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Introduction  

Transportation agencies spend billions of 
dollars annually on pavement maintenance 
and rehabilitation to meet public, legislative, 
and agency expectations. Knowledge of the 
structural condition of a highway pavement is 
crucial for pavement management at both 
the network level and the project level, 
particularly when the system monitoring, 
evaluation, and decision-making are to be 
made in a context of multiple criteria that 
include structural condition. A key aspect of 
the performance criteria for multiple criteria 
decision making is that the criteria must be 
amenable to scaling so that it can be duly 
incorporated in the overall utility function.  
 
The main objectives of this research study 
are: 

 To develop a pavement structural 
strength index (SSI), scaled 
logistically from zero to a 100, based 
on the falling weight deflectometer 
(FWD) deflection measurements, 

 To formulate SSI in such a manner 
to be used as an index or employ the 
value of “100 – SSI” as a deduct 
value from pavement distresses 
surface index, and  

 To develop models by which the SSI 
could be estimated given functional 
class, age, and drainage condition 

wherever deflection measurements 
are not available. 

 
Extensive literature review of existing 
information related to pavement structural 
capacity assessment was conducted.  
 
Necessary data was collected from the 
Indiana Department of Transportation 
(INDOT) pavement management databases 
and deflection measurements available at 
INDOT Research and Development for both 
project and network levels. Information from 
INDIPAVE (a database that includes data on 
weather conditions, highway classification, 
traffic, and other information at over 10,000 
one-mile pavement sections in the State of 
Indiana) were also employed. Weather 
information was also collected from the 
Indiana State Climate Office. The data 
includes information on 12,250 road sections 
from 1999 to 2007. 
 
Data was classified by pavement surface 
type (whether it is asphalt or concrete) and 
system classification (whether it is an 
interstate, a non-interstate but part of the 
national highway system (NHS), or a non 
interstate and not a part of the national 
highway system (non-NHS).   

Findings  

Data collected for center deflection 1 in mils, 
1/1000 inch (corrected for a load of 9000 
pounds and a temperature of 68 F), 
international roughness index, IRI, (in inches 
per mile), rut depth in inches, and pavement 

condition rating, PCR, (historically used by 
INDOT as surface distresses index) 
revealed the following information about the 
network pavement condition in Indiana; 
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- For asphalt pavement surfaces, 

average 1 is 3.1, 5.0 and 7.9 mils 
for interstates, NHS, and non-NHS 
respectively. Average IRI is 76, 102 
and 110 inches per mile. Average 
PCR is 89, 90 and 89 (out of a 100). 
Average rut depth is 0.09, 0.14 and 
0.13 inch. 

- For concrete pavement surfaces, 

average 1 is 3.6, 4.9 and 8.9 mils 
for interstates, NHS, and non-NHS 
respectively. Average IRI is 98, 103 
and 144 inches per mile. Average 
PCR is 94, 93 and 86 (out of a 100).  

 
The following equation is developed to 
calculate the pavement structural strength 
index (SSI);  

1100 1jkSSI e
  

 
where δ1 is the pavement surface deflection 
and α, β, and γ are regression coefficients 

based upon pavement surface type (whether 
it is asphalt or concrete, j) and highway 
classification (whether it is interstate, NHS, 
or non-NHS, k). 

 
Regression analyses were also employed to 
establish a relationship between SSI and δ1 
and a deduct value, DV, (100-SSI) is 
developed; 
   
DV = 0.0034δ1

3
 - 0.2062δ1

2
 + 0.3224δ1 

 
This deduct value is recommended to be 
incorporated into the pavement surface 
distresses index.  
 
Finally, models by which the SSI could be 
estimated given functional class, age, and 
drainage condition wherever deflection 
measurements are not available were 
developed and calibrated. However, these 
models still need additional refinements and 
calibration. 

Implementation  

 
This research study developed a pavement 
structural strength index (SSI) and 
associated deduct values using the falling 
weight deflectometer (FWD) deflection 
measurements. The SSI and/or its 
associated deduct value are recommended 
to be incorporated into the pavement surface 
distresses index.  
 

Network level FWD program needs to be 
revived.  
 
Decisions for pavement preservation and 
rehabilitation treatments should continue to 
be driven by pavement structural capacity.  
 
Additional research is recommended to 
produce prediction models, trigger values 
and remaining life estimations based on 
structural capacity.  
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CHAPTER 1. INTRODUCTION 

1.1 Background and Problem Statement 

 

Pavements constitute one of the major components of highway assets. Today, most 

highway agencies use some form of pavement management systems (PMS) to manage 

their pavement assets, aiming to improve the structural and functional performance of 

pavements at a given budget level. The evaluation of pavement structural condition is an 

integral component in pavement management.  The determination of structural capacity 

first requires the monitoring or the measuring of some structural characteristic or 

condition of the pavement. It then involves the analysis of the resulting data, using either 

a theoretical or empirical basis, to estimate the load-carrying capacity (or remaining 

service life) of the pavement under expected traffic conditions. This information would 

then allow agency to decide the type, timing and cost of a treatment to perform on a 

given pavement section and the allocation of funds within the entire network to perform 

that treatment.  

 Typically, the deflections or layer material properties are used to represent the 

structural strength or condition of a pavement section. Measurement of the structural 

condition and evaluation of the structural capacity can be performed at both project and 

network levels, depending on the scope of application shown in Figure 1.1. At the project 

level (on a specific pavement section or project), this information is used to serve as the 

as-built record, to provide input to overlay design, to determine the as-built structural 

adequacy, and to estimate the remaining service life of the pavement. At the network 

level, the information can be used to determine average network structural conditions, to 

predict deterioration behaviors, evaluate future structural inadequacies, plan for future 

work program and assess future funding requirements (Haas et al., 1994). 
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Figure 1.1: PMS Functions at Network and Project Levels 

 

Due to the expense in data collection and effort in performing structural capacity 

analysis, structural condition is mostly evaluated at the project level (i.e. specific 

pavement sections or projects) and seldom at the network level (i.e. entire highway 

network). Even with the advent of non-destructive testing techniques to measure the 

pavement structural condition (such as the falling weight deflectometer test), structural 

data collection at the network level is still a costly affair in terms of both time and 

money. Today, most highway agencies can only collect structural condition information 

(in the form of deflections or back-calculated material properties from falling weight 

deflectometer tests) at a frequency ranging between three and five years for the entire 

highway network (Uddin, 2006). This results in a lack of a comprehensive network level 

database on pavement structural condition, causing to state highway agencies to consider 

only functional performance (i.e. surface distress and roughness) in their pavement 

management decisions.  

  Noting the difficulties state highway agencies face in collecting network level 

pavement structural condition information and the current lack of consideration of 

structural performance, the present research explores the possibility to develop an 

PMS 

Database 

 Management by Highway Section 
 Detailed Inventory and Maintenance and Preservation Data 

 Detailed Condition of Each Section or Project 
 Diagnostic Evaluation of Structural Capacity or Failure 

 Trade-Offs between Alternatives for Specific Section/ Project 
 Design/Construction/Material Evaluation and Improvement 

 Budget Projections and Administrative Decisions 
 Programming of Funds 

 Trade-Offs between New Highways and Maintenance and Preservation   
Activities 
 Overall Network Conditions (Distress, PCR, IRI, Structural) 

 Network Inventory 

Network Level Pavement Management 

Project Level Pavement Management 
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alternate structural strength index that can be used in network-level pavement 

management. In Indiana, the index must complement agency’s existing practice of 

collecting pavement structural condition data using falling weight deflectometers every 

five years. Under a multi-criteria multi-objective pavement or asset management 

framework, the developed structural strength index should be scalable and bounded. 

Typically, performance measures have to be scaled, weighted and amalgamated before 

performing the actual ranking, prioritization and programming (Sinha and Labi, 2007). 

By ensuring that the structural strength index is bounded before-hand, the need for 

further assumptions on bounds and additional mathematical treatments are eliminated.  

 To allow a more frequent update on structural condition information, statistical 

models have to be developed to estimate the structural strength index in the absence of 

material property or deflection data. Ideally, the statistical models should provide an 

annual update of the structural condition database. The complete structural condition 

database can then provide the basis for developing pavement structural performance 

models and allowing other network-level pavement management applications. 

It is incomplete to develop a structural strength index without developing a usable 

set of thresholds or triggers for pavement maintenance, rehabilitation and reconstruction 

(M,R&R) activities. At the project level, these triggers are crucial in determining the type 

of treatment to perform, and when and where to perform a particular treatment. At the 

network level, triggers and decision matrices are required to plan, budget and program 

pavement activities for the entire highway network.  

  The development of such a structural strength index is expected to aid in the 

incorporation of pavement structural performance in existing pavement management 

systems and maintenance management systems, and enhance the integration of these 

systems into an asset management framework. The realization of this study shall ensure a 

more efficient and effective budget allocation, planning and programming to address 

structural deficiencies of pavements in a highway network. 
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1.2 Objectives of Study 

 

The objectives of this research study can be described as follows: 

1. To develop a structural strength index that can be readily applied in network level 

pavement management. 

2. To develop a set of statistical models that allow the prediction of the structural 

strength index in the absence of detailed structural condition information. 

 

1.3 Scope of Study 

 

The scope of study is as follows: 

 Coverage: The present study is focused on the state highway system in Indiana. 

The entire highway network of interstates, national highway system (NHS) 

highways, non-interstate non-NHS highways (more than 22,000 one-mile 

segments) is used as the primary statistical unit for the analyses. 

 Analysis period: The study period ranges from 2004 to 2007 as this is the 

common overlap of availability of existing data from various sources. In some 

cases, data was obtained for the period before 2004 to facilitate the statistical 

analyses and to evaluate the structural improvement of maintenance, 

rehabilitation and reconstruction activities. 

 Pavement type: The type of pavements considered in this study is dependent on 

the surface layer material and load transfer mechanism exhibited by the pavement 

structure. In this study, the two types of pavement considered are 

flexible/composite pavements and rigid pavements. 

 Geo-climatic region: The present study utilized data from pavement sections from 

various locations in the state highway network. Statewide subgrade information 

can be inferred from the Indiana Soil Survey (Soil Survey Division Staff, 1993) 

while statewide weather information is obtained from the Indiana Climate Office 

at Purdue University (Indiana State Climate Office, 2008). 
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 Pavement activity type: On the basis of current practices, the following pavement 

activities are considered – maintenance, rehabilitation and reconstruction. This 

classification shall provide the basis of subsequent trigger and decision matrix 

development. 

 

1.4 Outline of Report 

 

The present report is divided into eight chapters. Chapter 1 briefly discusses the existing 

issues related to pavement structural condition data collection and evaluation at the 

network level and the impetus of developing a structural strength index that can 

complement existing network level data collection methods and is applicable in network 

level pavement management. A literature review of the existing methods to evaluate 

structural condition and its application in pavement management is presented in Chapter 

2. Also, past research on trigger and decision matrix development for the different 

structural condition indices is described. The study framework and the methodology in 

the developing a network-level structural strength index is discussed in Chapter 3. 

Chapter 4 describes the data collection effort to facilitate the development of the 

structural strength index. The dataset included information on pavement structural 

condition, traffic loading, weather and other related data. The development of the 

structural strength index that can be used to quantify structural performance within a 

highway network is discussed in Chapter 5. Statistical models that can be used to 

estimate structural strength index in the absence of deflection data are presented in 

Chapter 6. Chapter 7 concludes with the main findings of the research study and 

provides recommendations for future research.  



6 
 

CHAPTER 2. LITERATURE REVIEW 

In this chapter, a review of existing literature related to the development of structural 

condition indicators and their use in pavement management is discussed. First, the basic 

concepts of network level structural condition monitoring are introduced. Then, various 

methods that can be used to evaluate the structural integrity of pavements are discussed. 

Past research on the development of structural condition indices for both project and 

network levels are described. Last, the pitfalls of the currently used structural condition 

indices are discussed.  

 

2.1 Structural Condition Monitoring on a Highway Network 

 

Structural evaluation is routinely conducted to assess pavement structural integrity and 

load carrying capacity. Structural condition monitoring on a regular or periodic basis is 

typically accomplished within the scope of a network monitoring plan. Figure 2.1 shows 

a framework used by state highway agencies to collect structural condition data within a 

pavement management system (Hudson and Finn, 1974).  There are several issues related 

to the monitoring plan, as discussed below: 

Functional vs. Structural Evaluations: Both functional and structural 

performances are important in network level pavement management. Serviceability 

observations below an acceptable level have been practiced commonly in most highway 

agencies to trigger structural improvements at both network and project levels (Theberge, 

1987; Lamptey et al., 2005). For example, a rough pavement may have adequate strength 

and requires only a functional overlay, but it may also be a result of structural inadequacy 

and requires a structural overlay. To complete this interrelationship, structural indicators 
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resulted from the evaluation must also be capable to predict or estimate remaining life of 

the pavement for expected load repetitions. 

 

 

Figure 2.1: Framework for Structural Condition Monitoring within a Pavement 
Management System (Source: Hudson and Finn, 1974) 
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Criteria for Detailed Evaluation: In network evaluation program, some threshold 

criteria are needed. This can take the form of limiting deflection levels for a specified 

load, expected number of load repetitions, limiting index for structural conditions or 

others (Asphalt Institute, 2000; AASHTO, 2008). Evaluation can take the form of 

periodic inspection (annually, biannually, etc.) or routine inspection by maintenance and 

field engineers to report any unusual changes in structural behaviors of pavements. For 

example, the Indiana Department of Transportation performs periodic inspection of 

structural conditions once every five years (Noureldin et al., 2005). 

 Destructive vs. Nondestructive Evaluations: Testing methods can be classified as 

destructive and nondestructive. For pavements, destructive evaluation usually involves a 

test pit for sampling and testing the component materials in the laboratory or in the field 

while non-destructive evaluation requires no disturbance of pavement materials. These 

shall be discussed in later sections of this chapter. 

 Project vs. Network Level Evaluation: Ideally, a highway agency should collect 

detailed structural information of pavement on every analysis section (typically a 

homogenous pavement section of a standard length). However, the realities are that 

highway agencies are operating on a limited budget and are managing an extensive 

highway network. Due to the expense of data collection and analysis, and limited funds 

available for data collection, highway agencies typically perform a network level 

structural inspection via nondestructive testing for the entire network at a frequency of 

three to five years (Noureldin et al., 2005; Uddin, 2006). While this information allows 

an indication of structural performance, the information collected at the network level 

typically do not yield enough specific information required for project level pavement 

management (e.g. material properties such as asphalt dynamic modulus, drainage 

characteristics of base materials for the design of a structural overlay or reconstructed 

pavement structure, and local failures of pavement sections). This warrants the need to 

apply a set of criteria to select a set of pavement sections for detailed evaluation at the 

project level. Here the information obtained (such as detailed structural properties of 

pavement layers and materials) can be used for project level pavement management 

applications (such as treatment selection). 
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2.2 Methods to Evaluate Pavement Structural Integrity 

 

Structural evaluation can be assessed using (a) direct visual inspection and distress 

measurement of physical structure, (b) measurement of layer thickness and material 

strength by physical destructive field coring and laboratory testing, and (c) 

nondestructive testing, which is desirable in most cases. Structural condition indices, 

based on objective measurements, indicate structural integrity and load-carrying 

capacity. 

 

2.2.1 Surface Distress Identification and Evaluation 

 

Pavement surface distress can be a manifestation of the deterioration of pavement 

structural condition. Distress information also provides clues to the predominant failure 

mechanisms of the pavement structure, leading to the selection of appropriate corrective 

maintenance strategies. The identification of various distress types to be included for 

measurement in a routine pavement condition survey is made on the basis of the 

experience of the agency personnel. Specific variables recorded and the units in which 

they are measured vary from agency to agency.  

 

2.2.1.1 Pavement Surface Distress Identification 

 

Manuals and standards have been developed for detailed distress identification and 

measurements. For example, the Distress Identification Manual for the Long-Term 

Pavement Performance Studies (LTPP) (Miller and Bellinger, 2003) provides guidelines 

for identification of distress type and severity. For asphalt pavements, including asphalt 

overlays on asphalt or concrete pavements, distresses can be classified into cracking; 

patching and potholes; surface deformation; surface defects; and miscellaneous distresses 

as shown in Table 2.1. For jointed and reinforced Portland cement concrete pavements 

(JCP), including concrete overlays on PCC pavements, distresses can be classified into 
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cracking; joint deficiencies; surface defects; and miscellaneous distresses, as shown in 

Table 2.2.  

Table 2.1: Asphalt Concrete Pavement Surface Distresses Considered in LTPP 

Distress Categories/Type 
Cracking Surface Deformation 
 Fatigue Cracking  Rutting 
 Block Cracking  Shoving 
 Edge Cracking Surface Defects 
 Wheel Path Longitudinal Cracking  Bleeding 
 Non-Wheel Path Longitudinal Cracking  Polished Aggregate 
 Reflection Cracking at Joints  Raveling 
 Transverse Cracking Miscellaneous Distress 
Patching and Potholes  Water Bleeding and Pumping 
 Patch/ Patch Deterioration  Lane-to-Shoulder Dropoff 
 Potholes   

 

Table 2.2: Jointed Concrete Pavement Surface Distresses Considered in LTPP 

Distress Categories/Type 
Cracking Surface Defects 
 Corner Break  Map Cracking 
 Durability Cracking (D cracking)  Scaling 
 Longitudinal Cracking  Polished Aggregate 
 Transverse Cracking  Popouts 
Joint Deficiencies Miscellaneous Distress 
 Transverse Joint Seal Damage  Blowups 
 Longitudinal Joint Seal Damage  Faulting of Transverse Joints and Cracks 
 Spalling of Longitudinal Joints  Lane-to-Shoulder Dropoff 
 Spalling of Transverse Joints  Lane-to-Shoulder Separation 
 Patch/ Patch Deterioration 
   Water Bleeding and Pumping 

 

The Indiana Department of Transportation also developed the Pavement Condition Data 

Collection Manual (INDOT, 1998) where surface distresses are classified for 

flexible/composite pavements and jointed concrete pavements (shown in Tables 2.3 and 

2.4). The distress data is evaluated via automated data collection procedure. Note that in 

this case the surface deformation (i.e. rutting and shoving) and pavement roughness are 

evaluated separately from pavement surface condition rating. On the other hand, Chapter 

52 of the INDOT Design Manual (INDOT, 2007) offers a somewhat different 

interpretation on distress classification, with a more in-depth view on both functional and 

structural distresses, as shown in Table 2.5.  
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Table 2.3: Composite/Flexible Pavement Distresses Considered in INDOT Condition 
Data Collection Manual 

Distress Category Distress Types 
Cracking Alligator Cracks 

Transverse Cracks 
Block Cracks 
Longitudinal Cracks 
Edge Cracks 
Widening Cracks 

Patching and Potholes Patching 
Potholes 

Surface Defects Raveling 
Surface Deformation Rutting 
Miscellaneous Pumping 

Maintenance actions 

 

Table 2.4: Concrete Pavement Distresses Considered in INDOT Condition Data 
Collection Manual 

Distress Category Distress Types 
Cracking Corner Breaks 
 D Cracks 
 Transverse Cracks 
 Longitudinal Cracks 
Joint Deficiencies Transverse Joint Spalling 
 Longitudinal Joint Spalling 
 Transverse Joint Seal Damage 
Miscellaneous Pumping 
 Faulting 

 

Table 2.5: Distress Types Considered in INDOT Design Manual 

Asphalt Pavement Concrete Pavement 
Block Cracking Alkali-Silica Reactivity 
Flushing Blow-ups 
Frost Heave Corner Breaks 
Longitudinal Cracking D-cracking 
Polishing Faulting 
Raveling Joint/Joint Seal Failure 
Reflective Cracking Longitudinal Cracking 
Rutting Polishing 
Shoulder Drop-off Poor rideability 
Stripping Pop-outs 
Thermal Cracking Punch-outs 
Alligator/Fatigue Cracking Transverse Cracking 
Weathering Scaling 
 Spalling 
 Structural Failure 
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A review of existing literature revealed a variety of guidelines on pavement 

distress identification among state highway agencies (Hudson and Uddin, 1987; Shahin 

and Walther, 1990; SHRP, 1993; INDOT, 1998; ASTM, 1999; Miller and Bellinger, 

2003; INDOT, 2007). Broadly, distress types can be classified into the following three 

groups:  

Cracking: Examples of load-induced cracking in asphalt (or flexible) pavements 

are wheel-path longitudinal cracks and alligator cracks (or fatigue cracks). Transverse 

cracks (or thermal cracks) are typically caused by accumulated temperature variation that 

the asphalt layer has experienced.  Block cracking is environmentally associated and is 

caused by shrinkage of hot-mix asphalt and daily thermal cycles. Reflection cracking 

appears as regularly spaced transverse cracks on the asphalt layer paved over an old 

jointed concrete pavement or a strong base stabilized with cement or lime. Cracking on 

concrete pavements can appear as linear (mostly load-associated), durability or “D” 

cracking (due to freeze thaw expansion of certain aggregate types), map cracking (due to 

alkali-silica reaction or over-finishing of concrete surface), and shrinkage cracks. 

Deformation: Examples of deformation distresses in asphalt pavements are 

rutting (associated with poor asphalt mixes and interaction with repeated traffic loads and 

high ambient temperatures), shoving and bumps (related to poor asphalt mix design or 

construction), and depression (caused by the settlement in the subgrade). Faulting of 

transverse joints and depression comprise a common distress in concrete pavements and 

are caused by a combination of factors such as repeated traffic loads, insufficient dowel 

transfer, water-filtration, loss of materials below joints, and temperature gradient of the 

concrete slab.  

Surface Defects: Examples of surface defects in asphalt pavements are flushing or 

bleeding (indicating excessive asphalt content), raveling and weathering (interaction of 

mix problems and environment), potholes (appearing more in spring – thawing 

interaction with repeated traffic loads), and patches (indicating the repair of localized 

areas of distresses or utility cuts and trenches in the pavement). Examples of surface 

defects in concrete pavements are joint deterioration, punch-out, corner break, spalling, 
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aggregate pop-outs, and pumping (subsurface water damage and interaction with traffic 

load repetitions).  

 

2.2.1.2 Pavement Surface Distress Data Collection 

 

Distress data can be collected or monitored by manual visual inspections or with the help 

of photographic and video recording in the field followed by data interpretation in the 

office. 

Visual Inspection: Visual inspection and observation is the most common method 

of condition monitoring and is generally through a survey conducted from the windshield 

of a slow-moving van. Such surveys are labor intensive, expensive and subject to 

inspector’s judgments. However, in some emergency cases, the manual inspection is 

necessary, such as post-catastrophe (hurricane, flood or earthquake) evaluation of the 

condition of highway pavements. The cost of data collection can be reduced through 

sampling for a small network size.  

Analog Imaging: The predominant use of analog imaging is in photographing 

(with 35-mm film) and videotaping. Images obtained can be of high quality, but they are 

not easily converted to digital format for computer storage and manipulation. Analog 

imaging has been less frequently used in recent years owing to the maturing of digital 

technology. The photographic method, popularly known as photo logging, was used by a 

few agencies for many years. It probably became most well known for its adoption as the 

method of choice for the LTPP program. The photo logging methodology essentially 

consists of photographing the pavement surface, usually with 35-mm film, and reduction 

of distress data through review of the film at a workstation. Photo logging vans typically 

use a downward facing camera and possibly one or more facing forward or in another 

direction, depending on user needs. Much of the work is done at night using lighted 

cameras to overcome problems with shadows cast by survey vehicles, traffic, or roadside 

features that can mask pavement features critical to proper distress evaluation. In most 

cases, photo logging is continuous over what INDOT defines as a roadway section or 

sample of a roadway section.  
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Digital Imaging: The use of digital cameras is rapidly becoming the preferred 

method of pavement imaging to capture pavement surface distress data (McGhee, 2004). 

Survey vehicle configuration is similar to that for videotaping in that one or two cameras 

capture the pavement image while any number may be used for other data required by 

the agency. Again, special lighting may be used to overcome shadowing problems. A 

major force behind the move toward digital imaging of pavements is the opportunity to 

reduce distress data from those images through automated methods. There are two types 

of cameras currently used to digitally image a pavement surface. These are known 

generally as area scan and line scan methods, although some vendors are using other 

terminologies (Wang and Li, 1999). 

 

2.2.2 Destructive Evaluation of Pavement Structural Condition 

 

It occasionally becomes necessary to undertake destructive testing by removing portions 

of the pavement structure at the project level to ascertain a particular problem and to 

determine how failure occurs. In general, destructive evaluation is performed when a 

particular pavement section has already displayed evidence of distress or on special road 

section (e.g. experimental test section or as part of the contractual requirements). 

Destructive testing also gives an opportunity to collect material samples from 

different pavement layers and subgrade. For example, destructive testing has been used at 

the AASHO Road Test (AASHO, 1962) and the SHRP and LTPP studies (SHRP, 1989a, 

1989b). Destructive testing techniques include coring in bound layers, boring in soft 

layers, and dynamic cone penetrometer (DCP) testing in subgrade soils (Uddin, 2002). 

The process also involves removing samples from various layers, examining the samples 

in the field, and then testing them in the laboratory. Only a limited number of samples 

are tested in the laboratory (for example, resilient modulus test of subgrade soils) because 

of the time and cost involved. Then the results are inferred to the remaining units or used 

as independent tests to verify and validate the results of deflection testing. 

Table 2.6 shows some of the typical laboratory tests that can be conducted on 

pavement samples and cores to determine the strength of the materials. These tests are 
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essential in determining the structural capacity of the pavement to carry expected traffic 

loading and estimating the remaining service life of the pavement. Readers can refer to 

standard texts on pavement materials (Huang, 2004; Papagiannakis and Masad, 2008) 

and standards and specifications listed in the references for a more detailed discussion of 

testing procedures for structural strength of pavement materials. The advantages of 

destructive testing to determine direct strength properties of the materials and thickness 

layers must be weighed against the disadvantages of removing portions of the pavement 

and replacing it with patches, and possibly degrading the property of that section where 

the sample is extracted. 

 

Table 2.6: Standard Laboratory Tests for Strength of Pavement Materials 

Pavement 
Materials 

Material Property AASHTO 
Specification* 

ASTM 
Standard* 

Subgrade and 
Aggregates 

Resilient Modulus AASHTO T307 - 
Modulus of Subgrade Reaction AASHTO T221 

AASHTO T222 
ASTM D1195 
ASTM D1196 

California Bearing Ratio AASHTO T193 ASTM D1883 
ASTM D4429 

R-Value AASHTO T190 ASTM D2844 
Asphalt Mixture Compressive Strength AASHTO T167 ASTM D1075 

Dynamic Modulus AASHTO TP62 ASTM D3497 
Diametrical Tensile Strength AASHTO T283 - 
Indirect Tensile Strength AASHTO T322 ASTM D4867 

Concrete Mixture Compressive Strength AASHTO T22 ASTM C39 
Flexural Tensile Strength AASHTO T97 

AASHTO T177 
AASHTO T198 

ASTM C78 
ASTM C293 
ASTM C496 

* Refer to list of references for details of testing procedures. 

 

 

 

2.2.3 Nondestructive Evaluation of Pavement Structural Condition 

 

Nondestructive testing (NDT) provides response measurements, which are used to infer 

the information about the physical structure of the pavement from behavioral evaluations. 

Typically, these techniques are selected over destructive methods due to lower cost, less 
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interruption to traffic, less damage to pavement and the ability to make a sufficient 

number of measurements to quantify variability. While non-destructive testing has these 

advantages over destructive testing methods, it should always be remembered that the 

nondestructive testing techniques evaluate only the response of the pavement and not the 

physical properties directly.  

 

2.2.3.1 Deflection Measurement 

 

Deflection measurements have long been used to evaluate the structural capacity of in-

situ pavements. They can be used to backcalculate the elastic moduli of various 

pavement layers, evaluate load transfer efficiency across joints and cracks in concrete 

pavements, and determine the location and extent of voids underneath concrete slabs. 

Based on the type of loading applied to the pavement surface, NDT deflection testing can 

be divided into three categories: static or slow-moving loads, steady vibration and 

impulse loads.  

 Static or Slow Moving Load: The Benkelman beam, California traveling 

deflectometer and the LaCroix deflectometer are some of the devices in this category. 

The Benkelman beam, which was developed by during the WASHO Road Test (HRB, 

1955), and has been used extensively by highway agencies for pavement research and 

overlay design around the world. It consists of a simple lever arm attached to a light-

weight aluminum or wood frame, as shown in Figure 2.2.  

Measurements are made by placing the tip of the beam probe between the dual 

tires of a loaded truck (usually 18 kip or 80 kN axle load) at the point where the 

deflection is to be determined. As the loaded vehicle moves away from the test point, 

rebound or upward movement of the pavement is measured by the dial gauge. This 

equipment is versatile and is simple to operate. However, it is slow and labor-intensive. 

In some cases, particularly on stiff pavements, the support legs itself may be within the 

influence of the loaded tire’s deflection basin, causing inaccuracies in deflection 

measurement (Huang, 2004). 
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Figure 2.2: Illustration of a Benkelman Beam 

 

The traveling deflectometer, developed by California Division of Highways, is 

used to measure deflections while a truck, generally with an 18 kip (80 kN) rear axle, is 

moving. The LaCroix deflectometer was developed in France and is used extensively in 

Europe. Like the California traveling deflectometer, the system measures deflection 

under both rear wheels. 

A major problem with Benkelman beam, California traveling deflectometer and 

the LaCroix deflectometer is the difficulty to obtain an immovable measurement for 

making deflection measurements. This makes their validity on stiffer pavements 

questionable since the pivot itself can be within the deflection basin of the load. Also, the 

devices suffer from the disadvantage that static or slow-moving loads do not represent 

the actual transient or impulse loads imposed on the pavement by traffic. Therefore they 

cannot be applied mechanistically to pavement design and evaluation with extensive 

empirical correlations. 

Steady-State Vibration: Steady-state vibratory devices, including Dynaflect, and 

Road Rater, produce a sinusoidal force imposed on a static load as illustrated by Figure 
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2.3. The deflections are generated by vibratory devices that impose a sinusoidal dynamic 

force over a static force. The magnitude of the peak-to-peak dynamic force is less than 

twice that of the static force and the device always applies a compressive force of 

varying magnitude on the pavement. Deflections are measured by acceleration or 

velocity sensors placed under the center of the load and at specified distance from the 

center usually at 1-ft (0.3 m) intervals. 

One advantage of this type of equipment over the static equipment is that a 

reference point is not required (since we are tracking velocity or the change in 

deflection). An inertial reference is used so that the change in deflection can be compared 

to the magnitude of the force. The disadvantages of the method are that actual loads 

applied to the pavements are not in the form of steady-state vibration and that the use of 

relatively large static load could have some damaging effect on stress-sensitive pavement 

materials. 

 

 

Figure 2.3: Typical Dynamic Force Output of Steady State Vibratory Devices 

 

Impulse Load: Devices in this category deliver a transient force impulse to the 

pavement surface and include the various types of falling weight deflectometer (FWD). 

Figure 2.3 illustrates the basic principles of FWD. By varying the amount of weight and 

the height of the drop, different impulse forces can be generated. The normal operation is 

to move the trailer-mounted device to the test location, lower the loading plate and 
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transducers hydraulically to the pavement surface, complete the test sequence by 

dropping the weight at each height selected, lift the loading plate and sensors and tow the 

device to the next site. The major advantages of the impulse loading device are the ability 

to model a moving wheel accurately in both magnitude and duration and the use of a 

relatively small static load compared with impulse loading. 

One of the most widely used FWD among highway agencies in the United States 

is the Dynatest system. The impulse force is created by dropping a weight of 110, 220, 

440 or 660 lb (50, 100, 200 or 300 kg) from a height of 0.8 to 15 in. (20 to 381 mm). By 

varying the drop height and weight, a peak force ranging from 1500 to 24,000 lb (6.7 to 

107 kN) can be generated. The load is transmitted to the pavement through a loading 

plate to provide a load pulse in the form of a half-sine wave with a duration between 25 

and 30 ms. The magnitude of the load is measured by a load cell while deflections are 

measured by seven velocity transducers mounted on a bar that can be lowered 

automatically to the pavement surface with the loading plate. One of the transducers is 

located at the center of the plate while the other six are located up to 7.4 ft (2.25 m) from 

the center (see Figure 2.4). The Dynatest FWD is also equipped with a microprocessor-

based control console that can be fitted on the passenger side of the front seat of a 

standard automobile. 

The obtained deflection data can be used to establish homogeneous pavement 

design sections. The peak deflection bowl and thickness information can be analyzed to 

backcalculate elastic moduli of different pavement layers and subgrade using the static 

layered linear elastic theory for flexible pavements and plate theories for rigid 

pavements. This can be considered as project-level analysis. Deflection data are not used 

for structural evaluation at the network level (Uddin and Torres-Verdin, 1998). In some 

cases more simplified indicators from deflection data are used for the network level, such 

as a structurally adequate (not needing structural maintenance or rehabilitation) or 

inadequate (needing detailed deflection testing and analysis) pavement section based on a 

limiting maximum deflection criterion. These indicators for project and network level 

analyses shall be discussed in the next section. 
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Figure 2.4: Basic Principle of the Falling Weight Deflectometers (FWD) 

 

 

 

2.2.3.2 Other Nondestructive Testing Methods 

 

Structural integrity of pavements can also be checked using other nondestructive 

evaluation (NDE) methods which do not subject the pavement to actual loading (such as 

heavy load deflection testing) or destructive testing. These NDE methods include seismic 

evaluation (such as the wave propagation) (Nair, 1971), vibration methods (such as the 
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modal analysis), acoustic methods, electromagnetic method, and electrical resistivity 

methods (Hudson et al., 1987). Other noncontact and nondestructive testing technologies 

for the structural evaluation include the ground penetrating radar (GPR), infrared 

thermography, high-speed video and related optical methods, Moire technique, and 

ultrasonic sensors. Non-contact GPR data is used for determining surface layer thickness. 

Van-mounted GPR equipment has been used successfully to evaluate pavement surface 

layer thickness nondestructively at the network level (Corley-Lay and Morrison, 2001; 

Noureldin et al., 2005; McGovern et al., 2006). 

 

2.3 Indicators for Pavement Structural Condition and Capacity 

 

There exist many indicators that can be used to represent the pavement structural strength 

(or condition). In this section, some of the commonly-used indicators are discussed. 

 

2.3.1 Pavement Distress Condition and Indices 

 

The most common form is the pavement distress condition index. Almost all distresses 

can be identified at three severity levels (low, medium, and high) and the extent of each 

distress can be classified at three extent levels (low, medium, and high). A distress index, 

analysis to calculate a summary statistics, such as PCI, can be computed based on 

distress severity and extent measurements. 

Distress surveys are carried out to assess the degree of physical pavement 

deterioration, which is a function of: 

 Type of distress 

 Severity of distress 

 Extent of distress (amount or density of distress) 

Each of the above three characteristics of pavement distress has a significant influence on 

the determination of the overall pavement deterioration. Because there are many types of 

distresses and a variety of ways to define severity levels and extent measurement, it is 

important to use or adapt standard procedures for distress identification and 
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measurements of extent at each severity level. For practical and meaningful performance 

evaluation of a network, most distress data is combined into an overall pavement 

condition index. Washington state PMS first used the concept of deduct values for each 

measured distress from a perfect score of 100 for an excellent pavement with no distress, 

and a combined index of Pavement Condition Rating (PCR) was established (LeClerc 

and Nelson, 1982). The condition index data from the PMS database can be used to 

develop performance models for different environmental regions and different functional 

classes, which are reliable for a specific region and reflect the effect of pavement 

construction and maintenance practices. This concept is also adapted by other state 

highway agencies such as the Indiana Department of Transportation (INDOT, 1998) and 

Ohio Department of Transportation (Kanok et al., 2006). 

The PAVER distress survey procedure combines the effect of various distress 

types and measurements of distress severity and extent into a single index, PCI to 

evaluate overall pavement condition of the surveyed section. PCI varies between 0 and 

100. A value of 100 implies the pavement is in excellent condition and zero means a 

failed pavement (Shahin and Walther, 1990). Network-level PAVER analysis software 

has been implemented successfully, resulting in an ASTM standard (ASTM, 1999). The 

visual distress survey methodology and PCI calculation have also been adapted by many 

agencies and service providers for distress data measured by wind-shield surveys and 

interpreted in the office using video records.  

 Similar approaches are adopted in the mechanistic empirical pavement design 

guide (MEPDG) which was approved by AASHTO in late 2007 as the provisional 

pavement design procedure in the United States (AASHTO, 2008). In the design guide, 

distresses are identified using the procedures used in the Long-Term Pavement 

Performance (LTPP) program. According to the MEPDG, individual distresses are to be 

evaluated along with other parameters such as material properties and deflections to 

determine the structural adequacy of the pavement.  
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2.3.2 Pavement Material Properties, Critical Stresses and Critical Strains 

 

Pavement material property is a direct indicator for pavement structural condition. 

Material properties can be determined from laboratory or field experiments mentioned in 

Table 2.6. These properties are important in the evaluation of critical pavement stresses 

and strains which in turn form the basis for determining the structural capacity (or the 

remaining life) of a pavement section via a mechanistic approach. So far, this has been 

the primary approach adopted in the development of the mechanistic empirical pavement 

design guide (MEPDG) (AASHTO, 2008) and has been widely researched (Luo and 

Prozzi, 2007; AASHTO, 2008; Ashaban et al., 2008; Muthadi and Kim, 2008). The 

MEPDG has listed a number of material properties (shown in Table 2.7) that are crucial 

to evaluate pavement (in terms of stresses and strains in the pavement structure) against 

following possible failure criteria for both flexible and rigid pavements: 

 Flexible pavements 

o Vertical compressive stress limit at the top of the subgrade 

o Vertical surface deflection limit at the pavement surface 

o Critical tensile strain at the bottom of the asphalt or concrete layer 

 Concrete pavements 

o Critical bending stress limits (both tensile and compressive) and 

deflection limits due to curling (i.e. temperature differentials) 

o Critical bending limits and deflection limits due to loading (center, edge 

and corner) 

Based on the given information and the failure criteria, the remaining fatigue life 

of the pavement can be determined from Miner’s hypothesis in the form of cumulative 

damage index: 

f

n
DI

N
          (2.1) 

where DI is the cumulative damage index (which is a function of material properties, 

stresses   and  strains  experienced   by   the   pavement),  n  is  the  number  of  axle  load  
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applications to date, and Nf is the allowable number of load applications to failure. From 

Equation (2.1), a DI of 0 indicates that the pavement has not experienced any form of 

traffic loading (such as a newly constructed pavement) while a DI of 1 indicates a 

pavement structural failure. There are different equations to define DI for both flexible 

and rigid pavements, and using Equation (2.1), the remaining life of a pavement section 

(= Nf – n) can be determined as an indicator of remaining structural capacity (AASHTO, 

2008). 

 

Table 2.7: Major Material Properties Considered in the MEPDG 

Material 
Category 

Material Inputs 
Inputs for Critical Response 

(i.e. stresses and strains) 
Computations 

Additional Inputs for 
Distress and Transfer 

Functions 

Additional Input for 
Climatic Effects 

Hot Mix 
Asphalt 
(HMA) 

 Time-temperature 
dependent dynamic 
modulus (E*) of HMA 
mixture 

 Poisson ratio 

 Tensile strength 
 Creep compliance  
 Coefficient of thermal 

expansion 
 

 Surface shortwave 
absorptivity 

 Thermal conductivity 
 Heat capacity 
 Asphalt binder viscosity 

(stiffness) 
Portland 
Cement 
Concrete 

 Modulus of elasticity (E) 
 Poisson ratio  
 Unit weight 
 Coefficient of thermal 

expansion 

 Modulus of rupture 
 Split tensile strength 
 Compressive strength 
 Cement content 
 Water-cement ratio 
 Shrinkage 

 Surface shortwave 
absorptivity 

 Thermal conductivity 
 Heat capacity 

Unbound 
base, 
subbase and 
subgrade 
materials 

 Seasonally adjusted 
resilient modulus (Mr) 

 Poisson ratio  
 Unit weight 
 Coefficient of lateral 

pressure 

 Gradation parameters 
 

 

 Plasticity index 
 Gradation parameters 
 Effective grain sizes 
 Specific gravity 
 Hydraulic conductivity 
 Optimum moisture 

content 

 

 

2.3.3 AASHTO Structural Indicators for Flexible and Rigid Pavements 

 

For the past few decades, highway agencies have been using the structural indicators 

developed in the AASHO Road Test to determine the structural integrity of pavements. 

This includes the concepts of structural number for flexible pavements, effective slab 
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thickness for rigid pavements (AASHTO, 1993). This section shall briefly discuss the 

use of these indicators to represent structural condition. 

 

2.3.3.1 Effective Structural Number in Flexible Pavements 

 

The effective structural number (SN) is an index value that combines layer thicknesses, 

structural layer coefficients, and drainage coefficients which is computed from the 

following equation: 

1 1 2 2 2 3 3 3SN a D a D m a D m         (2.2) 

where D1, D2, D3 represents the thickness of the surface, base and subbase layers 

respectively; a1, a2, a3 represents the layer coefficients of the surface, base and subbase 

layers respectively; and m2, m3 represents the drainage coefficients of the base and 

subbase layers respectively.  

When evaluating the structural condition of any existing pavement, the term 

“effective structural number” or SNeff is used instead. The effective structural number of 

an existing pavement (SNeff) may be determined from (a) results of non-destructive tests 

(NDT) (using a deflection-based procedure), (b) results of condition survey, or (c) 

remaining life analysis.  

NDT Deflections: The determination of SNeff from results of NDT is based on the 

assumption that the structural capacity of a pavement is a function of its total thickness 

and overall stiffness (i.e. pavement layer moduli). Given the deflections obtained from a 

falling weight deflectometer, the pavement layer moduli can be estimated by back-

calculation using multilayer elastic theory. This area has been widely-researched upon in 

the past two decades (Uzan, 1994; Fwa and Chandrasegaram, 2001; Noureldin et al., 

2005). The relationship between SNeff, thickness and estimated stiffness from the back-

calculation algorithms can then be described as follows (AASHTO, 1993): 

30.0045
eff p

SN D E          (2.3) 

where D is the total pavement thickness in inch and Ep is the pavement stiffness in psi. 

 Condition Survey: The method of determination of SNeff from condition survey 

involves making an engineering judgment in assigning layer coefficients and drainage 
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coefficients to the various layers of the existing pavement, and calculating the SNeff using 

the structural number equation shown in Equation (2.2). AASHTO (1993) provided a 

table (Table 2.8) with suggested layer coefficients for various pavement materials 

depending on the level of deterioration observed during visual inspections.  

 

Table 2.8: Suggested Layer Coefficients for Existing AC Pavement Layer Materials 

Material  Surface Condition Coefficient 
AC surface Little or no alligator cracking and/or only low-severity 

transverse cracking 
0.35 – 0.40 

 
<10% low-severity alligator cracking and/or <5% medium- and high-
severity transverse cracking 

0.25 – 0.35 

>10% low-severity alligator cracking and/or  <10% medium-severity 
alligator cracking and/or >5 – 10% medium- and high-severity 
transverse cracking 

0.20 – 0.30 

>10% medium-severity alligator cracking and/or  <10% high-severity 
alligator cracking and/or >10% medium- and high-severity transverse 
cracking 

0.14 – 0.20 

>10% high-severity alligator cracking and/or >10% high-severity 
transverse cracking 

0.08 – 0.15 

Stabilized base Little or no alligator cracking and/or only low-severity transverse 
cracking 

0.20 – 0.35 
 

<10% low-severity alligator cracking and/or  <5% medium- and high-
severity transverse cracking 

0.15 – 0.25 

>10% low-severity alligator cracking and/or  <10% medium-severity 
alligator cracking and/or >5-10% medium- and high-severity 
transverse cracking 

0.15 – 0.20 

>10% medium-severity alligator cracking and/or  < 10% high-severity 
alligator cracking and/or >10% medium- and high-severity transverse 
cracking 

0.10 – 0.20 

>10% high-severity alligator cracking and/or  >10% high-severity 
transverse cracking 

0.08 – 0.15 

Granular base 
or subbase 

No evidence of pumping, degradation, or contamination by fines 0.10 – 0.14 
Some evidence of pumping, degradation, or contamination by fines 0.00 – 0.10 

Source: AASHTO, 1993 

 Remaining Life Analysis: The determination of SNeff from remaining life analysis 

is based on the fatigue damage concept that the structural capacity of a pavement 

diminishes gradually as the pavement is subjected to increasing number of traffic loads. 

The remaining life of a pavement, as a percentage of its design life can be represented by 

the following equation: 

1.5

100 1 p

L

N
R

N
         (2.4) 
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To calculate RL, the total amount of traffic the pavement has carried to date (Np) 

and the total amount of traffic the pavement could be expected to carry to a terminal 

serviceability index (PSI) of 1.5 (N1.5) need to be determined. N1.5 can be estimated using 

the AASHTO pavement design nomograph shown in Figure 2.5 (AASHTO, 1996) and 

using a terminal PSI of 1.5 and a reliability of 50%. Given RL, the effective structural 

number SNeff can then be determined: 

0eff
SN CF SN          (2.5) 

where CF is the condition factor, which is a function of RL (shown in Figure 2.6) and SN0 

is the structural number of the new pavement. 

 

 

Figure 2.5: Design Chart for Flexible Pavements using Mean Values for each Input 
(Source: AASHTO, 1993) 
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Figure 2.6: Relationship between Condition Factor and Remaining Life (Source: 

AASHTO, 1993) 

 

2.3.3.2 Effective Slab Thickness for Rigid Pavements 

 

For rigid pavements, the concept of effective thickness of the slab is used. This concept 

is somewhat analogous to the structural number used for flexible pavements and is 

illustrated in the AASHTO design nomograph (Figure 2.7) where the slab thickness D 

can be determined given the effective modulus of subgrade reaction k, concrete elastic 

modulus Ec, concrete modulus of rupture Sc, joint load transfer, drainage of base and 

traffic loading.  

The effective slab thickness of an existing rigid pavement (Deff) can be 

determined from (a) results of condition survey, or (b) remaining life analysis.  

Condition Survey: Based on the condition of the existing slab, its effective 

thickness is computed as: 

eff jc dur fat
D F F F D          (2.7) 

where D is the thickness of the existing slab, Fjc is the joints and cracks adjustment 

factors, Fdur is the durability adjustment factor, and Ffat is the fatigue adjustment factor. 

When there are no deteriorated transverse joints or cracks, or if all such defects are 

effectively repaired, Fjc can be taken as 1.00. Otherwise, Fjc can be assigned according to 
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a practically linear equation joining the points of Fjc = 1.00 for zero deteriorated 

transverse joints and cracks, and Fjc = 0.56 for 200 such joints and cracks per mile. Fdur 

has the value of 1.00 if there are no signs of durability problems, 0.96 to 0.99 if there is 

some durability cracking but no spalling, and 0.88 to 0.95 if both cracking and spalling 

exist. Ffat has a value of 0.97 to 1.00 if very few transverse cracks and punchouts exist, 

0.94 to 0.96 if a significant number of transverse cracks and punch-outs exist, and 0.90 to 

0.93 if a large number of transverse cracks and punch-outs exist. 

 

 

Figure 2.7: Rigid Pavement Thickness Design Chart (Source: AASHTO, 1993) 

 

Remaining Life Analysis: Based on the percent remaining life of the existing 

pavement, its effective thickness can be estimated by the following equation: 

eff F
D C D           (2.8) 

where D is the thickness of the parent slab, and CF the condition factor determined from 

Figure 2.6. To determine the condition factor CF; the remaining life of the parent 

pavement must first be computed using Equation (2.6). N1.5 can be determined using the 

AASHTO thickness design nomograph for rigid pavements shown in Figure 2.7 
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(AASHTO, 1993). An implicit assumption of this approach is that the pavement has been 

constructed and maintained in accordance with the original design without durability or 

distress problem. 

 

2.3.4 Structural Capacity or Condition Indices  

 

It is often desirable to express pavement structural condition (or adequacy) through an 

index that can be easily understood by non-technical people or managers unlike technical 

terms like material strength, deflections or structural numbers. It is also preferable that 

the index is bounded on a 0 to 5 or 0 to 10 scale so that is of a form compatible to 

pavement serviceability index PSI (0 to 5 scale) and pavement condition index or rating 

(PCI or PCR) (0 to 10 or 0 to 100 scale). The index has to allow pavement engineers to 

answer the questions: 

 What is the maximum load the pavement can withstand without causing excess 

immediate distress, given the value of the index? 

 How many more load repetitions can the pavement withstand, given the value of 

the index? 

The first question is applicable when highway engineers are faced with the issue of 

posting load limits during spring thaw periods or with issuing permits for trucks with 

load exceeding legal weight limits. Here, the engineer is concerned about a single or a 

relatively limited number of load applications causing excessive damage to the pavement 

structure. The second question is a situation of repeated load applications where 

engineers need to use this information to estimate the remaining life of the pavement. 

Therefore the index must be simple to understand to non-engineers. Currently, there is no 

widely accepted method for developing a universally accepted condition index. This 

section shall discuss some of the structural capacity or condition indices that have been 

developed from prior research. 
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2.3.4.1 Structural Adequacy Index 

 

Most early methods to develop a structural adequacy index are based on comparing the 

representative rebound deflection (RRD) and the design rebound deflection (DRD) on 

flexible pavements (Haas et al., 1994).  Similar approach is also adopted by Scullion 

(1988). The representative rebound deflection (RRD) is evaluated from temperature-

adjusted Benkelman beam rebound deflection measurements at every 50 to 100 m for a 

given pavement section can be defined as: 

2RRD x           (2.9) 

where x  is the mean of the temperature-adjusted deflections in the pavement section and 

 is their standard deviations. The design rebound deflection (DRD) is a set of deflection 

limits developed by the Asphalt Institute (1981) and is a function of the traffic level 

anticipated over the future life of the pavement section (expressed in terms of ESALs). 

Based on these two deflections, Haas et al. (1994) developed the structural adequacy 

index (SAI) defined by Equation (2.10).  

5 ( )SAI Density          (2.10) 

The density values are evaluated from Table 2.9 using for a given set of traffic level and 

RRD. The beauty of the SAI is that the index is of a bounded scale and is compatible 

with other indicators such as the PSI or PCR when it comes to network level pavement 

management applications. However, the SAI is only applicable for flexible pavements 

and not for rigid pavements. 

Noureldin et al. (2005) proposed a structural condition indicator based on ESALs 

and the center deflection under the center sensor.  This indicator uses the subjective 

terms of “excellent”, “very good”, “good”, “fair”, and “poor” to describe the pavement 

structural condition.  Table 2.10 illustrates how the structural condition indicator can be 

determined using deflection measurements and cumulative ESAL loading. While simple 

to understand by non-engineers, the indicator suffers from several problems. First, the 

indicator shown in Table 2.10 is valid for all pavement types. However, asphalt and 

concrete pavements behave fundamentally different and testing procedures are also 

different. Second, the indicator used is a categorical variable. Unlike ordinal variables 
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where the numerical value of the index clearly indicates the strength of the pavement, the 

categorical indicator lacks the differentiation within a level or across levels. For example, 

a deflection of 4 mils is considered “very good” but a deflection of 3.9 mils is considered 

“excellent” (even thought the difference is only 0.1 mil. This difference if applied in 

conventional pavement management system would lead to inefficient allocation of 

resources and pavement management strategies. 

 

Table 2.9: Density Values for Evaluating Structural Adequacy Index in Flexible 
Pavements 

RRD 
– 

DRD 
(mils) 

Percentage of Individual Deflection Observation > DRD 
< 30% 30% - 60% > 60% 

Traffic Level 
Low Medium High Low Medium High Low Medium High 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.1 0.0 0.3 0.3 0.3 0.3 0.5 0.3 0.5 0.8 
0.2 0.3 0.5 0.8 0.5 0.8 1.0 0.8 1.0 1.5 
0.3 0.5 0.8 1.5 0.8 1.0 2.0 1.3 1.5 2.5 
0.4 0.8 1.0 2.0 1.3 1.5 2.5 1.5 2.0 3.0 
0.5 1.0 1.5 2.5 1.5 2.0 2.8 2.0 2.5 3.3 
0.6 1.3 2.0 3.0 2.0 2.8 3.3 2.5 3.0 3.8 
0.7 1.5 2.8 3.3 2.0 3.0 3.5 2.8 3.3 4.0 
0.8 1.8 2.8 3.5 2.3 3.3 4.0 2.8 3.5 4.3 
0.9 2.0 3.0 3.8 2.5 3.5 4.3 3.0 3.8 4.5 
1.0 2.0 3.0 4.3 2.5 3.8 4.5 3.0 4.0 4.8 
1.1 2.3 3.3 4.5 2.8 3.8 4.5 3.3 4.3 4.8 
1.2 2.3 3.3 4.5 2.8 4.0 4.8 3.3 4.3 5.0 
1.3 2.5 3.3 4.5 3.0 4.0 4.8 3.3 4.5 5.0 
1.4 2.5 3.5 4.8 3.0 4.3 5.0 3.5 4.5 5.0 
1.5 2.5 3.5 4.8 3.0 4.3 5.0 3.5 4.8 5.0 
1.6 2.8 3.8 4.8 3.3 4.5 5.0 3.8 4.8 5.0 
1.7 2.8 3.8 5.0 3.3 4.5 5.0 3.8 4.8 5.0 
1.8 2.8 4.0 5.0 3.5 4.8 5.0 3.8 5.0 5.0 
1.9 3.0 4.0 5.0 3.5 4.8 5.0 4.0 5.0 5.0 
2.0 3.0 4.5 5.0 3.8 5.0 5.0 4.0 5.0 5.0 
2.1 3.0 4.5 5.0 3.8 5.0 5.0 4.0 5.0 5.0 
2.2 3.3 4.8 5.0 3.8 5.0 5.0 4.3 5.0 5.0 
2.3 3.3 4.8 5.0 4.0 5.0 5.0 4.3 5.0 5.0 
2.4 3.3 5.0 5.0 4.0 5.0 5.0 4.3 5.0 5.0 
2.5 3.5 5.0 5.0 4.3 5.0 5.0 4.5 5.0 5.0 
2.6 3.5 5.0 5.0 4.3 5.0 5.0 4.5 5.0 5.0 
2.7 3.8 5.0 5.0 4.3 5.0 5.0 4.5 5.0 5.0 

Source: Haas et al., 1997 
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Table 2.10: Structural Condition Table Using Deflection Measurements for Pavement 

Structural 
Condition 
Indicator 

Center deflections (mils) under Different Cumulative ESAL Level 
(millions) 

> 30 10 – 30 3 – 10 1 – 3 0.3 – 1 < 0.3 
Excellent < 4 < 5 < 6 < 8 < 10 < 12 

Very Good 4 – 6 5 – 7 6 – 8 8 – 10 10 – 12 12 – 14 
Good 6 – 8 7 – 9 8 – 10 10 – 12 12 – 14 14 – 16 
Fair 8 – 10 9 – 11 10 – 12 12 – 14 14 – 16 16 – 18 
Poor > 10 > 11 > 12 > 14 > 16 > 18 

Source:  Noureldin et al., 2005. 

 

2.3.4.2 Structural Condition Index using Structural Number 

 

Zhang et al. (2003) attempted to develop a structural condition index (SCI) based on the 

FWD deflection readings of a pavement and the total thickness of the pavement layers.  

Deflection data from the falling weight deflectometer (FWD) was routinely collected and 

the elastic moduli of the pavement layers can be evaluated using back-calculation 

algorithms. Using the structural number concept as described in the earlier sections, they 

developed the following structural condition index: 

0

effSN
SCI

SN
          (2.11) 

where SNeff is the effective structural number and SN0 is the required structural number 

(i.e. that of a newly-constructed pavement). This index can be interpreted as the ratio of 

the existing structural capacity of the pavement to the structural capacity of a new 

pavement. While this method is similar to that adopted by the AASHTO 1993 pavement 

design guide for the design of overlays, it is only valid for flexible pavements, due to the 

use of structural number concept.  

Other researchers (Ali and Tayabji, 1998; Chakroborty et al., 2006) have also 

adopted similar approach in the development of structural condition indices and they 

suffer the same flaw as the research performed by Zhang et al. (2003). 

 

 

 



34 
 

2.4 Issues with Current State-of-the-Art and Need for Research 

 

This chapter has discussed the issues associated with collecting pavement structural 

condition data and evaluating the structural condition in the highway network. The task 

of collecting pavement structural data and performing structural capacity analysis is both 

costly and time-consuming and most highway agencies lack a comprehensive network 

level database detailing the structural condition of pavements. Consequently, these 

agencies tend to consider only functional performance (i.e. surface distress and 

roughness) in making network level decisions (e.g. assessment of overall network 

condition, production of a prioritized work program, scheduling of activities, and the 

allocation of funds). 

There is therefore a need to develop an indicator that allows highway agencies to 

estimate the structural condition of the highway network annually or at least in the event 

where there is no recent data on structural condition. Structural indicators discussed in 

this chapter are not adequate to meet the requirements for network level pavement 

management where decisions have to be made on a monthly or annual basis. For 

example, data collected from destructive testing are of a project level scale and field tests 

and experiments are costly to perform throughout a network on a frequent basis. Surface 

distresses, while useful in network level pavement management, is not a strong indicator 

of structural strength or capacity. This leaves us with the option of nondestructive testing 

which is in fact a promising approach for developing a structural indicator suitable for 

network level pavement management. 

Although various forms of structural condition indicators were developed in the 

past, they were either restrictive (i.e. only valid for either flexible or rigid pavements), or 

were unbounded on a scale (e.g. structural number or effective thickness). For example, 

structural condition indicators, based on the structural number concept or structural 

adequacy indices, require either the FWD deflections or back-calculation of elastic 

moduli on FWD data. However, FWD tests are generally performed on the network level 

on a frequency of three to five years and the information cannot accommodate the need 

for annual evaluation. Also, structural condition indicators such as those based on 
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Miner’s hypothesis, typically require some form of correlation to surface distresses, 

where automated surface distress identification techniques are still in their infancy and 

the issue of data quality is still unresolved (McGhee, 2004). Besides the need for the 

structural condition (or strength) indicator to represent the structural performance of the 

entire network, it also has to be bounded (on a five-point or ten-point scale). This is 

necessary for ready interpretation for highway managers as well as the general public. 

The present research aims to develop a structural strength index that can be 

readily applied in network level pavement management without the difficulties 

associated with the current procedures. A set of models shall be developed to allow the 

prediction of the structural strength index in the absence of detailed structural condition 

information. The next chapter shall discuss the scope of work performed and the 

methodology adopted in this research study. 
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CHAPTER 3.  STUDY FRAMEWORK 

The need to have a structural condition indicator that is compatible with other functional 

indicators (such as the pavement condition rating and pavement serviceability index) is 

well recognized. This chapter explains the framework and methodology adopted to 

develop such an indicator to enable pavement engineers and managers to estimate 

pavement strength and to assess pavement structural quality at the network level.   

 

3.1 Overview of Study Framework 

 

Figure 3.1 shows the overall framework of the study. The main objective of this study is 

to develop a structural strength index (SSI) that can provide engineers and managers an 

indication of the pavement structural condition and allows simple application within the 

network level pavement management system. In order to develop the structural strength 

index, deflections from the routine falling weight deflectometer (FWD) testing on the 

highway network are utilized. This is because most highway agencies collect FWD 

deflection data on a routine basis at the network level. Noting that the frequency of these 

tests ranges between three and five years, the study proposes to develop deflection 

prediction models that allow managers to predict the expected FWD deflections at any 

given point in time. This is geared towards the development of a complete structural 

information database that agencies can use when planning for maintenance, rehabilitation 

and reconstruction (M, R & R) activities. Given the structural strength index, the study 

will demonstrate its use in network level pavement management.  
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Figure 3.1: Framework of Proposed Study 

 

 

 

 

 

 

Notes:  

represents the model development and calibration processes. 

represents the actual application and implementation in network level pavement management. 

management. 

Deflections from Falling Weight 

Deflectometer (FWD) Tests 

Actual deflection measurements 

collected from FWD tests every 3 to 

5 years on highway network. 
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3.2 Study Approach 

 

3.2.1 Development of the Structural Strength Index as a Measure of Pavement 

Structural Condition 

 

The study shall first set out to develop a structural strength index using a statistical 

approach. Previous research had noted that the choice of structural condition indicator is 

dependent on pavement type, pavement materials and thickness design (Haas et al., 1994; 

AASHTO, 1993; Zhang et al., 2003; Chakroborty et al., 2006; AASHTO, 2008). The 

present study shall follow these basic principles when developing an alternate structural 

strength index to measure pavement structural condition. Figure 3.2 shows the basic 

concept adopted in this research. As shown in Figure 3.2, it is noted that deflection 

values from the FWD tests will be one of the primary inputs used to determine the 

structural strength index. This will allow agencies to evaluate structural strength in an 

almost real-time fashion when conducting their routine FWD tests on the highway 

network. In general, the structural strength index (SSI) can be expressed mathematically 

as: 

iSSI f           (3.1) 

given that 

i ig x           (3.1a) 

0,100SSI           (3.1b) 

This study sets to develop SSI models based on i, which is the deflection at the ith 

sensor of a typical FWD test (Figure 3.2). It is noted that i is a function of pavement 

type, material properties, pavement layer or slab thicknesses design (i.e. load transfer 

mechanisms), cumulative traffic loading, and cumulative weather effects. Therefore, 

Equation (3.1a) has to be considered when developing a structural strength indicator 

where xi represents the different variables that can affect deflection i. Furthermore, it is 

essential for SSI to be bounded so that it is compatible with other parameters such as the 

pavement serviceability rating (PSR) and the pavement condition rating (PCR) when 
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determining pavement M, R & R activities at the network level. In this study, we 

consider that SSI is bounded between 0 and 100, as shown in Equation (3.1b). 

 

 

Figure 3.2: Basic Concept Used in the Research 

 

3.2.2 Development of Statistical Deflection Prediction Models 

 

Because most highway agencies perform network level deflection-testing every three to 

five years and network-level pavement management decisions are made at least on an 

annual basis, the current network level structural strength evaluation practice is 

insufficient to allow a comprehensive management of our highway networks. This study 

therefore proposes the use of statistical deflection prediction models in the form of 

Equation (3.2): 

i i
g x           (3.2) 

i 

SSI 

SSI = f ( i) 

Network Level 
Pavement Management 

 Budget projections and  decisions 
 Programming of funds 
 Trade-off analysis 
 Overall network conditions  
 Network inventory 

 

Falling Weight Deflectometer 

 
Statistical Models 

 

or 
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where xi are variables indicating the cumulative traffic loading, cumulative weather 

effects, pavement type, material properties and pavement layer or slab thicknesses. Note 

that in this case, in order to differentiate from the actual FWD deflection i, we use the 

notation 
i
to represent the estimated FWD deflection from the statistical model. The 

estimated deflections 
i
are validated against actual deflections i obtained from the 

network level FWD tests. 

Given the estimated deflection from Equation (3.1a), the structural strength index 

SSI  can then be estimated using Equation (3.3), as shown in Figure 3.2. 

iSSI f           (3.3) 

and 

0,100SSI           (3.3a) 

The structural strength index can be used for network level pavement management 

decisions.  
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CHAPTER 4.  DATA DESCRIPTION 

This chapter describes the data used in the study.  Different data categories required for 

the study (pavement functional condition, pavement structural condition, roadway 

inventory, traffic and weather data) are discussed in terms of the type of data collected 

and how the data is collected.   

 

4.1 Pavement Functional Condition Data 

 

Functional condition data consists of three items: International Roughness Index (IRI), 

rutting (for flexible pavements) and Pavement Condition Rating (PCR) data. IRI and 

PCR are used for both flexible and rigid pavement while rutting only applies to flexible 

pavements. The IRI and rut data is collected annually on state-maintained highways by a 

vendor using a data collection van (as shown in Figure 4.1). The van is equipped with a 

laser profiler and 5-point rut bar that collects the IRI and rut depth of the pavement 

surface respectively. In addition, the van is equipped with three pan-tilt-zoom video 

cameras that record a panoramic view of the road (for identification of roadway 

inventory) and two video imaging cameras that record a view of the pavement surface.   

 

4.1.1 International Roughness Index 

 

International Roughness Index (IRI) is a measure of the roughness of the road.  

Roughness is the distortion or “bumpiness” of the pavement surface that causes a vehicle 

operator or rider to experience an uncomfortable ride.  Since roughness is caused by the 

longitudinal distortion of the pavement surface, the way to measure it is to measure the 

longitudinal profile of the wheel path.  The most common index used is the international 
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roughness index (IRI).  It measures the "bumpiness" of the pavement in terms of inches 

per mile, i.e., the higher the number the rougher the ride.  IRI data is collected according 

to the AASHTO PP 37-04 standard on “Determination of International Roughness Index 

(IRI) to Quantify Roughness of Pavements” (AASHTO, 2004). In this study, IRI data is 

collected continuously along a highway but the values are reported every 1-mile or 0.25 

mile. Excellent pavements are found to have IRI in the 0 to 80 range, good pavements are 

in the 80 to 115 range, fair pavements are in the 115 to 150 range, and poor pavements 

are over 150 (INDOT, 1997).  

 

  

Figure 4.1: Illustration of a Data Collection Van 

 

4.1.2 Rutting on Asphalt Pavements 

 

Rutting is transverse deformation along pavement wheel paths of a pavement. It is 

measured using five lasers mounted on a rut bar on the data collection van, as shown in 

Figure 4.1. Two lasers are mounted at the edge of the pavement, two lasers are mounted 

over the wheel paths and one is mounted over the center of the lane as shown in Figure 

4.2. The rut is estimated by determining the difference in height between the wheel path 

and the level established by averaging heights at the edge of pavement and the center of 
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the lane and is done for both the right and left wheel paths. Rut data is collected using the 

AASHTO PP 38-00 standard on “Determining Maximum Rut Depth in Asphalt 

Pavements” (AASHTO, 2003).  In this study, rut depths are collected continuously along 

a highway but are reported in every 1-mile or 0.25 mile. A severely rutted pavement is 

one which has an average rut larger than 0.25 inch (INDOT, 1997). 

 

 

Figure 4.2: Illustration of a Five-Point Rut Bar to Measure Rut Depth 

 

4.1.3 Pavement Condition Rating 

 

Pavement condition rating (PCR) is a measure of the pavement surface distress and is 

measured by conducting automated pavement condition surveys. The distresses measured 

generally include such factors as surface defects, cracking and patching. These surveys 

are conducted by viewing the distresses such as transverse cracking, longitudinal 

cracking, blocking cracking on the road for a distance of 500 ft at the beginning of each 

mile and rating each distress for severity and extent. It is assumed that the first 500 ft of 

each mile is representative of the entire mile. The severity and extent are combined 

together to determine deduct points for each distress present on the road segment. The 

weighted values of the deduct points are subtracted from 100 to determine the PCR. The 

rating goes from 100 to 0 with excellent pavements in the 100 to 90 range, good 

pavements in the 90 to 80 range, fair pavements in the 80 to 70 range, and poor 
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pavements below 70. (INDOT, 1997). Table 4.1 summarizes the pavement functional 

condition data used in the study discussed thus far. 

 

Table 4.1: Pavement Functional Condition Data used in the Study 

Data Type Description Method of Data Collection 

International 
Roughness 

Index  
(IRI) 

Measures the ride of the pavement 
surface in inches per mile, Used for 

flexible or rigid pavement 
Measured continuously by laser 

sensors, aggregated  by mile and by 
tenth of a mile Rut Depth 

(for flexible 
pavements) 

Measures the transverse deformation 
of the pavement surface in inches.  
Used for flexible pavement only 

Pavement 
Condition 

Rating 
(PCR) 

Measures the level of distress on the 
pavement surface 0-100 scale with 

100 being excellent and 0 being very 
poor.  Used for flexible or rigid 

pavement 

Measured on the first 500’ at each 
reference post using people rating the 

pavement from video.  PCR is based on 
the distresses rated by viewers and 

summated.  The distresses include but 
are not limited to transverse, block, and 

fatigue cracking   

 

4.2 Pavement Structural Condition 

 

While there are several different ways to estimate the structural condition of the 

pavement, this study will use deflections from FWD testing as an estimator of pavement 

structural condition.  Both network and project-level data are used in this study.  The 

difference between project and network level deflection testing lies in the testing needs 

and frequency, and also the testing procedures. Network-level deflection testing involves 

deflection testing of the entire highway network every three to five years. Typically, 

three test sites are sampled in every mile and a standard 9000-lb drop-weight is used, as 

shown in Figure 4.3 (Noureldin et al., 2005). Project-level deflection testing is generally 

performed on individual project sites according to the specific needs of the project. For 

the present study, three test locations are selected within the project site and three 

different drop heights are used, according to ASTM standards (ASTM, 2000).  Data 

collected from the FWD tests includes the weight (lbs) and pressure (psi) of the drop on 

the pavement, the deflection (mils) at various points along the FWD and the air and 

pavement surface temperature (°F), as shown in Table 4.2. 
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Figure 4.3: Schematic diagram of the FWD (Noureldin et al., 2005) 

 

Table 4.2: Pavement Structural Condition Data used in Study 

Data Type Description 

Drop# 1, 2, or 3 (each drop represent a weight used for the testing) 
Pressure(psi) Pressure on the pavement from drop, (Based on the size of the plate that sits 

on the pavement on which the weight is applied) 
Load(lbs) Load of the drop (9000 lbs for this study) 
D1(mils) Sensor 1 measurement of the deflection (located at the center of the plate) 
D2(mils) Sensor 2 measurement of the deflection (located 12“ from center of plate 

towards front of the FWD device) 
D3(mils) Sensor 3 measurement of the deflection (located 8“ from center of plate) 
D4(mils) Sensor 4 measurement of the deflection (located 12“ from center of plate) 
D5(mils) Sensor 5 measurement of the deflection (located 18“ from center of plate) 
D6(mils) Sensor 6 measurement of the deflection (located 24“ from center of) 
D7(mils) Sensor 7 measurement of the deflection (located 36 “ from center of plate) 
D8(mils) Sensor 8 measurement of the deflection (located 48“ from center of plate) 
D9(mils) Sensor 9 measurement of the deflection (located 60“ from center of plate) 
Mean 
Temp(°F) 

Average of the Air Temp(°F) and Surface Temp(°F) 

Air Temp(°F) Ambient air temperature 
Surface 
Temp(°F) 

Pavement Surface Temperature 

The center deflection (D1 in Figure 4.3) was found to be an excellent indicator of 

the overall strength of a section of pavement (Noureldin et al., 2005). A stronger 
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pavement section is indicated by a lower deflection and a weaker pavement section is 

indicated by a higher deflection, for a given pavement type and pavement structure. The 

center deflection is corrected for temperature using the air and pavement surface 

temperature using Equation (4.1): 

1 1corrected
D D          (4.1) 

where (D1)corrected is the center deflection corrected for temperature effects, D1 is the 

actual center deflection measured from the FWD test and  is the correction factor 

defined in Table 4.3.  

 

Table 4.3: Center Deflection Temperature Correction Factors 

Mean Pavement 

Temperature, °F 
41 50 59 68 77 86 95 104 113 122 

Temperature 

Correction Factor 
0.74 0.81 0.90 1.00 1.11 1.22 1.34 1.46 1.59 

1.7
2 

 

4.3 Road Inventory, Pavement Structure and Pavement Work Data 

 

Table 4.4 summarizes the different road inventory, pavement structure and pavement 

work data used in the study. In this study, roadway inventory data was extracted from the 

INDOT Pavement Management System. Roadway information was collected by visual 

observation of the roadway while driving the network and is continually updated using 

aerial mapping and visual observation.  Information on the roadway includes the route 

number and location of the road, the system that the road is on, and if the road is rural or 

urban. The system indicates if the road section is an interstate, a national highway system 

(NHS), or state route.   

Pavement work data includes information on when and the type of pavement 

work performed on a road. It includes restorative work such as resurfacing and major 

work such as rehabilitation, reconstruction, or replacement of the pavement.  This 

information is updated maintained by listing each pavement contract in the inventory in 

its correct location on the road.  The information includes the type of pavement work 

performed, the year of the work, and the type of pavement surface.   
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Pavement structure data describes the type of the material under the surface.  It is 

classified as rigid, flexible, composite, and un-designed.  An un-designed pavement is an 

older pavement that was not designed to modern standards.  These pavements were laid 

in the 1920s through the 1930s and have been overlaid over the ensuing years.  The roads 

that have un-designed pavement are minor roads that have low AADT and are not 

considered in this study.   

 

Table 4.4: Road Inventory, Pavement Structure and Pavement Work Data used in the 
Study 

Data Type Description 

Road Name of the road (i.e. S_46, I_65, U_40). 

Reference Post 
The reference post nearest the location and the distance to the post (in 

miles) (i.e. RP_003 + 0.39). 

System 
Is the road on the interstate (I), non-interstate national highway system 

(N), or non-national highway system (O)? 
Year of Last Work The year that restorative pavement work was performed at the location? 
Type of Last Work What restorative pavement work was performed? 
Pavement Surface Is the pavement section concrete (J) or asphalt (A)? 

Pavement Structure 

Is the pavement structure under the surface of the pavement rigid (R), 
flexible (F), composite (C) (Composite pavement consists of asphalt laid 

over a concrete pavement) or undersigned (U) (Undesigned pavement 
refers to a section in which the pavement was laid without any design.)? 

 

4.4 Traffic Data 

 

Traffic data consists of annual average daily traffic (AADT) and percent truck traffic.  

This data is collected and processed by INDOT based on guidelines provided by the 

FHWA in its Traffic Monitoring Guideline (FHWA, 2001).  The traffic data is collected 

on a three year cycle by dividing the state maintained road network into thirds and 

collecting one third of the traffic data every year using coverage and classification counts 

on homogenous road segments. Table 4.5 summarizes the type of traffic data collected in 

this study. 

 

Table 4.5: Traffic Data used in the Study 

Data Type Description 
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Data Type Description 

AADT Annual average daily traffic on the road 
Percent Truck Traffic Percent commercial truck traffic on the pavement section 

 

4.5 Subgrade Data 

 

Subgrade data describes the existing soil condition under the pavement structure.  This 

data was obtained using the INDOT’s GIS database and database from the Natural 

Resources Conservation Service of the US Department of Agriculture.  The soil data 

consists of the type and soil properties, as shown in Table 4.6.  This study considers the 

drainage capability of the subgrade underneath the pavement structure as it is known that 

a poorly-drained subgrade will result in premature pavement structural failure.  

 

Table 4.6: Subgrade Data used in the Study 

Item (Variable) Description 

MUKEY Key identifier used for mapping soil types 

MUNAME Name of soil type 

DRCLASSDCD 
Dominant condition drainage class - natural drainage condition of the 

soil refers to the frequency and duration of wet periods. 

DRCLASSWETTEST 
Wettest condition drainage class - natural drainage condition of the 

soil refers to the frequency and duration of wet periods. 

 

Natural drainage class can be used to describe the drainage condition of the 

subgrade and is referred to as the frequency and duration of wet periods of the soil under 

conditions similar to those under which the soil developed. The natural drainage classes 

can be inferred from observations of landscape position and soil morphology. In many 

soils, the depth and duration of wetness is related to the quantity, nature, and pattern of 

soil mottling. Correlation of drainage classes and soil mottling are made through field 

observations of water tables, soil wetness, and landscape position (Natural Resources 

Conservation Service, 2007).  The classes are defined as follow: 

Excessively drained subgrade: Water is removed very rapidly from the subgrade. 

The occurrence of internal free water commonly is very rare or very deep. The subgrade 

is commonly coarse-textured and has a very high hydraulic conductivity. 
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Somewhat excessively drained subgrade: Water is removed from the subgrade 

rapidly. Internal free water occurrence commonly is very rare or very deep. The subgrade 

is commonly coarse-textured and has high saturated hydraulic conductivity. 

Well drained subgrade: Water is removed from the subgrade readily but not 

rapidly. Internal free water occurrence commonly is deep or very deep; annual duration is 

not specified.  

Moderately well drained subgrade: Water is removed from the subgrade 

somewhat slowly during some periods of the year. Internal free water occurrence 

commonly is moderately deep and transitory through permanent. The subgrade have a 

moderately low or lower saturated hydraulic conductivity in a layer within the upper 1 m, 

periodically receive high rainfall, or both. 

Somewhat poorly drained subgrade: Water is removed slowly so that the 

subgrade is wet at a shallow depth for significant periods in a year. The occurrence of 

internal free water commonly is shallow to moderately deep and transitory to permanent. 

The soils commonly have one or more of the following characteristics: low or very low 

saturated hydraulic conductivity, a high water table, additional water from seepage, or 

nearly continuous rainfall. 

Poorly drained subgrade: Water is removed so slowly that the subgrade is wet at 

shallow depths periodically or remains wet for long periods. The occurrence of internal 

free water is shallow or very shallow and common or persistent. Free water at shallow 

depth is usually present. This water table is commonly the result of low or very low 

saturated hydraulic conductivity of nearly continuous rainfall, or of a combination of 

these. 

Very poorly drained subgrade: Water is removed from the subgrade so slowly 

that free water remains at or very near the ground surface during much of the year. The 

occurrence of internal free water is very shallow and persistent or permanent. The 

subgrade is commonly level or depressed and frequently ponded. If rainfall is high or 

nearly continuous, slope gradients may be greater (Soil Survey Division Staff, 1993). 
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4.6 Climate Data 

 

Climate data consists of temperature and precipitation data obtained from the Indiana 

Climate Office at Purdue University.  Daily rainfall and temperature are collected at 

various weather stations across Indiana and is summarized to monthly averages 

temperatures and monthly total rainfalls for the different weather regions shown in 

Figure 4.4 and Table 4.7.  There are nine weather regions in Indiana that are defined by 

the Indiana Climate Office and divide state into geographical regions based on adjacent 

counties as shown in Table 4.8.  

 

 

Figure 4.4: Map of Weather Regions in Indiana 

Table 4.7: Climate Data Considered in this Study 

Item (Variable) Description 
Weather Region Weather region as defined by NOAA of pavement section 

Average High Temperature Average monthly high temperature of the weather region 
Average Low Temperature Average monthly low temperature of the weather region 
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Item (Variable) Description 
Average Temperature Average monthly temperature of the weather region 

Precipitation Monthly precipitation of the weather region 

 

Table 4.8: Indiana Counties in each Weather Region 

Climate Division Counties 
1  (Northwest) Benton, Jasper, La Porte, Lake, Newton, Porter, Pulaski, Starke, White 

2  (North central) 
Carroll, Cass, Elkhart, Fulton, Kosclusko, Marshall, Miami, St. Joseph, 

Wabash 

3  (Northeast) 
Adams, Allen, De Kalb, Huntington, Lagrange, Noble, Steuben, Wells, 

Whitley  

4  (West central) 
Clay, Fountain, Montgomery, Owen, Parke, Putnam, Tippecanoe, 

Vermillion, Vigo, Warren 

5  (Central) 
Boone, Clinton, Grant, Hamilton, Hancock, Hendricks, Howard, Johnson, 

Madison, Marion Morgan, Shelby, Tipton 
6 ( East central) Blackford, Delaware, Fayette, Henry, Jay, Randolph, Union, Wayne 

7  (Southwest) 
Daviess, Dubois, Gibson, Greene, Knox, Martin, Pike, Posey, Spencer, 

Sullivan, Vanderburgh, Warrick 

8  (South central) 
Brown, Crawford, Floyd, Harrison, Jackson, Lawrence, Monroe, Orange, 

Perry, Washington 
9  (Southeast) Clark, Dearborn, Jefferson, Jennings, Ohio, Ripley, Scott, Switzerland 
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CHAPTER 5.  DEVELOPMENT OF STRUCTURAL STRENGTH INDEX 

As noted in the previous chapters, existing structural strength indicators developed in 

past literature (e.g. structural number, structural adequacy index, etc.) are typically not 

applicable at the network level. This is because of the extensive cost and time needed to 

achieve a comprehensive structural condition database for network level pavement 

management if those developed structural strength indicators were to be used.  

Furthermore, existing structural indicators were either restrictive or unbounded on a 

scale. This chapter therefore discusses the development of a structural strength index that 

highway agencies can use to evaluate pavement strength for network level pavement 

management. In particular, deflections from the network-level falling weight 

deflectometer (FWD) testing are used in this study. A statistical approach to develop a 

structural strength index is proposed and statistical models to evaluate pavement 

structural strength index are developed. 

 

5.1 Key Considerations when Developing a Structural Strength Indicator 

 

5.1.1 Properties of a Structural Strength Indicator 

 

When developing a structural strength indicator that is applicable to network level 

pavement management, there are several considerations that have to be made: 

 Measurable: It indicator should be possible (and easy) to measure the indicator in 

an objective manner. Also, performance measure levels can be readily developed 

from the indicator. 

 Realistic: It should be possible to collect pavement structural condition data 

without excessive effort, cost and time, at the network level. 
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 Forecastable: For network and planning level pavement management, the 

indicator must allow prediction of structural performance at a future time. 

 Bounded: For network level pavement management involving multiple criteria, 

the indicator has to be bounded on a scale. 

 Defensible: The indicator has to be clear and concise so that the manner of 

assessing and interpreting its level can be communicated not only between 

engineers, but also to managers, government executives and the general public. 

 Account for fundamental difference between flexible and rigid pavements: The 

indicator must consider the fundamental difference between flexible and rigid 

pavements in terms of mechanical behavior. 

 Account for design differences within a pavement type:  The indicator must allow 

for the fact that different pavement thickness design could lead to different 

pavement structural bearing capacity and hence a different structural strength 

index. 

As noted in Chapter 2, structural strength indicators developed in the literature 

can be categorized into: functional distress indicators (e.g. pavement condition rating); 

material properties (e.g. layer elastic modulus); AASHTO structural indicators (e.g. 

structural number and effective slab thickness); direct deflection measurements; and 

other structural condition indices (e.g. structural adequacy index). Table 5.1 summarizes 

the performance of these indicators against the desired properties of the structural 

condition indicator. From the table, a few points are noted: 

 Functional distress indicators such as the pavement condition rating and the 

individual distress ratings are subjective in nature (due to the way the distresses 

are evaluated) and can not differentiate between designs of different layer 

thicknesses. This is despite the fact that these indicators are bounded and are 

easily understood by non-engineers. 

 Material properties and elastic moduli are too cumbersome to be applied at the 

network level. While they are measurable and forecastable, these indicators are 

not bounded. Furthermore, these indicators are difficult to understand by non-

engineers. 
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 AASHTO structural indicators allow the objective measurement of pavement 

structural capacity. However, a comprehensive evaluation at the network level is 

not realistic. Furthermore, these indicators are not bounded on a scale. 

 Direct deflection values, while are easily measured by falling weight 

deflectometers at the network level, are unbounded. However, the use of 

deflection alone as an index without any consideration to pavement and design 

types can create difficulty in structural strength interpretation.  

 The use of the structural adequacy index (SAI) developed by Haas et al. (1994) 

seems the most promising of all the structural condition indicators considered. 

However, the SAI itself does not consider pavement thickness or design type in 

its formulation. 

 

Table 5.1: Performance of Existing Indicators against the Desired Properties of an Ideal 
Structural Condition Indicator 

Structural Condition Indicator 
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Pavement Condition Rating (a)       
Distress Severity and Extent Rating (a)       
Layer Elastic Moduli      (b)   
Material Strength (e.g. flexural strength 
of concrete, tensile strength of asphalt 
mixture) 

    (b)   

AASHTO Structural Indicators (e.g. 
Structural Number, Effective Slab 
Thickness) 

       

Direct Deflection Measurement     (b)   
Structural Adequacy Index        

Notes: 
(a) Pavement condition rating and individual distress ratings while measurable are primarily subjective. 
(b) Material properties, layer moduli and deflections are easily understood within the engineering 

community, but are less easily understood by managers, executives and the general public 
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5.1.2 Investigating Correlation between Functional and Structural Conditions 

 

Highway agencies traditionally make use of pavement functional conditions such as 

pavement roughness (measured in terms of the international roughness index IRI), 

surface distresses (measured in terms of pavement condition rating PCR) and rut depths 

on flexible pavements to select pavement maintenance, rehabilitation or reconstruction 

projects at the project selection level and to δprogram and budget these activities at the 

network level. While the use of pavement roughness and/or surface distresses to activate 

maintenance activities are reasonable, these indicators alone might not be representative 

of the pavement structural condition. It is obvious that a pavement near the point of 

structural failure will exhibit poor IRI and have numerous surface distresses. However, it 

is also possible for a pavement of good structural condition to have a poor IRI or exhibit 

surface distresses. It is therefore of interest to investigate if the functional characteristics 

of the pavement is sufficient to represent the structural condition of the pavement.  

In this study, structural condition is represented by the center deflection δ1 

obtained from the network-level falling weight deflectometer test using a 9000-lb drop 

weight (see Figure 4.3). Details of the test are described earlier in Chapter 4. Deflection 

information is collected for the entire Indiana highway network from 2004 to 2007. It is 

noted that the Indiana Department of Transportation follows a five-year cycle in 

pavement structural condition evaluation at the network level, and essentially, the dataset 

used in this study corresponds to approximately one data collection cycle. It is also noted 

that for jointed PCC pavements, FWD tests were conducted on the center of a PCC slab, 

i.e. deflections due to center loading on concrete slab are used in the study. Functional 

data (IRI, PCR and rut depths on asphalt pavements) were also collected for every 

deflection test location during the same period. 

 The Spearman rank correlation coefficients were evaluated to determine if there 

is any collinearity between the center deflection and functional condition indicators (IRI, 

PCR, rut depths on flexible pavements). For a given pair of indicators (Xi, Yi), the 

Spearman rank correlation coefficient  xy is defined as: 
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xy

d

n n
         (5.1)  

where di (= xi – yi) is the difference between the ranks of corresponding values Xi and Yi 

and n is the number of samples in the data set. Since there are four indicators in question, 

the number of combination pairs evaluated in the study is 4C2 = (4!)/(2!)(2!) = 6 for each 

set of data. 

 

Table 5.2: Kolmogorov–Smirnov Test Results for Structural and Functional Indicators 

Pavement 
Type 

Functional 
Class 

Structural or Functional 
Indicator 

Sample 
Size 

n 

Kolmogorov–Smirnov 
statistic Dn 

(p-value) 
Flexible Interstates FWD Test Center Deflection 1 4766 0.127 (0) 

IRI 4766 0.111 (0) 
PCR 4766 0.070 (0) 
Rut Depth 4766 0.069 (0) 

Non-
Interstates 
NHS 

FWD Test Center Deflection 1 7979 0.127 (0) 

IRI 7979 0.093 (0) 
PCR 7979 0.008 (0) 
Rut Depth 7979 0.155 (0) 

Non-
Interstates 
Non-NHS 

FWD Test Center Deflection 1 21766 0.120 (0) 

IRI 21766 0.073 (0) 
PCR 21766 0.063 (0) 
Rut Depth 21766 0.191 (0) 

Rigid Interstates FWD Test Center Deflection 1 915 0.056 (0) 

IRI 915 0.085 (0) 
PCR 915 0.204 (0) 

Non-
Interstates 
NHS 

FWD Test Center Deflection 1 1180 0.093 (0) 

IRI 1180 0.163 (0) 
PCR 1180 0.123 (0) 

Non-
Interstates 
Non-NHS 

FWD Test Center Deflection 1 912 0.087 (0) 

IRI 912 0.062 (0) 
PCR 912 0.125 (0) 

 

In this study, the choice of Spearman rank correlation test was selected over the 

standard Pearson correlation test because the Pearson test requires variables to be 

normally distributed whereas the Spearman test is a nonparametric test requiring no 

assumption on the distribution. The Kolmogorov–Smirnov tests were performed on 

center deflections, IRI and PCR for both asphalt and PCC pavements, and rut depths for 

asphalt pavements to test for normality and the results are shown in Table 5.2. It can be 
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observed from the test results that the four different variables are non-normal at a 95% 

significance level, justifying the use of the Spearman rank correlation test. 

To test for collinearity, the following hypothesis test was conducted on each 

combination pair: 

H0: xy = 0          (5.2a) 

H1:  xy ≠ 0          (5.2b) 

The null hypothesis states that the Spearman rank correlation coefficient is zero, 

indicating a lack in linear dependency between the two variables in a combination pair. 

On the other hand, the alternate hypothesis states that the Spearman rank correlation 

coefficient is non-zero, indicating that there is some form of linear dependency between 

the two variables in the combination pair. Table 5.3 shows the results of the hypotheses 

tests. It was found that there is no linear dependency between the center deflection δ1 

from the FWD test and the functional indicators (IRI, PCR and rut depths) for all 

pavement types and functional classes at a 95% significance level. 

 

Table 5.3: Results of Spearman Rank Correlation Tests 

Pavement 
Type 

Functional 
Class 

Combination Pair Sample 
Size 

Spearman Rank 
Correlation 

Coefficient xy 

(p-value) 

Reject 
H0? 

[Equation 
(5.2)]* 

Flexible Interstates  Center Deflection vs. IRI  4766 -0.039 (0) Yes 
Center Deflection vs. PCR 4766 -0.151 (0) Yes 
Center Deflection vs. Rut 4766 0.179 (0) Yes 

Non-Interstates 
NHS 

Center Deflection vs. IRI  7979 0.106 (0) Yes 
Center Deflection vs. PCR 7979 -0.141 (0) Yes 
Center Deflection vs. Rut 7979 0.095 (0) Yes 

Non-Interstates 
Non-NHS 

Center Deflection vs. IRI  21766 0.149 (0) Yes 
Center Deflection vs. PCR 21766 -0.077 (0) Yes 
Center Deflection vs. Rut 21766 0.109 (0) Yes 

Rigid Interstates Center Deflection vs. IRI  915 0.319 (0) Yes 
Center Deflection vs. PCR 915 0.053 (0) Yes 

Non-Interstates 
NHS 

Center Deflection vs. IRI  1180 -0.185 (0) Yes 
Center Deflection vs. PCR 1180 -0.204 (0) Yes 

Non-Interstates 
Non-NHS 

Center Deflection vs. IRI  912 0.220 (0) Yes 
Center Deflection vs. PCR 912 -0.474 (0) Yes 

* Hypothesis tests were conducted at a 95% significance level. 
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 This finding seems to imply that the structural condition as represented by the 

center deflection 1 from the FWD test is independent of the pavement functional 

conditions. One may argue that a structurally poor pavement can have a high IRI and a 

low PCR and vice versa, offering some form of collinearity. The observation made in 

this study can be explained by Table 5.4, which shows the summary statistics of the data 

used in this section. It is noted from the table that for a typical highway agency, 

parameter values indicate that conditions (both structural and functional) are relatively 

good. This is expected since highway agencies have to maintain their highway network 

according to specific agency goals. For example, FHWA require states to ensure that 

95% of travel on the NHS (in terms of vehicle-miles travelled) experience acceptable 

ride quality (defined as an average IRI of 170 inches/mile). In this case, it is possible for 

pavement structural and functional conditions to be uncorrelated, given that most 

pavements are already in a relatively good or fair condition.  

 

Table 5.4: Summary Test Statistics 

Pavement 
Type 

Functional 
Class 

Structural/ Functional 
Indicator 

Sample 
Size 

Mean  Standard 
Deviation 

Flexible Interstates Center Deflection 1 (10-3 inch) 4766 3.1 1.4 

IRI (inch per mile) 4766 76.0 34.0 
PCR 4766 89.0 7.0 
Rut Depth (inch) 4766 0.09 0.03 

Non-
Interstates 
NHS 

Center Deflection  1 (10-3 inch) 7979 5.0 2.3 

IRI (inch per mile) 7979 102.0 43.8 
PCR 7979 90.1 6.3 
Rut Depth (inch) 7979 0.14 0.10 

Non-
Interstates 
Non-NHS 

Center Deflection  1 (10-3 inch) 21766 7.9 4.2 

IRI (inch per mile) 21766 110.1 47.0 
PCR 21766 89.2 6.9 
Rut Depth (inch) 21766 0.13 0.11 

Rigid Interstates Center Deflection  1 (10-3 inch) 915 3.6 1.4 

IRI (inch per mile) 915 97.8 28.9 
PCR 915 93.5 5.8 

Non-
Interstates 
NHS 

Center Deflection  1 (10-3 inch) 1180 4.9 1.6 

IRI (inch per mile) 1180 103.2 51.0 
PCR 1180 92.5 4.4 

Non-
Interstates 
Non-NHS 

Center Deflection  1 (10-3 inch) 912 8.9 4.5 

IRI (inch per mile) 912 143.8 48.8 
PCR 912 86.2 8.6 
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5.2 Development of a Structural Strength Index to Measure Pavement Structural 

Condition 

 

Since most highway agencies already have some form of network-level data collection 

system in place for FWD testing, the study sets out to make use of FWD deflections as 

the basis of developing a structural strength index. If we assume that (D ijk)n is a variable 

denoting the nth sensor deflection for any pavement segment i with pavement type j and 

design type and ( ijk)n is a given deflection measured by the nth sensor during a FWD test 

on a homogeneous pavement segment i, pavement type j and design type k, we can 

determine a comparative structural performance of segment i within the pavement 

family. Here, segments belonging to the same pavement family can be defined as 

segments having the same pavement type and similar designs (e.g. pavement structural 

thickness). The comparative performance of the pavement segment within the pavement 

family in the highway network, (Yijk)n can be defined by Equation (5.3). 

1ijk jk ijk ijk
n n n n

Y P D F
      (5.3)

 

The structural performance of the pavement segment i is defined here to be the 

probability of pavements in the given family (j, k) having a deflection larger than ( ijk)n. 

 If we were to make use of only the center deflection ( ijk)1 (i.e. 1st sensor in the 

FWD test) to compare the pavement structural performance of a given segment i in a 

given family (j, k), we can define a term called “Structural Strength Index” or SSI by 

refining Equation (5.3). In this case, SSI is defined as the probability that pavements in a 

given family (j, k) having a deflection larger than ( ijk)1. 

1 1 1
100 100  1  jk ijk ijkSSI P D F

    (5.4) 

In this case, only the FWD center deflection data is used since it reflects the overall 

structural capacity of the pavement (Noureldin et al., 2003). Note that these deflections 

have to be normalized to a standard load (generally 9,000 lb, or 40 kN, for highways) and 

a standard temperature (generally 68°F, or 20°C). Since we only make use of one 

deflection point and a standard load, the SSI cannot be used to determine individual layer 

material properties nor can we use it to determine defects in individual pavement layers. 
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The SSI is good for evaluating the overall pavement structural condition and hence is 

only valid for network level pavement structural evaluation. 

 A few key steps are required to develop the structural strength index SSI as 

shown in Figure 5.1. They are: 

Step 1: Determine the different pavement families (j, k). This can be achieved by first 

identifying the type of pavements managed by the highway agency and their structural 

design. 

Step 2:  Determine f[( ijk)1] and F[( ijk)1] which are the probability distribution and 

cumulative probability distribution of the center deflections 1 for a given family (j, k). 

Step 3: Determine the structural strength index SSI functions using Equation (5.4). 

Table 5.5 compares the performance of the SSI against other structural conditions 

developed in the literature. The SSI can be said to be: 

 Measurable: The SSI can be easily measured by the FWD test using the 

deflection of the center sensor. The FWD test is an objective method to measure 

the structural response of the pavement. 

 Realistic: The SSI makes use of deflection that can be easily evaluated at the 

network level. 

 Forecastable: Since the SSI is an index based on the probabilistic distribution of 

FWD deflections in a highway network, models have to be further developed to 

allow planners to forecast SSI deterioration on pavements. This is currently not 

considered in this study. 
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Figure 5.1: Methodology to Develop Structural Strength Index (SSI) Functions 

 

 Bounded: The SSI is bounded between 0 and 100 and hence can be easily 

integrated in a multi-objective multi-criteria transportation asset management 

system. 

Flexible Pavement Rigid Pavement 

Step 1: Determine the Pavement Families (Type and Design). 

Step 2: Determine the Probability and Cumulative Probability Distributions of Center 
Deflections for Each Pavement Family. 

Probability Distribution Cumulative Probability Distribution 

f( ) 

 

F( ) 

 

Step 3: Determine the Structural Strength Index (SSI) Functions for Each Pavement 
Family. 

SSI Function 

SSI( ) 

 0 

100 
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 Defensible: The SSI essentially provides a 0 (very poor) to 100 (excellent or 

perfect) scale, which is easily comprehensible by both engineers and non-

engineers. Since the SSI provides the comparative performance to other pavement 

sections in the same highway network, policy makers can easily understand the 

physical meaning of SSI. 

 Account for fundamental difference between flexible and rigid pavements: The 

SSI considers the fundamental difference between flexible and rigid pavements 

through categorization by pavement families. 

 Account for design differences within a pavement type:  The SSI allows 

consideration by pavement thickness design through categorization by pavement 

families. 

These properties of the SSI represent the ability of the indicator to measure structural 

strength at the network level and provides potential for managers to consider pavement 

structural condition in network-level pavement management. 

 

Table 5.5: Comparison between Structural Strength Index and other Structural Indicators 

Structural Condition Indicator 
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Pavement Condition Rating (a)       
Distress Severity and Extent Rating (a)       
Layer Elastic Moduli      (b)   
Material Strength (e.g. flexural strength of 
concrete, tensile strength of asphalt mixture) 

    (b)   

AASHTO Structural Indicators (e.g. 
Structural Number, Effective Slab Thickness) 

       

Direct Deflection Measurement     (b)   
Structural Adequacy Index        
Structural Strength Index   (c)     

Notes: 
(a) Pavement condition rating and individual distress ratings while measurable are primarily subjective. 
(b) Material properties, layer moduli and deflections are easily understood within the engineering 

community, but are less easily understood by managers, executives and the general public. 
(c) Models have to be developed to develop forecasting models based on structural strength index SSI. 
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5.3 Determination of Structural Strength Index Functions: A Case Study for Indiana 

 

The methodology stated in the previous section is applied to determine a set of structural 

strength indices using the state of Indiana as an illustration. Details of data collected for 

this study are found in Chapter 4.  

 

5.3.1 Determining Pavement Families by Type and Design 

 

The first step in evaluating the SSI functions is to determine the different pavement 

families. Pavement families are defined by pavement type (flexible or asphalt and rigid 

or PCC pavements) and pavement structural design. While it is relatively easy to 

determine the pavement type at the network level through network level pavement 

condition and roadway inventory surveys, maintaining a detailed database on pavement 

thicknesses at the network level is a challenging task for most highway agencies. 

Recognizing that most highway agencies do not have a detailed database on pavement 

structural design at the network level, this study proposes to use the pavement functional 

class as a proxy for pavement structural design. The basis for this assumption is that 

pavement structural design is fairly standardized within the same functional class (i.e. 

interstate, non-interstate NHS and non-interstate non-NHS highways). Given the 

pavement types j (asphalt/PCC) and functional classes k (interstate, non-interstate NHS 

and non-interstate non-NHS highways), six different combinations can be obtained: 

 Flexible Interstate  

 Flexible Non-Interstate NHS 

 Flexible Non-NHS 

 Rigid  Interstate 

 Rigid Non-Interstate NHS 

 Rigid Non-NHS 

There is a need to check if any of these six families can be combined. The Mann-

Whitney-Wilcoxon (MWW) test was performed to test whether any pair of pavement 

families has the same distribution for the center deflection 1: 
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H0: The 1 distributions of the two pavement families are the same.   (5.5a) 

H1: The 1 distributions of the two pavement families are not the same.  (5.5b) 

The acceptance of the null hypothesis would mean that the distributions of the pair of 

pavement families are the same and hence two families can be combined. The non-

parametric MWW test is used in this study because deflection distribution is found to be 

non-normal. This renders the use of traditional parametric tests invalid.  

Table 5.6 shows the test results for the six different combination pairs of 

pavement families. It can be observed that the null hypothesis was rejected for all the six 

different combination pairs. This means that SSI functions have to be developed for the 

six different design categories (satisfying one of the desirable properties of a structural 

strength indicator). 

 

Table 5.6: Mann-Whitney-Wilcoxon Test Results for Different Combination Pairs of 
Pavement Families 

Pair 
No.  Pavement Family 

Sample 
Size n 

MWW  
U-Statistic 

z-Statistic a 
(p-value) 

Reject H0? 
[Equation (5.5)]b 

1 Flexible Interstate 4712 8127540 -56.85 
(0) 

Yes 

Flexible Non-Interstate NHS 8534 32084667 

2 Flexible Interstate 4712 6926284 -93.44 
(0) 

Yes 

Flexible Non-NHS 21966 96577508 

3 Flexible Non-Interstate NHS 8534 43619671 -72.59 
(0) 

Yes 

Flexible Non-NHS 21966 143838173 

4 Rigid Interstate 969 218281 -18.81 
(0) 

Yes 

Rigid Non-Interstate NHS 905 658664 

5 Rigid Interstate 969 57353 -29.29 
(0) 

Yes 

Rigid Non-NHS 714 634512 

6 Rigid Non-Interstate NHS 905 110156 -22.80 
(0) 

Yes 

Rigid Non-NHS 714 536013 

Notes: 
a When sample size is large, the MWW U-statistic is approximately normally distributed. The z-statistic for 
U can therefore be estimated. 
b Hypothesis tests were conducted at a 95% significance level. 

 

There is also a need to determine if the two different pavement types (flexible and 

rigid) can be combined.  The Mann-Whitney-Wilcoxon (MWW) test is again performed 

to test whether the two pavement types have the same distribution for the center 

deflection 1: 
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H0: The 1 distributions of the two pavement types are the same.   (5.6a) 

H1: The 1 distributions of the two pavement types are not the same.  (5.6b) 

Table 5.7 shows the test results for the three different combination pairs of pavement 

families. It can be observed that the null hypothesis was rejected for all the three different 

combination pairs. This means that we have to differentiate pavement types when 

developing SSI functions (satisfying one of the desirable properties of a structural 

strength indicator). 

 

Table 5.7: Mann-Whitney-Wilcoxon Test Results for Different Pavement Types 

Pair 
No.  Pavement Family 

Sample 
Size n 

MWW  
U-Statistic 

z-Statistic a 
(p-value) 

Reject H0? 
[Equation (5.5)]b 

1 Flexible Interstate 4712 3028306 -16.03 
(0) 

Yes 

Rigid Interstate 969 1537621 

2 Flexible Non-Interstate NHS 8534 5627116 -22.65 
(0) 

Yes 

Rigid Non-Interstate NHS 905 2096154 

3 Flexible Non-NHS 21966 9467276 -9.44 
(0) 

Yes 

Rigid Non-NHS 714 6216448 
Notes: 
a When sample size is large, the MWW U-statistic is approximately normally distributed. The z-statistic for 
U can therefore be estimated. 
b Hypothesis tests were conducted at a 95% significance level. 
 

5.3.2 Additional Curve Combination 

 

In addition to these six families of curves, one additional combination will be 

determined:  

 All pavement types and functional classes combined. 

 

It may be argued that the differences in the deflections of a pavement are not significant 

in terms of pavement type and functional class.  A high deflection is poor regardless of 

the pavement type and functional class.  By using one SSI curves as opposed to six 

curves, the implementation of the SSI in a PMS may be simplified.   
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5.3.3 Determination of Cumulative Probability Functions of Center Deflections for 

Each Pavement Family 

 

The second step involves determining the cumulative probability functions for the six 

different pavement families. Figure 5.2 and 5.3 show the histograms and cumulative 

probability distribution of each pavement family. It can be observed that: 

 The distributions of 1 for all six pavement families are non-normal. The 

distributions are left-skewed. 

 The mean and mode of the distribution increases from interstate class to non-

interstate NHS class to non-interstate non-NHS class. Similarly, the variance 

increases from the interstate class to non-interstate NHS class to non-interstate 

non-NHS class. This behavior is expected since interstate pavements are designed 

and maintained to a more stringent deflection level as compared to non-interstate 

pavements. 
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Figure 5.2: Histograms for Center Deflection 1 of Different Pavement Families 
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Figure 5.3: Cumulative Probability Distributions for Center Deflection 1 of Different 
Pavement Families 
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5.3.4 Determination of Structural Strength Index Functions 

 

It is noted from Figure 5.2 and 5.3 that all six pavement families have the same shape. 

This means that a generic structural strength index (SSI) function can be developed to 

describe the cumulative probability distribution of each pavement family. It is assumed 

that SSI can be described by a generic form shown in Equation (5.6): 

1100 1jkSSI e   for given pavement family (j,k)   (5.6) 

where 1 is the deflection measured at the center sensor (in mils), and  and  are 

coefficients that has to be determined. A structural strength index of 0 indicates that the 

segment is the structurally worst pavement segment in the entire highway network while 

a structural strength index of 100 represents a pavement segment is the structurally best 

within the network. By performing regression analyses on each pavement family, the 

coefficients  and  can be determined. The results are shown in Table 5.8. The r2 for 

each equation is at least 0.99 which indicates an excellent fit to the data.  Equation (5.6) 

can therefore be used to calculate the SSI for the pavement and system type.  

 

Table 5.8: Coefficients in Equation (5.6) for Different Pavement Families 

Pavement Family Coefficients of Model [Equation (5.6)] Regression 
Coefficient r2 ∝ β  

Flexible Interstate 1.0013 40.303 3.853 0.998 
Flexible Non-Interstate NHS 1.0035 66.811 3.106 0.998 
Flexible Non- NHS 1.0124 100.838 2.586 0.999 
Rigid Interstate 1.0345 14.301 3.056 0.999 
Rigid Non-Interstate NHS 1.0017 338.056 4.995 0.999 
Rigid Non- NHS 1.0717 23.600 1.999 0.999 
All Pavements & Func Class     

 

Figure 5.4 shows a graphical representation of the SSI functions for different 

pavement families. It can be observed that: 
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 SSI is defined for a larger range for flexible pavements than rigid pavements. 

This is expected since the elastic modulus for rigid pavements are much larger 

than that for flexible pavements. 
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Figure 5.4: SSI Functions for Different Pavement Families 

 

 For both flexible and rigid pavements, SSI for Interstate pavements tends to be 

defined over a smaller range than non-Interstate NHS pavements and non-NHS 

pavements. This is expected since interstate pavements are designed to handle 
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Non-Interstate NHS 

Non- NHS 

Interstate 

Non-Interstate NHS 

Non- NHS 
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heavier traffic loads (i.e. they have larger pavement thicknesses and materials of 

better strength). 

 For a given deflection, SSI for interstate pavements is lower than that for non-

interstate NHS and non-NHS pavements. For example, a flexible pavement with a 

4 mils deflection will result in an SSI of 17 on Interstate pavements, 59 on non-

Interstate NHS pavements and 94 on non-NHS pavements. This is expected since 

Interstate pavements are subject to a more stringent deflection guideline 

compared to the other pavement types. 

 

Using the information in Table 2.10 that Noureldin et al. (2005) developed for 

determining thresholds under different traffic loading, SSI thresholds can be developed. 

Cumulative ESAL levels are estimated from the cumulative truck traffic for the different 

highway systems and the deflections are estimated by interpolation. Corresponding SSI 

thresholds for both flexible and rigid pavements are shown in Table 5.9.  

 

Table 5.9: SSI Thresholds for Indiana Pavements 

Pavemen
t 

System Measure Excellent Very 
Good 

Good Fair Poor 

Flexible Interstate Deflection 
(mil) 

0-4 4-6 6-8 8-10 >10 

SSI 95-100 90-95 85-90 80-85 <80 

Non-
Interstate 

NHS 

Deflection 
(mil) 

0-6 6-8 8-10 10-12 >12 

SSI 90-100 85-90 80-85 75-80 <75 

Non-NHS Deflection 
(mil) 

0-8 8-10 10-12 12-14 >14 

SSI 85-100 80-85 75-80 70-75 <70 

Rigid Interstate Deflection 
(mil) 

0-4 4-6 6-8 8-10 >10 

SSI 95-100 90-95 85-90 80-85 <80 

Non-
Interstate 

NHS 

Deflection 
(mil) 

0-6 6-8 8-10 10-12 >12 

SSI 90-100 85-90 80-85 75-80 <75 

Non-NHS Deflection 
(mil) 

0-8 8-10 10-12 12-14 >14 

SSI 85-100 80-85 75-80 70-75 <70 
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5.4 Summary of Findings 

 

This chapter has discussed the development of the structural strength index. A structural 

condition indicator has the desirable properties of being measurable, and distinguishable 

by pavement types and designs. The concept of structural strength index (SSI) is 

proposed where the SSI is defined as the probability that pavements in a given family 

have a deflection larger than the measured deflection in a given highway segment. It is 

further shown in the chapter that the SSI models satisfy the desirable properties of a 

structural condition indicator. Using the case of Indiana as an illustration, SSI models are 

then estimated to provide managers with means to measure pavement structural condition 

for network level pavement management.  The use of SSI can therefore be a viable 

approach to measure comparative pavement structural condition in a highway network. 
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CHAPTER 6.  DEVELOPMENT OF DEFLECTION PREDICTION MODELS 

The previous chapter has demonstrated that pavement deflections (in particular the center 

deflection 1 from the network-level FWD testing) can be used to characterize the 

strength of pavements in a highway network. While the developed structural strength 

index (SSI) models can allow the agency to plan for pavement activities at the network 

level, applications are still limited since network-level deflection testing is performed on 

a three- to five-years cycle. Consequentially, statistical models were developed to predict 

center deflections 1 (and SSI) that can be used on an annual basis. 

 

6.1 Methodology 

 

In this study, ordinary least square (OLS) regression was performed to develop 

deflection prediction models. It was assumed that the deflection model is of the 

following form: 

1 0
1

n

i i

i

x          (6.1) 

where 1 is the deflection of the center sensor during the network level FWD test 

(measured in mils), xi are the independent variables and i are the coefficients that have 

to be estimated. The FWD test is assumed to be performed at a single load level (9000-

lb). For rigid pavements, 1 is the deflection of the center sensor for the center-loading 

(i.e. mid-slab) FWD test.  

Table 6.1 shows a list of the variables considered, including pavement surface 

age (defined as year of the FWD testing minus the year of last pavement treatment), the 

pavement type (flexible or rigid), center deflection 1,  average annual daily traffic or 

AADT, the percentage of truck traffic, average annual truck traffic, cumulative traffic 
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loading since last pavement treatment, dominant condition drainage class of subgrade, 

average maximum daily temperature, average minimum daily temperature, cumulative 

average daily temperature variation since last pavement treatment.  

In model development, pavement structural information (such as material layer 

thicknesses and pavement design) was not available. This is typical in most highway 

agencies where structural information is not frequently collected or updated in the 

network level pavement management system. In absence of thickness and design 

information, truck count was used instead as a proxy for pavement thickness and design. 

As noted in Table 6.1 data such as average temperatures, rainfall, and truck traffic 

can be collected annually. This means that the proposed model can be used to predict 

center deflection 1 in the absence of FWD deflection or material information, allowing a 

complete database for network-level pavement management. 

 

Table 6.1: Variables Considered in Study 

 

The same pavement families that were used in developing the SSI were used to 

develop deflection prediction models. The six cases are:  

 Flexible interstate 

Variable Description 

1 Center deflection of the pavement section (mils) 
Rural Rural Road Indicator: 0 = Urban, 1 = Rural 
Flex Flexible Pavement Indicator: 0 = Rigid, 1 = Flexible 

System System Type: 1 = Interstate, 2 = Non-NH, 3= Non-NHS 
Drainage Dominant condition drainage class 
%Comm Percent of commercial traffic 
Trucks Truck Count (in thousands) – Proxy for Pavement Thickness 
AADT Current Annual Average Daily Traffic (in thousands) 

Surf_Age Surface age (years) 
AvHiTemp Average high temperature for weather region (oF) 
AvLoTemp Average low temperature for weather region (oF) 
Avg_Temp Average temperature for weather region (oF) 
Avg_Rain Average rainfall for weather region (inch) 
NorthReg Weather Regions 1,2,3,4,5,6 grouped together 

Delta_Tem AvHiTemp – Avg_Temp (oF) 
CumTrk Number of trucks since last pavement work in millions of trucks  

CumTemp Delta_Tem * Surf_Age (oF-year) 
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 Flexible non-interstate NHS 

 Flexible non-NHS 

 Rigid interstate 

 Rigid non-interstate NHS 

 Rigid non-NHS 

These models can allow the prediction of SSI for network level management, as shown 

schematically in Figure 6.1. 

 

Figure 6.1: Use of Deflection Prediction Model in Pavement Management 

 

6.2 Development of Deflection Prediction Models 

 

Deflection models were developed for all six pavement families using the following 

functional form: 

1 0
1

ln
n

i i

i

x          (6.2) 

Network Level 
Pavement Management 

 Budget projections and  decisions 
 Programming of funds 
 Trade-off analysis 
 Overall network conditions  
 Network inventory 

 

Statistical Models 
 

Information Collected Annually 
 Traffic Counts 
 Number of Trucks 
 Temperature Variation 
 Rainfall 
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where 1 is the deflection of the center sensor during the network level FWD test 

(measured in mils), xi are the independent variables and i are the coefficients that have 

to be estimated. The logarithmic of center deflection was chosen because it produce a 

better fit as compared to a lineal center deflection. 

 

6.2.1 Deflection Prediction Models for Flexible Pavements 

 

Table 6.2 shows the deflection prediction models for both flexible pavements. The 

following can be observed from the table: 

 In general, when the cumulative truck traffic increases, natural logarithm of the 

center deflection ln( 1) increase. This is expected because pavement structure 

deteriorates with increasing truck traffic loading, resulting in a larger deflection. 

The only exception is the non-interstate NHS flexible pavement family. 

 When the cumulative temperature variation increases, natural logarithm of center 

deflection ln( 1) increases. Asphalt undergoes aging with weathering, causing a 

loss in structural capacity and an increase in deflection. The only exception is the 

non-interstate NHS flexible pavement family.  

 When the rainfall increases, center natural logarithm of center deflection ln( 1) 

increases. This is due to increased weathering which leads to asphalt aging and 

degradation of base and subgrade strength. 

 Truck count was used in the models as a proxy for pavement thickness and 

design. A higher truck count would warrant a thicker pavement and a more 

stringent design. In general, a larger truck count (and pavement thickness) would 

result in a smaller center deflection 1 and natural logarithm ln( 1). The exception 

to this behavior is the non-interstate NHS flexible pavement families. 

 Rural highways can also be viewed as a proxy of pavement thickness and design. 

Typically, pavements on rural highways are expected to carry less traffic and tend 

to be designed to a lower standard as compared to pavements on urban highways. 

This means that deflection tends to be lower for rural highway pavements as 

compared to urban highway pavements. 
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 The developed deflection prediction models exhibit a rather low r2. While these 

models allow the identification of possible factors affecting deflections in flexible 

pavements, the models cannot be applied in practice to predict actual pavement 

deflections. 

 

Table 6.2: Deflection Prediction Models for Flexible Pavements 

(a) Model Results 

Pavement 
Family 

Variable Coefficient Standard 
Error 

b/Std Error P[|Z|>z] Mean of X 

Flexible 
Interstate 

Constant 1.7345 0.1314 13.2050 0.0000  - 

CUMTEMP -0.0066 0.0012 -5.4370 0.0000 97.9795 

CUMTRK 0.0160 0.0029 5.5400 0.0000 42.3022 
TRUCKS -0.0515 0.0101 -5.0780 0.0000 12.7209 

RURAL -0.1293 0.0432 -2.9970 0.0027 0.1750 
Flexible 

Non- 
NHS 

Constant 1.3141 0.0519 25.3410 0.0000 -  

CUMTEMP 0.0022 0.0004 5.4750 0.0000 117.0772 

AVG_RAIN 0.0488 0.0306 1.5950 0.1107 0.3566 

CUMTRK -0.0138 0.0037 -3.7620 0.0002 10.8090 

TRUCKS 0.0258 0.0162 1.5910 0.1115 2.6812 

RURAL 0.1258 0.0356 3.5320 0.0004 0.1765 
Flexible 

Non-
Interstate 

NHS 

Constant 2.0443 0.0177 115.7370 0.0000 -  

CUMTEMP 0.0002 0.0001 1.8310 0.0670 127.1212 

AVG_RAIN 0.0604 0.0113 5.3350 0.0000 0.3034 

CUMTRK 0.0103 0.0047 2.1810 0.0292 2.6770 

TRUCKS -0.2104 0.0231 -9.1270 0.0000 0.6347 

RURAL -0.2163 0.0167 -12.9280 0.0000 0.1055 

 

(b) Summary Statistics 

Pavement Family Flexible 
Interstate 

Flexible Non-Interstate 
NHS 

Flexible Non- 
NHS 

Observations 537 816 7865 
r2 0.0628 0.0645 0.0854 

Log-Likelihood -197.6304 -370.5077 -4812.6679 
Durbin-Watson Statistic 1.9034 2.0441 2.0108 

Mean of ln( 1) 
1.0830 1.5368 1.9619 

Std Dev of ln( 1) 
0.3615 0.3942 0.4666 
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6.2.2 Deflection Prediction Models for Rigid Pavements 

 

 Table 6.3 shows the deflection prediction models for rigid pavements. The 

following can be observed from table: 

 In general, when the cumulative truck traffic increases, natural logarithm of 

center deflection ln( 1) increase. This is expected because pavement structure 

deteriorates with increasing truck traffic loading, resulting in a larger deflection.  

 When the cumulative temperature variation increases, natural logarithm of center 

deflection ln( 1) increases. Concrete slabs undergo fatigue through repeated 

warping due to temperature variations. This causes a loss in structural capacity 

and results in an increase in deflection. The only exception is the non-interstate 

non-NHS rigid pavement family.  

 When the rainfall increases, natural logarithm of center deflection ln( 1) 

increases. This is due to increased weathering which leads to deterioration of 

joints and loss of base and subgrade support. 

 Truck count was used in the models as a proxy for pavement thickness and 

design. A higher truck count would warrant a thicker pavement and a more 

stringent design. In general, a larger truck count (and pavement thickness) would 

result in a smaller center deflection 1 and natural logarithm ln( 1). The exception 

to this behavior is the rigid non-interstate NHS pavement family. 

 Rural highways can also be viewed as a proxy of pavement thickness and design. 

Typically, pavements on rural highways are expected to carry less traffic and tend 

to be designed to a lower standard as compared to pavements on urban highways. 

This means that deflection tends to be lower for rural highway pavements as 

compared to urban highway pavements. 

 The developed deflection prediction models exhibit acceptable r2 values. These 

models can therefore used in the pavement management systems to predict actual 

pavement deflections. 
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Table 6.3: Deflection Prediction Models for Rigid Pavements 

(a) Model Results 

Pavement 
Family 

Variable Coefficient Standard 
Error 

b/St.Er. P[|Z|>z] Mean of X 

Rigid 
Interstate 

Constant 2.6063 0.1502 17.3560 0.0000  - 

CUMTEMP -0.0048 0.0006 -7.7930 0.0000 218.0201 

CUMTRK 0.0149 0.0023 6.4320 0.0000 65.4100 

TRUCKS -0.1306 0.0159 -8.1900 0.0000 10.0180 
RURAL -0.2713 0.0947 -2.8660 0.0045 0.0683 

Rigid 
Non- 
NHS 

Constant 0.9778 0.0452 21.6230 0.0000 -  
CUMTEMP 0.0017 0.0002 10.7400 0.0000 199.7880 

AVG_RAIN 0.4254 0.0329 12.9260 0.0000 0.2538 

CUMTRK -0.0294 0.0031 -9.5980 0.0000 10.4187 

TRUCKS 0.1955 0.0161 12.1040 0.0000 2.1385 

Rigid 
Non-

Interstate 
NHS 

Constant 2.6160 0.0509 51.3970 0.0000 -  
CUMTEMP -0.0013 0.0003 -4.0010 0.0001 170.5222 

CUMTRK 0.0115 0.0054 2.1250 0.0344 9.2552 

TRUCKS -0.3695 0.0441 -8.3710 0.0000 1.1986 

RURAL -0.2572 0.1002 -2.5660 0.0108 0.0411 

 

(b) Summary Statistics 

Pavement Family Rigid Interstate Rigid Non-Interstate NHS Rigid Non- NHS 
Observations 249 599 316 

r2 0.3471 0.2667 0.5003 

Log-Likelihood -77.8065 -73.7409 -115.3490 

Durbin-Watson 
Statistic 

2.07098 2.0012 2.0752 

Mean of ln( 1) 
1.2030 1.5394 2.0436 

Std Dev of ln( 1) 
0.4101 0.3199 0.4939 

 

6.3 Validation and Application to Determine Structural Strength Index 

 

In order to validate the results of the models, 60 pavement segments not used in model 

development were randomly selected and the deflection was estimated using the models 

shown in Tables 6.2 and 6.3.  In addition, comparable SSI values were calculated for 

both actual and predicted deflection values.  The predicted deflections were then 

compared to the actual deflection.  Table 6.4 shows the validation data for both and SSI 

values. 
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Table 6.4: Deflection Prediction Model Validation  

Pavement System CumTemp Ave_ 
Rain 

Cum_Truck Truck Rural Actual 

Deflection 

Predicted 

Deflection 

Flexible Interstate 84 2.34 17.32 6.78 0 3.68 3.03 
Flexible Interstate 56 2.13 28.67 15.71 0 2.96 2.76 
Flexible Interstate 133 3.69 57.18 12.05 0 3.07 3.15 
Flexible Interstate 196 1.12 74.28 12.72 1 1.60 2.32 
Flexible Interstate 164 3.69 78.51 13.44 0 2.74 3.37 
Flexible Interstate 62 3.69 27.44 12.53 0 2.46 3.07 
Flexible Interstate 62 4.89 26.89 12.28 0 3.13 3.08 
Flexible Interstate 123 3.69 57.99 13.24 0 3.27 3.21 
Flexible Interstate 71 5.25 21.32 8.34 0 2.77 3.25 
Flexible Interstate 95 3.61 53.70 16.35 0 2.81 3.08 
Flexible NHS 217 3.71 8.46 1.10 1 9.57 7.46 
Flexible NHS 88 4.42 9.99 3.04 0 4.10 5.28 
Flexible NHS 149 3.81 6.15 1.53 0 2.17 5.94 
Flexible NHS 128 1.60 6.57 2.00 1 5.70 5.82 
Flexible NHS 86 4.83 0.67 0.23 0 3.88 5.67 
Flexible NHS 172 0.90 6.63 1.30 0 6.46 5.35 
Flexible NHS 110 0.90 3.01 0.83 1 4.02 5.51 
Flexible NHS 82 4.89 9.17 3.14 1 2.04 6.14 
Flexible NHS 88 4.42 9.99 3.04 0 4.85 5.28 
Flexible NHS 136 7.21 7.87 1.66 0 5.37 6.68 
Flexible Non-NHS 120 2.34 0.64 0.18 0 4.87 8.73 
Flexible Non-NHS 138 3.65 1.71 0.39 0 12.18 8.96 
Flexible Non-NHS 70 5.19 1.84 0.72 1 6.67 7.28 
Flexible Non-NHS 214 1.59 4.65 0.61 1 5.48 5.99 
Flexible Non-NHS 95 3.20 3.00 1.03 0 8.45 7.46 
Flexible Non-NHS 214 1.59 4.65 0.61 1 6.50 5.99 
Flexible Non-NHS 262 3.37 1.18 0.14 0 8.73 9.57 
Flexible Non-NHS 124 9.33 3.21 0.68 0 9.84 11.67 
Flexible Non-NHS 178 4.16 3.49 0.53 0 5.27 8.87 
Flexible Non-NHS 125 1.92 2.79 0.70 0 10.55 7.46 
Rigid Interstate 204 2.34 44.53 7.18 0 5.07 3.87 
Rigid Interstate 380 3.65 81.62 6.78 0 3.37 3.04 
Rigid Interstate 211 3.61 119.34 16.35 0 3.00 3.45 
Rigid Interstate 192 2.34 39.60 6.78 0 4.18 4.01 
Rigid Interstate 126 3.61 71.60 16.35 0 1.43 2.54 
Rigid Interstate 71 1.14 14.08 6.43 0 6.20 5.12 
Rigid Interstate 238 1.14 50.70 6.95 0 3.28 3.72 
Rigid Interstate 380 3.65 81.62 6.78 0 3.46 3.04 
Rigid Interstate 204 2.34 44.53 7.18 0 2.78 3.87 
Rigid Interstate 238 1.14 50.70 6.95 0 6.13 3.72 
Rigid NHS 77 1.19 9.87 4.51 0 9.60 9.06 
Rigid NHS 173 2.16 2.85 0.60 1 9.86 9.23 
Rigid NHS 77 1.19 6.24 2.85 0 5.13 7.29 
Rigid NHS 77 1.19 6.24 2.85 0 5.80 7.29 
Rigid NHS 77 1.19 9.87 4.51 0 6.42 9.06 
Rigid NHS 221 3.61 10.85 1.42 0 17.09 17.27 
Rigid NHS 77 1.19 6.24 2.85 0 6.19 7.29 
Rigid NHS 77 1.19 9.87 4.51 0 7.42 9.06 
Rigid NHS 344 2.48 48.60 4.44 0 8.29 7.81 
Rigid NHS 77 1.19 6.24 2.85 0 4.33 7.29 
Rigid Non-NHS 48 1.14 0.41 0.28 0 8.90 11.66 
Rigid Non-NHS 196 7.94 15.26 2.09 0 3.65 5.84 
Rigid Non-NHS 249 2.41 3.61 0.43 0 9.19 8.80 
Rigid Non-NHS 249 2.41 3.61 0.43 0 9.50 8.80 
Rigid Non-NHS 249 2.41 3.61 0.43 0 10.38 8.80 
Rigid Non-NHS 356 2.91 28.11 2.33 0 3.34 5.03 
Rigid Non-NHS 30 2.73 0.31 0.28 0 9.46 11.91 
Rigid Non-NHS 356 2.91 28.11 2.33 0 5.37 5.03 
Rigid Non-NHS 22 4.04 0.70 0.96 1 9.26 7.27 
Rigid Non-NHS 356 2.91 28.11 2.33 0 4.18 5.03 
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Figure 6.2: Comparison between Estimated and Actual Deflections 

Figure 6.2 shows the comparison between the estimated and actual deflections. It is 

observed that the model tends to overestimate center deflection 1 by about 11%. This is 

acceptable for practical pavement management purposes since the models provide 

conservative estimates of the deflections and hence pavement strength.  

 
Table 6.4 also demonstrates the validity of the framework proposed in Chapter 3. 

SSIs can be evaluated with and without actual FWD deflections without great loss of 

practicality. If FWD tests are performed on a given segment in a given year, the actual 

SSI can be calculated using the SSI models developed in Chapter 5. In the event where 

there is no data in a given year, the developed models in this chapter can be applied to 

estimate the FWD deflections and the SSIs. Thus highway agencies will be able to 

consider pavement structural performance in addition to the current pavement functional 

performance when making annual network-level pavement management decisions. 

 

estimated = 1.11 actual 
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6.4 Chapter Summary 

 

This chapter has presented the development of pavement deflection prediction models 

that can be used for network level pavement management. A statistical approach was 

adopted to relate FWD deflection with parameters such as cumulative truck traffic, 

temperature variation, truck count and rural indicator (proxies for pavement thickness 

design). An illustration is also provided in the chapter to demonstrate how the deflection 

models can be used to determine pavement structural strength index. The variables used 

in the models can be easily obtained by highway agencies annually and the models 

essentially can be used for the prediction of pavement deflections in the absence of FWD 

tests or pavement coring. This can greatly enhance the completeness of the pavement 

structural condition database that is crucial in network level pavement management. 
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CHAPTER 7.  CONCLUSIONS 

7.1 Main Findings 

 

Pavement structural capacity assessment is an essential component for pavement 

management at both the network level and the project level. At the network level, this 

essential component is needed to determine the minimum funding for meeting the goal of 

an overall acceptable pavement structural condition for the network. At the project level, 

it is needed to guide the pavement manager to identify the appropriate pavement 

treatment (ranging between doing nothing and complete reconstruction).  

 

At both levels of management, there is an increasing trend towards decision making in a 

multiple criteria context. A key aspect of the multiple criteria decision making is that the 

criteria must be amenable to scaling so that they can be incorporated in the overall utility 

function. Almost all SHAs measure the in-situ structural condition of their pavements 

using the falling weight deflectometer (FWD), whose output is the pavement surface 

deflection in mils (1/1000 inches).  

 

This report presents an index to assess the structural condition of a pavement using 

deflection data from FWD measurements as part of a multiple criteria decision-making at 

the network level.  Pavement deflection measurements were scaled to a structural 

strength indicator (SSI) ranging from 0 to 100 (excellent structural condition). The scale 

selected was logistic in shape and was developed on the basis of cumulative distribution.  

The use of the cumulative probability distribution was merely to establish the 

performance upon which a logistic functional form was specified. Any other method 

could have been used to establish the reference data, such as expert opinion or monetary 



84 
 

equivalents of each condition level. As such, the developed index is not to be viewed as 

being tied to a probability distribution or interpreted as such. Thus, the developed index 

could be used across time and space, very much like the pavement serviceability rating 

PSR. Using the relationship between this index and deflection number, the value of 

structural condition for a given pavement section can be established given the deflection 

in mils. A modeling framework to predict pavement deflection values and estimate the 

SSI values given its functional class, surface age, and soil drainage conditions is also 

developed. 

 

7.2 Recommendations for Future Research 

 

In answering the questions posed at the beginning of this thesis, a wide range of research 

directions can be pursued in the future. The most important effort would be to investigate 

the stability of the SSI function developed for Indiana and its transferability to other 

states. This can be done by collecting deflection data from other highway agencies and 

ascertaining what calibration parameters would be needed to enhance the transferability 

of the models.  

With regard to SSI prediction methods for use at pavement sections lacking 

deflection data, it is critical that these models are as reliable as possible. If this is not 

done, SSIs could be estimated incorrectly leading to denial of structural preservation 

treatments when they are due, or application of such treatments long before they are 

actually due at a given pavement section. In this regard, future work could include 

refinement of these models in a variety of ways. First, the assumption of linearity of the 

explanatory variables, particularly, surface age, is unduly restrictive and could be 

relaxed. This is because it is of interest to examine and track the true relationship 

between pavement structural condition and age, and there is reason to believe that there 

not only is a very gradual deterioration in pavement structural condition over time, but 

also there is likely to be a non-linear shape of this relationship. Secondly, the variables 

that surrogate pavement thickness could be replaced by the true pavement thicknesses 

derived from coring tests and/or GPR measurements. This would obviate the problems of 
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endogeneity engendered by the use of surrogate variables such as traffic loading or 

functional class. Third, better prediction models with a greater fit to actual deflection 

measurements have to be developed for each pavement family with particular attention to 

flexible pavements. 

Furthermore, future research could establish decision matrices on the basis of a 

reasonable number of factors and also at high levels of granularity for each factor. Such 

matrices would recommend a set of appropriate alternative structural treatments for a 

given level of structural condition, traffic loading, soil drainage conditions, etc. 

Finally, future research could examine the various institutional mechanisms by 

which pavement structural condition (in terms of the developed index) could be 

incorporated into the matrix of performance measures for pavement as well as overall 

highway asset management. The present thesis, has strived to help in setting the stage for 

efforts to be carried out at the next level. 
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