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Metal additive manufacturing (AM) is a disruptive technology, enabling fabrication 

of complex and near net shaped parts by adding material in a layer-wise fashion. It offers 

reduced lead production time, decreased buy-to-fly ratio, and repair and remanufacturing 

of high value components. AM processes are finding applications in many industrial 

sectors such as aerospace, automotive, biomedical and mold tooling. However, beside 

tremendous advantages of AM, there are still some challenges that prevent the adoption of 

this technology into high standard applications. Anisotropy and inhomogeneity in 

mechanical properties of the as-built parts and existence of pores and lack-of-fusion defects 

are considered as the main issues in directed energy deposition (DED) parts. Process 

planning and the utilization of methods that can increase the flexibility of design of DED 

parts with overhang sections is also of great importance. A robotized laser powder and/or 

wire directed energy deposition system has been developed at Research Center for 

Advanced Manufacturing (RCAM) at Southern Methodist University (SMU) in order to 

address the mentioned issue and eventually to make the robotized DED process more 

practical for abroad range of industrial applications. 
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The mechanical and microstructural properties of 316LSi parts were studied. In this 

regard, two types of coupons, thin-walled and block, of short and long inter-layer time 

intervals were considered. It was found that different thermal histories caused by different 

inter-layer time intervals have significant impact on mechanical and microstructural 

properties. The thin-walled samples with lower cooling rates showed coarser columnar 

grains, lower ultimate tensile strength, and lower hardness compared to the block samples. 

The melt pool was monitored in real-time. An empirical correlation between the melt pool 

area and cooling rate was achieved that could enable control of scale of the final 

solidification structure by maintaining the melt pool size in real-time. Further, to study the 

anisotropic behavior, tensile samples were loaded in parallel and perpendicular directions 

with respect to the deposition direction. The results indicated that samples in the 

perpendicular direction had lower UTS and elongation for both coupon types, revealing a 

weaker bonding at inter-layer/bead interface due to the existence of lack-of-fusion pores. 

As mentioned earlier, the robotized laser wire directed energy deposition (RLW-

DED) has limitations in printing certain complex shape parts. Fabricating parts with 

overhang sections, depending on the geometry, might cause a collision between the laser 

head and the buildup. Part segmentation and joining the elements back together has been 

presented to overcome those limitation. In this study, the welding of additively-

manufactured parts by RLW-DED has been proposed. Autogenous laser welding, 

performed at the same setup used for RLW-DED, was utilized to join the thin-walled 

316LSi DED parts. Mechanical and microstructural testing were then performed on the 

welded samples. The results showed that the mechanical properties of welded DED parts 

are comparable with those of DED parts. Furthermore, a component of complex shape was 
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fabricated to show the capability of the developed process. Therefore, the welding of RLW-

DED parts can expand the application of 3D-printed parts in industry. 

Robotized laser powder directed energy deposition is a non-linear process, and the 

dynamic response of the system varies layer by layer. An adaptable PI-controller with 

layer-dependent control gains was developed to ensure a constant melt pool width through 

the entire build. The laser power was selected as the control output variable, and the melt 

pool width was chosen as the control input variable. The performance of the controller was 

evaluated through deposition of thin wall samples. The results showed that the controller, 

by adjusting the laser power in real time, could successfully maintain the melt pool width 

and produce a more uniform and finer microstructure as compared to the sample with a 

constant laser power. 

Keywords: additive manufacturing; robotized laser directed energy deposition; 

microstructural and mechanical properties; closed loop control; melt pool monitoring; 

joining; welding  
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Chapter 1 

 INTRODUCTION 

 

1.1 Metal additive manufacturing 

Metal additive manufacturing (AM) or commonly known as metal 3D printing, is 

a technique of building parts by progressively adding thin layers of material. This 

technology has disrupted the manufacturing industry in recent years and has successfully 

attracted the researchers where it can offer the fabrication of freeform and complex 

components directly from 3D digital CAD file, reduction in production time and 

eliminating the need for tooling and fixturing. According to American Society for Testing 

and Materials (ASTM) International Committee F42 on AM technologies, the metal AM 

processes are classified into three categories, namely, directed energy deposition (DED), 

powder bed fusion (PBF), and sheet lamination (SL) [1]. Fig. 1.1 shows the summary of 

most common AM methods.  
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Figure 1.1 Metal AM classification [2]. 

Fig. 1.2 illustrates schematically a PBF system, a DED system based on powder 

feedstock and a DED system based on wire feedstock, respectively. In PBF process, a laser 

or electron beam is delivered to a bed of powder where metallic powders are sintered or 

melted selectively [3]. First, a layer of powders is distributed uniformly by a roller and then 

melted by a high density energy beam such as laser or electron beam. After a layer is 

finished, the build platform is lowered down and this cycle repeats until the entire 

component is fabricated.  
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Figure 1.2 Schematic illustration of (a) PBF [4] (b) wire-fed DED and (c) powder-fed 

DED [5]. 

Table 1.1 compares the DED and PBF processes in terms of their specifications. 

Each of these processes has their own advantages and drawbacks and their selection 

depends on the specific applications. For instance, PBF process is capable of printing 

intricate geometries and features with small resolutions. In contrast, DED is less flexible 

to fabrication of highly complex parts, however it can offer larger build size, higher 

deposition rate, ability to make functionally graded composition materials, repair worn out 

and damaged high value components, and print lattice structures with auxetic behaviors.  
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Table 1.1 Comparison of two categories of metal AM processes: DED and PBF [6] 

Process 

Feedstock 

DED  PBF 

Powder Powder Wire  

Heat source 

Nomenclature 

Power (W) 

Speed (mm/s) 

Max. feed rate 

(g/s) 

Max. build size 

(mm x mm x 

mm) 

Production time 

Dimensional 

accuracy (mm) 

Surface 

roughness  

Post processing 

Laser 

DED-L 

100-3000 

5-20 

0.1-1.0 

2000x1500x75

0 

 

High 

 

0.5-1.0 

 

4-10 μm 

HIP and 

surface 

grinding are 

seldom 

required 

E-beam 

DED-EB 

500-2000 

1-10 

0.1-2.0 

2000x1500x750 

 

Medium 

 

1.0-1.5 

 

8-15 μm 

Surface grinding 

and machining 

is required to 

achieve better 

finish 

Electric arc 

DED-PA/DED-

GMA 

1000-3000 

5-15 

0.2-2.8 

5000x3000x1000 

 

Low 

Intricate features 

are not possible 

Needs machining 

Machining is 

essential to produce 

final parts 

Laser                 E-

beam 

PBF-L              PBF-

EB 

50-1000 

10-1000 

 

500x280x320 

 

High 

 

0.04-0.2 

 

7-20 μm 

HIP is rarely required 

to reduce porosity 

 

 

 

Fig. 1.3 depicts a few components built by different metal AM processes, showing 

the capability of each process.  
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Figure 1.3 Metal 3D printed components. (a) Gas turbine blade built by PBF system 

[7] (b) A metamaterial structure with negative Poisson’s ratio printed by robotized 

DED system at RCAM [8]. (c) A ship propeller with 1.35 m diameter fabricated by 

wire arc additive manufacturing [9]. 

1.2 Laser directed energy deposition (Laser DED) 

DED is defined as “an additive manufacturing process in which focused thermal 

energy is used to fuse materials by melting as they are being deposited” according to 

ISO/ASTM 52900:2015 [10]. DED has been recognized with different terminologies in 

literature such as Laser Engineered Net Shaping (LENSⓇ), laser metal deposition (LMD), 

direct metal deposition (DMD), and shaped metal deposition (SMD). A DED system can 

be further categorized based on the feedstock material, namely, wire-fed DED (Fig. 1.2(b)) 

and powder-fed DED (Fig. 1.2(c)). 

In metal deposition process, a heat source is used to melt the material. Different 

types of heat sources have been utilized in DED processes, including laser, electron beam, 

and arc. Among these heat sources, laser beam has been extensively applied because: it 

shows more flexibility in focusing on small or large areas, it has high energy density and 
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low heat input that leads to a small heat affected zone and also because the laser power is 

easy to control.  

In laser DED, the material in the form of powder or wire is fed into the melt pool. 

The powder is usually blown coaxially from either a conical nozzle or a multi-nozzle 

powder delivery system into the processing zone. Fig. 1.4 illustrates a typical four-nozzle 

powder delivery system. In laser DED based on wire feeding, the wire metal is usually fed 

from one side (mostly from leading edge of melt pool). With the advancement of this 

technology, a few companies such as Fraunhofer and Precitec developed the new laser 

heads that are capable of feeding wire from center that is being exposed to the coaxially 

split laser beams.  

 

Figure 1.4 A four-nozzle powder delivery system [11]. 

Laser wire DED offers several advantages over powder based DED system: 

material usage is almost 100%, it is cleaner and it can achieve higher deposition rates, and 

it is a lower cost process since the wire feedstock is cheaper than metal powder. The laser 

DED process is influenced by several processing variables such as laser power, laser beam 
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size, travel speed, material delivery method and material feed-rate, shielding gas and 

material properties (e.g. thermal conductivity, absorptivity). Among all these factors, the 

laser power, travel speed and material feed-rate have been researched mostly in literature. 

In laser powder DED, as the laser power increases the powder capture efficiency increases 

and thereby the track width will be increased [12]. Therefore, the laser power is the main 

adjusting factor when the track width is used as control variable in closed loop control 

system. In laser wire DED, laser power plays a similar role; the melt pool width becomes 

larger as the laser power increases [13]. Travel speed has direct impact on the track height. 

The track height is decreased when the travel speed is increased [12]. The material feed-

rate (wire or powder) also influences the track height such that by increasing the material 

feed-rate the height of the bead becomes larger [14].  

As mentioned earlier, laser wire DED has some unique advantages. However, there 

exists some process-related factors that affect the quality of deposition and stability of the 

process. Wire feeding direction, feeding angle, wire tip position, and wire stick-out from 

the wire feeding nozzle are the variables that must be tuned accurately before the process 

starts [15]. These parameters are shown schematically in Fig. 1.5.  
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Figure 1.5 Wire feeding setup (a) wire tip with respect to melt pool and nozzle (b) 

wire feeding directions [15]. 

It was verified by Mok et al. [16] that front wire feeding with 45° angle is the best 

orientation that could achieve the maximum deposition rate. Syed et al. [17] revealed that 

the best quality of beads was achieved when the wire was placed at the leading edge of the 

melt pool with the angle of 20°-60°. Based on the wire setup parameters (see Fig. 1.5), there 

are three modes of metal transfer: droplet-like transfer, smooth transfer, and plunging [15] 

as depicted in Fig. 1.6. Droplet is usually formed when the wire tip is exposed to laser beam 

for longer time (e.g. when the distance between wire tip and substrate is large). Therefore, 

the temperature at wire tip exceed the melting point and droplet starts to form. Ultimately, 

the droplet will be detached from wire due to gravitational force, leading to an irregular 

bead shape (Fig. 1.6 (a)). In contrast, if wire feeder is appropriately set up so that the wire 

is melted “close to the intersection with melt pool” [15], the resulting beads will have 

smooth surface and good metallurgical bonding. In plunging mode, the wire is not melted 

by laser power and instead, it is melted by the heat conduction from the melt pool (see Fig. 

1.6 (c)). However, this mode is very sensitive to the wire feeding rate. High wire feeding 

rates could cause the lack of energy to the melt pool (wire is partially melted by the high 
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temperature of melt pool), resulting in lack-of-fusion defects [15]. Fig. 1.6 (d) shows the 

damaged deposition due to high wire feed rate.  

 

Figure 1.6 Different transfer mode between wire and melt pool (a) droplet-like mode 

(b) smooth (c) smooth plunging (d) damaged bead due to high wire feed-rate [15]. 

1.3 Challenges in laser DED process 

While there are numerous benefits of DED technology, some issues still exist that 

make this process very challenging to be accepted by the high standard industries such as 

medical or aerospace. Some of the main challenges include optimization and prediction of 

microstructure and mechanical properties [18-19], part quality and process monitoring [20-

24], and process path planning [25-26]. The aim of this section is to address several 

important challenges in DED parts that prevent the industrial adoption of this technology.  

1.3.1 Microstructure and mechanical properties 

Complex microstructure usually exists in laser DED parts. DED parts normally 

undergo complicated thermal history during building process. Fast heat extraction, partially 

re-melting of previously deposited layers and rapid solidification make the dynamic of the 

process unpredictable [27]. A large number of studies have focused on effects of thermal 

cycles on microstructural evolution and mechanical properties of DED parts. There is a 

large number of processing parameters involved in DED process such as laser power, travel 

speed, material feed-rate and layer thickness. These parameters affect directly the 
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mechanical properties, thermal gradient, and final solidification structure and therefore, 

they must be optimized and tuned accurately to achieve high quality parts [28]. The specific 

energy (E) is a key factor in laser DED process since it specifies the amount of input energy 

to the melt pool. The specific energy is a function of laser power, P, laser beam diameter, 

d, and travel speed, TS, which is defined by the equation 𝐸 = 𝑃𝑇𝑆×𝑑 [29]. Ma et al. [30], 

studied the effect of specific energy on the 316L SS as-deposited samples in laser cladding 

deposition (LCD) process. They considered three sets of parameters to achieve three 

processing techniques, namely, small-size LCD, middle-size LCD and large-size LCD, as 

can be seen in Table 1.2.   

Table 1.2 Process parameters and experimental design level used for experimentations 

[30]. 

 

 

 

 

 

The results of the microstructural analysis are shown in Fig. 1.7. The primary 

cellular arm spacing increases from the order of 5µm to 15µm as the specific energy 

increases from 50J/mm to 80 J/mm. Therefore, the cooling rate of melt pool, which is a 

function of cell size, decreases as the specific energy increases [30]. The effect of specific 

energy on microhardness and tensile properties of the samples shown in Fig. 1.8. (a) reveals 

Processing 

technique 

P (W) TS (mm/s) d (mm) E (J/mm2) 

Small-size LCD 

 

 

 

Middle-size LCD 

 

 

 

Large-size LCD 

1400 

1600 

1800 

2000 

3200 

3400 

3600 

3800 

4400 

4600 

4800 

5000 

28 

28 

28 

28 

10 

10 

10 

10 

5 

5 

5 

5 

1.0 

1.1 

1.2 

1.3 

5.0 

5.2 

5.4 

5.6 

11.2 

11.4 

11.6 

11.8 

50 

51.9 

53.6 

55 

64 

65.4 

66.7 

67.9 

78.6 

80.7 

82.8 

84.7 
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that UTS (ultimate tensile strength) and yield strength decreased while elasticity increased 

as the E increases. There is also obvious impact on microhardness as seen in Fig. 1.8. (b).     

 
Figure 1.7 3D composite view showing the cellular morphologies of samples with 

condition of (a) small-size LCD (b) meddle-size LCD and (c) large-size LCD [30]. 

 
Figure 1.8 Effect of specific energy (E) on (a) tensile properties (b) microhardness of 

316L as-deposited samples [30]. 

Another important factor in laser DED that has impact on thermal history, and 

thereby on microstructure of final buildup is inter-layer time interval. This is the time 

required for the laser to return to the identical bead in the next layer. Foster et al. [31], 

studied the effect of inter-layer time on the deposition of Inconel 625 and Ti-6Al-4V alloys. 
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They found that a finer microstructure, a higher UTS and yield strength and higher 

microhardness levels could be achieved when the inter-layer time were increased from 0 

to 40 sec. Yadollahi at al. [32], also revealed that the mechanical and microstructural 

properties of 316L SS laser DED parts are dependent on the inter-layer time interval. They 

fabricated two types of samples: single-built and nine-built, with identical process 

parameters as can be seen schematically in Fig. 1.9. The single-built part was built 

continuously layer by layer with a short inter-layer time interval whereas in nine-built part, 

one layer of all nine cylinders were deposited before the next layer is started, producing a 

long inter-layer time interval [32].  

 
Figure 1.9 Schematic of fabricated cylindrical rods (a) one cylindrical rod built at a 

time, i.e. single-built, and (b) nine samples built at a time, i.e. nine-built [32]. 

The EBSD (electron backscattered diffraction) analysis (Fig. 1.10) revealed that 

while both samples had very low misorientation angles (average ≈15°), indicating a near-

mono crystalline texture, the average grain size was 45µm for nine-built whereas it was 

60µm for single-built part [32]. This is attributed to the increased inter-layer time interval 

and thereby higher cooling rates in nine-built sample.  
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Figure 1.10 EBSD inverse pole map for (a) single-built (c) nine-built. Misorientation 

angle distribution of austenite phase for (b) single-built (d) nine-built (red: [001]; 

blue:[111]; green:[101]) [32]. 

Another challenge in laser DED process is inherent anisotropy and heterogeneity 

of microstructure and mechanical properties of the as-fabricated parts. Epitaxial columnar 

grain morphology is the most common feature of laser DED microstructure [33]. Such 

columnar morphology of grains which are usually elongated in the build direction has been 

recognized as the main source of anisotropy of mechanical properties [34]. Heterogeneity 

also exists in metal laser DED parts, which arises from variations in grain morphology, 

size and chemical composition. Heterogeneity could be a result of change in thermal 

condition of part being fabricated [35]. Cyclic thermal history caused by successive layer 

deposition leads to variations in microstructure. For instance, an equiaxed-to-columnar 

transition of prior β grains in Ti-6Al-4V alloy, was observed at the beginning of EBM 
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(electron beam melting) deposited part [36] (see Fig.1.11). This transition is mainly 

attributed to the fast heat dissipation in the first several layers which caused a higher degree 

of super cooling and thereby an equiaxed-to-columnar transition [36].  

 
Figure 1.11 (a) optical micrograph (b) schematic showing the equiaxed-to-columnar 

transition in Ti-6Al-4V alloy due to fast heat sink in initial layers [36]. 

The processing parameters also influence the dynamics of the melt pool that could 

eventually cause the formation of defects [32]. Process induced defects such as pores, 

rough surfaces and lack-of-fusion between layers could also lead to anisotropy and 

heterogeneity in mechanical properties of metal AM parts [37-38]. Despite all efforts made 

to understand the microstructural and mechanical behavior of DED parts, more focused 

research still required to thoroughly optimize all factors affecting the properties of as-built 

parts.  
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1.3.2 Process monitoring and control 

Numerous studies have focused on implementation of process monitoring and 

feedback control in order to improve the quality of parts and to increase the stability and 

repeatability of the process [39-41]. Process monitoring and control is necessary in DED 

because usually the existence of process disturbances and fluctuations in process 

parameters (e.g. laser power, travel speed or material feed-rate) could deviate the process 

from pre-optimized condition, leading to instability or producing defects in part. The 

change in thermal condition of the buildup, i.e. the transition from 3D conduction mode to 

2D during the process is an example of process disturbance. Process monitoring of DED 

in literature mostly focused on monitoring of either melt pool size or melt pool temperature 

[42-46]. Different types of sensors such as vision sensors (e.g. CCD camera or CMOS 

camera) or thermal sensors (e.g. IR camera or pyrometer) could be utilized to monitor the 

melt pool. Then, the signal from sensor is compared with pre-set value and the resulting 

error will be used as an input of controller. Eventually, the controller sends a signal to 

adjust the control variable (e.g. laser power or travel speed) in order to maintain the melt 

pool size or temperature constant over the process. Most of the studies in literature relied 

on the fixed controller parameters. Given the non-linear dynamic of the DED process, there 

is a need for adaptable controller that can correspond to non-linear behavior of process.  

1.3.3 Process path planning 

Process path planning is also one of the challenges in robotized DED, especially 

when it comes to fabrication of complex freeform parts. In DED, there is no support 

material, therefore the kinematics of robot should prevent the melt pool from collapse. This 

issue is more pronounced when wire is used as material feedstock. This is mainly because 



16 

 

the best quality of deposition is achieved when the wire is fed from leading edge of melt 

pool [17]. Thus, the part with overhang section could be difficult to build. One solution is 

to use adaptive slicing algorithm to build non-uniform thickness layers due to variations in 

build orientation [47]. There are also other methods to deal with overhang parts, however, 

these techniques could make the path planning even more complicated. Therefore, there 

still exists a lack of techniques that can increase the flexibility of DED process in terms of 

building overhangs, while simplifying the process planning.  

1.4 Research objectives 

The aforementioned issues have been addressed in the developed robotized laser 

directed energy deposition system at RCAM at SMU. The main objectives can be 

categorized as follows: 

 To investigate the mechanical and microstructural properties of the as-built parts. 

 To develop method to join the as-fabricated parts by using autogenous laser 

welding. 

 To develop a closed-loop controller to control the width of melt pool in a laser-

based directed energy deposition system. 
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Chapter 2 

 AN INVESTIGATION ON MECHANICAL AND MICROSTRUCTURAL 

PROPERTIES OF 316LSI PARTS FABRICATED BY A ROBOTIZED 

LASER/WIRE DIRECT METAL DEPOSITION SYSTEM 

 

2.1 Introduction 

Additive Manufacturing (AM) processes are finding application in many sectors of 

industries from healthcare, automotive, and mold tooling to aerospace. The rapid 

development of AM is due to its capability of fabricating complex geometries, reducing 

production time, and eliminating the need for expensive tooling and fixtures. It is becoming 

an economic and efficient method in the low volume production of high value parts. There 

is a wide variety of metal AM processes. Most of them are classified into two broad 

categories: Powder Bed Fusion (PBF) systems and Directed Energy Deposition (DED) 

systems [1]. According to ISO/ASTM 52900:2015 [2], DED is defined as “an additive 

manufacturing process in which focused thermal energy is used to fuse materials by 

melting as they are being deposited.” In powder bed fusion processes, a bed of powder is 

selectively sintered or melted via laser or electron beam heat source. In contrast, DED is 

accomplished by continuous feeding of metallic powder or wire into the melt pool formed 

by a highly focused energy source such as laser, electron beam, or arc. Relative motion of 
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the heat source to the substrate will generate the pre-defined pattern. This process repeats 

until a solid free form part is constructed. 

Laser direct metal deposition (L-DMD), as a DED process, has been recognized 

with different terminologies in literature such as 3D laser cladding, shaped metal deposition 

(SMD), laser metal deposition (LMD), direct metal deposition (DMD), and direct laser 

deposition (DLD). It has been increasingly utilized in many applications. L-DMD provides 

unique advantages, including  the ability to print the functionally-graded materials (FGM) 

[3,4], repair of high valuable components [5], and surface cladding of parts exposed to 

heavy loadings (die and mold) or harsh conditions (corrosive, erosive, or wear). Printing 

the metamaterial (exotic) with unusual behavior such as large Poisson’s ratio, negative 

Poisson’s ratio, or negative coefficient of thermal expansion is also one of the application 

of L-DMD systems [6]. 

Laser wire direct metal deposition (LW-DMD), a L-DMD process which uses wire 

as a feedstock, has recently gained more attention. LW-DMD has a low cost of feedstock 

(it uses commercial welding wire), higher deposition rate (up to 40 lb/hr for titanium alloy, 

compared to the powder-fed deposition system with 1.6 lb/hr [7]), maximum material 

efficiency, and cleaner environment. Thus, many leading companies in the metal AM 

industry (e.g. GKN aerospace in collaboration with the National Oak Ridge Laboratory) 

use LW-DMD to fabricate large structures that would be almost impossible to build using 

the other AM techniques. Aside from the tremendous advantages of this process, 

experiments have shown that LW-DMD is a demanding and difficult-to-control process. 

Main process parameters such as laser power, wire feed speed, scanning speed, overlap 

factor and height-increment must be tuned accurately to achieve a stable and repeatable 
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process and avoid common issues like droplet formation and wire dripping [8]. 

Experiments show that due to the change in heat transfer mode during the process (usually 

from 3D to 2D conduction) and also because of complexity in predicting the physical 

phenomena (melt pool dynamics), it is necessary to implement an online monitoring and 

control system. In addition, there exist small variations in some process variables such as 

material feed rate, laser power, and thermal conductivity (a temperature-dependent 

variable). These alterations require the use of a control system in order to achieve material 

integrity [9]. Heralic, et al. [10, 11] in an attempt to apply the feedback control system in 

LW-DMD process, were able to keep the width and height of the melt pool constant and 

ensure the maximum stability. Yaoyu et al. [12] utilized a coaxial camera on the laser head 

to monitor the melt pool and by applying a PID controller they successfully adjusted the 

laser power in real-time in order to keep the melt pool size constant during the laser/powder 

direct metal deposition process. The sensing and control of the wire direct metal deposition 

system is of great importance, although it is out of the scope of the current study.   

In LW-DMD, the wire is fed usually from one side, although there exits new 

commercial laser cladding heads, e.g. from Fraunhofer IWS, in which the wire is fed 

coaxially and laser beam is split into several separate beams that subsequently focused onto 

a circular focal point. That is, an omni-directional deposition is feasible. However, side-

feeding of wire makes the path planning more difficult since the wire should be always fed 

at the leading edge of the melt pool in order to obtain the best results in terms of surface 

roughness and porosity [13]. Yaoyu et al. [14], developed a Matlab-based offline path 

planning software to be used for printing the complex geometries by an 8-axis robotized 

laser/wire direct metal deposition system. 
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It has been shown that the mechanical properties of the metal AM parts are 

comparable to the conventionally manufactured parts [15]. However, mechanical and 

microstructural properties of the AM parts have been a major concern because of the 

complicated thermal history that the part experiencing during the building process [15]. 

Hederick [16] in a review of the metal additive manufacturing processes, mentioned that 

there is a need to study the relation between thermal history and evolution of material 

microstructure. Much research has focused on perceiving the effects of thermal cycles on 

microstructure evolution and mechanical properties of L-DMD parts. Thermal history 

during L-DMD, comprises the fast heating/cooling rates and considerable temperature 

gradients. It plays a significant role on microstructural characteristics and eventually 

determines the mechanical properties of the final part [17]. Yadollahi et al. [18] reported 

that the process parameters could influence the dynamics of the molten pool and 

accordingly the thermal history will be affected. Thus the process parameters might have 

caused the formation of defects. They also studied the effects of time interval between 

successive layers of deposition on mechanical and microstructural properties of buildups. 

The results showed that longer time intervals resulted in higher cooling rates, leading to 

finer microstructure. Su et al. [19], investigated the effects of structure types, namely two 

commonly-used structures: block and thin wall, on the microstructural evolution of 

deposited parts. The thin wall samples showed columnar grains that were parallel to the 

building direction, whereas the block coupons revealed multi-directional grain growth. In 

literature, the mechanical and microstructural properties of DMD parts have been 

compared to wrought or conventionally as-fabricated parts. In some cases the orientation-

dependent properties are also reported. In a review by Lewandowski et al. [20], mechanical 
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properties of metal parts fabricated by a wide variety of AM processes were reviewed. 

Carrol et al. [21] in an investigation on anisotropic tensile properties of Ti-6Al-4V parts 

fabricated by DMD showed an improvement in mechanical properties of AM parts 

compared to wrought parts. They also studied the orientation-dependent, location-

dependent, and oxygen-dependent material properties of the as-built parts. Similarly, 

Zheng et al. [22] demonstrated the notable enhancement in strength and ductility of the 

parts manufactured by Laser Engineered Net Shaping (LENSⓇ) process for 316L SS. 

Furthermore, Zhang et al. [23], studied the effects of travel speed on tensile properties and 

hardness. They found that by increasing the travel speed these properties were improved. 

To show the orientation-dependent tensile properties of LW-DMD parts, Xu et al. [24] 

revealed that the strength of sample parallel to the deposition direction is higher than the 

one normal to deposition. Despite all efforts made to study the mechanical and 

microstructural properties of L-DMD process (using mostly powder as feedstock), less 

attention has been given to a laser-wire direct metal deposition process.  

The current study focused on the characterization of mechanical and 

microstructural properties of 316LSi stainless steel parts fabricated by a robotized laser-

wire direct metal deposition system developed in RCAM (Research Center for Advanced 

Manufacturing) at Southern Methodist University (SMU), Dallas, TX. The developed 

system is based on the robotized highly flexible kinematic motion system capable of 

fabricating complex and overhang geometries without requiring support structure with 

tolerances mostly within ±0.5 mm [8]. Two distinct geometries, namely thin-walled and 

block, were considered to study the effects of inter-layer time interval as well as part 

orientation on the evolution of microstructure and mechanical properties of the buildups.  
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2.2 Experimental procedure 

2.2.1 Materials 

An austenitic stainless steel (316LSi) was used as a feedstock material in a LW-

DMD process. This material has a similar properties of 316L SS but with slightly higher 

content of silicon that improves the wetting behavior of the metal during welding. 316L SS 

material with an excellent corrosion resistance is widely used in applications where 

superior corrosion resistance or high elevated temperature strength is needed [25]. Typical 

parts made of 316L SS and welded with 316LSi are finding applications in jet engine, 

chemical and food processing, oil and gas industry, and biomaterials processing systems.  

The feedstock wire was OK Autorod 316LSi from ESAB with a diameter of 1.2mm. 

A commercially available 304L plate with thickness of 6 mm was used as a substrate. The 

chemical compositions of wire and substrate are provided in Table 2.1.  

Table 2.1 Chemical compositions of wire and substrate. 

 

2.2.2 System overview and procedure 

A robotized laser/wire direct metal deposition system was used to perform the 

experimentations. Fig. 2.1 demonstrates the experimental setup along with a few parts 

fabricated by this system. As a motion system, a 6-axis KUKA robot (KR-60) with a 2-

axis rotary table that were spatially coupled was used to provide the kinematics of the laser 

processing head. As a heat source, an IPG 4 kW fiber laser with 1070 nm wavelength was 

utilized to melt the material. A Precitec YW50 laser welding head was mounted on the 

Element (wt.%) C Mn Si Ni Mo Cr Cu P S Fe 

Wire (316LSi) 

Substrate 

(304L) 

0.01 

0.03 

1.8 

2 

0.9 

- 

12.2 

8 

2.60 

- 

18.4 

18 

0.12 

- 

0.03 

0.045 

0.03 

0.03 

Bal. 

Bal. 
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robot arm. The laser beam was defocused at 10mm below the focal point, resulting in 

1.6mm beam spot diameter. The wire material is continuously fed to the processing zone 

by means of a Binzel wire feeding system. The system has two synchronized motors 

(push/pull) enabling an accurate and consistent wire feed speed. In addition, an image 

monitoring system was installed at the laser head to capture the images from melt pool in 

real-time. The setup included a CMOS camera (Prosilica GC640) that was installed 

coaxially in the laser head, an infrared filter (>700nm), an iris, a set of optical mirrors and 

an infrared notch-filter (1070nm). The camera had a monochrome mode with 640x480 

pixels resolution and a maximum rate of 200 frames per second. The infrared filter was 

used to reduce the high intensity light from the melt pool and was installed in front of the 

camera chip. The iris was used to adjust the brightness of the light received by the camera 

to prohibit the over-exposure. Optical mirrors inside the laser head guided the light from 

melt pool towards the CMOS chip of the camera. The infrared notch-filter was utilized to 

block the laser light with wavelength of 1070nm to protect the camera from laser damage.  
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Figure 2.1 (a) A robotized laser/wire direct metal deposition system; (b)-(e) 

photographs of a few as-built parts fabricated by this system. 

Similar to all AM processes, in the first step the 3D CAD model of the desired 

object was created and then converted to a file format that needs to be sliced. Different file 

formats can be utilized, depending on the technique and manufacturer, however STL 

(Standard Tessellation Language) file is the most common format in AM industry. The 

STL file, a 3D representation of the CAD model, contains a set of mesh triangles and has 

been commonly utilized in AM industry. Since the AM part is constructed in a layer-wise 

fashion, the STL file needs to be sliced into a number of 2D planes. For each plane (slice) 

a toolpath strategy is required. The slicing and generating toolpath are accomplished 

through either a commercial offline programming software called SKM DCAM or RCAM-

developed Matlab-based software. After the program was prepared, the substrate was 

placed at the rotary table. The tool center point (TCP) and rotary table are synchronously 

moving with respect to each other in space based on the offline program, and once the laser 
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and wire feeder are turned on, the material started to be deposited bead by bead and layer 

by layer.  

All samples for characterizing the mechanical and microstructural properties were 

built by using the robotized LW-DMD system at RCAM with the optimized parameters 

listed in Table 2.2.  

Table 2.2 Optimized process parameters used for fabricating samples. 

Process 

Parameters 

Laser Power 

(W) 

Wire Feed 

Speed (mm/s) 

Z-increment 

(mm) 

Overalap 

increment 

(mm) 

Travel 

speed 

(mm/s) 

Shielding gas 

flow rate (l/min) 

Value 1000 12 0.85 1.35 8 15 (Argon) 

 

Process parameters influencing cooling rates also affect quality, microstructure and 

mechanical properties of the fabricated parts. Therefore, it is necessary to determine the 

optimal process parameters. Accordingly, a set of experiments were implemented, in 

earlier study [8], to realize the issues and challenges and eventually overcome them. The 

effects of main parameters such as laser power, travel speed, wire feed speed, overlap factor 

and height-increment on bead geometry of single-bead and multi-bead deposition were 

studied. Finally, a proper window for selecting the process parameters for building the 

specific part was found. The process parameters in Table 2.2 are based on the experiments 

performed in [8]. 

In order to investigate the mechanical and microstructural properties of the 

fabricated parts, two coupon types, block and thin-walled, were considered as shown in the 

Fig. 2.2. The purpose of selecting these two types of coupons was to study the effect of 

different inter-layer time intervals on the thermal history and on the final microstructure 
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and mechanical properties of the buildups. The inter-layer time interval is defined as a time 

taken by robot to move from end of a track to start of the identical track in the next layer. 

Obviously, the number of tracks in each layer and idle time (the time when laser is off and 

robot gets position) mainly determine the inter-layer time. Therefore, depending on the 

geometry (e.g. thin-walled or bulky), the part might have different inter-layer time. The 

inter-layer time significantly affects the initial temperature of previously-deposited layer, 

and accordingly the cooling and solidification rates are influenced. The changes on 

solidification rate will, in turn, affect the microstructural and mechanical properties of the 

part [24]. Some researchers also numerically studied the impacts of idle time either 

between two successive layers or two successive beads on temperature rise in buildup, melt 

pool dimension and cooling rate [26-28]. In the present study, the inter-layer time interval 

for block and thin-walled structures was measured, by a set timer, to be 420 s and 25 s, 

respectively. It should be noted that the amount of time that it took the robot to get into 

position for the next bead (while the laser was off) affected the inter-layer time. Therefore, 

to reduce this time, the repositioning of the laser deposition head was done at a higher 

speed (250 mm/s). 



34 

 

 

Figure 2.2 Photographs of the as-built 316LSi coupons along with their dimensions. 

(a) Block coupon; (b) thin-walled coupon. 

In each coupon type, tensile samples in parallel and perpendicular directions 

relative to the deposition direction (beads axis) were prepared to further study the 

anisotropic behavior of the as-built coupons. Subsequently, a set of samples for 

microstructural analysis, tensile testing and microhardness were prepared. Tensile tests 

were performed on an Instron 5582 tensile testing machine with 1 mm/min strain rate at 

room temperature. Moreover, two sets of samples were heat treated for 2 hours at 1120°C 

in a furnace and then air cooled to homogenize the microstructure. The procedure was 

based on the standard annealing of austenitic stainless steel [29]. One specimen from each 

set was mounted, sanded, and polished using a diamond polishing pad. The specimens were 

chemically etched in a solution of (HCL: HNO3=3:1) for 40 sec. The microstructure of the 

buildups was examined by using an optical microscope (Olympus DP72) and scanning 

electron microscope (FEI Nova NanoSEM 230) equipped with energy dispersive 

spectroscopy (EDS). Hardness testing was also conducted via a Vickers microhardness 

tester (Clark-CM700). A fracture surface analysis was also conducted by SEM. 
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2.3 Experimental results and discussion 

2.3.1 Microstructural analysis 

In the current study, microstructural analysis was performed in various locations of 

the thin-walled and block buildups in normal cross sections. Figs. 2.3(a) and 2.4(a) depict 

the typical real-time grayscale images of the melt pool from the top-view in different layers 

of deposition. The corresponding microstructures from the 2nd and 70th layers of the thin-

walled coupon are also shown in Fig. 2.3(b-h). The microstructure of block coupon from 

2nd and 10th layers are displayed in Fig. 2.4(b-h). Real-time images of melt pool were taken 

during the process in order to find out the correlation between melt pool size and cooling 

rate, which will be discussed later in this section.  

 

Figure 2.3 Thin-walled coupon. (a) Real-time isotherm images of melt pool in 

different layers along with melt pool boundary; (b) and (e) micrographs of the top 

and bottom layers in low magnification; (c),(d),(f) and (g) higher magnifications of 
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microstructure showing the elongated columnar grains; (h) SEM image indicating 

the dendritic structure along with EDS measured points. 

 

 

Figure 2.4 Block coupon. (a) Real-time isotherm images of melt pool in different 

layers along with melt pool boundary; (b) and (e) micrographs of the top and 

bottom layers in low magnification; (c),(d),(f) and (g) higher magnification of 

microstructure showing the elongated columnar grains; (h) SEM image indicating 

the dendritic structure along with EDS measured points. 

As can be seen from Figs. 2.3 and 2.4, columnar grain structure was dominant as it 

is common for as-built AM parts. However, the size of the grains varied significantly in 

different locations. In general, more elongated, continuous and coarser columnar grains 

were observed in thin-walled coupons compared to block samples. This result indicated 

that the thin-walled sample owing to the shorter inter-layer time interval had lower cooling 

rates, which in turn, caused the formation of coarser grains.  
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It was also found that the size of the grains was changed from bottom to top in each 

layer. This phenomena was common in all layers of deposition for both coupon types. In 

some locations, the secondary dendritic features were observed. However, they were not 

pronounced at all regions. Therefore, primary dendritic arm spacing (PDAS) was used as 

a measure of the microstructural length scale. The mean intercept length method was used 

to calculate the PDAS. This method calculates the average grain size by dividing the length 

of randomly drawn lines (on the optical photographs) by the number of intersected grain 

boundaries. Each PDAS value (or inter-dendritic distance) was obtained as an average 

value of at least 5 measurements. The bottom section of each layer consisted mostly of fine 

columnar grains whereas there existed longer and coarser columnar grains in top sections. 

As for the block coupon, the average PDAS was increased from 3.5 µm to 4.5 µm and from 

5.5 µm to 7 µm, in the first layer and 10th layer, respectively (Figs. 2.4(c), (d), (f) and (g)). 

Similarly, in the first layers of the thin-walled coupon, the average PDAS was varied from 

5 µm to 6 µm and it increased from 9.5 µm to 12 µm in the 70th layer. The increase in size 

of the columnar grains in each layer from bottom to top could be explained by the higher 

cooling rates and solidification rates at the lower part of the melt pool. In contrast, the top 

portion of the melt pool experienced lower cooling rates, especially because the top section 

was exposed to re-melting. As a result, larger dendrites and even in some locations the 

secondary arms were observed. The effect of cooling rate on the size of microstructure 

could be described by the solidification map as shown in Fig. 2.5. That is, while the ratio 

of temperature gradient and solidification rate, G/R, is a critical factor in determining the 

morphology preference of solidification microstructure (planar, cellular, columnar 

dendritic or equiaxed dendritic), the product, GR, which is defined as cooling rate, controls 
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the size of the microstructure [30]. Therefore, due to the reduction in cooling rate (GR) 

from bottom to top section of the melt pool, a slight increase in the grain length scale was 

observed. Figs. 2.3(h) and 2.4(h) show the SEM microstructure in the top section of the 

buildups. By comparing the SEM image of the block with the thin-walled coupon, it could 

be clearly seen that inter-dendritic spacing or PDAS was larger in the case of thin-walled 

samples. This result demonstrated the lower cooling rate in the upper layers of this buildup.  

 

Figure 2.5 Solidification map showing the effect of temperature gradient G and 

growth rate R on morphology and size of the solidification microstructure [31]. 

Real-time grayscale images of melt pool were captured. A few of them in different 

layers were selected to be shown in Figs. 2.3(a) and 2.4(a). Based on the experimental 

observations, it was found that the shape of melt pool (from top-view) in laser wire metal 

deposition is not always in a regular oval shape. Depending on the local cooling rate, it 

could be irregular circular, oval or elongated oval shapes. In the first layers of deposition, 

where there exists a higher cooling rates, the length of melt pool is small and melt pool 

tends to form in an irregular circular shape. It should be noted that circular shape of melt 
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pool could be changed to more elongated oval shapes, even in the first layers, as the 

scanning speed increases. Studying the effect of scanning speed on melt pool shape is out 

of scope of this paper. Due to higher cooling rates throughout fabricating block sample, 

melt pools mostly appear in shortened oval shapes (Fig. 2.4(a)). However, as for the thin-

walled sample, after several layers the melt pool appears to be in an elongated oval shape 

(Fig. 2.3(a)). The purpose of taking real-time images was to correlate the melt pool size 

with the corresponding microstructural length scale. The real-time information of the melt 

pool geometry could then be used to control and thereby tailor the microstructural and 

mechanical properties of the buildup. A CMOS camera (Prosilica GC640M) was coaxially 

mounted in the laser head to capture the infrared grayscale images of the melt pool from 

the top-view. Upon calibrating the infrared images of melt pool and obtaining the 

appropriate threshold for the melt pool boundary, the infrared image could represent the 

isotherm of the pool in real-time. The traditionally used method of calibrating the infrared 

image is to use a black body as detailed in [32]. In this method, the infrared image of the 

heated black body is captured simultaneously with the temperature measured by a 

thermocouple. Then, the relationship between the gray level of the infrared image and black 

body temperature is obtained. Based on the Planks’s law and Wien’s law, the radiance 

could represent the temperature of a target with different emissivities. By knowing the 

emissivity of melt pool and melting point of material, the corresponding infrared gray level 

of melt pool could be achieved. However, Hu et al. [32] and Ding et al. [12] indicated that 

use of a vision system for calibration of infrared image of the melt pool is more direct and 

reliable than using a black body. This method was also utilized for calibration of melt pool 

boundary in this study. In this method, both ordinary and infrared images of a referenced 
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melt pool (without feeding wire in order to capture clear images of melt pool) under the 

same travel speed (8mm/s) and laser power (1000W) acquired coaxially. In order to capture 

the ordinary image, the infrared filter in front of the camera chip was replaced with a 

bandpass optical filter (532nm). In addition, a green laser (532nm) with a power of 5W 

was used to illuminate the melt pool and surrounding area. Figs. 2.6 (a) and (b) show the 

infrared and ordinary images of the melt pool, respectively. The boundary of melt pool is 

obvious in Fig. 2.6(b).  These two images were then overlapped and it was found that the 

gray level of 104 corresponded to contour of melt pool (the gray level range is 0-255). Fig. 

2.6(c) illustrates the binarized image of the melt pool processed by the Vision Development 

Module of Labview software. The outlines of melt pools shown in Figs. 2.3(a) and 2.4(a) 

were obtained from the binary images of the corresponding melt pools. Therefore, the area 

inside the boundary represents the liquid state (melt pool) and the less bright area outside 

the contour is in the solid-liquid phase (mushy zone).The melt pool size, in terms of number 

of pixels inside the binary image, was recorded during the entire process. Then, the number 

of pixels were converted to the actual size of the melt pool. The values of melt pool area 

for all layers of both coupons are represented in Fig. 2.7. The melt pool areas of only one 

bead in each layer was shown in this Figure, since all beads in a same layer had similar 

melt pool size. 
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Figure 2.6 Captured top-view images of melt pool under the same scanning 

condition. (a) Original infrared image; (b) ordinary image; (c) binary image 

showing the boundary of melt pool. 

The value of melt pool area, achieved by averaging 5 random images in each layer, 

was calculated for 10 different layers. In addition, the mean value of PDAS in the 10 

selected layers was obtained. The PDAS value for each layer was considered as the average 

of PDAS values from bottom to top of that layer. The commonly-used empirical equation 

relating the cooling rate (𝑇̇) and primary dendrite arm spacing for SS 316L material was 

applied [22, 33]: 

𝑃𝐷𝐴𝑆 = 80 𝑇̇−0.33                                                          (2.1) 

By using Equation (2.1), a rough estimation of the cooling rates at the desired 

location of the buildup was achieved, and the results are plotted in Fig. 2.8(a). The images 

of the melt pool in the first layer of deposition were not considered since the process was 

not stable. Fig. 2.8(b) shows the variation of PDAS as the layer number was increased. A 

typical micrograph of the deposition that illustrates the intercepted grain boundaries are 

also shown in Fig. 2.8(b). The distance between the circular points on the lines determine 

the inter-dendritic distances. The average of these distances on each line gives the PDAS 

value. It can be seen that PDAS became larger as the number of layers increased, especially 
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after the 40th layer in thin-walled coupons. This could be due to the change in the heat 

conduction mode from 3D to 2D that caused a lower cooling rates at top layers of thin-

walled coupon. 

 

Figure 2.7 Variation of melt pool size as a function of number of layers. (a) thin-

walled coupon; (b) block coupon. 

 

Figure 2.8 The variations of cooling rate vs melt pool area during the process; (b) 

PDAS as a function of number of layers. 

The results show that as the melt pool became larger by increasing the number of 

layers, the cooling rate slowed down in both coupon types (Fig. 2.8(a)). The block coupon 

experienced higher cooling rates (approx. 1500 K/s to 7000 K/s), corresponding to the melt 

pool areas ranging from 2 mm2 to 3 mm2. As for the thin-walled case, lower cooling rates 

(approx. 400 K/s to 3000 K/s) caused relatively larger melt pool areas (ranging from about 
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2.5 mm2 to 4.5 mm2). The calculated cooling rates was in agreement with the reported 

range of cooling rates for the laser metal deposited parts, which is 10-105 K/s, according to 

Wang et al. [34]. A curve was also best fit to the scattered data of each coupon (see graph 

in Fig. 2.8(a)). The Equations of the both curves showed that the cooling rate scales 

inversely with the power of approximately 4 of the melt pool area as follows: 

𝑇̇ = 𝐾(𝐴𝑚𝑝)4                                                                 (2.2) 

where 𝐴𝑚𝑝 is the melt pool area (mm2) and K is a constant to be calibrated based 

on the process parameters, part geometry, and the process conditions. This relation suggests 

that by controlling the melt pool size in real-time, one can determine the cooling rate and; 

thereby, the final microstructural scale of the material. This method evidently allows the 

laser/wire direct metal deposition system to build the parts with a uniform and very fine 

microstructure over the entire build.  

This method is also similar to the work implemented by Homeister et al. [35].They 

found that in the LENSⓇ process, the cooling rate at the solidifying surface of melt pool 

has a reverse relation to the square of pool length regardless of travel speed and laser power. 

Therefore, the measurement of melt pool length can be applied to adjust the laser power in 

real-time to achieve a desirable cooling rate and solidification structure.  

The analysis on the chemical composition of the LW-DMD samples was also 

performed by using SEM-energy dispersive spectroscopy (EDS). The analysis was carried 

out on 4 points at each sample that are displayed in Figs. 2.3(h) and 2.4(h) and the 

corresponding EDS results are illustrated in Fig. 2.9.  
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Figure 2.9 EDS spectrum. (a) First point in Fig. 3(h); and (b) the variation of main 

elements of all spots. 

Fig. 2.9(a) indicates the EDS spectrum of the point 1 in Fig. 2.3(h). For all measured 

points, the discrepancies in the content of primary elements Ni, Cr, and Fe are plotted in 

Fig. 2.9(b) in order to study the microsegregation in the solidification process. It can be 

seen from Fig. 2.9(b) that there is a slight variation in element composition of different 

points, especially in Ni content. The Ni content at points 1, 3, 5 and 7 that were located at 

inter-dendritic locations was about 2% more than at points 2, 4, 6 and 8 that were located 

at the dendritic features. These data justified the existence of austenite as the primary phase 

at the inter-dendritic areas as well as ferrite at dendritic locations. 

Fig. 2.10 shows the X-ray diffraction data of both block and thin-walled samples. 

It is clear from the graphs that both coupon types had very similar XRD pattern, consisting 

of 𝛿 ferrite and 𝛾 austenite phases. Zhang et al. [23] observed fully austenitic 316 stainless 

steel parts fabricated by laser metal deposition. Also, Elmer et al. [36] proved that for the 

ratio of Cr/Ni less than 1.5, the single-phase austenite is achievable at high cooling rates 

when the diffusibility of the solutes lowers. In this study, the Cr/Ni ratio was more than 
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1.5; therefore, a ferritic-austenitic microstructure achieved from X-ray diffraction was 

confirmed. 

 

Figure 2.10 X-ray diffraction patterns of the as-built 316LSi parts. (a) Thin-walled 

coupon; (b) block coupon. 

2.3.2 Tensile properties 

The tensile properties of SS316LSi fabricated by a robotized laser/wire direct metal 

deposition system were evaluated. Tension tests were conducted on the standard ASTM 

E8 [37] samples that were taken out from thin-walled and block coupons. In each coupon 

type, two sets of tensile samples were prepared, one set in the direction of deposition and 

the other normal to the deposition direction. Fig. 2.11 (a) depicts the stress-strain curves 

for different conditions. The error bars represent the ranges of the UTS and elongation to 

failure for each sample set. The direction of tensile samples, their dimensions and the 

broken samples are also shown in the Fig. 2.11.  
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Figure 2.11 (a) Stress-strain curves of SS316LSi specimens fabricated by laser wire 

direct metal deposition; (b) configuration of tensile samples showing their 

orientations; (c) standard ASTM E8 tensile sample; (d) broken tensile specimens 

after testing. 

The yield strength (YS), ultimate tensile strength (UTS) and elongation to failure 

are also listed in Table 2.3. These parameters are compared with the wrought material [38] 

and L-DMD buildup of SS316L parts [39]. 
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Table 2.3 Mechanical tensile test results for as-built SS316LSi parts by LW-DMD, 

wrought material [38] and L-DMD parts [39]. 
Process Material Specimen 

orientation 

Inter-layer 

time 

interval (s) 

Yield 

strength 

(MPa) 

Ultimate 

tensile 

strength 

(MPa) 

Elongatio

n (%) 

LW-DMD SS 316LSi B*-Parallel 420s 430-440 629-635 36-40 

LW-DMD SS 316LSi B-Perp. 420s 415-425 593-600 30-37 

LW-DMD SS 316LSi TW*-Parallel 25s 260-300 516-546 39-42 

LW-DMD SS 316LSi TW-Perp. 25s 220-270 484-522 32-40 

LW-DMD SS 316LSi-

Annealed 

B/TW-

Perp./Paralle

l 

420s/25s 160-170 430-435 50-52 

Wrought-cold 

finished[38] 

SS 316L N/A N/A 255-310 525-623 30 

Laser 

consolidation 

[39] 

SS 316L N/A  N/A 330-365 540-560 35-43 

* B and TW represent block and thin-walled coupons, respectively. 

 

 As declared in stress-strain curve diagram, the tensile specimens taken from the 

block structures (regardless of orientation: parallel or perpendicular) showed higher 

ultimate strength (UTS) and yield strength in comparison with those taken from thin-walled 

buildups. This result could obviously reveal the effect of the thermal history being 

experienced by parts over the process. Under the same process variables such as laser 

power, travel speed, and similar part geometry, it could be said that the inter-layer time 

interval is a decisive factor on the thermal history. It should be noted that the inter-layer 

time interval for block was 420 s; whereas, for the thin-walled it was 25 s. In the blocks 

with higher inter-layer times, the initial temperatures of the previously-deposited layers are 

considerably lower than those of the thin-walled coupons. In fact, colder layers are 

indicators of higher cooling rates resulting in finer microstructures that eventually 

contributed to the higher UTS and YS. Moreover, a smaller range of UTS and YS for 
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specimens from the block structure (see Table 2.3) might be attributed to its more uniform 

and consistent microstructure (approx. 1-2% change in YS and UTS for block and about 

10-20% change for thin-walled). In contrast, the wider range of UTS and YS for the thin-

walled structure may be related to the fact that the saturated heat and re-melting of the 

significant portion of the previous layer made the thermal cycles and melt pool dynamics 

more complicated. An inconsistent microstructure and mechanical properties were 

produced throughout the buildup. However, no significant changes were seen in the values 

of elongation between block-parallel and thin wall-parallel samples as well as between the 

block-perpendicular and thin wall-perpendicular samples. This revealed the higher impact 

of thermal history on UTS and yield strength rather than elongation. The tensile behavior 

of LW-DMD parts was also ascertained under different orientations with respect to the 

deposition direction. Two sets of specimens, one parallel to the deposition direction and 

the other perpendicular to the deposition direction were tested. As illustrated in Fig. 2.11(a) 

in the block coupon, the samples in the parallel direction exhibited a higher value of UTS 

and YS compared to the perpendicular samples. Similarly, in the thin-walled structure, the 

samples in the parallel orientation indicated higher UTS than those in perpendicular 

direction. It is also clear from Fig. 2.11(a) that samples in the perpendicular direction tend 

to behave less ductile in comparison with parallel specimens. Lower values of elongations 

and UTS for samples in perpendicular direction is mainly attributed to the weaker 

metallurgical bonding and existence of defects such as inter-layers/beads pores caused by 

lack of fusion [24]. This type of porosity could limit the ductility. The porosity existed 

mostly in thin flat shapes perpendicular to the building direction. Also, the sharp angle in 

the lack-of-fusion pores caused local stress concentrations under tensile loading. Therefore, 
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these types of defects have been proven to be the major sources of early fracture especially 

in samples perpendicular to the deposition direction, as reported similarly in [40]. It has 

also been reported that the improved tensile properties in the parallel direction is due to the 

fact that beads act as a reinforced fibers [41]. 

The heat-treated samples under annealed conditions were also tested and the tensile 

test results can be seen in Fig. 2.11(a). As expected, the annealing process completely 

altered the behavior of material and made it softer and more ductile. At annealing 

temperatures, the secondary phases are completely dissolved and homogenized. The 

residual stress is reduced to an acceptable level. Moreover, high temperature during the 

annealing process increased the grain size, leading to fewer grain boundaries. Grain 

boundaries are barriers to slip deformation because of the dislocations providing resistance 

to plastic deformation. Fewer grain boundaries resulted in decreasing the strength of the 

structure. The mechanical properties of heat-treated samples in this study are very close to 

the UTS and YS of 316L provided by ASM standard which is 480 MPa and 170 MPa, 

respectively [38]. Therefore, the annealing procedure of converting the grains from 

elongated shapes, dictated by solidification direction in laser metal deposition, to the 

granular shape will significantly mitigate the effect of orientation on the tensile properties. 

This is also evident from Fig. 2.11(a), in which there was no difference between the UTS 

and elongation of parallel and perpendicular samples in the annealed condition.  

The tensile test fracture surfaces were also obtained by using a SEM and are 

presented in Fig. 2.12. All samples showed a typical form of ductile fracture mode with 

dimples. Fig. 2.12(a) and (b) showed a typical fracture surface of thin-walled and block 

structures, respectively. A large number of dimples and in some locations small dimples 
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inside the larger dimples were found, justifying the ductile mode of fracture in all 

specimens. It is reported that in austenitic stainless steels the weaker bonding between 

austenitic and δ-ferritic phases caused the crack formation. The cracks expanded at the 

interface and then separate into the two phases and eventually form the dimples [42]. 

Moreover, the existence of some torn belts in the fracture surface of thin-walled samples 

(Fig. 2.12(a)) is associated with the existence of many columnar dendrites in the direction 

of loading. The whole fracture surface of all samples was also observed. No indication of 

pores or defects was found except for the tensile specimen taken from the block structure 

in perpendicular orientation as shown in Fig. 2.12(c). Two relatively large pores that were 

originally formed as a result of lack-of-fusion at interface of beads/layers are presented. 

These pores subsequently were enlarged under tensile loading as is obvious in Fig. 2.12(c). 

 

Figure 2.12 Tensile fracture surfaces. (a) in high magnification show ductile fracture 

mode with dimples for thin-walled; (b) in high magnification show ductile fracture 

mode with dimples for block; (c) and existence of inter-layer pores caused by lack-

of-fusion for specimen in the perpendicular directionfrom block coupon. 

2.3.3 Microstructure-tensile properties relation 

As it is obvious from the stress-strain curves (Fig. 2.11(a)), there is a clear 

difference between the UTS, YS and elongation to failure of block, thin-wall, and heat-
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treated samples. In general, samples from block structures showed higher UTS and YS and 

lower elongation to failure with respect to those from thin-wall structure. Similarly, 

samples from thin-wall indicated higher UTS and YS but lower elongation to failure 

compared to heat-treated ones. From microstructural analysis, we have found that the grain 

size ranged from 4 µm to 7µm in the block structure, from 5 µm to 12 µm in the thin-wall, 

and from 20 µm to 80 µm in the heat-treated samples. Based on the grain size measurement 

from tensile results, we can conclude that the finer microstructure (e.g., in block) 

corresponded to relatively higher value of UTS and YS. In contrast, larger grain size 

resulted in lower UTS and YS in the thin-wall structure. Moreover, the annealing which 

caused grain refinement and an increase in grain size, corresponded to significant lower 

value of UTS and YS but higher elongation to failure.  

2.3.4 Microhardness 

Vickers microhardness measurements were obtained along the vertical direction of 

block and thin-walled coupons. This experiment was conducted to specify the influence of 

inter-layer time interval on the hardness of as-built parts. The results of the microhardness 

measurements are plotted in Fig. 2.13(a). Each data point in the plot was obtained by 

averaging the results of three measurement points. The hardness data are plotted as a 

function of distance, starting from the bottom of the buildups. Due to the difference 

between the total height of the block and thin-walled coupons, the result of each coupon is 

plotted as a function of its own height distance separately.  As can be seen from Fig. 

2.13(a), hardness of the block coupon is apparently higher than the thin-walled, revealing 

the effect of thermal history (i.e., inter-layer time interval) on microhardness. In the block 

with a higher inter-layer time, finer microstructure caused the higher value of Vickers 
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hardness. The average microhardness values for block and thin-walled are 226 and 216 

HV, respectively. The obtained values of microhardness are comparable with the 

microhardness of standard commercially-available 316L stainless steel, which is 215-225 

HV [43]. It should be noted that the microhardness values are uniformly distributed along 

the building direction with a slight increase at the first layer of deposition. This increase 

was attributed to the higher heat transfer rate (high heat sink) to the cold substrate. Also, 

there exist some variations in the profile of microhardness for both coupon types. These 

variations might be attributed to the location of indentations. Fig. 2.13(b) shows a few 

indentations on the block sample in which some of them are located near or at the layer 

boundaries where the local cooling rate might slightly differ. Hence, a small variations in 

microhardness due to location of indentations is inevitable. The other processing 

parameters might also affect the hardness of material as reported in literature. For instance, 

Majumder et al. [44] studied the effects of laser power and travel speed on hardness and 

found that microhardness value of the as-built material reduced with the rise in the laser 

power and reduction in the travel speed. Investigating the effects of these processing 

variables on the hardness of buildups was out of the scope of this study. 
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Figure 2.13 (a) Hardness distribution along height direction for both thin-walled 

and block samples; (b) optical micrograph of block sample showing the location of 

some of indentations. 

2.3.5 Porosity 

Porosity is considered as one of the drawbacks of additively manufactured parts. 

Many researchers have made efforts in studying the source of process-induced defects that 

cause the formation of pores and voids. The majority of these works were dedicated to 

LENSⓇ- produced components [45-48]. Generally, there are three types of porosity in as-

deposited powder-fed parts in terms of source of creation. Porosity is due to the lack of 

fusion, entrapment of gas, and porous powder. Lack of fusion (LoF) defects are formed 

mainly due to the insufficient energy input (i.e., laser power) to fully melt the material [45, 

46]. In this case, the proper adjustment of the processing parameters such as laser power, 

travel speed and degree of overlap could mitigate the existence of unmelted material or 

LoF. The LoF porosity exists at interfacial boundaries of the beads or layers. Another 

common type of porosity, which is due to the gas entrapment, is formed because the 

LENSⓇ process utilizes a gas (mostly Argon) as the carrier gas to assist the metal powder 
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transfer to the melt pool. Shielding gas protects the melt pool from oxidation, and thus it 

eventually promotes the gas entrapment inside the buildup [47]. This type of porosity 

appears at intralayer of the deposition in a spherical shape. Generally, this porosity does 

not form at a specific location. Moreover, the interaction of metallic powders and stability 

of powder flow are correlated with intralayer pores [46]. Another type of porosity comes 

from inherent pores inside the powder particles that were formed during the gas 

atomization process. These pores were reported as a potential source of intralayer porosity 

in the LENSⓇ process [47, 48]. All aforementioned porosity types act as stress-raisers that 

can nucleate under loading and finally grow with increasing local plastic deformation. 

Subsequently, voids start interacting that lead to an increase in the porosity volume 

fraction. Finally, local necking and failure occur [49].  

In the LW-DMD process, it was found that the main source of pores was the LoF 

at the inter-layer/bead boundaries as shown in Fig. 2.14. Su et al. [50] and Oliari et al. [51] 

showed that the main defect type in laser wire deposition is inter-layer pores that are 

produced due to the insufficient laser power or inappropriate setting of vertical overlap 

between layers. This type of porosity was observed in the first layers of deposition. The 

porosity could be attributed to the high heat transfer rate at the initial layers when the 

substrate is still cold. This was more obvious in block coupon where the cooling rates was 

higher. As it is clear from Figs. 2.14(a) - (e), by increasing the number of layers, as the 

cooling rate decreases, the density of pores was reduced significantly in both coupons. The 

pores were observed in elongated shapes with very sharp edges that typically result in high 

local stress. Also, pores ranged from 50µm to 200µm in both coupons. The LoF pores 

might have large impact on weakening the tensile properties of the samples in the 
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perpendicular direction as discussed earlier. Another type of porosity observed in the 

microstructure of LW-DMD coupons was microvoids with the size of less than 1µm (see 

Figs. 2.3(h) and 2.4(h)). The existence of such microvoids is the consequence of shrinkage 

from solidification [52]. During the phase change from liquid to solid, similar to welding 

process, microvoids could be nucleated and grown.  

 

Figure 2.14 SEM micrographs showing porosity distribution across the coupons. (a) 

Top and (b) lower part of the block coupon; (c) top; (d) middle and (e) lower part of 

the thin-walled coupon. 

2.4 Conclusions  

In this paper, characterization of microstructure and mechanical properties of two 

coupon types, thin-walled and block, have been performed. Based on the achieved results, 

the following conclusions can be drawn: 
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1- Columnar dendritic was the dominant grain morphology in microstructure of both 

coupons. The shorter inter-layer time interval in thin-walled coupon caused a 

decrease in cooling rate, resulting in a coarser grain size and lower UTS. It was also 

found that the size of the grains were increased from bottom to top of each layer 

due to an increase in the cooling rates. Block sample showed relatively finer and 

more uniform microstructure because of the more uniform thermal history. 

2- An empirical relationship correlating the cooling rate to the melt pool area was 

established. The relation suggested that cooling rate inversely scales with the power 

of 4 of melt pool area in both coupon types. That is, by applying a real-time 

monitoring of melt pool and a closed loop control system, one can control the 

solidification microstructure of the buildup. 

3- The tensile results indicated that the samples parallel to the deposition direction had 

higher UTS and elongation to failure in both coupon types compared to those in 

normal direction. 

4- The results of microhardness test showed the higher values for block coupon. The 

porosity analysis also revealed that the main source of imperfection was lack-of-

fusion existing mostly in the first layers of deposition. 
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Chapter 3 

 JOINING OF ELEMENTS FABRICATED BY A ROBOTIZED LASER/WIRE 

DIRECTED ENERGY DEPOSITION PROCESS BY USING AN 

AUTOGENOUS LASER WELDING 

 

3.1 Introduction 

Robotized laser/wire directed energy deposition (RLW-DED) as a metal based 

additive manufacturing (AM) technology has been gaining attention. According to 

ISO/ASTM 52900:2015 [1] and ASTM F3187-16 [2], DED is defined as “an additive 

manufacturing process in which focused thermal energy is used to fuse materials by 

melting as they are being deposited.” DED is accomplished by feeding of metallic powder 

or wire into the melt pool formed by a highly focused energy source such as laser, electron 

beam, or arc. For instance, Williams et al. [3] employed wire and arc to produce large 

titanium parts (>10 kg). They also evaluated the residual stress in the buildups. Abioye et 

al. [4] used laser as a heat source and Inconel wire to fabricate multi-layer coatings in order 

to increase the corrosion resistance of stainless steel components. They showed that the 

coating could well protect the parts exposed to corrosion. Brandl at al. [5] utilized laser and 

wire to manufacture multi-layer depositions. They characterized the microstructural 

properties of buildups and showed that grain dimensions at single beads can be used to 

qualitatively indicate microstructural and mechanical properties. Industry is noticing 

https://www.sciencedirect.com/science/article/pii/S2214860418303865#bib0010
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DED’s capability to fabricate near-net-shape metal parts with higher deposition rates. 

Using a low-cost welding wire as feedstock and a robot as a kinematic system provides a 

high flexibility to print complex geometries with dimensional accuracy within ±0.5 mm 

[6]. Also, some efforts have been made in RLW-DED process by means of vision system, 

to increase the process stability [7] and predict and control the mechanical and 

microstructural properties of the buildup in real-time [8]. However, there exist some 

limitations in printing certain parts in the DED process. For instance, a part with very 

complex form or intrinsic features could be difficult to fabricate even with a robotized 

system. In the DED process, there is no support material. This lack of support is unlike the 

powder bed fusion (PBF) process, in which the melt pool is always supported by the metal 

powder in the bed. In DED the motion system, mainly the positioning table, provides the 

possibility for the melt pool to get support from the previously deposited layer. However, 

in special cases; for example, in fabricating a part with an overhang section, the positioning 

table needs to be tilted in a large angle to be able to build the overhang section. Many 

researchers developed different methods in the DED process for fabricating the overhang 

parts. Zhang et al. [9] developed an adaptive slicing algorithm to build non-uniform 

thickness layer due to the change in the build direction. By using this technique, they were 

able to build the overhang parts. Dwivedi et al. [10] developed an algorithm to fabricate 

branching slender structures. However, adding more overhang sections or branches to the 

existing overhang part makes the geometry and thereby the path planning very complex. 

Moreover, there might be possible inaccessibility of laser head to the part and eventually a 

collision could happen. Therefore, segmenting part into smaller sub-parts and joining the 

elements back together could be a solution to deal with those limitations in the DED 
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process to some extent. For instance, a slender branched larger structure could be divided 

into several easy to print sub-parts and then joined back together. It should be noted that, 

in complex geometries, the part should be segmented at locations with no structurally-

critical intersections.  

Very few studies focused on joining of AM parts. Casalino et al. [11] studied the 

possibility of joining selective laser melted (SLM) parts to wrought stainless steel parts by 

using fiber hybrid laser-arc welding. Then they evaluated the efficiency of the welding 

process. Wits et al. [12] achieved good quality welds by adjusting process parameters in a 

laser welding of SLM titanium parts. Also, Matilainen et al. [13] investigated the 

weldability of SLM 316L components to cold-rolled sheet metal 316L parts in terms of the 

existence of pores and cracks in the weld area. However, to the authors’ knowledge, no 

study was found in the literature that focused on joining the DED parts by using an 

autogenous laser welding process.  

Autogenous laser welding has been used extensively in joining applications where 

the higher welding speed and a lower heat input are desired. Different laser types such as 

fiber laser, disk laser, CO2 laser or diode laser could be used in such applications. This 

process can also provide a very small heat-affected zone (HAZ), low heat distortion, 

narrow and deep penetration, and eventually can produce joints with a high quality [14]. It 

is also suitable for welding of dissimilar materials with high quality joints and small HAZ 

[15]. Laser could also offer a better absorptivity in welding a broad range of materials. In 

the present investigation, a robotized laser/wire directed energy deposition system 

followed by an autogenous fiber laser welding were utilized to boost the flexibility of the 

DED process. This process is considered as a hybrid system since it combines two 
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processes to fabricate a part. This process broadened the range of DED applications. The 

main objective of this paper was to investigate the mechanical and microstructural 

properties of the butt welds between the DED thin-wall parts obtained by the autogenous 

laser welding. 

3.2 Experimental procedure 

3.2.1 Materials  

The feedstock material used in this study was an austenitic stainless steel (316LSi) 

in the form of wire from ESAB with a diameter of 1.2 mm. Also, a commercially-available 

304L stainless steel plate with a thickness of 6 mm was utilized as a support plate 

(substrate). The chemical compositions of wire and substrate are given in Table 3.1. 

Table 3.1 Chemical compositions of wire and substrate. 

 

3.2.2 Methodology 

A robotized laser/wire directed energy deposition system (RLW-DED) was used to 

fabricate the parts. Fig. 3.1 illustrates the experimental setup. A 6-axis KUKA robot (KR-

60) coupled with a 2-axis rotary table was used to provide the kinematics of the deposition 

system. A 4 kW fiber laser with 1070 nm wavelength from IPG was utilized as a heat 

source. A Precitec YW50 laser welding head was mounted on the robot arm to deliver the 

laser beam to the processing zone. The laser beam was defocused at 10mm below the focal 

point, resulting in 1.6mm beam spot diameter. Also, in order to feed the wire, a Binzel wire 

feeding system with two synchronized push and pull motors was used. Moreover, slicing 

Element (wt.%) C Mn Si Ni Mo Cr Cu P S Fe 

Wire (316LSi) 

Substrate (304L) 

0.01 

0.03 

1.8 

2 

0.9 

- 

12.2 

8 

2.60 

- 

18.4 

18 

0.12 

- 

0.03 

0.045 

0.03 

0.03 

Bal. 

Bal. 
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the STL file of the 3D model and generating the toolpath and code for the robot controller 

were done in SKM DCAM offline programming software. The same setup without the wire 

feeder was used also for autogenous laser welding of the DED parts. 

 

Figure 3.1 A robotized laser/wire directed energy deposition system used for DED 

and welding processes. 

Four thin-walled coupons of the same geometry and dimensions were built by using 

a RLW-DED system as shown in Fig. 3.2(a). All the beads in coupons were deposited in 

one direction as shown in Fig 3.2 (b and c). Three beads were deposited per layer to achieve 

4 mm thickness of the wall. After each track was deposited, the laser head was positioned 

for the next bead. The idle time to position the laser head, was kept at a low level by 

adjusting the robot speed at higher speed of 250 mm/s. The coupons were machined before 
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the welding process in order to make the DED plates with a precise and consistent thickness 

for butt welding, and then welded together. Fig. 3.2 (b and c) shows the configurations of 

welds and orientation of tensile samples with respect to joints and DED parts. Two coupons 

were welded together such that the tensile samples were cut out “parallel” to the direction 

of the DED beads in the “deposition” direction as depicted in Fig. 3.2(b). This 

configuration is called Weld DED-P for simplicity. Two other coupons were joined in such 

a way that the tensile samples were taken out “normal” to the deposition direction as 

indicated in Fig. 3.2(c). This configuration is referred to as Weld DED-N in the rest of this 

paper. In the Weld DED-N specimens, the tensile loading direction was normal to the sliced 

layers. The reason for considering the tensile samples in two directions was to involve the 

effects of inherent anisotropic mechanical behavior of the DED parts. In each type of 

configuration three tensile specimens were prepared. Fig. 3.2(d and e) depict the welded 

DED parts. In addition, two sets of samples, one normal and the other parallel to the 

deposition direction, were prepared from DED parts without joints. Therefore, larger 

buildups were necessary to meet the size of the standard tensile specimen. Two thin-walled 

coupons with the same size, one for making normal tensile specimens and the other for 

making parallel ones, were fabricated as shown in Fig. 3.3(a-c). The purpose of preparing 

tensile samples without a weld was to compare their tensile properties to those properties 

of the welded DED specimens. The tensile samples taken from the DED part without a 

weld were designated as DED-P and DED-N specimens; that is, those specimens in the 

parallel and normal direction relative to the deposition direction, respectively. The 

processing parameters used for the RLW-DED process and autogenous laser welding are 

provided in Table 3.2. The main process variables such as laser power, travel speed, wire 
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feed speed, Z-increment and overlap increment were optimized in the previous work [6]. 

The optimized process parameters provided the constant and stable deposition on the entire 

build. The RLW-DED was conducted in an open atmosphere, therefore, in order to achieve 

a successful process, it is necessary to protect the melt pool. An inert gas (Argon) was used 

to shield the melt pool from oxidation. Shielding could also improve the properties of 

deposition and eventually promote the inter-layer bonding by providing better surface 

wetting [16]. A side-feeding nozzle with respect to the laser head was used to feed the 

Argon with the flow rate of 15 l/min and 30 l/min for DED and welding processes, 

respectively. The parameters for the welding process were optimized by welding several 

dummy samples of wrought plates with 3 mm thickness. The dimensions of the tensile 

specimens used in this study were selected according to the ASTM E08 standard [17] as 

shown in Fig. 3.3(d). After welding, the tensile samples were cut out by using a waterjet 

cutting machine and were ground to remove the face and root of the welds.  
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Figure 3.2 (a) As-built coupon used for welding (b) Weld DED-P sample: tensile 

specimens parallel to the deposition direction (c) Weld DED-N sample: tensile 

specimens normal to the deposition direction (d and e) welded DED parts. 

 
Figure 3.3 (a) As-built coupon for preparing tensile specimens without weld (b) 

orientation of tensile specimens in the normal direction (DED-N) (c) orientation of 
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tensile specimens in the parallel direction (DED-P) (d) the dimensions of the 

standard tensile specimen per ASTM E8 [17]. 

Table 3.2 Processing parameters for DED and welding. 

Process  Laser 

Power 

(W) 

Travel 

speed 

(mm/s) 

Shielding gas 

flow rate (l/min) 

Wire Feed 

Speed (mm/s) 

Z-increment 

(mm) 

overlap 

increment (mm) 

DED 1000 8 15 (Argon) 12 0.85 1.35 

Welding* 2900 30 30 (Argon) - - - 

 The focal point was positioned at the top surface of the plates 

Tensile tests were performed on an Instron 5582 tensile test machine with 1mm/min 

strain rate at room temperature. In order to capture the elongation (strain) during the tensile 

test, the crosshead displacement of the machine was used. Also, to verify the value of 

elongation to failure of specimens obtained from the machine crosshead, all the specimens 

were marked before the test based on the gage length and after the test the broken parts 

were put back together to measure the elongation to failure. The cross-sections of the joints 

were mounted, sanded, and polished using a diamond polishing pad. Then, the samples 

were chemically etched in a solution of (HCL:HNO3=3:1) for 40 seconds. Microstructural 

analysis of the welds was conducted by using an optical microscope (Olympus DP72) and 

scanning electron microscopy (SEM LEO 1450) equipped with an energy dispersive 

spectroscopy (EDS). A Vickers microhardness tester machine (Clark-CM700) was utilized 

to perform microhardness measurements. A load of 1kg with the waiting time of 15 seconds 

were applied during microhardness test. A fracture surface analysis was also done by the 

same SEM. 
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3.3 Experimental results and discussion  

3.3.1 Microstructural analysis 

Figs. 3.4 and 3.5 show the cross-section microstructure of the Weld DED-N and 

Weld DED-P, respectively. In Figs. 3.4(a) and 3.5(a), the footprint of laser tracks are 

indicated. The footprint of laser tracks are indicator of border of each new track that is 

being deposited in the cross sectional microstructure. This could be also recognized as melt 

pool boundary. Butt joints with full penetration were observed. The weld zone was found 

to be in a “Y” shape in both coupons with the widest dimension at the crown and the 

narrowest at the middle of the bead section as shown in Figs. 3.4(a) and 3.5(a). Also, no 

HAZ was observed in the joints. This is attributed to the higher energy density and lower 

heat input of the laser welding process compared to arc based welding methods such as 

GMAW. Due to the higher cooling rates in the laser welding process compared to GTAW, 

there is no sufficient time for grains that are located between fusion zone (FZ) and the base 

plates to grow, resulting in a joint without HAZ [18]. This is considered as a good 

characteristic of a laser-welded joint. No noticeable cracks or inclusions were found in the 

fusion zone. Due to the similar nature of laser welding and laser directed energy deposition 

during the process of solidification, the final morphology was found to be mainly columnar 

dendritic in both the weld zone and DED parts as shown in Fig. 3.4(b and d). It can be seen 

from Fig. 3.4(b) that in the fusion zone, the dendrites were symmetrically distributed 

around the weld centerline. Also, dendrites were grown epitaxially from fusion boundary 

to the weld centerline, opposite to the heat flow direction [19]. In addition, the similar 

columnar dendritic structure directed from the bottom of the tracks toward the top was 

observed in the DED microstructure as shown in Fig. 3.4(d). The magnified views of 
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microstructure in the weld and DED are displayed in Fig. 3.4 (e and f) and Fig. 3.5(b). The 

dendritic structure is clear. The darker areas are the primary dendrite cells that were 

consisted of the austenite (𝛾) phase. The lighter area between dendrites was the skeletal 𝛿-

ferrite phase. During the solidification of the weld zones and DED of 316LSi, due to the 

high cooling rates associated with laser material processing, the 𝛿 → 𝛾 transformation 

remained incomplete. Thereby, formation of the skeletal 𝛿-ferrite in the austenitic matrix 

was the result [20]. Therefore, the final solidification mode of the material either in the 

weld zone or DED was found to be ferritic-austenitic (FA). The primary dendrite arm 

spacing in the weld zone for both Weld DED-N and Weld DED-P coupons was about 2.5-

5 𝜇𝑚; whereas, this value for the DED part was about 4-10 𝜇𝑚. The finer dendrite size in 

the weld zone clearly signified relatively higher cooling rate and lower heat input in the 

welding process compared to those experienced in the DED process. Figs. 3.4(c) and 3.5(c) 

also demonstrate the fusion boundary between the DED parts and weld fusion zone. The 

transition in the size of grains from DED to weld was clear.  

 

Figure 3.4 The transverse-section images of Weld DED-N sample (a) optical 

micrograph showing the weld zone and DED plates (b) distribution of grains around 

weld centerline (c) fusion boundary (d) DED microstructure (e) SEM image of the 
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weld zone indicating the columnar dendrites (f) SEM image of the DED indicating 

the columnar dendrites. 

 

Figure 3.5 The transverse-section optical images of Weld DED-P sample (a) optical 

micrograph showing the weld zone and DED plates (b) SEM image of the weld zone 

indicating the columnar dendrites (c) fusion boundary. 

In order to study the variations in distribution of elements in the weld zone and 

DED parts, the EDS analysis was performed, and the results are shown in Fig. 3.6 and 

Table 3.3. Figs. 3.6 (a and b) show the EDS scanning line for Cr and Ni elements in the 

weld zone of the Weld DED-N and Weld DED-P samples, respectively. The lines are 

shown in Fig. 3.4(e) and Fig. 3.5(b). No noticeable segregation can be seen from the EDS 

profiles that could increase the degree of homogeneity, mechanical properties and the 

pitting corrosion resistance of the austenitic stainless steel welds [21,22]. Also, the alloying 

elements distribution in different points located on the dendritic austenite matrix and 𝛿-

ferrite were measured as depicted in Table 3.3. In this Table, the weight content of alloying 

elements in DED was compared to those in the weld zone. The weight content of chrome, 

as expected, was slightly lower at all points in the austenitic phase both in the weld area 

and the DED parts. However, the Ni weight content was slightly higher in these areas. 

These results revealed no significant segregation. Thereby a uniform chemical composition 

was presented throughout the entire fusion zone and the DED parts.  
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Figure 3.6 EDS line profiles of Cr and Ni elements across the phase boundaries for 

(a) Weld DED-N and (b) Weld DED-P coupons. The scanning lines are shown in 

Fig. 4(e) and 5(b). 

 

Table 3.3 EDS chemical composition of different points across the weld zone and DED 

parts. 

 Weld DED 

 Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

Element Wt% Wt% Wt% Wt% Wt% Wt% 

Si 0.92 0.66 0.69 0.71 0.81 0.87 

Mo 2.92 2.79 3.29 3.02 2.12 2.45 

Cr 18.85 19.22 18.78 19.71 19.77 20.66 

Fe 63.87 66.65 64.9 66.9 64.55 65.66 

Ni 13.44 10.69 12.34 10.66 12.26 10.51 

 

3.3.2 Tensile properties 

Tensile testing with the standard specimen taken from the welded DED parts and 

DED parts (Figs. 3.2 and 3.3) were conducted to evaluate the ultimate tensile strength 

(UTS) and elongation to failure of the samples. The typical stress-strain curves of all 
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specimens are illustrated in Fig. 3.7(a). The typical broken tensile specimens are also 

shown in this Figure. All tensile specimens of the welded coupons were fractured in DED 

parts, demonstrating that the good quality welds were achieved. The average values of UTS 

and elongation along with their relevant error bar that indicate the range for each value are 

presented in Fig. 3.7(b). It can be seen from Fig. 3.7(b) that the UTS and elongation of 

specimens from the Weld DED-P and DED-P coupons were higher than those from the 

Weld DED-N and DED-N coupons. In other words, regardless of whether the tensile 

specimen had a joint or not, the specimen showed higher tensile properties if it was aligned 

parallel to the direction of deposition. These results indicated the anisotropic mechanical 

behavior of the DED parts. The lower UTS and ductility of specimens in the normal 

direction might be attributed to weaker metallurgical bonding, presence of imperfections 

such as inter-layers/beads pores caused by lack-of-fusion in DED parts, epitaxial grain 

growth during solidification and orientation of dentrites in the microstructure. The lack-of-

fusion is the major source of porosity in the as-deposited parts that are usually caused by 

insufficient melting, mostly occurred at the layer interface [23]. Furthermore, by 

comparing the Weld DED-P to DED-P specimens or Weld DED-N to DED-N specimens, 

it can be deduced that the existence of weld joints did not have a negative effect on the 

tensile properties of the DED parts. In the commonly-used laser welding of wrought plates, 

the joints usually indicated better mechanical properties compared to the wrought base 

plate. This result is because the microstructure of welds changed greatly [24,25]. However, 

in the laser welded DED parts, the mechanical properties were not improved after welding, 

since the microstructure and chemical composition of the joints remained very similar to 

those of DED (e.g., columnar dendritic microstructure). 
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Figure 3.7 Tensile test results for DED and welded DED specimens (a) typical stress-

strain curves of different specimens along with broken tensile specimens (b) the 

average UTS and elongation values of all tested specimens. 

Fig. 3.8(a and b) show the SEM fracture surfaces of the Weld DED-N and Weld 

DED-P coupons, respectively. The orientation of fracture surface was about 45° to the 

specimen axis that is evidence of ductile fracture (see also Fig. 3.7(a)). At the higher 

magnifications (Fig. 3.8(c and d)), fine and uniform dimples were predominantly observed, 

indicating the failure of samples in a ductile manner. Moreover, some torn belts in the 

fracture surface associated with columnar dendritic structure were observed.  
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Figure 3.8 Typical tensile fracture surfaces (a) Weld DED-N specimen (b) Weld 

DED-P specimen (c and d) dimples in the fracture surfaces showing the ductile 

fracture. 

3.3.3 Microhardness 

Vickers microhardness measurements were performed across the fusion zone as 

depicted in Fig. 3.9. No significant difference between microhardness of the fusion zone 

and DED parts was observed. The average microhardness values for the fusion zone and 

DED parts were about 247 HV and 242 HV, respectively. The hardness is a result of grain 

size, meaning that finer microstructure results in higher microhardness [26]. The grain 

boundaries act as barrier for dislocations and eventually smaller grain size would have 

higher microhardness [26]. Owing to the identical grain morphology, as discussed earlier, 
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and close values of grain size between the DED and weld zone, a uniform hardness profile 

across the DED and fusion zone was obtained.  

 

Figure 3.9 Microhardness profiles along the cross-sections of the joints. 

3.3.4 Porosity 

Fig. 3.10(a and b) illustrate the SEM micrographs of the transverse cross-sections 

of Weld DED-N and Weld DED-P samples, respectively. A few macropores were observed 

in both DED and fusion zone. Generally, the main source of pores in the welding process 

is due to the gas entrapment during the solidification process and are found mostly in 

spherical shape [27,28]. The pores in the weld zone of DED parts might have two sources 

of formation. They may either come from the already existing pores in the DED parts that 

were generated mainly due to the lack-of-fusion or they might be formed in the welding 

process as a result of gas entrapment. The DED process is prone to the production of 

microscopic or even macroscopic voids. Upon welding the DED parts, some of the pores 

may escape from the fusion zone and some of them may combine to form larger pores. The 

porosity was found to be scattered in the weld zone, similar to the distribution of pores in 
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DED parts. The size of the porosity was found to be within the range of approximately 18-

35 𝜇𝑚 in both DED and fusion zone. 

 

Figure 3.10 Porosity obsereved in (a) Weld DED-N and (b) Weld DED-P coupons. 

3.4 A case of fabricating a part with overhang surface 

To further verify the capability of the developed process, a part with an overhang 

section was selected. One of the challenges in the DED process is building complex parts 

with overhang sections. As an example, a part that was composed of two cones is illustrated 

in Fig. 3.11(a). It should be noted that the part is a thin-walled structure, where the thickness 

of wall was equal to the width of a bead. Therefore, a spiral path planning was selected to 

avoid multiple start-finishes of the process. Building the lower cone is feasible by titling 

the rotary table for angle 𝛼 (Fig. 3.11(b)). During the deposition of the lower cone the 

tilting angle of the rotary table was fixed. Then, after the lower cone was printed, the 

process should be stopped for repositioning the laser head. The process started deposition 

of the upper cone on the last layer of the lower cone (Fig. 3.11(c)). Fig. 3.11(b) shows the 

instance when the lower cone is being printed. Fig. 3.11(c) illustrates an instance when the 

printing of the upper cone is begun.  
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Figure 3.11 (a) A part with overhang sections (b) illustration of kinematic system 

when the lower cone was printed (c) the occurrence of collision between laser head 

and lower cone at the instance when the upper cone started to be printed. 

However, under the higher values of the angle (𝛼), there might be a collision 

between the laser head and lower cone as can be seen from Fig. 3.11(c). Thus, it would be 

impossible to continue printing of the upper overhang section. Moreover, in the position 

that is shown in Fig 3.11(c), the melt pool was partially supported by the lower cone, 

leading to instability in the process. Therefore, for such a case, printing the cones 

individually and then joining them in order to fabricate the whole part could be a solution. 

Fig. 3.12(a and b) show the lower and upper cones that were printed by the RLW-DED 

process. Then, an autogenous laser welding process was used to join the cones together on 

the rotary table (Fig. 3.12(c)). The same process parameters given in Table 3.2 were used 

to fabricate the slopped component. This part was fabricated to show the application of 

laser welding in joining the DED parts. The angle (𝛼) in this case was 35°, however this 

part could be fabricated with higher angles.  
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Figure 3.12 (a and b) The lower and upper cones fabricated by RLW-DED (c) the 

final part after autogenous laser welding of two cones (d) the cross-section of the 

joint. 

Fig. 3.12(d) also demonstrates the cross-section of the weld. A good joint was 

achieved, confirming the capability of autogenous laser welding in joining thin-walled 

DED parts. The results proved that the flexibility of the DED process in printing certain 

complex geometries, especially overhang structures, could be improved. 

3.5 Conclusions 

In this investigation, an autogenous laser welding process was applied to join the 

thin-walled elements fabricated by a robotized laser/wire directed energy deposition 

system. This hybrid system showed the capability of fabricating complex geometries that 

are difficult to build by using DED process. Microstructural analysis revealed sound welds 

with almost no HAZ. The dominant grain morphology either in the weld zone or DED parts 

was found to be columnar dendritic, since autogenous laser welding and laser directed 
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energy deposition processes have identical solidification behavior. The alloying elements 

distribution showed a uniform chemical composition in the weld and DED parts with 

minimum segregation. Also, the mechanical test results showed no significant difference 

between the welded DED parts and DED parts without weld, in terms of UTS and 

elongation to failure. However, the tensile specimens taken from normal direction relative 

to the deposition direction indicated lower UTS and elongation, revealing the anisotropic 

mechanical behavior of DED parts. Microhardness distribution results showed no 

noticeable difference between the fusion zone and DED parts, owing to the close size of 

the grains in these two areas.  

Eventually, this study demonstrated that some limitations in DED process such as 

fabricating parts with overhang sections could be solved by part segmentation and then 

joining the elements back together by an autogenous laser welding. Therefore, product 

design in DED process could obtain more flexibility.  
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Chapter 4 

 CLOSED LOOP CONTROL OF MELT POOL WIDTH IN ROBOTIZED 

LASER POWDER DIRECTED ENERGY DEPOSITION PROCESS 

 

4.1 Introduction 

Additive Manufacturing (AM) is a technique used to fabricate parts in a layer-wise 

fashion. This technique offers reduction in time and material waste, leading to a decreased 

buy-to-fly ratio [1]. Different AM techniques that utilize metal as material supply have 

been researched in recent years. Powder Bed Fusion (PBF) and Directed Energy Deposition 

(DED) are the two well-recognized sub-categories of metal AM processes [2]. DED is 

defined as “an additive manufacturing process in which focused thermal energy is used to 

fuse materials by melting as they are being deposited,” according to ISO/ASTM 

52900:2015 [3]. In the DED process, metallic powder, wire or a combination of both is fed 

into the melt pool that is formed by a high energy focused heat source such as electron 

beam, arc or laser. In contrast, powder bed fusion process works based on a bed of powder 

that is selectively sintered or melted via laser or electron beam heat source. Using PBF 

process, building of highly complex parts with internal features is possible. Surface finish 

of final buildup is also far better than DED process. However, PBF-processed parts are 

associated with different issues. Fotovvati et al [4], showed the inconsistency and variation 

of microstructural and mechanical properties of AM Ti-6Al-4V sheets in different 



91 

 

directions and thicknesses. There are numerous advantages of using DED with respect to 

the PBF process, including an unlimited buildup size, a higher deposition rate, and the 

possibility to make functionally-graded compositions. DED can repair worn out or 

damaged high value components, and decrease the need for the support structure. 

Utilization of sensors for the purpose of monitoring and control is also common in DED, 

helping the researchers to better understand the physics of the process. Laser powder 

directed energy deposition or commonly known as LENSⓇ (Laser Engineered Net 

Shaping) has been extensively used in literature for different applications. For instance, Hu 

and Kovacevic [5] used multiple powder feeding systems to print functionally-graded 

structures to tailor the mechanical and compositional properties of the buildup. Wilson et 

al. [6] showed the effectiveness of the laser powder feeding process to repair and 

remanufacture a damaged turbine blade. Yaoyu et al. [7] employed a robotized laser-based 

powder feeding system to print metamaterials with exotic behavior such as negative 

coefficient of thermal expansion or large Poisson’s ratio. Beside the tremendous 

advantages of laser DED process, one main concern is the energy efficiency of this process. 

Lin et al. [8] established an empirical model to characterize a relationship between process 

parameters and energy efficiency and they were able to improve the energy efficiency of 

DED process significantly.  

In robotized laser powder directed energy deposition (RLP-DED), the main 

processing variables such as powder flow rate, laser power, layer thickness, travel speed, 

and step-over value affect the quality of deposition and stability of the process. 

Optimization and tuning of these parameters are necessary prior to the process in order to 

achieve a consistent and stable process. However, due to the existence of disturbances such 
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as change in the thermal condition (usually heat transfer mode  changes from 3D to 2D 

conduction during the process) or small change in variables like thermal conductivity (a 

temperature-dependent material property), powder flow rate or laser power, the 

implementation of an in-situ sensing and control system is required.  

Bi et al. [9] used IR-temperature signals from a single-wall deposition in order to 

develop a feedback system in the laser powder feeding process. They tried to maintain the 

melt pool temperature as a control input by adjusting the laser power as a control variable. 

Their result showed a nearly constant melt pool size and homogeneous microstructure. 

Farshidianfar et al. [10] developed a feedback proportional integral derivative (PID) 

controller based on an infrared imaging system in the laser powder cladding process. They 

were able to maintain the cooling rate by adjusting the travel speed. They showed that the 

closed loop controller was capable of producing a relatively consistent microstructure. 

Yaoyu et al. [11] developed a sensing and control system in a robotized laser powder 

deposition system. They utilized an infrared imaging system to monitor the melt pool size 

in real time and adjusted the laser power as the control output. They verified the 

performance of the controller by achieving a uniform cross-sectional thickness of the L-

shaped component. Hofman et al. [12] employed a CMOS camera to obtain the width of 

the melt pool in the laser powder cladding process. They showed that constant laser power 

can produce higher degrees of dilution and lower value of microhardness in the cladded 

layer. However, after applying a feedback system, the laser power was reduced by 50%, 

and hardness and dilution of the clads remained constant. Heralic et al. [13] proposed a 

controller for the laser wire direct metal deposition system. Their controller was composed 

of a PI-controller, to maintain the melt pool width, and a feed-forward compensator, to 
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keep the layer height consistent. The controller was able to increase the stability by 

minimizing the risk of droplet formation and stubbing.  

Most of the studies related to closed loop control of laser directed energy deposition 

have relied on fixed parameters of the control algorithm. These researches have mainly 

dealt with a cladding process or a part with a few layers of deposition, where the 

disturbances such as change in the heat transfer mode or cooling rate had a relatively low 

effect on the dynamics of the process. Therefore, the control parameters were considered 

to be fixed values during the process. The existence of disturbances could make the process 

highly non-linear. For instance, the relation between the melt pool size or temperature and 

laser power is typically non-linear throughout the entire process, especially when the 

structure has numerous layers. 

In this paper, a monitoring and a PI-closed loop controller based on an infrared 

imaging system were set up on a robotized laser powder directed energy deposition system. 

The aim of the work was to investigate the different responses of the non-linear laser 

deposition process and present a more accurate and reliable controller. The performance of 

the controller was evaluated by deposition of a 160-layer stainless steel 316L thin wall part. 

The resulting microstructure was discussed and compared with a deposition under constant 

laser power. 

4.2 Experimental procedure 

The block diagram of the RLP-DED system is shown in Fig. 4.1. The system 

included a 6-axis KUKA robotic arm (KR60) coupled with a two axis positioning table, an 

IPG 4kW fiber laser with wavelength of 1070 nm, a laser welding head (Precitec YW50), 
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and an in-house powder feeder [14]. The laser spot was 2 mm in diameter which was 

achieved at 17 mm defocused distance below the focal point. The image monitoring system 

was based on a CMOS camera (Prosilica GC 640) that was coaxially mounted on the laser 

head. The camera worked on a monochrome mode with a resolution of 640x480 pixels, 

corresponding to a maximum acquisition of 200 frames per second. 

 

Figure 4.1 Schematic overview of robotized laser powder directed energy deposition 

equipped with closed loop control system. 

The thin wall samples were fabricated by using the optimized process parameters 

listed in Table 4.1. All parameters except laser power were kept constant during the process 

for both samples with constant and controlled laser power. 
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Table 4.1 Process parameters used in this study 

Process 

Parameters 

Travel 

speed 

(mm/s) 

Laser 

power (W) 

Powder 

feed rate 

(g/s) 

z-increment 

(mm) 

Carrier 

gas* 

(l/min) 

Shielding 

gas* (l/min) 

Sample with 

constant 

laser power 

5 600 0.4 0.5 8 15  

Sample with 

controlled 

laser power 

5 Adjustable 

by controller 

0.4 0.5 8 15 

*Argon was used as carrier and shielding gas 

The depositions were carried out using austenitic Stainless Steel 316L powder 

produced by North American Hoganas High Alloys LLC. The powder with a particle size 

of 50-150µm was deposited onto the SS 304L plates as substrate. Chemical composition 

of the powder and substrate are listed in Table 4.2. 

Table 4.2 Chemical composition of powder and substrate 

 

Both samples, i.e. the sample with constant laser power and the sample with 

controlled laser power, were cross cut and mounted for metallurgical analysis. Then, the 

samples were sanded and a diamond polishing pad was used to polish them. Afterward, 

they were chemically etched in HCL:HNO3=3:1 solution for 45 s. A scanning electron 

microscope (SEM LEO 1450) and an optical microscope (Olympus DP72) were used for 

microstructural analysis. 

Element (wt.%) C Mn Si Ni Mo Cr P S Fe 

Powder (316L) 

Substrate (304L) 

0.03 

0.03 

1.5 

2 

0.8 

- 

12 

8 

2.50 

- 

17 

18 

- 

0.045 

- 

0.03 

Bal. 

Bal.  
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4.3 Closed loop control system 

4.3.1 Image acquisition and processing 

The melt pool width, as the process variable or control variable was monitored and 

controlled in real-time. The CMOS camera was coaxially mounted on the laser head to take 

the melt pool images from the top view. All the lights from the melt pool including laser 

radiation and heat radiation were reflected by a dichroic mirror placed inside the laser head 

and received by a camera chip. A long-pass infrared filter was utilized in front of the 

camera to pass the light with a wavelength greater than 700 nm. A notch filter that blocks 

the laser light with a wavelength of 1070 nm was also used in order to protect the camera 

from laser damage.  

A typical acquired image of the melt pool by a camera equipped with infrared filter 

is shown in Fig. 4.2(a). Fig. 4.2 shows the steps taken to process the raw image from the 

camera to eventually measure the width of the melt pool. The image processing code was 

developed by using the Vision Acquisition Module of Labview platform and was 

implemented in real time. In the first step, a grey level (0-255) image is captured by the 

camera (Fig. 4.2(a)). Then, the image is converted to a binary, black-and-white image by 

applying a user-defined threshold value (Fig. 4.2(b)). The threshold was obtained by 

depositing several tracks with different widths. Then, the measurement of track widths 

were taken and compared with the corresponding images to get the appropriate threshold 

value. The value of the threshold was chosen to be 80 in the experiments. As can be seen 

from Fig. 4.2(b), the melt pool is surrounded by some flare that is produced by the hot 

powder particles. The flare can cause considerable noise and error in measuring the melt 

pool width. Therefore, a low pass FFT (Fast Fourier Transform) filter was employed. The 
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FFT of an image represents the frequencies of occurrence of pixel intensity variations in 

the original image (Fig. 4.2(c)). The consistent and smooth intensity variations in the image 

correspond to low frequencies in the FFT, while the abrupt and fast intensity variations in 

the image such as flare or noisy pixels at the edge of melt pool correspond to high 

frequencies in FFT. A low pass filter with a cut-off frequency of 5% is utilized to remove 

the noise, while preserving the melt pool boundary as shown in Fig. 4.2(d). Frequency of 

each pixel is set to zero if it is higher than cut-off frequency and remained unchanged if it 

is less than cut-off frequency. In the next step, the outline of melt pool is extracted (Fig. 

4.2(e)). Ultimately, in order to measure the widest section of melt pool, all possible circles 

that were contained inside the outline were detected (Fig. 4.2(f)). The diameter of the 

largest circle was recognized as the melt pool width. Therefore, the melt pool width as the 

control variable was obtainable in real time. 

 

Figure 4.2 Image processing steps to obtain the melt pool width (see text for details). 
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4.3.2 System identification 

The specific energy in the laser powder directed energy deposition process is 

defined as the energy delivered to the process by the laser [15]: 𝐸 = 𝑃𝐷×𝑇𝑆                                                                 (4.1) 

where P is the laser power, D is the laser beam diameter, and TS is the travel speed. 

The specific energy has a key role in determining the melt pool size, melt pool temperature, 

and morphology of the microstructure. However, given the fixed specific energy does not 

always guarantee a consistent melt pool size, temperature or homogeneous microstructure. 

The existence of low frequent disturbances such as change in the heat transfer mode and 

change in material properties (e.g., thermal conductivity) require that the specific energy 

be adjusted to ensure the stability of the process and quality of the deposition. In this study, 

the laser power that had a direct effect on specific energy was selected as an adjustable 

variable (control output). Melt pool width was chosen to be the control input.  

To achieve a robust control system, it was essential to accurately identify and 

develop the dynamic model of the process. Experiments on the wall sample have shown 

that the dynamic relation between melt pool width and laser power is non-linear, especially 

in the initial layers. Therefore, a set of 10 step response tests were performed in the first 10 

layers of a 160-layer thin wall part. The results of the tests are shown in Fig. 4.3. 
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There is no data available for the first layer in Fig. 4.3.  This is because the process 

was unstable in the first layer, due to the extreme heat sink and large fluctuations in 

measurements, therefore the step tests failed in this layer. In all step tests, the system was 

perturbed by increasing laser power abruptly from 500W to 600W. This increase caused a 

change in the melt pool width. As can be seen in all layers, there was no overshoot in the 

responses. Therefore, the dynamic model of the process can be approximated by a first 

order with a time delay transfer function as [16]: 

𝐺(𝑠) = 𝐾1+𝜏𝑠 𝑒−𝑡𝑑𝑠                                                (4.2)  

where K is the static gain, τ is the time constant, and td is the time-delay constant. 

The static gain is specified as the ratio between variations in the melt pool width (as output 

signal) and variations in the laser power (as input signal) after the steady state is reached 

Figure 4.3 The results of step response tests in different layers of a thin wall 

deposition. 
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(K=∆W/∆P). The time constant is the time that the response is required to reach 63% of its 

total change. The time delay or dead time is defined as the time interval where there is no 

change in the response after the step input is applied. These parameters are graphically 

illustrated in Fig. 4.4. 

 

Figure 4.4 Schematic illustration of parameters for first order transfer function. 

Experiments in the deposition of thin wall structure showed that the response of the 

system was almost the same inside each layer. However, from layer to layer, a new dynamic 

response was observed. This is mainly attributed to the change in thermal condition of the 

sample after a new layer was deposited. These changes were obvious from the 2nd layer 

up to the 8th layer, where the transfer function parameters, especially τ, indicated 

considerable variations. After the 9th layer there was no change in parameters or their 

changes did not have effect on control parameters. This result will be discussed in detail in 

the next section. The step response tests were performed around the operating points in 

which the process was stable. The fluctuations in the melt pool width signal, which can be 

seen in Fig. 4.3, were inherently associated with the laser-directed energy deposition 

process. The fluctuation amplitude could be attenuated by applying a digital smoothing 
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filter. However, the filter could cause a delay in the response of the system. Therefore, use 

of a digital filter was avoided. The sampling frequency of the process was 30 Hz. This 

frequency was high enough to control the RLP-DED process with 5 mm/s travel speed. 

The raw data from the step response tests was imported into the Pitops software 

from PiControl Solution LLC to identify the transfer functions of different layers. The 

corresponding predicted curves of the first order time-delay transfer functions are depicted 

in the plots of Fig. 4.3. Also, the mathematical representation of the transfer functions are 

indicated in the plots. 

4.3.3 Controller design 

The block diagram of the closed loop control system is shown in Fig. 4.5. The melt 

pool width, as the user-defined set point (WSP), was compared with the measured melt 

pool width (Wm). The Wm was obtained after the low pass filter was applied on the raw 

image from the camera. The resulting error, e(t)=WSP-Wm, was sent to the PID controller 

that was implemented in the Labview platform. 

 
Figure 4.5 The block diagram of the closed loop control system used for RLP-DED 

process. 

The PID controller has been extensively utilized in most industrial control 

applications due to its simple structure, high stability, and effectiveness. The PID controller 
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is used when the mathematical model of the process is not available because of the 

complexity and non-linearity of the system. The output of the controller, i.e. laser power, 

was sent to the laser power unit. The time continuous equation used for the controller is as 

follows: 

𝑢(𝑡) = 𝐾𝑐 [𝑒(𝑡) + 1𝑇𝑖 ∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑 𝑑𝑒(𝑡)𝑑𝑡𝑡0 ]                                                   (4.3) 

where u(t) is the controller output sent to the laser unit as a voltage signal, Kc is the 

proportional gain, Ti is the integral gain, and Td is the derivative gain. In order to digitally 

implement the time continuous equation in the computer, a finite difference approximation 

was used:   

∫ 𝑒(𝜏)𝑑𝜏 ≈ ∑ 𝑇𝑠𝑒(𝑘𝑇𝑠)𝑛𝑘=1𝑡0                                                                (4.4) 

𝑑𝑒(𝑡)𝑑𝑡 ≈ 𝑒(𝑛𝑇𝑠)−𝑒(𝑛𝑇𝑠−𝑇𝑠)𝑇𝑠                                                            (4.5) 

where Ts is the sampling time, which was 0.033 s in this paper, n is the number of 

discretized steps between zero and time t and k is the step number. Therefore, Eq. (4.3) is 

discretized as 

𝑢𝑛 = 𝐾𝑐 [𝑒𝑛 + 1𝑇𝑖 ∑ 𝑇𝑠𝑒𝑘 + 𝑇𝑑 𝑒𝑛−𝑒𝑛−1𝑇𝑠𝑛𝑘=1 ]                                             (4.6) 

The tuning of PID gains were performed with Pitops software. Although, the 

derivative term could lead to faster response of the system, it caused oscillation and 

eventual instability in the system. Therefore, a PI algorithm was chosen to control the RLP-

DED process in this work, and the derivative term was set at zero. As discussed in the 

previous section, the transfer function models of the first 10 layers were obtained through 
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step response tests. Accordingly, the corresponding controller gains were achieved as can 

be seen in Table 4.3. 

Table 4.3 Transfer function parameters and controller gains for different layers 

Layer No. td (ms) K 𝝉 (ms) Kc Ti (s) 

 2 250 0.0015 115 1.40 0.15 

3 195 0.0024 100 1.41 0.13 

4 205 0.0018 120 1.36 0.18 

5 180 0.0024 170 1.42 0.2 

6 200 0.0021 164 1.53 0.25 

7 245 0.0018 190 1.58 0.25 

8 260 0.0024 230 1.61 0.38 

9 146 0.0027 255 1.65 0.4 

10 150 0.0024 250 1.62 0.4 

 

The data from Table 4.3 reveals that while there was no obvious change in the time 

delay (td) and process gain (K), there existed a gradual increase in the time constant (τ). 

An increase in the time constant implies that the process became slower as the layer number 

increased. The faster response of the system in the bottom layers might be attributed to the 

fast heat sink into the substrate. Whereas, moving towards the 9th layer, the heat 

conduction mode changed from 3D to 2D and resulted in slower dynamic response. 

However, it was observed that after the 8th layer, the time constant remained almost steady 

at around 250 ms. This result may be related to the heat saturation; hence, heat exchange 

reached a quasi-steady status [9]. Moreover, there were no obvious variations in td and K 

beyond the 8th layer up to the last layer of the sample. Therefore, the parameters Kc and 

Ti were fixed at 1.62 and 0.4, respectively, in the controller for the layers after the 8th. 

From the control engineering standpoint, an increase in τ moves the closed loop control 

system in the direction of more stability, allowing a higher proportional gain without the 

risk of oscillation. This gain can be seen from Table 3 where Kc increased from the 2nd to 
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8th layer. The integral action (Ti) can be looked upon as the impatience level in the 

controller. As the process became slower in the upper layers, it allowed the controller to 

become more impatient; thereby, higher integral actions were achieved. In summary, the 

non-linear relation between the laser power and melt pool width resulted in different 

controller gains for a thin wall deposition. To verify the performance of the controller, a 

160-layer thin wall part was deposited, which will be discussed in this paper. 

4.4 Experimental results and discussion 

4.4.1 Performance verification of controller 

Fig. 4.6 depicts the closed loop performance of the controller. Two step 

disturbances in the laser power were applied in the closed loop system. One positive step 

change varied abruptly from 500W to 600W, and the other negative step change varied 

from 500W to 400W. As can be observed from Fig. 4.6, the controller successfully 

responds to the sudden variations in melt pool width and compensates with a change in the 

laser power until the melt pool reaches the desired set point. 
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Figure 4.6 Response of the closed loop system to disturbances. 

4.4.2 Deposition of thin wall structures with and without control 

Fig. 4.7 displays the thin wall samples with 160-layers along with their cross 

sections at the bottom, middle, and top of the depositions. The sample with a constant laser 

power (600W) is shown in Fig. 4.7(a). A gradual increase in the melt pool width is clearly 

seen from bottom towards the top layers. This non-uniform wall thickness was mainly 

attributed to the change in heat transfer mode. In the first layers, close to substrate, an 

intense heat sink caused a significant reduction in the melt pool width size. As process 

continued, the constant laser power led to heat accumulation; thereby, a wider melt pool 

was achieved progressively.  

In current study, all process parameters such as laser power (in the case of sample without 

control), scanning speed and powder feed rate are set as fixed values and their effects on 

the process are not studied. However, the effects of these process parameters on melt pool 

characteristics (size, temperature, geometry, fluid dynamics) and cooling rate are well-

investigated in literature [17,18]. In general, by increasing the laser power, the melt pool 

geometrical features (depth, width, length and surface area) and melt pool temperature 

increase, while by increasing the scanning speed, all those geometrical features and melt 

pool temperature decrease. 
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Figure 4.7 The deposited samples along with their micrographs. (a) Sample with 

constant laser power (b) Sample with controlled laser power. 

In order to overcome the issue associated with constant laser power in this study, a 

PI-controller with adaptable transfer function as discussed in Section 4.3.3 was utilized. 

Due to the acceleration and deceleration of the robot at the start and end of each bead, 

larger melt pools were produced in these regions. Therefore, the controller was turned on 

after 5 mm from the start point, and turned off 10 mm before the end of track. Moreover, 

since the transfer function was not available in the first layer, the controller was turned off, 

and a constant laser power (750 W) was set for this layer. It should be noted that to avoid 

very high or very low laser power, a minimum and maximum range was adjusted. The 

minimum laser power was set at 350 W and the maximum at 700 W. These limit values for 

the laser power were obtained by trial and error deposition of tracks with laser powers out 

of the range. In the tracks deposited with less than 350 W laser power, insufficient heat 

input into the melt pool caused lack-of-fusion defects and delamination between deposition 

and substrate. Also, in the tracks with laser power higher than 700 W, excessive energy 
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caused the re-melting of a large portion of previously deposited layers and consequently 

an instability led to stop the process. As can be seen from Fig. 4.7(b), the cross sections of 

the buildup have a uniform thickness throughout the entire build.  

The result of real-time measurements of the melt pool width for a constant laser 

power thin wall is displayed in Fig. 4.8. The significant increase of width in the first several 

layers and gradual increase in upper layers are also obvious from Fig. 4.8. 

 

Figure 4.8 Melt pool width as a function of layer numbers for the sample with 

constant laser power. 

Fig. 4.9 shows the variation of the melt pool width for the controlled thin wall. A 

constant width was observed from real-time measurements. The corresponding adjusted 

laser power by the controller is also shown in Fig. 4.9(b). It shows that the laser power 

gradually decreases from 640 W in the 2nd layer to 510 W in the 160th layer. 
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4.4.3 Microstructural analysis 

The optical microscope observations revealed no evidence of large porosity, lack 

of fusion or cracks. The transverse cross sections of both samples, i.e. the sample with 

constant laser power and the sample with controlled laser power, were examined at the 

bottom, middle, and top of the depositions as can be seen from Figs. 4.10 and 4.11. The 

morphology mainly consisted of austenitic cells as the primary phase with ferrite at cell 

boundaries. The microsegregation at grain boundaries during solidification cause the 

compositional variations [19] and eventually results in producing darker regions that 

outline the austenite cells after etching, as can be seen from Figs. 4.10 and 4.11. Figs. 

4.10(a) and 4.11(a) illustrate the low magnification of microstructure at the middle of 

samples. The laser tracks can be clearly observed. The general morphology of the 

microstructure consisted of a mixture of cellular and columnar dendritic structures. Various 

portions of cellular, columnar and dendrite structures with secondary arm spacing were 

observed at different locations of the cross sections. In the microstructure of the sample 

Figure 4.9 (a) The variation of melt pol width and (b) laser power for the controlled 

sample. 
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with constant laser power, there exists a fine cellular structure in first several layers (Fig. 

4.10(b)) that gradually changes to the combination of columnar and cellular structures in 

the middle (Fig. 4.10(c)). Further, in the top layers the coarse columnar grains are dominant 

and even dendrites with secondary arm spacing are visible (Fig. 4.10(d)). While, the 

dendritic grain growth is randomly oriented in some areas, a directional solidification is 

observed in particular regions (Fig. 4.10(a)). The directional solidification is a common 

microstructure orientation for laser-processed parts, and is the result of a high solidification 

rate and temperature gradients [20]. In the case of sample with controlled laser power (Fig. 

4.11(b)-(d)), the microstructural observation revealed that the entire structure of sample 

consisted of only cellular grains, having different cell size in different locations of cross 

sections. This is attributed to the effect of controller on reducing the heat input and thereby 

producing relatively finer and more homogenous and uniform microstructure. 

 

Figure 4.10 Microstructure of 316L sample with constant laser power (a) low 

magnification of micrograph at middle of sample (b) typical fine cellular structure 
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at bottom layers (c) cellular and columnar morphology at middle and (d) columnar 

dendritic structure at top layers. 

 

Figure 4.11 Microstructure of 316L sample with controlled laser power (a) low 

magnification of micrograph at middle of sample. Cellular structures at (b) bottom 

layers (c) middle and (d) top layers. The method of grain size measurement is shown 

in (c) 

As shown in Fig. 4.12, the solidification map could be used to explain the variations 

in size and morphology of the microstructure. The two most important factors in describing 

the solidification map are temperature gradient and solidification rate. The temperature 

gradient, G, is defined as the tangent of the temperature profile of the melt pool with respect 

to distance. The solidification rate or growth rate, R, is the travel velocity of the solid/liquid 

interface. While the product, GR, which is also defined as the cooling rate, governs the size 

of the solidification structure, the ratio, G/R, is an important factor in determining the 

morphology preference of solidification (e.g. planar, cellular, columnar or equiaxed 

dendritic) [21]. 
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Figure 4.12 Solidification map showing the effect of temperature gradient, G, and 

growth rate, R, on the morphology and size of solidification microstructure [22]. 

The temperature of the melt pool progressively increased layer by layer due to the 

decreased heat conduction through the substrate. Moreover, the temperature gradient 

reduced in the upper layers because of heat accumulation. Therefore, the ratio, G/R, which 

defines the stability of solidification front, decreased as new layers were deposited [23]. In 

the case of uncontrolled sample, after certain number of layers the heat saturation happened 

and a significant decrease in temperature gradient were observed that typically results in 

larger window in solidification map as shown in Fig. 4.12. In contrast, smaller variation of 

G in controlled sample resulted in smaller window that can be seen in Fig. 4.12. The 

variations in G/R determined the morphology preference in the final solidification. That is, 

the transition from cellular in the first several layers to columnar dendritic in the last layers 

of the sample with constant laser power (Fig. 4.10). The cooling rate, GR, was also 

diminished as the layer number increased. The reduction in cooling rate resulted in 

enlargement of grains; i.e., the increase in cell size from the bottom toward top layers. 

Therefore, based on the microstructural observations, it can be concluded that the sample 

Uncontrolled sample 

Controlled sample 
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with controlled laser power would have experienced smaller variations in G/R and GR 

during the solidification.  

The grain size was measured across transverse cross sections of both samples, i.e. 

the sample with constant laser power and the sample with controlled laser power. The 

measurements were repeated three times in each area in order to increase the accuracy of 

data. The mean intercept method was utilized to measure the grain size [24]. The average 

grain size is calculated by dividing the length of set of lines (randomly drawn) by the 

number of intersected grain boundaries in the optical micrographs. Fig. 4.11(c) shows the 

schematic sketch for measuring grain size by the mean intercept method. The result of the 

grain size measurements is displayed in Fig. 4.13(a). The effect of the closed loop control 

system is obvious in Fig. 4.13. Although there was a slight increase in grain size, the sample 

with controlled laser power generally showed more homogeneous and relatively finer 

microstructure than the sample with constant laser power. In order to calculate the cooling 

rate, a well-known empirical equation that relates the cooling rate, T ̇, and grain size, λ, for 

316 stainless steel was used [25]. 

𝜆 = 80𝑇̇−0.33                                                                            (4.7) 

Eq. (4.7) could provide an approximation of cooling rates at different locations of 

buildup. The results are illustrated in Fig. 4.13 (b). In the first 20 layers, the error bar shows 

a larger variation of cooling rates in each layer. As the process continues, more stability in 

the system leads to small variations as can be seen in Fig. 4.13(b). 
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Figure 4.13 The variations in (a) grain size and (b) cooling rate as a function of layer 

number 

Fig. 4.13(b) also demonstrates that the sample with a constant laser power 

experienced a larger variation in cooling rate across vertical distance as compared to the 

laser power controlled sample. The result indicated that the closed loop controller in this 

study that was designed based on the vision system could be used to control, to some extent, 

the cooling rate and microstructural properties of the buildups. In a similar study by 

Hofmeister et al. [26], it was found that in the laser powder deposition process, the cooling 

rate at the liquid/solid interface had a reverse relation to the square of the melt pool length. 

Therefore, in a feedback control system, the length of the melt pool can be maintained by 

online adjustment of laser power, leading to a tailored microstructural properties of the 

buildup. Akbari et al. [27] also used a camera-based monitoring system to measure the melt 

pool area in the laser wire metal deposition process. They were able to correlate the cooling 

rate with the melt pool area. They proposed an empirical relation and suggested that the 

system could be used in the closed loop process in order to adjust the cooling rate in real 

time. 
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4.5 Conclusions 

A process monitoring control system based on an infrared image of the melt pool 

was developed and evaluated by deposition of thin wall samples. The main conclusions 

from the results are as follows: 

• The robotized laser power directed energy deposition is a non-linear 

process. Fixed controller gains could not guarantee a good performance of the control 

system, because the dynamic response between melt pool width and laser power changed 

during the first 10 layers of deposition. 

• An adaptable PI-controller that corresponded to the different responses of 

the system in different layers was developed based on the data from step tests. 

• The results of real-time measurement showed that by adjusting the laser 

power the controller could successfully ensure a constant size of melt pool width through 

the entire build. 

• Microstructural analysis revealed a small increase in the grain size of the 

sample with controlled laser power, while in the process without control, there was a larger 

increase in grain size and in some locations a cellular-to-columnar dendritic transition 

occurred in the morphology. Also, a lower variation of cooling rate was achieved when the 

controller was applied in the system. 
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Chapter 5 

 SUMMARY AND FUTURE WORK 

 

5.1 Summary 

In this thesis, several challenges involved in robotized laser directed energy 

deposition process have been addressed. Inhomogeneity and anisotropy in mechanical and 

microstructural properties of the as-built parts, existence of defects such as porosity and 

lack-of-fusion could significantly reduce the quality of parts. Also, the DED is suffering 

from lack of freedom in designing complex overhang parts. Further, we have shown that 

in order to make a consistent and homogenous part, a process monitoring and closed loop 

control is essential to the process. Based on the obtained results the following conclusions 

can be made: 

1- In order to characterize the mechanical and microstructural properties of 316LSi 

parts, two coupon types, thin-walled and block, were considered. It was found that 

columnar dendritic was the dominant grain morphology in microstructure of both 

coupons. The shorter inter-layer time interval in thin-walled coupon caused a 

decrease in cooling rate, resulting in a coarser grain size and lower UTS. It was also 

found that the size of the grains were increased from bottom to top of each layer 

due to an increase in the cooling rates. Block sample showed relatively finer and 

more uniform microstructure because of the more uniform thermal history. Further, 
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an empirical relationship correlating the cooling rate to the melt pool area was 

established. The relation suggested that cooling rate inversely scales with the power 

of 4 of melt pool area in both coupon types. That is, by applying a real-time 

monitoring of melt pool and a closed loop control system, one can control the 

solidification microstructure of the buildup. In addition, the tensile results indicated 

that the samples parallel to the deposition direction had higher UTS and elongation 

to failure in both coupon types compared to those in normal direction. The results 

of micro-hardness test also showed the higher values for block coupon. The 

porosity analysis also revealed that the main source of imperfection was lack-of-

fusion existing mostly in the first layers of deposition. 

2- In order to increase the flexibility of DED process to be able to fabricate overhang 

sections, an autogenous laser welding was applied to join the thin-walled DED 

elements. This hybrid system showed the capability of fabricating complex 

geometries that are difficult to build by using DED process. Microstructural 

analysis revealed sound welds with almost no HAZ. The dominant grain 

morphology either in the weld zone or DED parts was found to be columnar 

dendritic, since autogenous laser welding and laser directed energy deposition 

processes have identical solidification behavior. The alloying elements distribution 

showed a uniform chemical composition in the weld and DED parts with minimum 

segregation. Also, the mechanical test results showed no significant difference 

between the welded DED parts and DED parts without weld, in terms of UTS and 

elongation to failure. However, the tensile specimens taken from normal direction 

relative to the deposition direction indicated lower UTS and elongation, revealing 
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the anisotropic mechanical behavior of DED parts. Micro-hardness distribution 

results showed no noticeable difference between the fusion zone and DED parts, 

owing to the close size of the grains in these two areas. Eventually, this study 

demonstrated that some limitations in DED process such as fabricating parts with 

overhang sections could be solved by part segmentation and then joining the 

elements back together by an autogenous laser welding. Therefore, product design 

in DED process could obtain more flexibility. 

3- As there always exists the disturbances such as change in heat conduction mode in 

the laser DED process, applying a process monitoring and closed loop system is 

essential in real-time. A monitoring control system based on infrared image of melt 

pool was developed for laser powder DED process. Two types of thin wall samples, 

with and without control system, were fabricated. Generally, it was found that the 

robotized laser power directed energy deposition is a non-linear process. Fixed 

controller gains could not guarantee a good performance of the control system, 

because the dynamic response between melt pool width and laser power changed 

during the first 10 layers of deposition of thin wall sample. An adaptable PI-

controller that corresponded to the different responses of the system in different 

layers was developed based on the data from step tests. The results of real-time 

measurement showed that by adjusting the laser power, the controller could 

successfully ensure a constant size of melt pool width through the entire build. 

Moreover, microstructural analysis revealed a small increase in the grain size of the 

sample with controlled laser power, while in the process without control, there was 

a larger increase in grain size and in some locations a cellular-to-columnar dendritic 
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transition occurred in the morphology. Also, a lower variation of cooling rate was 

achieved when the controller was applied in the system 

5.2 Future work 

The followings are the suggestions as the future works: 

 Fabrication of large structure parts by using robotized laser wire DED process. 

Heat accumulation, residual stress and distortion, and generation of geometrical 

and dimensional error between buildup and pre-defined path planning are the 

issues associated with large scale printing. Addressing these issues are 

necessary for laser DED process.  

 Utilization of both wire and powder feedstock simultaneously in robotized laser 

DED process in order to fabricate compositionally graded materials and also to 

increase the wear and corrosion resistance of the clad layers. Cored wire could 

be also used in laser DED process. Cored wire contains additive elements. 

These elements could be alloying elements to produce coating with high 

alloying level and/or hard particles, such as WC to produce wear-resistant 

coatings. 
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