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Abstract
A video-rate stereo machine has been developed at

CMU with the capability of generating a dense range map,
aligned with an intensity image, at the video rate. The tar-
get performance of the CMU video-rate stereo machine is:
1) multi image input of 6 cameras; 2) high throughput of
30 million point×disparity measurement per second; 3)
high frame rate of 30 frame/sec; 4) a dense depth map of
256× 240 pixels; 5) disparity search range of up to 60 pix-
els; 6) high precision of up to 7 bits (with interpolation);
7) uncertainty estimation available for each pixel.

1  Introduction
Stereo ranging, which uses correspondence between

sets of two or more images for depth measurement, has
many advantages. It is passive and it does not emit any
radio or light energy. With appropriate imaging geometry,
optics, and high-resolution cameras, stereo can produce a
dense, precise range image of even distant scenes. Stereo
performs sensor fusion inherently; range information is
aligned with visual information in the common image
coordinates. Stereo depth mapping is scanless and poten-
tially as fast as imaging; thus it does not have the problem
of apparent shape distortion from which a scanning-based
range sensor suffers due to motion during a scan.

Despite a great deal of research into stereo during the
past two decades, no stereo systems developed so far have
lived up to the potentials described above, especially in
terms of throughput (frame rate× frame size) and range of
disparity search (which determines the dynamic range of
distance measurement) [1,2,3,10]. The PRISM3 system,
developed by Teleos [6], the JPL stereo implemented on
DataCube [4], CMU’s Warp-based multi-baseline stereo
[9], and INRIA’s system [13] are the four most advanced
real-time stereo systems; yet they do not provide a com-
plete video-rate output of range as dense as the input
image with low latency.

The depth maps obtained by current stereo systems
are not very accurate or reliable, either. This is partly due

to the fundamental difficulty of the stereo correspondence
problem; finding corresponding points between left and
right images is locally ambiguous. Various solutions have
been proposed, ranging from a hierarchical smoothing or
coarse-to-fine strategy to a global optimization technique
based on surface coherency assumptions. However, these
techniques tend to be heuristic or result in computationally
expensive algorithms.

Our video-rate stereo-machine is based on a new ste-
reo technique which has been developed and tested at Car-
negie Mellon over years [7,8,5]. It uses multiple images
obtained by multiple cameras to produce different base-
lines in lengths and in directions. The multi-baseline ste-
reo method takes advantage of the redundancy contained
in multi-stereo pairs, resulting in a straightforward algo-
rithm which is appropriate for hardware implementation.

2  Multi-Baseline Stereo Method

2.1  Baseline and matching
The disparity measurement is the difference in the

positions of two corresponding points in the left and right
images. Assuming that stereo images have been rectified,
the disparityd is related to the distancez to the scene point
by:

(1)

whereB andF are baseline and focal length, respectively.
This equation indicates a simple but important fact. The
baseline lengthB acts as a magnification factor in
measuringd in order to obtainz. The estimated distance,
therefore, is more precise if we set the two cameras farther
apart from each other, which means a longer baseline. A
longer baseline, however, poses its own problem. Because
a larger disparity range must be searched, there is a greater
possibility of a false match. So a trade-off exists about
selection of the baseline lengths between precision of
measurement and correctness of matching.

d B F
1
z
---⋅ ⋅=

95



2.2  Sum of SSDs
The CMU multi-baseline stereo method is based on a

simple fact: if we divide both sides of (1) byB, we have:

(2)

This equation indicates that for a particular point in the
image, the disparity divided by the baseline length (the
inverse depthζ) is constant since there is only one dis-
tancez for that point. If any evidence or measure of match-
ing for the same point is represented with respect toζ, it
should consistently show a good indication only at the sin-
gle correct value ofζ independent ofB. Therefore, if we
fuse or add such measures from stereo of multiple base-
lines into a single measure, we can expect that it will indi-
cate a unique match position.

The SSD (Sum of Squared Difference) over a small
window is one of the simplest and most effective measures
of image matching. For a particular point in the base
image, a small image window is cropped around it, and it
is slid along the epipolar line of other images, and the SSD
values are computed for each disparity value. The curves
SSD1 to SSD3 in Figure 1 show typical curves of SSD
values with respect toζ for individual stereo image pairs.

Note that these SSD functions have the same mini-
mum position that corresponds to the true depth. We add
up the SSD functions from all stereo pairs to produce the
sum of SSDs, which we call SSSD-in-inverse-distance.
The SSSD-in-inverse-distance has a more clear and unam-
biguous minimum. Also, one should notice that the valley
of the SSSD curve is sharper, meaning that we can localize
the minimum position more precisely, thereby producing
greater precision in depth measurement. Obviously, this
idea works for any combination of baseline. The computa-
tion is completely local, and does not involve any search,
optimization, or smoothing. All the algorithm has to do is
to compute the SSD functions, scale and sum them to
obtain the SSSD function, and locate the single minimum
for each pixel, which is guaranteed to exist uniquely.
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Figure 1: SSD and SSSD functions

The algorithm has been tested with indoor and out-
door scenes under a variety of conditions[5,8]. The typical
error observed was from 0.8% (calibrated experiment) to
several percents (outdoor scene).

2.3  Summary of the algorithm
The multi-baseline stereo method consists of three

steps as shown in Figure 2. The first step is the Laplacian
of Gaussian (LOG) filtering of input images. This
enhances the image features as well as removing the effect
of intensity variations among images due to difference of
camera gains, ambient light, etc. The second step is the
computation of SSD values for all stereo image pairs and
the summation of the SSD values to produce the SSSD
function. Image interpolation for sub-pixel resampling is
required in this process. The third and final step is the
identification and localization of the minimum of the
SSSD function to determine the inverse depth. Uncertainty
is evaluated by analyzing the curvature of the SSSD func-
tion at the minimum. All these measurements are done in
one-tenth subpixel precision.

3  Design of a Video-Rate Stereo Machine
We have designed a video-rate stereo vision system

based on the theory and experimental results with the
multi-baseline stereo method. One of the features of this
technique is an algorithm which is completely local in its
computation. Computing the SSSD-in-inverse-distance
function requires only a large number of local window
operations applied at each image position; no global opti-
mization or comparison is involved. We believe this is the
most important aspect for realizing a fast and low-cost ste-
reo machine.

The basic theory requires some extensions to allow
for parallel, low-cost, high-speed machine implementa-
tion. The three major ones are: 1) the use of small integers
for image data representation; 2) the use of absolute values
instead of squares in the SSD computation (SAD instead

Images

Laplacian of Gaussian (LOG)

SSD and SSSD

Depth and Uncertainty Calculation

Figure 2: Outline of stereo method
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of SSD); and 3) camera geometry compensation capabil-
ity.

Figure 3 illustrates the configuration of the prototype
system. There are five important subsystems: 1) multi-
camera stereo head; 2) multi-image frame grabber; 3)
Laplacian of Gaussian (LOG) filtering; 4) parallel compu-
tation of SSAD; and 5) subpixel localization of the mini-
mum of the SSAD and its uncertainty estimation in C40
DSP array.    The video-rate stereo machine will perform
these stages on a stream of image data in a pipeline fash-
ion at video rate, resulting in a disparity map in the C40
DSP array at every 30msec.

Certain subsystems are connected to VME Bus and
controlled by VxWorks real-time processor. The processor
accesses various registers and memories in the stereo
machine. It is possible to read/write frame memories, set
LOG filters, read/write LOG images, set a SSAD window
size, and set LUTs for geometry compensation. A system
software, which is an application run on Sun workstation,
enables users to utilize these capabilities through a graphi-
cal interface. The resulting disparity maps computed in a
C40 DSP array are able to be transferred to the worksta-
tion using the same program

3.1  LOG Subsystem
The LOG subsystem performs the Laplacian of Gaus-

sian (LOG) filtering operation. The LOG subsystem has
six channels of input images, one for each camera. The
input image for each channel is read from the Frame Grab-
ber, processed, and the output image is sent to the SSAD
subsystems. Figure 4 shows the function of LOG sub-
system of one channel. Four convolvers are used for each
channel. Each convolver performs a 7×7 convolution,
which can be customized by loading an arbitrary 7×7 filter.
For example, we can load a Gaussian filter into the first
three convolvers to cascade smoothing operations, and a
Laplacian filter into the final one. The maximum size of
LOG filter becomes 25×25 by this cascading technique.

Figure 4: Function of LOG subsystem(1channel)
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Figure 3:  Architecture of stereo machine
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After the LOG filtering, the output data is compressed
from 8 bits to 4 bits, primarily to reduce the hardware size
of the SSAD subsystem which follows this stage. In
software experiments, we confirmed that there was not
much difference between the disparity map calculated with
8 bit data and the disparity map calculated with 4 bit data
converted from the 8 bit data using a histogram
equalization technique.

We use nonlinear compression to alter the pixel value
distribution in the actual hardware implementation to
approximate the effect of histogram equalization. Figure
5(a) shows an example of input image. Output values of
LOG filtering typically distribute around zero as shown in
Figure 5(b). Figure 5(c) shows the linear compression and
an example of nonlinear compression. The nonlinear

Figure 5: Examples of LOG
(a) Example of input image
(b) Histogram of 8 bit LOG output
(c) Compression function
(d) LOG with linear compression
(e) LOG with nonlinear compression
(f) Multi-resolution image
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compression enables the data values closer to zero to be
divided more finely, while values further from zero are
divided more coarsely. Figure 5(d) shows an example of
the LOG filtering result with linear compression. Figure
5(e) shows an example of the LOG filtering result with
non-linear compression.

The LOG subsystem also has a multi-resolution
capability which produces a multiple resolution image
pyramid by repeatedly shrinking the images using a
method proposed by Burt [12]. Figure 5(f) shows an
example of multi-resolution LOG images of 5(a). In this
figure, the size of the largest image is 128×128, the next is
64×64, and so on.

3.2  SSAD Subsystem
The SSAD computation includes two summations;

one for an image window and the other for camera pairs.
The algorithm explained in 2.2 performs the former first,
but actually, the order of these two summations does not
matter. The hardware first computes summation over image
pairs. The summation in a small window is calculated next.
The exchange of the order brings about a compact
hardware implementation.

Figure 6 illustrates the image pairs summation portion
of SSAD subsystem. Assume a situation in which the
stereo machine computes a disparity value at pixel address
(i,j). Six input images coming from LOG subsystem are
stored in a base image memory and five inspection image
memories. A base camera geometry compensation module
transforms a pixel address (i,j) to a compensated address
(Ib(i,j),Jb(i,j)). This transformation changes the base
camera coordinate to a distortion free and rectified image
coordinate. An inspection camera compensation module
transforms the pixel address (i,j) to a compensated address
(Iins(i,j,ζ),Jins(i,j,ζ)) where ζ is an inverse-distance in a
search range. Camera parameters, the stereo camera head
setup, and lens distortions determine these transformations.
The transformed pixel addresses are usually not integers.
Pixel extraction modules interpolate pixel values from the
neighboring four pixels. An absolute difference of the
interpolated pixel values of each stereo pair is added to
make an image pair summation with respect toζ.

The intermediate values are summed in a small
window to make the SSAD function. The SSAD
computation is very simple, but the most computation
intensive and critical part of the system. The stereo
machine successfully reduces the amount of operations by
taking advantage of the redundancy involved in the SSAD
computation of neighboring pixels. A window operation is
divided into a vertical and horizontal operation. Partial
sums obtained as a result of the vertical operation are stored
in a local memory and used recursively.
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Figure 7 illustrates a case when the window size is
five. When an intermediate value D(i,j) is an input, it is
added to a vertical partial sum VSUM(i-1, j). D(i-5,j)
which is a previous input and stored in a memory, is
subtracted from the resulting value to obtain a new vertical
partial sum VSUM(i,j). VSUM(i, j) is transferred to a
horizontal sum module to be added to SSAD(i,j-1).
VSUM(i,j-5), which is computed before and stored in a
memory, is subtracted from the resulting value to obtain
SSAD(i,j). This operation is performed for all pixel
addresses andζ in a search range.

The Minimum finder module, located at the end of
SSAD subsystem, selects the minimum value in the SSAD
function. It also has a capability to select a small set of
SSAD values, including the minimum, so that the C40 DSP
array can perform sub-pixel interpolation of disparity and
uncertainty estimation using the curvature near the
minimum value.

4  Current Status
A prototype machine has been built with off-the-shelf

components (See Figure 8). The main devices used include
PLDs, high-speed ROMs and RAMs and pipeline registers.
A few VLSI chips are a commercially available convolver,
digitizer and ALU. All of the systems are designed and
built in CMU except for the video cameras, the C40 DSP
system and the real-time processor board.
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Figure 6: SSAD computation 1
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It is currently operational at the speed of 30 frames
per second with 200×200 image size and 23 pixels dispar-
ity range. The capabilities of disparity interpolation and
uncertainty estimation have not been implemented yet.
Table 1 shows the current performance.

Table 1: Performance of CMU stereo machine

Number of camera 2 to 6

Processing time/pixel 33ns×(disparity range + 2)

Frame rate up to 30 frames/sec

Depth image size up to 256 × 240

Disparity search range up to 60 pixels
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Figure 8: The CMU video-rate stereo machine
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It handles the distance rang of 2 to 15m with 8mm
lenses. Figure 9 shows two example scenes demonstrating
the system’s performance. The first scene at the top left
corner (a), shows an intensity image of the scene. Image (b)
shows the corresponding disparity map of the same scene.
The second example scene, (c) and (d), are another
intensity image and disparity map image. The stereo
machine successfully generates dense disparity maps in the
ceiling and the wall of the corridor which have few
features.

5  Conclusion
This paper presents CMU video-rate stereo machine

based on multi-baseline method. The functions and
structures of LOG and SSAD hardwares, which are the
most important subsystems, are explained in detail. Finally
the performance is demonstrated in an indoor scene.

In addition to a range sensor for autonomous
navigation vehicles, there are many other applications that
the stereo machine opens up. One interesting application is

(a) (b)

(c) (d)

Figure 1:  Example scenes demonstrating the
performance of the system

(a) an intensity image of the first scene
(b) the corresponding disparity map
(c) and (d) one more example.

3D scene modeling in which 3D data obtained are
combined with intensity/color image to create a 3D model
of a real scene. We continue to improve the performance of
the stereo machine and plan to develop an application using
it.
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