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ABSTRACT: 

 

The rapid progression in digitalization in the construction industry and in facility management creates an enormous demand for the 

efficient and accurate reality capturing of indoor spaces. Cloud-based services based on georeferenced metric 3D imagery are already 

extensively used for infrastructure management in outdoor environments. The goal of our research is to enable such services for indoor 

applications as well. For this purpose, we designed a portable mobile mapping research platform with a strong focus on acquiring 

accurate 3D imagery. Our system consists of a multi-head panorama camera in combination with two multi-profile LiDAR scanners 

and a MEMS-based industrial grade IMU for LiDAR-based online and offline SLAM. Our modular implementation based on the 

Robot Operating System enables rapid adaptations of the sensor configuration and the acquisition software. The developed workflow 

provides for completely GNSS-independent data acquisition and camera pose estimation using LiDAR-based SLAM. Furthermore, we 

apply a novel image-based georeferencing approach for further improving camera poses. First performance evaluations show an 

improvement from LiDAR-based SLAM to image-based georeferencing by an order of magnitude: from 10-13 cm to 1.3-1.8 cm in 

absolute 3D point accuracy and from 8-12 cm to sub-centimeter in relative 3D point accuracy. 

 

 

 

1. INTRODUCTION 

Digitalization trends on a broad scale lead to a rapid and massive 

transformation of the construction and real estate industries. New 

methods and tools such as BIM (Building Information Modeling) 

and VDC (Virtual Design and Construction) in combination with 

new technologies for geospatial data capture and exploitation 

enable a paradigm shift in the way buildings are designed, tested, 

built, maintained and refurbished. The establishment of fully 

three-dimensional collaborative processes and workflows with 

stakeholders from multiple domains require accurate, detailed 

and up-to-date 3D geodata. New image-based mobile reality 

capturing techniques in combination with cloud technologies, 

such as presented by Nebiker et al. (2015), hold the potential to 

provide such data and services in a rapid, cost-efficient and user-

friendly manner. As shown by Puente et al. (2013) current 

commercial mobile mapping systems (MMS) are dominated by 

LiDAR as primary sensors and with cameras as complimentary 

sensors. However, first road- and railway-based mobile mapping 

experiments were based on stereo camera systems and date back 

to the early 1990ies (Novak, 1991; Schwarz et al., 1993). Since 

then image-based outdoor mobile mapping systems have evolved 

into multi-stereo systems (Cavegn & Haala, 2016) and into high-

performance 360° stereo systems (Blaser et al., 2017; Meilland 

et al., 2015) with an unparalleled information richness and 

density. 

In terms of positioning technologies, the vast majority of outdoor 

mobile mapping solutions currently rely on direct georeferencing 

using GNSS and INS. However, alternative approaches are 

required for positioning and pose estimation in indoor 

environments and in environments with poor GNSS coverage 

such as forests or urban canyons. Recent developments in indoor 

localization and mapping benefit from and build on methods and 

techniques, namely SLAM (simultaneous localization and 

mapping), from the robotics and more recently from the computer 

vision communities (Stachniss et al., 2016; Thrun, 2002). Indoor 

mobile mapping not only requires new georeferencing strategies, 

but also new platforms. Solutions using carts, like the Viametris 

iMMS (Thomson et al., 2013), work well in large unobstructed 

spaces but are not suitable for typical indoor environments with 

stairs, closed doors, obstructed floors due to ongoing 

construction etc. Thus, the focus in research and commercial 

development has shifted towards portable or ‘personal’ mobile 

mapping systems (Lehtola et al., 2017; Nüchter et al., 2015). But 

with very few exceptions, such as the image-based UltraCam 

Panther (Vexcel, 2018), most developments focus on LiDAR-

based systems and point clouds. 

In this paper, we introduce the BIMAGE backpack, a portable 

high-performance mobile mapping research platform and system 

built on top of the Robot Operating System (ROS). The system 

is designed for the creation of 3D image data spaces and for the 

image-based building and infrastructure management (Nebiker et 

al., 2015). It features LiDAR SLAM-based real-time 3D mapping 

with a subsequent novel image-based georeferencing approach 

using relative orientation constraints leading to significant 

improvements in relative and absolute accuracies.  

First, we discuss the modular mechanical, electronic and software 

design of the BIMAGE backpack, allowing the integration of 

multiple medium- to low-cost LiDAR sensors and panoramic 

camera sensors. In particular, we introduce a low-cost 

architecture for the mission-critical accurate triggering and 

synchronization of all types of sensors involved. We also provide 

details on the calibration of the multi-sensor system. The 

acquisition system provides a number of novel features, such as 

real-time 3D positioning and mapping capabilities and geometry-

driven camera triggering for optimal data coverage. Our highly 
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automated processing workflow offers both LiDAR SLAM- and 

image-based georeferencing. In a performance evaluation, we 

demonstrate that our novel image-based georeferencing approach 

offers an improvement in relative and absolute accuracies in the 

order of magnitude under real-world conditions. 

 

 

2. SYSTEM REQUIREMENTS 

In order to create image-based services for indoor infrastructure 

management with accurate 3D measurement functionality, we 

need an image-based indoor mobile mapping platform for 

efficient data acquisition.  

As the sensor technology improves rapidly, a prototypic indoor 

mobile mapping system for research purposes should provide the 

flexibility to easily integrate new components. Furthermore, it 

should also be possible to implement and investigate different 

sensor configurations. In order to achieve this flexibility, a 

modular design is indispensable. This affects both hardware and 

software. A trolley system like NavVis (Szwarc, 2017) would 

offer more flexibility and fewer limitations in terms of weight 

and size than a portable system. However, the applications of a 

trolley system are limited. For example, a trolley system cannot 

be used for capturing staircases or construction sites. For our 

research, it is important that the system is able to cover as many 

use cases as possible.  

As in our earlier mobile mapping solution (Burkhard et al., 2012), 

it should be possible to derive 3D imagery through dense image 

matching, ideally assigning a depth value to each image pixel. 

These 3D images are subsequently aggregated into 3D image 

data spaces, which can easily be navigated and used for simple 

3D measurements in single images (Nebiker et al., 2015). Ideally, 

a camera configuration should cover the indoor environment with 

multiple views and as completely as possible. For measuring 

purposes, both precise camera calibration and precise image 

orientation are essential. For indoor use, the camera has to 

perform well in low light condition and should be able to adapt 

rapidly to changing lighting conditions. Since the platform is 

mobile, the cameras must be triggered synchronously, ideally 

with an electronic trigger signal. 

Precise georeferencing is essential in mobile mapping. Inertial 

navigation systems (INS) combining GNSS and IMU are widely 

used for direct georeferencing in outdoor mobile mapping 

applications. The absence of GNSS in indoor environments 

precludes this sensor combination from being applied to indoor 

mobile mapping. A possible way to overcome the lack of GNSS 

is to replace INS with LiDAR-based simultaneous localization 

and mapping (SLAM) (Hess et al., 2016). 

An approach to increase the accuracy of direct georeferencing is 

to apply an additional image-based georeferencing. With this 

approach Cavegn et al. (2016) achieved an accuracy 

improvement by an order of magnitude in urban street 

environments. However, the success of this approach depends on 

the number and distribution of detected and matched features in 

the outdoor environment. We assume that image-based 

georeferencing will provide a significant accuracy improvement 

in structurally rich indoor environments. 

In contrast to most commercial indoor mobile mapping systems 

(Leica Geosystems, 2018; Vexcel, 2018), our system should 

support the complete system initialization in an indoor 

environment. For reasons of efficiency, this is essential for the 

mapping of large building complexes. In addition, a status 

indicator should provide real-time information about 

completeness and accuracy of data acquisition. 

 

 

3. SYSTEM COMPONENTS 

Our portable mobile mapping system consists of different 

components for navigation, mapping, data registration and data 

pre-processing. A panorama camera captures images in order to 

map the entire indoor environment. Multi-profile laser scanner 

data and IMU data fused in a LiDAR SLAM algorithm deliver 

the system position and attitude. A computer with high RAM and 

storage capacities and low energy consumption processes the 

SLAM algorithm and registers the captured data. 

 

3.1 Panorama Camera 

For image-based indoor mapping, the system uses a FLIR 

Ladybug5 panorama camera. The Ladybug5 panorama camera 

consists of six different single camera heads. Five camera heads 

are pointing sideways, one camera head is pointing upwards. 

Each camera head has a resolution of 5MP and features ultra-

wide-angle optics (see Table 1). Previous investigations had 

shown that the equidistant camera model (fisheye) optimally fits 

the Ladybug5 camera heads (Blaser et al., 2017). A general-

purpose input and output interface (GPIO) features several 

triggering modes with an electronic signal (FLIR Inc., 2017).   
 

Sensor Type Sony ICX655 CCD 

Shutter Type Global shutter 

Resolution [px] 2448 x 2048 

Pixel size [µm] 3.45 

Focal length [mm] 4.3 

Field-of-view [deg] 113 x 94 

Table 1. Specifications of the panorama camera. Technical data 

of an individual Ladybug5 camera head (FLIR Inc., 2017). 

 

3.2 Laser Scanner 

The system uses two multi-profile Velodyne VLP-16 laser 

scanners for navigation as well as for mapping. Velodyne 

designed the VLP-16 as a rugged medium- to low-cost laser 

scanner primarily for collision avoidance applications in the 

automotive industry. The multi-profile laser scanner consists of 

16 different laser modules mounted in a compact housing. The 

housing spins with an adjustable rate in-between 5 and 20 

rotations per second (Velodyne, 2016). Therefore, the laser 

scanner delivers a horizontal full field-of-view (see Table 2). The 

horizontal resolution is limited by the speed of the laser modules 

and the rotation rate. In contrast, the 16 fixed laser modules limit 

the vertical field-of-view as well as the vertical resolution. 

Glennie et al. (2016) provide a calibration and a stability analysis 

of the Velodyne VLP-16 laser scanner. Their evaluations reveal 

a long-term walk in individual lasers. Thus, a geometric 

calibration does not remain temporally stable. The VLP-16 

supports time synchronization with a pulse-per-second (PPS) 

signal in conjunction with a one-per-second NMEA sentence 

(Velodyne, 2016). 

 

Max. range [m] 100 

Typical accuracy [cm] 3.0 

Number of channels 16 

Angular resolution (H x V) [deg] 0.1-0.4 x 2.0 

Field-of-view (H x V) [deg] 360 x 30 

Rotation rates [Hz] 5-20 

Max. points per second 300’000 

Table 2. Specifications of the Velodyne VLP-16 Puck LiDAR 

scanner (Velodyne, 2016) 
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3.3 Inertial Measurement Unit 

The system contains an XSens MTI-300 IMU for navigation. The 

MTI-300 is a MEMS-based attitude heading reference system 

(AHRS), which returns drift-free roll and pitch as well as 

magnetic referenced yaw from an extended Kalman filter fusing 

raw data from gyroscopes, accelerometers and magnetometers 

(Kooi, 2014). Further processing algorithms of our system 

exclusively use raw accelerometer and gyroscope data, which are 

accessible as well. Based on its specifications (see Table 3), the 

MTI-300 fits the classification of an industrial grade IMU. The 

IMU features a clock synchronization with a pulse per second 

(PPS) signal. 

 

 Gyroscope Accelerometer 

Bias repeatability (1 yr) 0.5 deg/s 0.05 m/s2 

In-run bias stability 10 deg/h 40 µg 

Noise density 0.015 deg/s/√Hz 150 µg/√Hz 

Table 3. Specifications of the MEMS-based XSens MTI-300 

AHRS IMU (Kooi, 2014) 

 

3.4 Computer 

The mobile mapping system is equipped with a minicomputer 

Prime Mini Pro with high RAM and data storage capacities and 

with a processor for mobile computers (see Table 4). The 

computer has low energy consumption and no mechanically 

moving parts. 

 

Processor Intel Core i5-5300U vPro 

Graphic card Intel HD Graphics 5500 

RAM 32 GB DDR3L – 1600MHz 

Data storage 1x 500 GB SSD 

1x 2000 GB SSD 

Interfaces 4x USB 3.0 

1x GigE 

2x Mini-DP 1.2 

Table 4. Specifications of the on-board computer Prime Mini 

Pro (Prime Computer AG, 2017) 

 

3.5 Flashlights 

Self-designed, strip-shaped LED elements provide a flashlight 

for the artificial lighting of low-light indoor environments. We 

glued commercial low-cost LED strips onto an aluminum rail 

with a matt cover, which diffuses the light. A strip-shaped LED 

element with a length of 50 centimeter generates a luminous flux 

between 1200 and 1500 lm. 

 

 

4. SYSTEM CONFIGURATION AND CAMERA 

CALIBRATION 

When creating our prototypic mobile mapping system, we 

generally focused on a flexible design for the hardware and 

software components. We equipped our system with a 360° 

panorama camera primarily for the use as a mapping sensor. Our 

aim is to orient single panorama images in indoor environments 

with the aid of two LiDAR sensors and an IMU as navigation 

sensors as precisely as possible. We implemented a time 

synchronization based on electric signals between all sensors to 

avoid systematic errors caused by software-induced time shifts. 

To further increase the accuracy, we performed a complete 

panorama camera calibration. 

 

4.1 Mechanical Design 

We assembled all sensors and components on a robust aluminum 

frame. The modular design allows rapid changes to the sensor 

configuration. 

We fixed the multi-head panorama camera on the frame so that 

the first camera head (cam0) faces backwards. The other four 

sidewards facing camera heads (cam1-cam4) are arranged in 

clockwise order. The sixth camera head (cam5) faces to the top. 

Moreover, we tilted the panorama camera by a few degrees to 

achieve a roughly horizontal camera plane when a person carries 

the backpack (see Figure 1, no. 2). The overlapping of images 

allows stitching them together to a panorama image, so that the 

surrounding frame is barely visible. 

One of the two LiDAR scanners sits on top of the frame and is 

tilted by 30° to cover mainly the walls as well as some parts of 

the floor and the ceiling (see Figure 1, no. 1). In contrast, the 

second vertically mounted LiDAR scanner (see Figure 1, no. 5) 

covers mainly the floor and the ceiling. The second LiDAR is 

complementary to the first one and gives additional geometric 

stability to the resulting point cloud. We fixed the IMU stably in 

the lower part of the frame (see Figure 1, no. 7). 

 

 

Figure 1. System overview demonstrating our backpack indoor 

mobile mapping system 

 

4.2 Electronic Design 

A 12V lithium ion battery with a capacity of 20Ah (see Figure 1, 

no. 6) supplies power for the system. The single board computer 

II (Arduino Nano) synchronizes the time between the sensors and 

triggers the camera and the flashlights with an electronic trigger 

signal. The computer II contains a GPS simulator and produces a 

pulse per second (PPS) signal and an NMEA message per second 

to synchronize both LiDAR scanners (see Figure 2). A PPS signal 

also synchronizes the internal IMU clock. A post-processing step 

solves the ambiguity of the internal IMU clock, using the NMEA 

message, which the computer II sends directly to computer I. 

For triggering the camera, computer I (Prime Mini Pro) sends a 

trigger command to computer II. Then computer II triggers the 

camera and the flashlights with an electronic signal and sends a 

message with the trigger timestamp back to computer I. All 
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sensors send the data to computer I for registration and pre-

processing. 

 

 

Figure 2. Schema with sensor synchronization and data flow 

 

4.3 Software Design 

Our acquisition software runs on computer I with a Linux Ubuntu 

16.04 installation. Each external device with Virtual Network 

Computing (VNC) support is able to control computer I via 

remote desktop over a WLAN connection. We implemented our 

entire acquisition software with the Robot Operating System 

(ROS) framework. Quigley et al. (2009) give an introduction into 

the principles, paradigms and functionality of ROS. Thanks to the 

open source philosophy and the wide distribution in robotics, 

there are numerous existing tools and a comprehensive hardware 

support. Particularly noteworthy is the flexible graph-based 

communication concept consisting of nodes, messages, topics 

and services. A node describes a software module, which we 

represent as a circle in our software schema (see Figure 3). Nodes 

can communicate with each other by passing messages in a 

strictly predefined data structure through given topics. In our 

software schema, we represent topics as rectangles (see Figure 

3). Either, a node can publish messages to one or more topics (red 

arrows) or can subscribe to one or more topics to receive 

messages (blue arrows). By contrast, services offer synchronous 

communication. A node can advertise a service with predefined 

data structures of both request and response, similar to a web 

service. We represent services and topics as rectangles in our 

software schema (see Figure 3) but present the communication 

with services with green arrows. 

For both LiDAR scanners, we use the Velodyne driver with 

minor modifications by Withley (2016). The driver converts the 

sensor raw data into ROS pointcloud2 messages and 

publishes them. For the IMU, we use the XSens driver by Colas 

(2016) which converts the raw data into ROS Imu messages. For 

post-processing, the ROS node “Bag” stores the IMU messages 

as well as the messages from both LiDAR scanners in a so-called 

bag file. Furthermore, we fuse the LiDAR and IMU data with the 

3D LiDAR SLAM Cartographer. Hess et al. (2016) introduce the 

functionality of Google’s Cartographer exemplarily with their 2D 

LiDAR SLAM. Our new Conditional Trigger Node supports 

spatial trigger criteria, such as distance and orientation 

differences, as well as non-spatial criteria such as time difference 

and triggers a command if necessary. The Conditional Trigger 

Node uses the system pose coming from the Cartographer to 

calculate spatial differences. The node of Computer II advertises 

a trigger command service, publishes the trigger time and logs all 

incoming messages from Computer II. As described in chapter 

4.2, Computer II triggers the camera and the flashlights 

hardware-based. 

Furthermore, we use the driver by Rockey & Purvis (2015) for 

the Panorama Camera, which returns all six images from the 

camera heads strung together in one image. The Image Slicer 

node re-separates the images and the different Image Writer node 

instances write the single images. 

 

 

Figure 3. Schema with the implemented ROS software 

structure. ROS nodes are represented as circles and ROS topics 

as rectangles. Red arrows depict ROS publishers, blue arrows 

ROS subscribers and green arrows ROS services. 

 

4.4 Camera Calibration 

The calibration of the multi-head panorama camera consists of 

the interior orientation parameters (IOPs) of each camera head as 

well as the relative orientation parameters (ROPs) of each camera 

head to the first camera head (cam0). We used the constrained 

multi-system calibration software implemented by Burkhard et 

al. (2012) that is based on the bundle adjustment approach by 

Kersting et al. (2012). Blaser et al. (2018) extended this software 

with fisheye camera support using the equidistant camera 

projection model (Abraham & Förstner, 2005). 

We calibrated the panorama camera in our indoor calibration 

field, which features 188 well-distributed target points on all four 

walls as well as on the ceiling (see Figure 4). We measured the 

target points with a contactless high-precision industrial 

measurement system, thus the standard deviation of a target point 

is below 0.3 mm.  

Schmeing et al. (2011) modelled Ladybug3 panorama camera 

images as virtual spherical images. Rau et al. (2016) applied the 

same model to the Ladybug5 panorama camera as described in 

the Ladybug5 technical reference (FLIR Inc., 2017). Since we 

model each single camera head separately, no stitching error will 

occur. Our camera calibration investigations showed that the 

equidistant projection model (Abraham & Förstner, 2005) fits 

best for the Ladybug5 camera heads; therefore we apply the 

equidistant projection model to all individual camera heads. We 
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estimated the following IOPs: focal length, principal point, two 

radial and two tangential distortion parameters. We performed 

the calibration with five image epochs at different locations and 

with 1010 image observations. The mean reprojection error 

amounts to 0.23 pixel. Table 5 shows the standard deviations of 

the ROPs between the first camera head and each other camera 

head. 

 

 

Figure 4. Indoor calibration field for multi-camera 

configurations of mobile mapping systems 

 

Camera 

head 

X 

[mm] 

Y 

[mm] 

Z 

[mm] 

ω  
[deg] 

φ  
[deg] 

κ  
[deg] 

cam1 0.27 0.18 0.34 0.033 0.023 0.030 

cam2 0.20 0.17 0.38 0.016 0.022 0.007 

cam3 0.24 0.17 0.40 0.017 0.023 0.009 

cam4 0.29 0.18 0.34 0.033 0.022 0.029 

cam5 0.34 0.62 0.46 0.016 0.010 0.016 

Mean 0.27 0.27 0.39 0.023 0.020 0.018 

Table 5. Standard deviations of the calibrated ROPs between the 

first camera head (cam0) and each other camera head  

(cam1-cam5) 

 

 

5. DATA ACQUISITION AND PROCESSING 

Our prototypic MMS initializes completely indoors. The starting 

position of the LiDAR SLAM defines the origin of a local 

coordinate frame. The LiDAR SLAM algorithm computes real 

time sensor poses, which enable geometrically constrained 

camera triggering. We have implemented a time-based, a 

distance-based and a horizontal angle-based camera trigger 

constraint. In addition, the LiDAR SLAM provides a map 

overview containing the trajectory as well as the captured 

environment (see Figure 5). When data acquisition is completed, 

the LiDAR SLAM exports the so-called Cartographer state, 

which inherits the optimized sensor trajectory. Further data 

acquisition results are the ROS bag file with LiDAR and IMU 

messages (see section 4.3), the raw images from the panorama 

camera as well as a list containing the camera trigger events with 

their corresponding timestamps. 

In order to perform image measurements, we require undistorted 

images and their respective exterior orientations. Figure 6 gives 

an overview of our entire post-processing workflow. 

First, we undistort the raw images using the calibrated IOPs. 

Applying the calibrated IOPs will correct the distortions to the 

equidistant camera model. Abraham & Förstner (2005) provide 

the formulas for the conversion from the equidistant to the 

perspective camera model. We apply this conversion in a further 

step directly to the image measurements. 

Second, in order to obtain the corresponding exterior image 

orientations (EOPs) based on LiDAR SLAM, we extract the 

trajectory from the Cartographer state. For this, we extended the 

Google Cartographer with a batch function, which writes the final 

trajectory as a text file, by performing Google Cartographer’s 

assets writer. In a next step, we perform time-based interpolation 

of the image events between the trajectory events. We conduct a 

linear interpolation for the positions and a spherical linear 

interpolation based on quaternions for the orientations. Finally, 

we transform the interpolated positions and orientations with the 

calibrated ROPs and the manually measured boresight alignment 

parameters from the body frame to the frame of each camera 

head. 

 

 

Figure 5. Screenshots of the data acquisition software. Top: 

Cartographer SLAM preview, Bottom: Image preview and 

conditional trigger settings 

 

In application scenarios with high accuracy requirements, we aim 

to improve the LiDAR SLAM-based EOPs with a subsequent 

image-based georeferencing. For this purpose, we introduce the 

undistorted images into the incremental structure-from-motion 

(SfM) tool COLMAP (Schönberger & Frahm, 2016), which 
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Cavegn et al. (2018) extended with georeferencing capabilities 

by integrating prior EOPs and exploiting ROP constraints. 

Hence, we use LiDAR SLAM-based EOPs of the first camera 

(cam0) as initial values, and fix the ROPs of the other camera 

heads with the pre-calibrated values. The complete process of 

integrated georeferencing based on COLMAP is described in 

detail by Cavegn et al. (2018). Good lighting conditions and a 

structurally rich environment for proper and well-distributed 

feature detection are essential. 

 

 

Figure 6. Flow chart indicating our data post-processing 

workflow 

 

 

6. PERFORMANCE EVALUATION 

In order to compare the performance of LiDAR SLAM-based 

image poses and subsequently improved poses using image-

based georeferencing, we carried out investigations in an indoor 

environment. 

 

6.1 Test Site and Data Acquisition 

Our indoor study area is located on the sixth floor of the main 

campus building of the University of Applied Sciences and Arts 

Northwestern Switzerland (FHNW) in Muttenz close to Basel. It 

features a hallway with a dimension of ca. 27 m x 24 m, that leads 

to several offices, computer rooms, lecture rooms, staircases and 

elevators. The typical corridor width is approximately 3 m, with 

a minimum of about 2 m (left part in Figure 7) and a maximum 

of 4 m (right part, no. 3 in Figure 7). We determined 3D 

coordinates of many reference points representing natural 

markings e.g. on doorframes, elevator and room corners by 

tachymetry. These reference points have an accuracy of 

approximately 5 mm. We used several of them for our 

investigations as ground control points (GCPs) or check points 

(CPs). 

We started the data acquisition at the origin of the local geodetic 

coordinate frame marked with a green diamond on 21.03.2018 

10:50. The acquisition required 24 minutes. The camera trigger 

constraints were set to a distance interval of 1 m and an azimuth 

change of 15 degrees. In total, we captured a set of 1518 images 

with the panorama camera corresponding to six images at 253 

different locations, indicated as blue filled circles in Figure 7. 

 

6.2 Image-Based Georeferencing 

We defined the ROP configuration as well as its corresponding 

calibrated values in a JSON file, where the backward facing 

camera head cam0 serves as master, and fixed these ROP for the 

subsequent processing. Since the images from the upward facing 

camera head cam5 predominantly contain homogeneous surfaces 

leading to few feature correspondences, we only processed 

images from the horizontal pointing camera heads cam0-cam4 

captured at 253 locations. COLMAP exploited previously 

computed EOP from online LiDAR SLAM, used the simple 

radial fisheye camera model and performed no refinement of the 

interior orientation parameters. 

COLMAP extracted DSP-SIFT features and carried out spatial 

feature matching with a maximum distance of 10 m, 200 

maximum neighbours, a maximum angle constraint of 100 

degrees and a maximum ratio of 0.9. This resulted in 1115 

registered images, 92'597 points, 779'782 observations, a mean 

track length of 8.4, 699.4 mean observations per image and a 

mean reprojection error of 0.79 pixel. These values are similar to 

the results obtained from a different mapping at the same location 

on 27.11.2017 (Cavegn et al., 2018). 

 

 

Figure 7. Floor base map with overlaid projection centers of 

camera head cam0 (Trajectory), ground control points (GCPs) 

and check points (CPs) in the local geodetic coordinate system. 

At dark red point symbols, we measured both points at the top 

and the bottom of a doorframe. 

 

6.3 Precision Analysis 

In order to perform a precision analysis, we determined 36 points 

in total and used 28 of them as CPs and 8 as GCPs (see Figure 7). 

We measured each point in a minimum of four different images, 

performed a bundle adjustment-based forward intersection with 

a Python tool and estimated the 3D point coordinates. In a first 

run, we used the LiDAR SLAM-based image poses and in the 

second run, we utilized the improved image poses from image-

based georeferencing to perform the forward intersection. The 

mean precision of the forward intersection with SLAM-based 

image poses amounts to 11.6 cm. In contrast, with image poses 

improved by image-based georeferencing, the mean precision of 
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the forward intersection improves to 0.3 cm. Table 6 shows the 

mean precisions for GCPs and CPs respectively. This precision 

is a good indicator for the relative accuracy of typical 3D distance 

and area measurement tasks, which could be carried out 

irrespective of the presence of ground control points. 

Furthermore, we transformed the resulting 3D points with eight 

GCPs (see Figure 7) into the ground truth coordinate frame in 

order to perform the accuracy evaluation. Thus, we estimated 

three translation parameters as well as three rotation parameters. 

We compared the transformed 3D points of both sensor 

orientation approaches separately with the ground truth from 

tachymetry. The RMSE of 3D point residuals measured with 

LiDAR SLAM-based image poses amounts to 13.3 cm. In 

contrast, the RMSE of 3D point residuals measured with image-

based georeferenced image poses is 1.8 cm. The results of image-

based georeferencing representing the absolute 3D measurement 

accuracy are in the same order as in Cavegn et al. (2018). 

 

 LiDAR SLAM-

based poses 

Improved poses by 

image-based 

georeferencing 

GCPs CPs GCPs CPs 

Precision [cm] 8.2 12.3 0.2 0.3 

Accuracy [cm] 10.6 13.3 1.3 1.8 

Table 6. Precision and accuracy values for ground control points 

and check points from both LiDAR SLAM-based image poses 

and image-based georeferencing. Precision indicates the mean 

RMSE of forward intersection of single point measurements. 

Accuracy shows the RMSE of residuals to tachymetry. 

 

The precision as well as the accuracy values of the 3D point 

measurements based on the LiDAR SLAM image poses are in 

the same order. Thus, the LiDAR SLAM image poses are suitable 

e.g. for point object digitalization in the decimeter range. By 

performing a subsequent image-based georeferencing, we 

improved the accuracies by an order of magnitude. The results of 

measured 3D points with the improved image poses show that 

relative measurements in the sub-centimeter range and absolute 

measurements in the centimeter range are achievable. It should 

be noted that image-based measurements are far more intuitive 

than measurements in 3D point clouds. They also require very 

little training – in contrast to measurements in 3D point clouds, 

which typically require expert skills. 

 

 

7. CONCLUSIONS AND OUTLOOK 

We successfully developed a portable mobile mapping system for 

efficient image-based infrastructure management. Our research 

platform and working prototype features a multi-head panorama 

camera for the actual image acquisition as well as two multi-

profile LiDAR scanners (horizontal and vertical) and a MEMS-

based industrial grade IMU for LiDAR-based SLAM. Our 

modular design allows straightforward adaptations of the sensor 

configuration and of the acquisition software based on the Robot 

Operating System (ROS). We also provided details on the 

calibration of the multi-head panorama camera Ladybug5 using 

the equidistant fisheye camera model. We furthermore 

implemented and presented a workflow for indoor data 

acquisition without a need for outdoor initialization. The 

workflow utilizes LiDAR-based SLAM for online mapping and 

progress monitoring as well as for post-processing purposes. 

Furthermore, we improved the camera poses with subsequent 

image-based georeferencing using relative orientation 

constraints.  

Our accuracy investigation delivered absolute 3D point 

accuracies in the range of 10.6 to 13.3 cm using image poses 

directly from LiDAR SLAM. Thus, using image poses from 

direct georeferencing based on LiDAR SLAM, 3D point 

coordinates can be determined with an accuracy at the decimeter 

level. By performing our image-based georeferencing, an 

accuracy improvement by an order of magnitude can be expected. 

Our investigations show absolute 3D point accuracies in the 

range of 1.3 to 1.8 cm. The excellent 3D point measurement 

precision of 0.2-0.3 cm, obtained after image-based 

georeferencing, indicates that the final 3D services will provide 

relative accuracies for typical measurement tasks well within the 

sub-centimeter level. 

In future work we will tackle the overall system calibration, i.e. 

the precise alignment of the laser scanners and the panorama 

camera to the IMU. Moreover, we plan to assemble additional 

cameras that will allow investigations with fixed stereo bases, 

presumably leading to more accurate image poses especially in 

narrow passages. Furthermore, we will fuse the IMU data as well 

as the trajectory points from LiDAR SLAM within an Extended 

Kalman Filter (EKF). Since we expect an accuracy increase of 

EKF-based camera poses, this method could be an alternative to 

the image-based georeferencing. We expect that this approach 

should perform well also in indoor environments with poor 

structure and different lighting conditions. 
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