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This paper presents a new approach for the real-time, near-optimal control of water-distribution

networks, which forms an integral part of the POWADIMA research project. The process is based

on the combined use of an artificial neural network for predicting the consequences of different

control settings and a genetic algorithm for selecting the best combination. By this means, it is

possible to find the optimal, or at least near-optimal, pump and valve settings for the present

time-step as well as those up to a selected operating horizon, taking account of the short-term

demand fluctuations, the electricity tariff structure and operational constraints such as minimum

delivery pressures, etc. Thereafter, the near-optimal control settings for the present time-step are

implemented. Having grounded any discrepancies between the previously predicted and

measured storage levels at the next update of the monitoring facilities, the whole process is

repeated on a rolling basis and a new operating strategy is computed. Contingency measures for

dealing with pump failures, pipe bursts, etc., have also been included. The novelty of this

approach is illustrated by the application to a small, hypothetical network. Its relevance to real

networks is discussed in the subsequent papers on case studies.
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INTRODUCTION

Aims and aspirations

Every water-distribution network comprises a unique

configuration of interconnected pipes, storage tanks, pump-

ing stations and valve chambers, which is subjected to

highly variable demands that cannot be forecast with a great

degree of certainty. Moreover, it has to be operated in a way

so as not to violate any standards-of-service constraints

relating to the continuity of supply, maintenance of a

minimum delivery pressure, etc., as well as physical

constraints such as the overtopping of storage tanks. In

addition, operational staff are also expected to minimize the

energy cost incurred by pumping, taking account of a tariff

structure which can change with the hour of the day, day of

the week and month of the year. To assist with the

operational decisions, staff may have access to monitoring

information from SCADA (Supervisory Control And Data

Acquisition) facilities, which defines the current state of the

network in terms of control settings, water levels in storage

tanks, flow rates in a limited number of pipes, hydrostatic

pressures at selected locations, etc. Either way, considerable

reliance is placed on the experience and judgement of the

skilled staff in deciding which pumps/valves to operate and

when, in order to ensure compliance with the constraints

and minimize energy costs.

During the past 30 years or so, there have been a

number of attempts to develop optimal-control algorithms

to assist in the operation of water-distribution networks.

Most have been oriented towards determining least-cost,

pump-scheduling strategies, based on the use of linear

programming (Jowitt & Germanopoulos 1992; Burnell et al.

1993), non-linear programming (Chase & Ormsbee 1993;
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Yu et al. 1994), dynamic programming (Sterling & Coulbeck

1975; Lansey & Awumah 1994), decomposition-coordi-

nation techniques (Fallside & Perry 1975), fuzzy logic

(Angel et al. 1999) and general heuristics (Ormsbee &

Reddy 1995; Leon et al. 2000). However, the uptake of these

procedures in practice has been somewhat disappointing,

with relatively few having actually been applied to real

water-distribution networks. This limited acceptance of

these models by the water industry is partly due to:

† the techniques are confined to minimizing energy costs

and largely ignore network performance;

† they are generally complex, involving a considerable

amount of mathematical sophistication (e.g. requiring

extensive expertise in problem formulation and fine

tuning of parameters);

† their complexity is generally dependent upon the size of

the network, which limits their applicability;

† they are usually subject to over-simplification of the

network representation as well as assumptions to

accommodate the non-linear network hydraulics;

† run times have tended to be excessive; and

† there is the possibility of being easily trapped at local

optima and not achieving the global optimal solution.

Another important reason for their general lack of use is the

scarcity of suitable, user-friendly pump-optimization

packages. As a result, most of the models that have been

developed so far have remained in academia.

The concept underpinning the POWADIMA (Potable

WaterDistributionManagement) research project (Jamieson

et al. 2007), of which this work-package forms a crucial part,

provides an alternative approach to the traditional way in

which water-distribution networks have hitherto been

operated. Whilst initially the methodology would be

restricted to providing operational advice to skilled staff,

that does not negate the possibility of some form of closed-

loop control in the future, thereby reducing the need for

operator intervention. To achieve that end, it is necessary to

consider the entire operational-control process rather than

just energy cost reduction. At the present time, pump

scheduling, which remains the current state-of-the-art, is

limited to providing guidance for the pump-control settings

in the formof ‘set points’ (targets) tominimize energy costs by

transferring as much of the pumping as possible to the

low-cost energy tariff period. In order to do so, an averaged

demand profile is normally assumed for the following 24-h

period. If for any reason there is subsequently a significant

divergence between the assumed demand profile and reality,

the pump-scheduling program is usually re-run with the

amended demand profile: otherwise, the pump schedule is

not updated until the end of the current 24-h operating

period. No consideration is given to optimizing the perform-

ance of the distribution network per se. Ensuring demands

aremet within the operational constraints prevailing is left to

the judgement of the operational staff, as previously. Given

the uncertainty surrounding the whole process, there is an

inevitable tendency for the operators to maintain a higher

pressure than would otherwise be necessary with a better

understanding of future demands and network hydraulics. If

the aim is to improve the overall operational control ofwater-

distribution networks, then clearly energy cost reduction and

network performance have to be optimized together rather

than separately or not at all.

Approach adopted

In the preceding paper, Rao & Alvarruiz (2007) described

the methodology adopted for rapidly predicting the con-

sequences of different control settings on the performance

of the network, which is based on replicating a detailed

hydraulic simulation model by means of an artificial neural

network (ANN). This paper focuses on selecting the best

combination of control settings not only for the present

situation but also the expected conditions up to a given

operating horizon in order to minimize the overall pumping

costs. The objective is to meet the current and forecast

demands on the network at minimal operating cost, without

violating any of the physical or standards-of-service

constraints. Following the next update of the SCADA

facilities, which defines the current state of the network,

the whole process is repeated to accommodate any

amendments to the demand forecasts. Rolling the process

forward at short, regular time intervals gives an approxi-

mation to real-time control.

As previously explained (Jamieson et al. 2007), the use

of a conventional hydraulic simulation model to predict the

effects of different control settings is not particularly suited

to real-time control because of the excessive computer time
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required when used in association with optimization.

Therefore, the domain knowledge of the hydraulic simu-

lation model has been captured in a far more computation-

ally-efficient form by means of an ANN. In this context, the

ANN is used as a universal mapping function, which relates

various input values (or ‘neurons’) to specified output

values via a ‘hidden’ layer. Whereas the number of neurons

in the input and output layers are determined by the nature

of the physical network, as represented by the hydraulic

simulation model, the number in the hidden layer is largely

based on experience, augmented by experimentation where

necessary. In order to train the ANN, the hydraulic

simulation model must first be run in steady-state mode to

generate the required training/testing sets of corresponding

input/output vector pairs. For this particular application,

the input layer consists of different spatial demand patterns,

starting conditions and control settings, whilst the output

layer comprises the energy consumption, changes in

storage-tank water levels, in addition to any hydrostatic

pressures and flow rates at critical points throughout the

network. Having trained the ANN with a large number of

vector pairs and verified its performance with the testing

sets, the ANN predictor is embedded in the optimization

process to assist in the search for the optimal-control

settings for the current time and each time-step up to the

operating horizon.

In most operational optimization methods, the problem

specification is simplified by means of assumptions, dis-

cretization or heuristic rules. These simplifications make it

easier for a specific optimization technique to determine the

‘optimal’ solution, but may introduce bias by excluding a

large number of potentially good solutions. Genetic algor-

ithms (GAs), which have been used in this project, do not

require such measures, giving them a significant advantage

in finding the global optimal (or at least a near-optimal)

solution, over most other optimization methods. GAs are

able to search multi-modal decision space and can deal

efficiently with non-convexities that cause difficulties for

traditional optimization techniques. The methodology is

based on the Darwinian theory of natural selection, which

relates survival of the fittest to genetic operators such as

reproduction, crossover and mutation (Holland 1975;

Goldberg 1989). In progressing towards the optimal sol-

ution, a new set of artificial offspring is created with each

successive generation, using the genetic material from the

fittest of the old, with an occasional mutation that might

result in an improvement.

Amongst many other types of applications, GAs have

been used for water-distribution networks, primarily for

design purposes (see Dandy et al. 1996). They have also

been used for pump scheduling (Mackle et al. 1995; Savic

et al. 1997; Boulos et al. 2001; Rao & O’Connell 2002). In

both instances, computational efficiency is not particularly

important since there is generally no computational time

limit for design problems and pump-scheduling programs

are normally run only once every 24h. However, for real-

time, near-optimal control, where it is necessary to update

the control strategy at short, regular time intervals, in order

to accommodate the highly variable demands, compu-

tational efficiency is essential. Hence the reason for

including an ANN predictor in the control process rather

than a conventional hydraulic simulation model. The

combination of a GA optimizer and an ANN predictor

has been used previously for water-related, computation-

ally-demanding design problems (for example, Rogers &

Dowla 1994; Rao & Jamieson 1997; Wang & Jamieson 2002)

but this application is believed to be the first case where a

GA-ANN has been used for operational control.

USE OF A GENETIC ALGORITHM FOR OPERATIONAL

CONTROL

Overview of a GA

As mentioned previously, a GA is a stochastic optimization

procedure inspired by the process of biological evolution

which, based on probability, allows the fitter solutions to

survive and propagate. A GA deals with an initial

‘population’ of individual solutions, normally generated at

random, which are subject to changes caused by the genetic

operators of selection, crossover and mutation. Each new

solution (or ‘offspring’) is evaluated and ranked according

to its fitness in relation to the objective function, the fitter

offspring being more likely to be selected for producing the

next ‘generation’. After selection, ’parent’ offspring are

paired and share their ‘genetic’ characteristics (crossover)

to form two new offspring. In order to keep a stable
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population, the parents tend to be removed and replaced by

their offspring, which generally have a better fitness.

Occasionally, a mutation is introduced into the population,

which may lead to an unexplored area of the decision space,

containing fitter offspring. Thereafter, the whole process is

repeated. The greater the number of generations, the more

likely that the global optimum will be found. However,

since the convexity of the objective function cannot be

proven, this is not guaranteed. Therefore, in this project, the

‘best’ solution found after a finite number of generations is

referred to as ‘near-optimal’

GA structure

As stated by Goldberg (1989), the structure of a GA differs

from the more traditional optimization techniques in four

major ways:

† a GA typically uses a coding of the decision variables, not

the single variables themselves;

† a GA searches within a population of decision-variable

sets, not a single decision-variable set;

† a GA uses the objective function itself, not derivative

information; and

† a GA uses probabilistic, not deterministic, search rules.

A flowchart depicting a simple GA is given in Figure 1.

A GA requires that the decision variables describing the

different combinations of pump and valve settings be

represented by a unique coded string of finite length. This

coded string is the equivalent of a chromosome in

biological evolution. On the basis of Goldberg’s recommen-

dation, a binary code has been adopted for this application.

Coding and decoding a string is relatively straightforward.

Each fixed-rate pump can be represented by 1 bit at each

time-step up to the operating horizon. If the pumps were

variable speed, several bits would need to be used to

represent the different flow rates of each pump: for

example, 4 bits would be required to represent 16 flow

rates. Similarly, had it been necessary, each valve could be

represented by several bits depending on the number of

valve settings required, again for each time-step up to the

operating horizon. Figure 2 shows a simple example of a

coded string for one fixed-rate pump and one valve,

assuming a T-h operating horizon.

Given a population consisting of individuals identified

by their strings, selecting two strings as parents to produce

offspring is guided by a probability rule based on the higher

the fitness value an individual has, the more likely that

individual would be selected. There are, of course, many

different methods of selection available, including weighted

roulette wheel, sorting schemes, tournament selection and

proportionate reproduction. In this particular instance,

tournament selection has been used. Additionally, the so-

called ‘elitist’ principle has been included to improve the

rate and consistency of convergence towards the optimal

solution. This automatically guarantees the selection of the

fittest string in a generation rather than simply having a high

probability of selection.

Having selected the parents, the next phase of the

reproductive cycle is crossover in which their strings are cut

and spliced, one with the other, as if chromosomes were

being combined. Since the fitter individuals have a higher

probability of producing offspring, the new population will,

on average, have a higher fitness value. The basic operator is

the one-point crossover where the two selected strings

create two offspring by exchanging partial strings, which

have been cut at one randomly sampled breakpoint, as

shown in Figure 3. Although not practised here, a one-point

crossover can easily be extended to a multi-point crossover

Initialize population

Select parents for reproduction

Cross-over to produce offspring

Mutate offspring

Insert offspring into population

Are stopping criteria 
satisfied

Finish

No

Yes

Figure 1 | Structure of a simple genetic algorithm.
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by having several breakpoints and then exchanging every

second corresponding segment of each parent’s string.

The remaining genetic operator, mutation, is introduced

with a small probability of occurrence at a bit level by

randomly altering a bit value from 1 to 0 or vice versa. Again

this is in imitation of biological evolution where a small

change in the genetic code may lead to a fitter offspring. Its

purpose is to ensure that the search process does not

converge prematurely at a local optimum rather than

continuing to explore other areas of the decision space,

which may contain a fitter solution.

Constraint handling

In general, a constrained optimization problem takes the

form of

minfðxÞ

subject to gmðxÞ # bm; m ¼ 1; … ;M

x ¼ ðx1; x2; … ; xnÞ; xi . 0; i ¼ 1;…N

where f(x) represents objective function; x ¼ ðx1; x2; … ; xnÞ

is a set of decision variables; gm(x) is the mth constraint; bm

is the mth constant constraint upper bound; and M is the

total number of constraints.

If the problem is continuous and convex, then there is a

rich body of constrained optimization theories on which to

build a solution algorithm. Although GAs can readily deal

with these conditions, a normal GA does not explicitly

incorporate constraints into the formulation. Instead, aswith

many other optimization techniques, the constrained optim-

ization problem is reformulated as an unconstrained optim-

ization problem by incorporating the constraints in the

objective function. Any infeasible solutions are penalized.

For this particular application, the multiplicative pen-

alty method (MPM) has been used, in which the objective

function is multiplied by a factor proportional to the total

amount of violation. The cost multiplier, m(x), that penalizes

an infeasible string is given by the linear function

mðxÞ ¼ 1:0þ
X

vmvm; m ¼ 1; … ;M

where 4m are the constraint weights and the constraint

violation is measured by

vm ¼ ½maxð0; gmðxÞ2 bmÞ�; m ¼ 1; … ;M:

The new objective function is then determined by

mðxÞfðxÞ:

If a solution results in no violations for any of the

constraints, then m(x) is 1.0, and the objective function or

fitness of the solution remains equal to the original objective

function evaluation. The constraint weights, 4m, can be

constant or varied with each generation and may be the

same or varied for all M constraints. A detailed description

of the MPM method and others can be found in the paper

by Hilton & Culver (2000).

Pump status
Valve setting

1 1 1 1 1 1 00000 0

Pump status Pump status Valve setting  Valve setting  

……

t=1 t=2 t=T

Figure 2 | Coded string for one fixed-rate pump and one valve, assuming 24-h operating horizon.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
Parents

Offspring

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3 | Single-point crossover between parent strings.
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MODEL FORMULATION

Decision variables

In the case of water distribution, the decision variables are

the operational control settings of the pumps xt ¼ ðx1t;

x2t; … ; xNtÞ; t ¼ 1; … ;T and valves yt ¼ ðy1t; y2t; … ; yKtÞ;

t ¼ 1; … ;T ; for the current time and each time-step up to

the operating horizon, where N is the number of pumps, K

is the number of valves and T is the number of time-steps up

to the operating horizon. For fixed-rate pumps, the decision

variable is confined to pump status which can be either off

or on, whereas for variable-speed pumps, the decision

relates to the actual pump settings controlling the hydro-

static pressures in the network. Operating valves are similar

to variable-speed pumps although here the setting is the

valve opening controlling the rate of flow. Moreover, whilst

the valve settings affect the network hydraulics, they have

no associated operating cost and therefore do not feature in

the objective function.

Objective function

For water-distribution networks, optimal control has been

formulated as an implicit, non-linear optimization problem,

subject to both implicit and explicit constraints. The

objective function is to minimize the energy costs of

meeting the current and future demands up to the operating

horizon, whilst at the same time satisfying the physical and

standards-of-service constraints, which collectively are

referred to as the operational constraints. In mathematical

terms, the objective function can be expressed as

Minimize
XN

n¼1

XT

t¼1

CntEntðxntÞ

where N represents the number of pumps; T is the number

of time steps to the operating horizon; Cnt is the unit energy

cost of pump n at schedule time of t; Ent (xnt) is the energy

consumption of pump n during the schedule time interval

from t to t þ 1 with a specified pump control setting xnt.

In those instances where the distribution network

has more than one source of supply and each of those

sources has a different unit production cost as a conse-

quence of raw water and treatment costs, then the

objective function becomes

Minimize
XN

n¼1

XT

t¼1

CntEntðxntÞ þ
XR

r¼1

XT

t¼1

WrtQrtðxntÞ

where R represents the number of water sources; Wrt is the

unit cost of water at source r at schedule time t; Qrt(xnt) is

the amount of water pumped from source r during the

schedule time interval from t to t þ 1 with a specified pump

control setting xnt.

Implicit constraints

The implicit constraints on the network system are the

equality constraints defining the equilibrium state of the

network, which correspond to the conservation of mass at

each junction node and conservation of energy around each

loop in the network. These are represented by a set of quasi-

linear hydraulic equations that are implicitly solved using a

conventional hydraulic simulation model on which the

artificial neural network (ANN) is trained. Each function

call to the ANN with a set of pump and valve settings

returns the simulated steady-state hydraulic equilibrium

solution for pipe flow velocities, pipe hydraulic gradients,

node pressures and tank water levels as well as power

consumption for each pump.

Explicit constraints

The explicit bound constraints on the optimization problem

comprise the required network-performance criteria and

may include constraints on junction node pressure (P), flow

velocity (V), storage tank water level (S) and installed power

capacity (IPC).

Pressure constraints

For each operational time interval, the pressure at any

junction node j may be bound between a maximum value

and a minimum value. This can be expressed as

Pmin j # Pjt # Pmax j ;j;;t

where Pjt represents the pressure at node j at time t; Pminj is

the minimum pressure required at node j and Pmax j is the

maximum pressure allowed at node j.
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Flow constraints

The velocity (or flow rate) associated with any pipe k during

time interval t may be constrained between a minimum and

a maximum value expressed as

Vmink # Vkt # Vmaxk ;k;;t

where Vkt is the flow velocity of pipe k at time t; Vmin k is the

minimum velocity required at node k and Vmaxk represents

the maximum allowable flow velocity for pipe k.

Water level constraints

A storage tank in a water distribution system must also be

operated within a minimum and a maximum allowable

water level. The bounds on the tank water levels can be

expressed as

Smin it # Sit # Smax it ;i;;t

where Smin it represents the minimum water storage level

allowed at tank i at time t; Sit is the water storage level of

tank i at time t and Smax it denotes the maximum water

storage level allowed at tank i at time t.

Pumping power capacity constraints

The total pumping power at a pumping station may be

subject to the installed power capacity expressed as

PPmt # IPCm ;m;;t

where IPCm represents the installed power capacity at

pumping station m and PPmt is the total pumping power

consumption at station m at time t.

APPLICATION OF CONTROL PROCESS TO

A HYPOTHETICAL NETWORK

Any Town (Modified) water-distribution network

The paper by Rao & Alverruiz (2007) also contains a brief

description of the small, hypothetical water-distribution

network that has been used for experimental purposes. This

is based on an expanded version of the well-known Any

Town network (Walski et al. 1987) and is referred to as the

Any Town (Modified) or AT(M) network. Figure 4 is a

diagrammatic representation of the AT(M) network, which

has been modelled by means of the EPANET hydraulic

simulation package (Rossman 2000). Subsequently, the

knowledge base of the EPANET model was captured in a

far more computationally efficient form using an

ANN(5,20,7), representing 5 neurons in the input layer,

20 neurons in the hidden layer and 7 neurons in the output

layer. The root mean squared error (RMSE) of replicating

the EPANET model by the ANN was 1.65%. Since the

ANN is both quick and accurate in predicting the

consequences of different control settings on the perform-

ance of the network, this has been used in the near-optimal

control process, in preference to the hydraulic simulation

model.

Near-optimal control process

Figure 5 depicts the basic GA-ANN control process for

given starting conditions, demand profile and energy tariff

structure. Initialization of the control settings is random.

Thereafter, the control settings are input to the ANN

predictor, which estimates the resulting hydrostatic press-

ures and flow rates at critical points within the network, as

well as the water levels in storage tanks and energy usage, at

each time-step up to the operating horizon. The fitness

value of the string is then evaluated based on the operating

costs (energy cost plus production cost, if appropriate) to

which the total penalty cost relating to any constraint

violations is added. At the outset, this procedure is repeated

until there is a sufficient population to engage the GA

optimizer when parent strings are selected and subjected to

crossover and mutation, thereby producing two new

combinations of control settings. These new control settings

are input to the ANN predictor and the whole process is

repeated until the search is terminated by either some

convergence criteria or, as in this instance, a fixed number

of generations. The best combination of control settings

found at the end of the search process is referred to as the

near-optimal solution.

In the case of the AT(M) network, which has 1 source of

supply, 3 fixed-rate pumps, 3 storage tanks and 3 critical

pressure nodes, it has been assumed that the operating

horizon is the usual 24 h and that the time-step is 1 h.
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Therefore, the GA string length is 72 (3 pumps £ 24-h

operating horizon £ 1-h time-step ¼ 72) decision

variables. The population size used was 50, with crossover

and mutation probabilities of 0.86 and 0.015 respectively.

The tournament size for selection was 4 and the maximum

number of generations was 20,000. With these parameters

and a prescribed operational storage range of between

71.53m (maximum) and 66.53m (minimum), the

near-optimal control process was run with a series of

independent but representative demand profiles. For all

three storage tanks, the requirement was that the finishing

water level must be the same or above the starting level

which was 66.93m. In essence, these discrete 24-h operat-

ing strategies correspond to pump schedules that could

have been derived using a pump-scheduling package.

However, there is an additional advantage inasmuch that

they take account of the operational constraints imposed on

the distribution network and could have included valve

scheduling, had there been a need.

By way of results, Figure 6 depicts the near-optimal

control strategy for a typical 24-h operating period in

terms of the number of pumps used at different times,

whilst Figure 7 shows the corresponding water levels in

the three storage tanks, confirming that each ended the

period at or above the original starting level. Moreover,

throughout the whole period, hydrostatic pressures can be

maintained at or slightly above the designated values of

51m (node 90), 42m (node 55) and 30m (node 170), as

evidenced by Figure 8. In computing this control strategy,

Figure 9 indicates that the objective function rapidly

converges to the near-optimal solution in less than 1000

GA generations.

Dynamic, real-time control process

Having demonstrated that it is possible to derive a near-

optimal control strategy for a given 24-h demand profile, the

next stage was to develop a dynamic version, which was

capable of being rolled forward with each update of the

SCADA measurements which, in this instance, has been

assumed to be 1h: that is to say, the time-step adopted is

1 h. The way in which this was achieved was first to ‘ground’

65

265

165

90

55

170

Pump1

Pump 2

Pump 3

Figure 4 | The Any Town (Modified) water-distribution network.

32 Z. Rao and E. Salomons | POWADIMA: near-optimal control process Journal of Hydroinformatics | 09.1 | 2007

Downloaded from http://iwaponline.com/jh/article-pdf/9/1/25/734705/25.pdf
by guest
on 21 August 2022



any discrepancies between what had been predicted at the

previous time step for the current storage-tank water levels

and the observed values from the SCADA facilities, since

setting the new starting conditions to the actual levels help

reduce error accumulation over the period up to the

operating horizon which again has been taken to be 24h.

It should also be noted that grounding the errors in the

demand forecasts is not required as these errors are

automatically compensated in the forecasting methodology

developed by Alvisi et al. (2007), which comprises the next

paper in this special edition.

Normally, initialization of the decision variables is

random. However, the repetitive nature of real-time

control offers the prospect of reducing the number of

generations necessary to find the new control settings for

the next update of the operating strategy which occurs

each hour. Since the existing operating strategy for the

current time-step is not expected to be radically different

from the next, rather than randomly initializing the

decision variables at the next update, the contemporaneous

portion of the current operating strategy can be used

instead. As a result, the number of generations required to

find the next operating strategy can be reduced signifi-

cantly. However, rolling the control process forward leaves

a ‘loose end’ as there are no previous settings to initialize

the control settings for time-step 24. Therefore, the control

settings for the current time-step are used to initialize those

for 24h later. A loose end can also cause problems for

large storage tanks with comparatively small pumping

capacities which take a disproportionate amount of time to

refill, or if the operating horizon is reduced to less than

24h for any reason. In these instances, it may compromise

the common operational requirement to refill each storage

tank to a prescribed level at a given time each morning,

since the tendency of the control process is to draw on

storage wherever possible, as that is the cheapest option.

To avoid this possibility, the storage-tank levels for the

current time-step are used to temporarily anchor the loose

end 24h later, as detailed in the later paper by Salomons

et al. (2007).

As previously, the re-initialized control settings for the

next time-step are input to the ANN predictor and GA

optimizer, with a view to adapting the existing operating

strategy to meet the revised demand forecast an hour

later. Having computed the new operating strategy, the

control settings for the current time are implemented via

the SCADA facilities, whilst the remaining portion is

retained for re-initializing the control variables, after the

update of the SCADA data at the following time-step.

This control system is referred to as DRAGA-ANN

(Dynamic Real-time Adaptive Genetic Algorithm –

Artificial Neural Network), a flow diagram of which is

given in Figure 10.

Initialization of control
settings

ANN predictor

Pumping power, pressures,
flows, etc.

Fitness values
(pumping costs + penalties for
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Continue
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New control settings

Figure 5 | The Genetic Algorithm – Artificial Neural Network control process.
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Figure 6 | Near-optimal control pumping strategy for a typical 24-h operating period.
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Contingency measures

Since water-distribution networks are not 100% reliable,

some provision is required for operating the network in

the event of a major emergency such as a power outage,

pump failure, jammed valve or pipe burst. One option

would be to revert to manual control, using the tried and

tested contingency plans. However, the question arises as

to whether the DRAGA-ANN control system could be

used and, if so, under what conditions. Ideally, the aim

should be to automatically isolate the failure, re-adjust the

control settings and continue to supply as much of the

network as possible whilst the fault is repaired. However,

from the outset, it was felt that achieving this end was

too ambitious with the prevailing state of knowledge.

Therefore, a more pragmatic approach was envisaged,

which involved operator intervention.

In practice, it is generally found that water-distribution

networks have a considerable degree of redundancy,

enabling water to be routed around the problem area, albeit

with less efficiency thanusual.Moreover, if apump fails, there

is usually a standby that can be substituted. If, however, a

pump fails and there is no standby, then it is still possible to

use the GA-ANN by manually setting the pump capacity to

zero and allow the control system to find the best feasible

solution with that as an additional operating constraint.

Similarly, a jammed valve can be manually set to a fixed

position. The only proviso is that all of these possibilities have
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to be anticipated so that they can be included in the ANN

predictor. This implies the full range of each pump from zero

to maximum capacity and each valve from closed to fully

open have to be included within the training sets (see Rao &

Alverruiz 2007). The same applies to the installed power

capacity at each pumping station, where zero should be

included to cater for power outages.

This approach is not possible in the case of a burst

pipe which isolates part of the network, as the hydraulic

characteristics of the network would have changed which

are not reflected in the ANN predictor. Therefore, in

these circumstances, there is no alternative to employing

GA-EPANET. Since the EPANET model can be easily re-

configured to represent the reduced network, it is possible

to use GA-EPANET regardless of the burst location,

although obviously the computational time increases

significantly. As a consequence, it may be necessary to

reduce the operating horizon to, say, 12h in order to

complete the computation before the next SCADA

update. This restriction adds weight to the argument

that the loose end of the control strategy should be

anchored as there might not be a prescribed tank storage

water level constraint within the revised operating

horizon.
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CONCLUSION

Outcome of experimentation

Experimentation with a small, hypothetical network such as

AT(M), was a convenient starting point since it avoided the

idiosyncrasies of real water-distribution networks. Despite

its simplicity, the AT(M) model has demonstrated that the

concept of real-time, near-optimal control of water-distri-

bution networks appears to be a practical proposition.

Having replicated a conventional hydraulic simulation

model of the network by means of an ANN which is then

used to predict the consequences of different control

settings, it would seem there are no insuperable difficulties

in employing a GA to select the best combination of settings

to meet the projected demands. Initially, this was under-

taken for a series of separate 24-h runs in much the same

way as a pump-scheduling program but with the added

advantage of ensuring compliance with the operational

constraints imposed on the network. Subsequently, a

dynamic version, referred to as DRAGA-ANN, was devel-

oped, which automatically rolled the whole control process

forward with each update of the SCADA data. By compar-

ing the computational efficiency of the GA-ANN process

with that relating to the direct use of the hydraulic

simulation model, even for the AT(M) network it was

found that run times for calculating the near-optimal

control strategy could be reduced significantly: for large,

complex networks, the computational gain is expected to be

considerably more. With the benefit of hindsight, this

implies that the time-step used (which in this case was 1h)

could have been smaller, thereby giving a better approxi-

mation to real-time control.

Limitations

Whilst the use of a small, hypothetical network in developing

the control process may have been appropriate, it does have

somedrawbacks. For instance, theAT(M)network cannot be

described as ‘representative’ since most real water-distri-

bution networks have not been configured with similar

logical forethought. Indeed, themajority have been extended

in a haphazard way as a consequence of urban growth. It

follows that thesewill present more of a challenge in deriving

the near-optimal control strategy. Nor has it been possible to

compare the resulting reduction in operating costs since they

do not exist for a hypothetical network. It should also be

noted that theAT(M)networkdoesnothavemultiple sources

of supply or operating valves, which are common features in

real networks. While both were anticipated at the model

formulation stage, the complexities they induced were not

known until later. However, all of these issues have, of

necessity, been addressed when applying the control system

developed to the two case studies (see Salomons et al. 2007;

Martinez et al. 2007).
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