dk)[l-e(-«2(-Q2/fs))]}     (48) 

where the normalizing factor fs will be selected below and the reason 
for the absolute value signs will be discussed in a following section. 
In Cox (1994) a more general form that includes "kinematic 
softening"  (i.e., the yield surface translates to the right) is presented. 

The blending function h(Dk) is zero for zero damage and reaches a 
value of one for some large value of damage; the following form (see 
Fig. 20) was found to yield good results: 

h(Di) = 
f0 DKDIS 

3[f(Di)]2-2[f(Di)]3   Dis<Di<Die (49) 
1 Die<Di 
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where 
f(Di) = (Di-Dis)/(Dle-Dis). (50) 

The transition from the power law to the exponential law can 
perhaps be explained as a transition from yielding by local cracking 
of the concrete in the bond zone to one of generalized friction 
(including local crushing as the stress approaches the compressive 
strength  of the  concrete). 

The damage measure Di in Eq. (49) remains to be defined. 
Eligehausen (1983) used a damage measure based on inelastic work. 
He, however, points out that such a measure will not be acceptable 
when a large number of cycles are involved. The present authors 
were not able to achieve success with his damage measure even for 
monotonic loading conditions. Eligehausen (1983) also observed that 
when the slip is equal to one lug spacing that the bond will be 
completely failed, i.e., the concrete key occupying the space between 
two successive lugs will have been completely sheared off, thus, 
effectively providing a free pathway for further sliding inhibited 
only by frictional behavior. This observation suggests a measure of 
damage equal to the plastic slip divided by the lug spacing. The best 
overall results were found if instead of using the lug spacing as 
measured along the length of the bar, the spacing perpendicular to 
the lug was used, see Fig. 21: 

Di = (qip Db)/sL* = (qip Db)/(sL cos 0) (51) 

The use of SL* in place of SL would suggest that the distance 
that cracks must propagate in a direction perpendicular to the face of 
the lug, to reach the next lug, is of fundamental importance. 

Returning to a discussion of the yield function (Eq. 48), at a 
first glance it might appear to be more appropriate to use a simple 
frictional law Qi = -^ Q2 for the yield surface at complete damage 
rather than the exponential law. However, as the ratio of the normal 
stress Q2 to the compressive strength of the concrete fc approaches 
one, something more complicated than simple friction should be 
expected. An explanation of how local crushing effects the final 
shape of the yield surface is presented by Cox (1994). 

One would like the yield function to be valid for all concrete 
strengths.      When   dealing   with   bond   data,   there   is   not   complete 
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Figure 21.  Lug Spacing and Angle 
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agreement in the literature whether the stresses should be 
normalized with respect to the compressive strength of concrete fc 

(e.g., see Rehm 1979) or some power of the quantity (e.g., see Menzel 
1941, Eligehausen 1983, Shima 1987). Eligehausen (1983) uses fc'

1/2 

while Shima (1987) uses fc'
2/3 for small values of slip and fc 

1/2 for 
large values. An alternative is to use the tensile strength ft. The 
tensile strength would seem to be appropriate because bond 
behavior is thought to be heavily influenced by the formation of 
cracks in the concrete in the bond zone. In this study, normalization 
of the stresses in the yield function with respect to fc , fc 

1/2 and ft 

were investigated; the value of ft was found to be the most 
appropriate. Thus, in Eq. (48) fs is taken to be ft. (If ft is correlated 
to fc'

2/3, as it is in Appendix C, the net effect is to normalize by 

fc'
2/3). When ft, instead of fc , is used for fs the value of a2 in Eq. 

(48)  becomes  0.26. 

The function C(Dk) in Eq. (48) controls the hardening and 
softening of the yield function as damage progresses. It was found 
that: (1) C is a function of the damage measure Di of Eq. (51) and (2) 
a dependency on q2 is also necessary to model the behavior 
exhibited in Gambarova's tests. Gambarova, in his test series C, 
performed 4 tests (one repetition each) with different widths 
(openings) of the prescribed splitting crack. If it is assumed that: (1) 
C is only a function of Di, and (2) the plastic slip can be approximated 
by the total slip, then using Eqs. (33) and (48)-(51) C can be found 
from Gambarova's experimental data as a function of Di (see Fig. 22). 
The four distinct curves are labeled by the widths 80 (in mm) of the 
splitting crack. If C were only a function of Di a single curve would 
have been found. It is obvious that C is also a function of the dilation 
q2 (resulting from the presence of the splitting crack). A number of 
different functional forms for describing the dependence of C on 
damage and dilation were investigated, the most successful was (an 
alternative form is given by Chang  1992): 

C(0) = cci2 (52) 

dC = [cc4(Cub - C)e'a5 Di - a6(C - an)t
a

7 
Di] dDj (53) 
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where 

Di' = 

Dl Dl<l 
(1 - DO (54) 
oo D i >  1 

Cub = a8 [1 + <X9 min(e-aio q2, ail)]. (55) 

Values for the parameters OC4, etc. were initially determine by 
seeking a reasonable fit to the experimental data of Gambarova 
(1989); they then were slightly modified by considering the 
experimental results of Eligehausen (1983): a 4 = 20, a5 = 4.7 
a6 = 5.4, a7 = 0.3, a8 = 4.45, a9 = 0.93, OCio = 340, an = 0.94 and 
(Xi2 = 2.2. With these coefficients (and the additional assumption 
that the dominant component of q2, in Gambarova's test, is the 
opening of the splitting crack, see Eq. 22) the model was used to 
predict values of C for Gambarova's tests. The results are compared 
in Fig. 23 to the values found directly from his experimental data 
(see the discussion leading to Fig. 22). While the predictions are not 
perfect they would certainly appear to fall within the range of 
expected experimental scatter. Because of the several assumptions 
used in interpreting the experimental results (see description above), 
at this point no attempt was made to improve the correlation 
between model and experimental results. Note that some of the 
experimental data for small values of Di may represent pre-yield 
states  and  should  be ignored. ifeA 

6.1.3.    Non-associative flow rule 
The flow rule requires a determination of the function g of Eq. 

(18). Using Eqs. (1), (2), (7), (33) and (35) and Gambarova's 
experimental data the function g is calculated and plotted as a 
function of Di in Fig. 24 (the numbers in parentheses are the widths 
of the prescribed splitting cracks). While a definite trend is shown 
by the data of Fig. 24, the scatter is very large. This is not 
unexpected because the determination of g requires taking a 
derivative (i.e., of q2P with respect to qip) of the experimental data, 
an operation which greatly magnifies experimental scatter. The first 
functional form selected to model the data of Fig. 24 was found to be 
inadequate to describe the experimental results found by Malvar 
(1991). Cox (1994) carefully analyzed Malvar's data and proposed 
an alternative description for g which included a dependence on the 
confining   stress   Q2 (in addition to Dj).    A slightly modified form (to 
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make it more suited for extension to cyclic behavior) of his 
expression is  given below: 

D 

g = go " gl + < 

b max   A 

ßl 
C; 

max 

1 

D, < d 1 "^ umax 

1 
")   dmax < Di < ß3/hs 

vs   vl+ß2Dihs      l+ß2ß3 

^0 Di > ß3/hs 

(56) 

where 
_f0 -Q2<0 

gl" lß4 (-Q2)ß5 lq2p - ß6l   -Q2> 0 

Q2 
dmax = max (ß7 - ß8   j- , 0) 

02 
hs = ß9 " ßlO   f 

Q2 
Vs = ßll - ßl2  J- 

1 1 
gmax — .,     v vs      1 + ß2dmaxhs       1 + ß2ß3 

) 

(57) 

(58) 

(59) 

(60) 

(61) 

go = < 

fßl4 

n      
Dl-ß3hs 

/ßl3 FJ   S) 
ßl4e^        l-ßs/h/ 

lo 

Di < ß3/hs 

ß3/hs < Di <   1 

Di > 1 

(62) 

Using values of ßi = 0.91, ß2 = 45, ß3 = 0.35, ß4 = 0.5, ß5 = 0.5, ß6 = 
0.0001, ß7 = -0.0033, ß8 = 0.0046, ß9 = 0.73, ß10 = 0.24, ßn = 0.9, ß12 = 
0.081, ßn = 4 andßi4= 0.019 values of g were predicted (assuming 
that the plastic slip can be approximated by the total slip) for 
Gambarova's tests, two of the curves are shown in Fig. 25. 

51 



g 

l.U- 

0.8 - 

y(°) 
 g(.3) 

0.6 " 

0.4 - 

0.2 - 

0.0- 

0.2- 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

D1 

Figure 25.   Model for Flow-Rule (Function g) 
for Gambarova's Test 

52 



6.2.   Cyclic    Behavior 

6.2.1. Cyclic elastic properties 
Retaining the assumption that the elastic behavior can be 

approximated as damage independent, only one modification of the 
monotonic law is required for cyclic conditions. The elastic behavior 
resulting from the wedging of a lug against the neighboring concrete 
produces a compression of the bond zone regardless of the direction 
of the axial movement (qi) of the reinforcing rod from its initially 
cast position. The direction of qi resulting from a compressive 
normal bond stress depends upon the sign of the present value of qi. 
Both of these phenomena require that the off diagonal terms in the 
compliance matrix [A] of Eq. (14) to be multiplied by the sign of q\. 

When the slip is zero their values are taken to be zero. (Smoother 
transitions across this discontinuity were investigated, see Cox 1994, 
however,  they  did  not produce  any  significant advantages;. 

6.2.2. Cyclic measure of damage 
It is a simple matter to extend the definition of the measure of 

damage of Eq. (51) to cyclic conditions. The quantity qip is replaced 
by the total range of plastic slip experienced in the deformation 
history: 

Dl= (Spmax " Spmin)/(SL COS <|>) (63) 

where the extreme values of plastic slip experienced in past positive 
and negative slip cycles are respectively denoted by Spmax and Spmin. 
The damage variable Di measures the total proportion of the concrete 
key  between  neighboring  lugs  that has  been  damaged. 

6.2.3. Cyclic yield function 
For the general case where a combination of loading, unloading, 

reverse loading and cyclic loading occurs a slight generalization of 
the monotonic yield function is required. This involves recognizing 
that the yield function really has two branches, one for positive 
shear stress (and positive slip) and the other for negative shear 
stress (and negative slip), i.e., one above the horizontal axis and the 
other below it, see Fig. 26. The absolute value signs in Eq. (48) were 
in anticipation of this fact. 
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If the reinforcing bar is horizontal during the casting of the 
concrete, in the virgin state these two branches will be 
symmetrically placed about the horizontal axis, however, as plastic 
deformation occurs they will be permitted to evolve separately, see 
Fig. 26. When the bar is not horizontal during the casting process, 
there is experimental evidence (e.g., see Eligehausen 1983 and 
Mehlhorn 1985) indicating that the two branches would initially not 
be located symmetrically. Only the case of initial symmetry will be 
investigated at this time. The values of the hardening functions for 
the upper (above) and lower (below) branches are denoted as Ca and 
Cb, respectively. 

6.2.4.    Cyclic hardening function 
For monotonic conditions all yielding takes place on one branch 

of the yield surface; thus, only the corresponding hardening function 
C evolves. However, when unloading, reverse loading and reloading 
occur then both branches evolve (i.e., the magnitudes of both Ca and 
Cb change). 

For a virgin bond zone, the initial values of the hardening 
functions are denoted as Ca(0) = 0,(0) = a 12 (where the argument of 
zero denotes zero damage, i.e., the virgin state). It was found, with 
reasonable accuracy, that the values of the hardening functions for a 
completely damaged bond can conveniently be taken to be equal to 
the initial value, i.e., Ca(°°) = Cb(°°) = (X12 (there does not appear to be 
any rational justification for this condition and with minor 
modifications to the model it can be relaxed if future evidence should 
indicate otherwise). The case of complete damage corresponds to the 
situation when the key of concrete between adjacent lugs has been 
striped away and  frictional behavior is  all that remains. 

Starting from the virgin state, after some positive plastic slip (a 
similar argument holds for initial negative plastic slip) has taken 
place, the value of Ca will have "hardened" to some value greater 
than a 12, see Figs. 26 and 27a. Upon unloading and some small 
amount of reverse loading, the rib will no longer be bearing against 
intact concrete but instead will be sliding in the "key-way" that has 
been plowed through the concrete, see Fig. 27b. This plastic behavior 
(on the lower branch of the yield surface since the sign of the bond 
shear stress has reversed) corresponds to frictional behavior, and it 
is assumed that the value of Cb at this point is an- In addition, the 
unloading will have relieved the wedging action which had occurred 
as  positive yielding  took place  and which had caused  the  hardening 
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of Ca; so during reverse loading Ca is assumed to very rapidly reduce 
to the frictional value of a 12. Thus, it is assumed that whenever 
reverse loading is initiated that both Ca and Q, return to the frictional 
value of a 12. 

If a second load reversal occurs while the lug is in the key- 
way, (Fig. 27c) the lug will return to the intact face of concrete that 
it had previously left. If the cyclic loading excursion away from this 
face has been small then the lug wedging against this face should 
very quickly return to its previous configuration, and Ca should 
rapidly return to almost its previous value. However, if the 
excursion has been large then particles of concrete from the partially 
broken concrete key will have lodged between the lug and the 
concrete face and a more gradual recovery of the hardening of Ca will 
take place. The behavior suggested by the above physical arguments 
can be qualitatively observed in the experiments reported by 
Eligehausen (1983); see for example Figs. 4.26, 4.27a, 4.28, 4.30 and 
4.34 of his report (three of these figures are reproduced in Figs. 45, 
46 and 47 of this report). 

The above qualitative description of the hardening and 
softening of Ca and Q, are quantitatively described by the following 
equations (recall that Ca(0) = a 12 and 0,(0) = a 12). 

a) Complete damage -   (Spmax - Spmin) >  SL cos <)), i.e., Di>l: 

dCa = 0 (64) 

dCb = 0 (65) 

b) Loading -   (Spmax - Spmin) < SL cos § 

and (Fig. 27a) SPmax > 0: 

dCa = dC (Eq. 53 - with C = Ca) (66) 

dCb = 0 (67) 

and ^min < 0: 

dCa = 0 (68) 

57 



dCb = dC  (Eq. 53 - with C = Cb) (69) 

c) Sliding within the "key-way" (e.g., see Figs. 27b and 27c) which 

occurs when (i) Spmax < Sp < Spmin or (ii) Sp = Spmax, Sp < 0 or (iii) Sp = 

Spmin, Sp > 0.   Define the following: 

x* = Spmax " Spmin v'O) 

Sp - Spmin   Sp <  0   (Fig. 27b) (71) 

Spmax - Sp   Sp >  0   (Fig. 27c) 
x = 

Calast = last value of Ca experienced in positive virgin yield 

Cblast = last value of Cb experienced in  negative virgin yield 

Exa = the total frictional slip since the last update of Caiast 

£xb = the total frictional slip since the last update of Cblast 

C. = an + (Q., - «12)e-(«i3 J^) (72) 

/„     0.5x* - x \ 
1_e"^      SLcos<»   ; \  / IdS, /       v     sLcos^)  ' \ / iqy \ 

(73) 

SL cos(() 

when       > 0.5: x* 

x 

Ca = Cb = «12 (74) 

when   — <   -0.5 and Sp < 0: 
x* v 

Ca = «12 (75) 

dCb = dC (in Eq. 72, Qast = Cblast and Ix = Ixb; 

in Eq. 73, C = Cb) (76) 
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when   — <   -0.5 and Sn > 0: 
x*   — "V 

dCa = dC (in Eq. 72, Qast = Caiasr etc.) (77) 

Cb = ai2 (78) 

Values of a 13= 3 and CX14 =  100 were found to yield acceptable 

results. For Sp > 0 the ratio C*/Ca]ast is the proportion of the last 

value of Ca, in virgin yielding, that will be reached upon reloading. 
The second and third terms in Eq. (73) both go to 1 as x->0 (initiation 
of reloading) giving dC = C*- C, thus, resulting in C->C*. The growth of 
Ca from a 12 (the value assigned upon unloading, see Eq. (74)) to C* 
upon reloading in the positive direction gives the behavior indicated 
in Fig. 28 (for example, compare this behavior to Fig. 4.34 in 
Eligehausen, which is Fig. 45 of this report). 

6.2.5.   Cyclic flow rule 
For general loading conditions the monotonic flow rule must be 

extended to include the behavior when the lug is sliding within the 
"key-way" formed by previous damage, i.e., when Spmax < Sp < Spmin 

(Figs. 27b and 27c). The plastic flow in this region has two 
components. 

One part relates to generalized friction. Generalized friction 
also occurs for monotonic conditions when the key of concrete 
between adjacent lugs has been completely damaged, i.e. Di > 1. 
From Eq. (56) it is seen that for this situation g = -gl. The form 
selected for gl accounts for the grinding of large particles into fine 

ones and the gradual approach to a limit dilation of ßö- Assuming 
that the frictional behavior is the same for both monotonic and cyclic 
conditions, one component of g, in the "key-way", will be -gi. 

A second component relates to the loss of wedging action as the 

lug backs away from an intact face of concrete (Sp = Spmax and Sp <  0 

or Sp = Spmin and Sp > 0) and the regaining of it as the lug approaches 
an intact face of concrete (Sp—>Spmin or Sp->Spmax). For the first case 
the wedging action is lost very abruptly and the existing plastic 
dilation  q2p.      is very rapidly reduced to some residual value q|   (in 
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practice it is found to be convenient to spread this process over one 
solution increment). From Eligehausen's (1983) cyclic data the 
following expression was found for the residual plastic dilation 
(q2p,     is the plastic dilation just prior to unloading): 

q2*p = [ßi5+ü-ßi5)e-ßi6Dl]q2piast (79) 

Appropriate values of ß 15 = 0.55 and ßi6= 7.3 were found. As sliding 
occurs   in   the   "key-way"   not  only  is   q2p affected   by   the   grinding 

action as described by gj but so is q2 ; this is modeled by modifying 
q2       .    Thus, for any given increment of dq^ in  the  "key-way" 

dl2pllsl = -gildqipl (80) 

As the lug approaches an intact face of concrete the wedging action is 
recovered. This recovery is accomplished by adding to the frictional 
component of g (i.e., g2) the following quantity (x and x* are defined 
in Fig. 27 and ßn = 4): 

(q2pias,-q2p)('-^)Pl7 

i' = ÜTD^ 
(81) 

x >ßl7^i     4lL Note   that   as   x-> 0,  (1   - — )P17-^1,  —j^r-> 1,   therefore   dq2p  = 

g*dqlp^q2piast-q2p and q2p+dq2p^q2piast (with the modification of Eq. 

80   included). 

6.2.6.     Determination  of model parameters 
Most of the analytical functions used to represent the various 

phenomena associated with the elastic-plastic behavior of 
reinforced-concrete bond were selected so as to accurately reflect the 
experimental data. For many of the functions, it is likely that 
alternative forms can be found that would provide an equally good 
fit of the experimental data and, thus, should have little effect on the 
behavior of the model for the range of applications of interest. Two 
exceptions are the exponential functions used in Eq. (72) and (79). 
These expressions require that their functional parts have the 
property   that   f(Ai + Ä2+A3+...) = f(Ai)f(Ä2)f(A3)...   ,  a property that 
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dictates the use of exponential functions. This condition arises from 
the requirement that the predicted behaviors for the members of a 
family of nearly identical cyclic tests should yield essentially 
identical results. Examples of the two such hypothetical tests are (i) 
cycling between fixed limits of slip where at the extremes of each 
cycle the value of specified slip is precisely controlled so as to fall 
just "8" short of reaching a virgin yield state and (ii) cycling between 
fixed limits of slip where in each cycle the extreme values of 
specified slip are precisely controlled so the bond response does just 
reach virgin yield. In the first test the values of Ex and q2piast are 

not reset each cycle while in the second test they are. For the 
predicted model behavior be essentially the same for these two tests 
the  above indicated property  of the exponential  function  is  required. 

The model, see Eqs. (46) to (81), would seem to have an 
excessive number of model parameters (an, ai2,--.,ßi7)- However, it 
is anticipated that their values can be calibrated once and for all so 
all that will remain, for a given application, is to specify the 
compressive strength of the concrete fc' (the modulus and tensile 
strength would be calculated from the correlations of Appendix C, or 
by using alternative equations available in the literature), the bar 
diameter Db, the lug spacing sL and the lug angle ((>. 

The calibration reported here is for normal weight concrete and 
standard lug designs on steel bars; the process may have to be 
repeated for light weight concrete  and  other unique  situations. 

The monotonic model first was used (see Section 5: Model 
Implementation) to analyze the tests of Gambarova (1989) and 
Malvar (1991) and in the process the preliminary values of the 
model parameters were revised to produce the best overall fit of 
their experimental data. The model was then used to analyze the 
monotonic experiments of Eligehausen (1983), the comparisons were 
on the whole very good; only slight modifications were made to a 
couple of the coefficients as a result of these comparisons. The 
parameters describing the cyclic features of the model were selected 
solely on the basis of Eligehausen's cyclic test data. 
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Parameter Value 
Reference 
Equation Parameter Value 

Reference 
Equation 

an 10.0 46 Dis 
0.40 49 

ai2 0.43 46 Die 0.67 49 

a2i 0.43 46 ßl 0.80 56 

a22 14.3 46 ß2 45.0 56 

(Xl 0.26 48 ß3 0.35 56 

a2 0.26 48 ß4 0.50 57 

«3 0.53 48 ß5 0.50 57 

a4 30.0 53 ß6 0.0001 57 

«5 4.0 53 ß7 -0.0033 58 

a6 9.3 53 ß8 0.0046 58 

a7 0.50 53 ß9 0.73 59 

«8 4.5 55 ßio 0.24 59 

ap 0.93 55 ßll 0.90 60 

«10 200.0 55 ßl2 0.081 60 

an 0.94 55 ßl3 4.0 62 

ai2 2.2 52 ßl4 0.0186 62 

0C13 3.0 72 ßl5 0.55 79 

«14 100.0 73 ßl6 14.0 79 

ßl7 4.0 81 

Table 1.      Model Parameters for Normal Weight Concrete and 
Standard Steel Bar Designs 

Table 1 gives the final results for the model parameters as 
determined from the calibration process. The values of some 
parameters, such as 0C2, have changed by an order of magnitude from 
the values first used because ft not fc is now used for fs in Eq. 48). 
All results reported in the following sections were obtained using 
these   values. 
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7.     COMPARISONS TO EXPERIMENTAL DATA 

In this section comparisons are made between model 
predictions and the experimental results of several investigators. 
Where possible an indication of the scatter in the experimental data 
is given. For those cases where no data concerning scatter is 
available, the reader is referred to the general comments concerning 
uncertainties  in  Section 3.2. 

As noted in the last section, the model parameters were 
determined from an analysis of the results of Gambarova (1989) and 
Malvar (1991) with some consideration given to the data of 
Eligehausen (1983). Thus, most of the comparisons given in this 
section can not be taken as true validation tests but rather serve as a 
demonstration of the ability of the model to capture the salient 
features of bond behavior between concrete and reinforcement 
under a wide variety of test conditions. 

In the figures which follow, experimental results are given by 
discrete points  and  model predictions  by curves. 

7.1.   Gambarova's     Data 

The bond model was used in the prediction of the results of 
Gambarova's (1989) tests; the analysis is described in Section 5.3. To 
that description must be added an account of how the prescribed 
splitting crack  was modeled. 

The induced splitting crack slightly separates the concrete from 
the bar and, thus, when the bar is initially pulled some time elapses 
before any bond stresses are generated. This behavior is treated as 
yielding at a zero stress state, see Fig. 19. Using Eqs. (17), (18) and 
(56) the initial value of qip which corresponds to the q2P resulting 
from the splitting crack (see Eq. 22) is found. This process initializes 
the values of Di and C (see Eqs. 51, 52 and 53). The analysis then 
proceeds as described in Section 5.3. 

Figures 29 and 30 compare the model predictions (curves) to 
the digitized data taken from Gambarova (1989) for his series C tests. 
The numbers in parenthesis refer to the width (in mm) of the 
prescribed splitting crack. Gambarova's normal bond stress has been 
scaled using Eq. (33) so that it could be directly compared to the 
predictions of the model.    The predicted data has been shifted to the 
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left as did Gambarova in constructing his graphs, i.e., shifted by the 
amount of slip that preceded the development of any appreciable 
bond   stress. 

In light of the expected uncertainties in both the experimental 
data and the predicted results (due to modeling Gambarova's test as 
an "ideal" test), the agreement is satisfactory particularly for the case 
where the value of the splitting crack is zero. The disagreement in 
the region of small slips, for the case of an initially open splitting 
crack, may be due to the use of constant elastic properties instead of 
damage dependent ones. The disagreement is not judged to be a 
significant problem because the existence of an open splitting crack 
prior to loading is relatively rare in practice. 

In the plateau region of the normal stress curves, the 
experimental data variations do not appear to follow a consistent 
pattern. Gambarova recognized this problem, and his model - like 
ours - showed: (1) "smooth" softening behavior, and (2) decreased 
normal  stress  with  increased  splitting  crack  width. 

7.2.   Malvar's    Data 

Figures 31 through 35 compare the model predictions (based 
on the analysis of Section 5.5) of bond stress vs. slip to experimental 
results. The discrete points are taken from experimental data 
provided by Malvar (1991), and the solid and dashed curves are the 
model predictions. The numbers reported in parentheses are the 
pressures at the bar level assuming that none of the external 
pressure is carried by hoop stress (i.e., assuming the cylinder is 
completely cracked and the cracks are open). The actual magnitudes 
of the applied external pressure are (Db/Dcyi)(L/L*) times the 
reported numbers; where Dj, is the bar diameter, Dcyi is the external 
diameter of the test cylinder, L* is the length of the test cylinder, and 
L is the bonded length of the bar. 

Each figure with the exception of Fig. 32 reports two sets of 
results, series #2 and #3 (excluding the series #3 test atl500). The 
two series differ slightly in concrete strength (fC2= 40.2 N/mm2 and 

fc3= 38.7 N/mm2) and significantly in lug characteristics (<|>2 = 22°, (J)3 

= 0°). In addition, for the 2500, 3500 and 4500 psi tests of series #3, 
the initial pressure was 500 psi; once the cylinder cracked it was 
unloaded and then the external pressure was increased until the 
desired  level   was  reached.     The  model's   bond-slip  behavior  is   not 
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Figure 29.   Model Predictions for Shear Bond Stress vs. Slip 
Gambarova's   Test 
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Figure 30.   Model Predictions for the Normal Bond Stress vs. Slip 
Gambarova's  Tests 
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Figure 32.  Model Predictions of Bond Stress vs. Slip 
Malvar's Test 1500 psi Level 
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Figure 33.  Model Predictions of Bond Stress vs. Slip 
Malvar's Test 2500 psi Level 
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Figure 34.   Model Predictions of Bond Stress vs. Slip 
Malvar's Test 3500 psi Level P 
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Figure 35.   Model Predictions of Bond Stress vs. Slip 
Malvar's Test 4500 psi Level 
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very sensitive to the variations in the test series. The experimental 
data indicates the bars used in series #3 typically reach higher bond 
stresses (the exception being the 500 psi test where scatter is 
typically greater with the more brittle response). Since no measure 
of experimental scatter is available for this data (i.e., using the same 
lug configurations) no attempt was made adjust the model for this 
trend. The agreement between the model predictions and the 
experimental results is quite acceptable. The model results typically 
fall between the results of the two test series (at their peaks) and are 
likely to fall within the range of experimental scatter of each series 
of tests. 

In additional to bond stress, Malvar reports the average radial 
growth of the outside of the cylinder. He stated that due to 
experimental problems the validity of the recorded values for the 
series #2 tests at the 500 and 1500 psi levels is questionable. From 
the model analysis the radial dilation, q2, of the bond zone is 
determined. This quantity is obviously related to the external 
growth of the cylinder. When the cracks are open it differs only by 
the radial compression of the concrete between the bond zone and 
the external surface of the concrete cylinder, however, when the 
cracks are closed or partially closed the relationship is not simple. 
Instead of attempting to predict the total growth of the external 
surface of the cylinder only the bond zone dilation is reported here. 

The dilation (in mm) given by Malvar's experimental data and 
the model predictions are compared in Figs. 36-40. Because the 
splitting cracks may have been partially closed during the reloading 
process and this condition is difficult to model accurately, only 
predictions of dilation are given once the reloading is complete. 
Although the response varies significantly between the two test 
series, it appears the model yields good qualitative agreement and 
reasonable quantitative agreement with the experimental results. In 
comparing the results consider that the magnitude of radial dilations 
is very small (-0.03 to 0.5 mm) and thus are the most difficult 
quantity to measure in these experiments. In addition there has 
been  no measure  of experimental  scatter. 
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Figure 37.   Model Predictions of Bond Stress vs. Dilation 
Malvar's Test  1500 psi Level 
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Figure 38.   Model Predictions of Bond Stress vs. Dilation 
Malvar's Test 2500 psi Level 
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7.3. Rehm's    Data 

Figure 41 compares model predictions (analysis of Section 5.4 
with fc' = 23.5 kN/mm2) to experimental results (Rehm 1979). 
Overall the agreement is quite acceptable. The end of the analytical 
curve is where the analysis predicted the occurrence of the 
maximum bond stress. If one assumes the end of the reported 
experimental data is where the peak stress occurred (the end of a 
stress controlled test) then the agreement for this phenomenon is 
quite  good. 

The smaller initial slope of the predicted response is a result of 
using elastic moduli for the undamaged bond which are too small 
and/or using a yield function which passes through the origin, see 
Cox (1994). The elastic properties for the model were calibrated 
primarily from unloading-reloading data given in Eligehausen 
(1983). Another factor which may contribute to this discrepancy is 
adhesion. Because in field situations the unknown effects of 
shrinkage and small preloads (including temperature changes) may 
markedly affect this phenomenon, no attempt has been made to 
include it in the model. 

7.4. Eligehausen's     Data 

7.4.1.    Monotonie tests 
Figure 42 gives a comparison of the model predictions (analysis 

of Section 5.2) to the experimental results of Eligehausen's (1983) 
Series 2 monotonic tests. The experimental results contain his, 
lowest,  highest  and  average  measurements  for  the  series. 

Another way of presenting this comparison is given in Fig. 43. 
The plastic work done by the bond shear stress is compared for the 
model predictions and the experimental results. This is a 
particularly significant format for evaluating the model as one of the 
primary motivations for attempting to model reinforcement-concrete 
bond is to be able to properly account for energy dissipation in 
dynamic analyses of reinforced concrete structures. It would be 
preferable to compare total plastic work, however, there is not 
enough experimental information for Eligehausen's tests to permit 
the calculation of the plastic work due to the normal bond stress. 
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Figure 42.   Model Predictions of Bond Stress vs. Slip 
Eligehausen's Series #2 Tests 
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Figure 43.   Comparison of Plastic Work (shear) 
Eligehausen's Monotonie  Test 
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Figure 44 gives a comparison for a test series (#4) that used a 
concrete with quite a different strength (fc = 55 N/mm2 as compared 
to 30 N/mm2 for all the other series). 

Little effort was expended in attempting to fine tune the model 
to produce a perfect fit of Eligehausen's average monotonic results, 
instead the model was primarily calibrated using the results of 
Gambarova and Malvar. In this light and considering the major 
assumptions used in modeling Eligehausen's tests and the 
experimental  scatter,  the  predictions  appear to  be  very  good. 

7.4.2. Cyclic tests 
Eligehausen (1983) performed a series of cyclic (fixed limits of 

slip) tests on his pull-out specimen. This series included tests that 
cycled between zero and a fixed limit of positive slip (see Fig. 45) 
and tests that cycled between numerically equal values of positive 
and negative slips (see Figs. 46 and 47). After a prescribed number 
of cycles, his tests were completed monotonically to the point where 
only residual frictional resistance remained. The monotonic 
completion of the test in some cases was carried out after only one 
cycle and some after ten. Both results are shown on the same graph 
in Figs. 46 and 47. For the case of the ten cycle tests only the first, 
second  and  tenth  cycles  were  reported. 

Eligehausen's figures also show the average of the monotonic 
test results. In the absence of experimental scatter, the cyclic curves 
would be identical to the monotonic curves prior to the initiation of 
the first unloading segment. Thus, the differences between the two 
curves give some indication of the discrepancies between the 
predicted and experimental results that can be possibly attributed to 
experimental scatter. (This is the case because the model was to 
some extent calibrated to give good agreement with Eligehausen's 
average   monotonic   results.) 

Figure 48 is the prediction for the test data shown in Fig. 45; 
Fig.  49 corresponds  to Fig.  46;  and Fig.  50 corresponds  to Fig. 47. 
Attempts   to   compare  the  experimental   and  predicted  results   on the 
same graphs were found to be overly confusing. 

Qualitatively, the predictions of the model appear to capture all 
the salient features of the experimental data; the only striking 
differences are the spikes that occur in the predictions at the 
beginning      of      each      traverse      between      the      prescribed 
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Figure 44.   Model Predictions of Bond Stress vs. Slip 
Eligehausen's Series 4.1 (fc' = 55) 
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Figure 45.   Bond Stress vs. Slip for Cyclic Test - Eligehausen's Fig. 
4.34 
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Figure 46.   Bond Stress vs. Slip for Cyclic Test - Eligehausen's Fig. 
4.26 
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Figure 47.   Bond Stress vs. Slip for Cyclic Test - Eligehausen's Fig. 
4.30 
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Figure 48.   Model Predictions of Bond Stress vs. Slip 
Compare to Eligehausen's Fig. 4.34 
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limits of slip. For the model this occurs because of the abrupt loss of 
wedging action between the lug and the intact concrete as the lug 
backs away from it. 

In the prediction of this phenomenon the width of the spike is 
controlled by the size of the solution step. Even though it is felt that 
this phenomenon occurs nearly instantaneously (essentially a spike 
of zero width) it is computationally convenient to spread it over one 
solution step (see Section 6.2.5). 

Two possibilities exist to explain the discrepancy between the 
experimental and analytical results on this point. One is that the 
phenomenon is real but happens over such a short distance that the 
experiment could not capture it. The second is that some other 
physical mechanism is present (and not captured by the model) that 
smoothes out this abrupt loss of wedging action. Whether or not the 
spike is in fact a real phenomenon would seem to be of little 
consequence for applications of the model to real problems (it would, 
however, be possible to construct hypothetical circumstances for 
which it would be significant). 

In an attempt to more directly compare experimental and 
predicted results, and to compare one of the most significant 
consequence of reinforcement-concrete bond behavior, comparisons 
of dissipated energy by the bond shear stress are shown in Figs. 51 
and 52. The comparison in Fig. 51 is for the first cycle and 
monotonic completion of the test reported in Fig. 46. In Fig. 52 a 
comparison is given for the first two cycles of the test reported in 
Fig. 47. The abscissas are the running sums of the absolute values of 
the incremental slips (total distances traveled) and, thus, are 
measures of time elapsed. As previously noted Eligehausen did not 
report results for cycles two through nine and, thus unfortunately, 
comparisons can not be made for the ten cycle tests; however, the 
comparisons  that can be made  are most encouraging. 

7.5.   Observations 

Table 2 gives some of the physical parameters for each of the 
test series considered in this section. The concrete tensile strengths 
and elastic moduli were calculated using the correlations given in 
Appendix C. For all predictions the model parameters of Table 1 
were   used. 
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Figure 51.   Comparison of Plastic Work (shear) - 
One Cycle (including monotonic completion) 
of Eligehausen's Fig. 4.26 
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Experimental 
Study 

Test 
Series 

Concrete 
Strength 
(N/mm2) 

Lug 
Spacing 
(mm) 

Lug 
Angle 
(degrees) 

Bar 
Diameter 
(mm) 

Eligehausen #2 30 14 19 25 

#4 55 14 19 25 

Gambarova 40 1 1 38 18 

Malvar #2 40 13 22 19 

#3 39 13 0 19 

Rehm 23 8.4 38 14 

Table 2.      Physical  Parameters Describing  the  Bond 

From Table 2 it is seen that the database includes a fairly wide 
range of concrete strengths and bar lug angles, and a reasonable 
range of lug spacings and bar diameters. Additionally, the geometric 
configurations of the test specimens span a wide spectrum of 
conditions (see Section 5). 

It is felt that the comparisons given in this section clearly 
demonstrate the ability of the model to describe reinforcement- 
concrete bond behavior under a variety of conditions for both 
monotonic and cyclic loadings. 
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8 .     CONCLUSIONS AND RECOMMENDATIONS 

An elastic-plastic bond model has been developed that has the 
capability of describing the bond between reinforcement and 
concrete for a wide variety of conditions. The model has been 
calibrated for normal strength concrete and standard types of steel 
reinforcing bars. The model only requires a knowledge of the 
compressive strength of the concrete (it is assumed that the 
concrete's tensile strength and initial elastic modulus can be 
calculated from this value), the bar diameter, the spacing between 
lugs and the angle the lugs make with the axis of the bar. 

By varying only the above mentioned properties and using 
simplified specimen models, the results of several research studies 
on monotonic loading were reproduced with acceptable accuracy. 
Extension of the model to cyclic loading has given encouraging results 
on one data set both in terms of stress-strain response and plastic 
work. Validation is inherently never complete, and models are never 
as general as nature; but the bond plasticity model presented in this 
report represents a significant improvement over status quo one- 
dimensional   models 

There are several aspects of the model that should be refined 
as additional experimental evidence becomes available. These 
include the following: 

Some of the functions selected to represent various facets of 
the model, such as the non-associative flow rule and the hardening 
function, are quite lengthy. Further investigation may lead to 
simplified  expressions  without  sacrificing  accuracy. 

While the use of the closest distance between lugs in the 
definition of damage in Eq. (51) would appear to improve the 
accuracy of the model, further evidence is needed before this 
hypothesis   is  firmly  established. 

In the current model the lug height does not appear as a 
physical parameter. This is based on the assumption that for 
standard bars the ratio of lug height to bar diameter does not vary 
significantly. Thus, the dependence of bond behavior on lug height is 
subsumed in the dependence on bar diameter. The validity of this 
assumption  needs  to  be  investigated. 
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It has been experimentally observed that the casting direction 
of the concrete relative to the orientation of the bar has an 
appreciable affect on the bond behavior. This phenomenon may be 
significant but has not been included in this version of the model. *to* 

It appears that making the elastic properties of the model 
damage dependent would considerably improve the accuracy of 
predictions  for  small  slip response. 

The assumption that the initial value of the hardening function 
is the same as the completely damaged value was a matter of 
convenience, however, there does not appear to be any physical 
justification. The removal of this assumption from the model would 
most likely improve the accuracy of predictions for small slips. 

While the model has been implemented by Cox (1994) in a 
finite element code and used to analyze simple reinforced-concrete, 
bond test configurations, much work remains to be done before the 
model can be used in routine finite element analyses of complicated 
field configurations. Means must be found for implementing the 
model so that an excessively fine finite element grid is not required. 
While the work of McMichael (1993) on the development of a 
composite finite element model for the bar, the bond and bond layer 
is promising, much work remains to be done in this area. In 
particular means must be developed for incorporating the model in 
"embedded" and "distributed" finite element representations of 
reinforcement. 
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APPENDIX A -       Relationships    Between    Local    Strain 
Measurements    and    Bond    Behavior 

A number of experimental studies (e.g., see Cowell 1982 and 
Shima 1987) have measured the strain distribution in the reinforcing 
rod of a "pull-out" or "tension" bond test and have attempted to 
calculate from these measurements the distribution of bond stress 
and slip.    These calculations are based on the following analysis. 

For the reinforcing bar elastic behavior is assumed (modulus 
of Er). From the measured axial strain, £z, and the assumption that 
the stresses Gr and Ge in the reinforcing bar can be neglected, the 
axial force distribution in the rod is found: 

F(z) = K Db2Er8z/4 (A-l) 

From equilibrium it is seen that changes in the axial force must 
be balanced by the bond shear stress, i.e., 

dF 
nDhx= — (A-2) 

thus: 

DhEr dez 

'- -4^d7 (A"3) 

Of course taking a derivative of the experimentally determined 
quantity 8Z greatly magnifies any experimental error. This is 
especially worrisome in light of the expected local uncertainties in 8Z 

due to the inhomogeneous character of the concrete, the bar's surface 
geometry (i.e., the presence of the lugs), and the role that local 
failure of the concrete plays in determining bond behavior. 

In order to calculate a local bond slip "s" either the deformation 
of the concrete must be: (1) measured or (2) neglected relative to the 
axial deformation of the reinforcing bar. In the above referenced 
studies the later is assumed and hence s = uz (the axial displacement 
of  the   bar).      Another   way   of  expressing   this   approximation   is   to 

A-l 



assume that the concrete is rigid. This assumption depends upon the 
concrete component of the test specimen being massive relative to 
the reinforcing bar and the neglecting of any local deformations in 
the concrete in the vicinity of the bond. The bar displacement is the 
integral of the axial strain: 

s « uz = u0 + Jezdz (A-4) 

The constant of integration u0 is determined from the boundary 
conditions of the test. The integration process tends to smooth out 
experimental errors in £z, however, the uncertainties introduced by 
treating the concrete  as rigid remain. 

Thus, from a measurement of the axial strain distribution in 
the reinforcing bar, bond stress vs. bond slip can be approximately 
determined using Eqs.  (A-3) and (A-4). 

A-2 



APPENDIX B -       Response        of        an        Embedded 
Semi-Infinite    Reinforcing    Bar 

Consider a semi-infinite reinforcing bar (diameter of Dt, ) 

embedded in a half space of concrete and subjected to a "pull-out" 
force F0 applied to its free end. Denote the slip of the free end of the 
reinforcing   bar  relative   to  the  concrete   by   s0.    It is desired to find 
So = So(ro)- 

Of course no data exists for this ideal situation, however, Shima 
(1987) has tested some rather large specimens that can be used to 
approximate it. His specimen #6 had an embedded length of 40 bar 
diameters in a concrete cylinder with a diameter of 20 bar 
diameters. It will be assume that this data approximates the semi- 
infinite condition as long as the measured strains in the bar remain 
near zero in the vicinity of the unloaded end. One can either work 
directly with the data for specimen #6 given in Fig. 2.16 of Shima 
(1987) or alternatively use the empirical equation that he developed 
to fit this data, Eq. 2.13 in the cited reference. Eq. 2.13 was used and 
the results were checked by comparing predictions to Fig. 2.16. 

Shima's empirical Eq. 2.13 relates the bond stress at an 
arbitrary point along the rod to the corresponding bond slip (where 
S = s/Dbv): 

'V 

1 =0.9 (fc')
2/3 [1 -e-40 SO-6] (B-l) 

Using  the  assumptions  of Appendix A,  differentiating Eq.  (A-4)  and 
substituting into Eq. (A-3) gives (let Z = z/Dby): 

x= 4   dz2 (B-2) 

Combining Eqs. (B-l) and (B-2) gives: 

§ = M&m tl. e.40So.6] (B.3) 
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For a semi-infinite bar the boundary conditions are a specified slip s0 

at the end of the bar and zero slip at infinity. With these boundary 
conditions the governing nonlinear differential Eq. (B-3) was solved 
for a range of values of s0/Dby using a packaged finite difference 

scheme (a concrete strength of 30 N/mm2 - used in the majority of 
Eligehausen's tests - along with the value of Er for steel were 
assumed). For a given value of s0/Dby the value of strain 8ZQ at the 

end of the bar was determined from the solution for S(Z) and Eq. (A- 
4). In Fig. B-l the resulting plot of s0/Dbv vs. £Zo is given. Curve 

fitting  yielded  the  following  equation: 

s0/Dbv = 365(8Zo)l-62 (B-4) 

The strain in the bar is simply related to the force (assuming a 
uniaxial stress state in the bar), thus, giving the desired relationship 
(where the value of r| is 365): 

s0/Dby = r, {4F0/[7c(Dbv)2Er]}l-62 (B-5) 

If a different strength concrete is used it can be shown that in 
Eq. (B-5) the r\ = 365 is replaced by: 

r,=365   (30/fc')d-6/3) (B-6) 

The above development assumes continuous loading of the rod 
(i.e., F0 increases monotonically). For unloading-reloading conditions 
linear elastic behavior is assumed, see Eligehausen (1983). The 
unloading-reloading modulus, Eun, is estimated from the following 
argument. 

For elastic unloading-reloading behavior the rod is treated as a 
one dimensional axial member supported by an elastic foundation 
(see Fig. B-2). The concrete is treated as rigid (see Appendix A) and, 
thus, the foundation reaction T is just the foundation modulus times 
the displacement of the rod As (the slip). The foundation modulus is 
assumed to be equal to the reciprocal of An from Eq. (1), thus (see 
Eq. 46): 

Ax  =(Ec/an)As/Dbv (B-7) 
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Figure B-l.     Response of a Semi-infinite Rod 
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Figure B-2.      Rod Supported by an Elastic Foundation 
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Equilibrium of an element of the rod gives the equation: 

dAF 
-7— = %Dh Ax (B-8) dx °v v       ' 

Expressing the force in the rod in terms of the strain gives: 

%     0       dAs 
AF= 7II2   Er-7— (B-9) 4     bv   r dx 

Combining the above three equations gives the following differential 
equation for As: 

d2As 4 Ec 
-T-T -  ^2   ^     As = ° (B-10) dx2        ^ Ef ai 1 

Solving the simple differential equation and applying the boundary 
conditions of a specified displacement at the free end and no 
displacement  at  infinity  yields: 

As = -As0 exp(- ^- VäS;  X) (B"n) 

Eq. (B-9) gives: 

K
 
Db   r 

AF0 = —f* -y ~-r— fr (B-12) 
Er Ec As0 

a2 2      Dbv 

Thus,  the  desired  unloading-reloading  modulus  is 

JC D" 

\     an EUo=—Y^ W "^ (B-13) 

In Fig.  B-3  non-dimensional (x = a/Er and y = s0/Db ) plots of 

the inverses of Eq. (B-5) and Eq. (B-12) are given. It is seen that for 
a small range of values of strain that the proposed unloading curve 
falls below the loading curve. Thus, if unloading should be initiated 
from  a  value   of  strain   smaller  than  the  value  at  which   the  curves 
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Figure B-3.     Loading and Unloading Curves 
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intersect, the unacceptable situation shown in Fig. B-4a results. This 
inconsistency is obviously the fault of one or more of the 
approximations embedded in the two expressions. To avoid this 
problem, for strains smaller than the value at the intersection, an 
unloading modulus given by the expression shown below is used 
(F0un denotes the value of F0 when unloading is initiated). 

p 
Eun = 1l{4F0un/KDn

bv)2Er]}
1-62 (B~14) 

With this expression the behavior shown in Fig. B-4b is obtained. 
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a) Unacceptable Prediction of Unloading 

b) Acceptable Prediction of Loading 

Figure B-4.     Consideration of Unloading for Small Slips 
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APPENDIX C -       Correlation   of   Ec and ft with fc 

It is common practice to use empirical correlations for the 
calculation of the concrete modulus Ec and the concrete tensile 
strength ft from a knowledge of its compressive strength fc . A 
number of such formulas are available in the literature, e.g., see 
Mindress (1981). For the bond model the initial tangent modulus is 
the desired concrete modulus. A correlation is found from the 
experimental results presented by Daniels (1989). Values taken 
from Fig. 8 of the cited references are plotted in Fig. C-l. An 
acceptable fit of the data is given by the expression (the units are 
N/mm2): 

Ec = 41000 (1 - e--075fc) (C-l) 

Many   researchers   have   suggested   that   the   tensile   strength   of 
concrete   ft is correlated to the square root of fc   ,  while  other authors 

have suggested the two-thirds power of fc . The data in table 3.3 of 
Eligehausen   (1983)   suggests: 

ft = 0.3 fc'
2/3 (C-2) 

The authors have compared this formula with experimental 
measurements from a number of other sources and have found 
excellent   agreement. 
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Figure C-l.      Relationship between Concrete Modulus 
and Compressive Strength 
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APPENDIX D - Theoretical     Arguments     Concerning 
the    Elastic    Properties 

In this appendix a very simple theoretical argument will be 
presented  to examine  the relative magnitudes  of the elastic  moduli. 

Consider the conditions when (a) splitting cracks have formed 
in the concrete surrounding the reinforcing bar, (b) the interface has 
deformed so as to slightly open the splitting cracks (thus no 
appreciable hoop stress can exist in the bond layer), and (c) the 
concrete is not in contact with the bar between the lugs. 

Figure D-l shows the relative displacements between the face 
of the rib and the edge of the bond layer with the rib face as the 
frame of reference. Assume: (a) that the response is so localized 
near the face of the rib, that the average relative displacement 
values (shown in the figure in the local-rib coordinate system) 
accurately represent the unit cell; (b) no sliding occurs along the rib 
face; (c) the tractions on the face of the rib are statically equivalent 
to the negative of the shown resultant forces; and (4) the incremental 
compliance relationship between the resultants and the relative 
displacements  is  uncoupled  in  the  local-rib coordinate  system. 

The increments in the bond stresses defined in this study are 
given in terms of the resultants as 

AQij_XrRjAT 
AQ2 J " sL 

LKJ 1 AN (D-l) 

where 

[R] = 
cosß   -sinß 
sinß    cosß 

(D-2) 

Similarly,  the increments in  generalized  strains in terms  of the 
relative  displacements  are  given  as 

1 At 

D^lAn 
(D-3) 
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Figure D-l.     Schematic of Simple Elastic Bond Layer Model. 
(Arrows denoted resultant forces on the concrete) 
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With the assumption that the resultant forces are uncoupled 
from the relative displacements in the local-rib coordinate system 
(i.e., these are the axes of orthotropy) the incremental constitutive 
relationship, in compliance form, is given by 

f o 
0 t n  -i 

(D-4) 

Combining   the  above  three  relationships   gives  the   incremental 
compliance  relationship for the  generalized  stresses  and  strains   as 

kt 

0 

0 

k n -i 

[RJT 
AQi 

AQ2 
(D-5) 

where  the   orthogonality  of  [R]   has   been  exploited.     Expanding   the 
above   relationship   gives 

Db 

cos2ß     sin2ß 

sin2ß 
kn 

C 
1 1 

kt  "  kn 

sin2ß    J_ 
2      (kt kn 

) 

sin2ß     cos2ß 
) ~r

JL
 +     

kt kn 

•   (D-6) 

The above relationship suggests that the compliance matrix is 
symmetric. Because the average ß is often near forty-five degrees, it 
is expected that the diagonal terms will be of the same order of 
magnitude. 
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