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	is paper presents a novel wearable device for gesture capturing based on inertial and magnetic measurement units that are made
up of micromachined gyroscopes, accelerometers, and magnetometers. 	e low-cost inertial and magnetic measurement unit is
compact and small enough to wear and there are altogether thirty-six units integrated in the device.	e device is composed of two
symmetric parts, and either the right part or the le
 one contains eighteen units covering all the segments of the arm, palm, and
�ngers. 	e o�ine calibration and online calibration are proposed to improve the accuracy of sensors. Multiple quaternion-based
extended Kalman �lters are designed to estimate the absolute orientations, and kinematic models of the arm-hand are considered
to determine the relative orientations. Furthermore, position algorithm is deduced to compute the positions of corresponding joint.
Finally, several experiments are implemented to verify the e
ectiveness of the proposed wearable device.

1. Introduction

	e gesture is a natural and e�cient way for communication
and plays an important role in human-human interaction to
express and transmit information. 	erefore, the technology
of gesture recognition has become a hot research topic.
	rough gesture recognition, results are used to commu-
nicate with computers, assess the kinematics of the hand,
control electronic equipment, and so on. It has been wildly
used in several application areas, such as rehabilitation,
sports, and animation industry [1, 2]. In order to identify
human gestures, we need to obtain the positions, speeds,
directions, and other information of the gesture by a certain
gesture capture technology.

At present, there are two main kinds of motion capture
technology, namely, vision based and contact based devices
[3, 4]. Vision based devices capture the video streams for
analysis to determine the hand motion. On the other hand,
contact based devices depend on physical interaction with
the user. Based on vision gesture method, users generally
do not need to wear collection equipment and can move
more freely. But it is more susceptible to background,
like illumination, occlusion, and other environmental fac-
tors. Furthermore, the camera frame rate and placement

requirements are higher [5]. In comparison, contact based
devices are easy to implement. Examples of contact based
devices are mobile touch screens, EMG-based devices, and
data gloves. EMG-based device is portable, but EMG signal
is easily in�uenced by acquisition placement, individual
di
erences, physical condition, and other factors. Moreover,
�ne �nger and hand motion is still di�cult to determine [6].
Data gloves use multiple sensor such as optical �ber sensor,
pressure resistance sensor, pressure sensor, magnetometer,
accelerometer, and gyroscope, to perceive the movement [7].
	is kind of method can well re�ect the spatial motion
trajectory, attitude, and time sequence information of the
hand by capturing the position, direction, and angle of the
�nger, which are restricted to the environmental conditions.
But, at present, the product price is very expensive, so the
development of low-cost data gloves has become the goal
of our research. Di
erent types of sensory gloves have been
developed overtime, both commercial and prototype ones.
	e commercial products [8] usually use expensive motion-
sensing �bers and resistive-bend sensors and are too costly
for the consumer market [9]. Consequently, the prototype
data gloves are developed to lower the cost of such equipment
[10]. 	e �ex sensors or bending sensors are integrated into
the data gloves. However, the above sensors just measure the
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relative orientation of articulated segments by mounting the
sensor across the joint of interest. 	is requires an accurate
alignment of sensors with a particular joint. Moreover,
recalibration is necessary to mitigate estimation errors due
to the sensor displacements. General disadvantages of the
data gloves are the lack of user customization for individual
subject’ hands and obstruction of tactile sensing from the
palmar surface of the hand. O
en this inherently goes with
the lack of mounting space for embedding the sensors in
the cloth. To overcome these shortcomings, the inertial and
magnetic sensors are induced.

In recent years, the MEMS technology has developed
tremendously. 	e microinertial sensors have so many
advantages like low-cost, small size, low-power consumption,
large dynamic range, and so on. It has gradually become one
of the most popular sensors for human motion capturing
[11]. Meanwhile, the magnetic sensors are commonly used
together with inertial sensors for accurate and dri
-free ori-
entation estimation [12]. Inertial and magnetic measurement
unit (IMMU) has been proved to be an accurate approach
to estimating the orientations of body segments without the
external cameras [13]. It is nonobtrusive, comparably cost
e
ective, and easy to setup and use. It also demonstrates
higher correlation and lower error compared with a research-
used visual motion capture system when the same motions
are recorded [14]. Furthermore, the wearable inertial and
magnetic sensors are becoming increasingly popular for the
gesture motion capturing.

Gesture motion capture device based on microinertial
sensors can generally be divided into three types, which
are hand-hold type [15], wrist-wearable type [16], and glove
type [17]. Compared with the hand-hold and wrist-wearable
types, the glove type is available for having more numbers
and types of inertial sensors and provides more accurate
results of gestures. 	erefore, the forms of gloves are most
commonly used. 	e KHU-l data glove [17] consists of six
three-axis accelerometers, but it can only capture several
kinds of gestures. In [18], the data glove is developed based
on sixteen microinertia sensors, which can capture the
movements of each �nger and palm, but the information
of the heading angle is missing. In [19], the inertial and
magnetic measurement unit is used, but it only uses four
inertial and magnetic measurement units, which is unable
to obtain the information of each �nger joint. Power Glove
[20] is developed, which includes six nine-axis microinertial
sensors and ten six-axis microinertial sensors. It covers each
joint of the palm and �ngers, and motion characteristics can
be better evaluated. However, it does notmake full use of nine
microinertial sensors, and in some state, the heading angle
solution is instable so that it may lead to the estimation errors
of the joint angle.	e research shows that the current gesture
capture device does not take into account the motion of the
arm, and, at the same time, the movement of the hand cannot
be fully captured.	erefore, we use the inertial and magnetic
measurement units to develop a new gesture capture device,
which can fully capture themotion information of the �ngers,
hands, and arms.

On the other hand, the IMMU-based device should be
focused on the following two main aspects: calibration and

fusion algorithm. Calibration is important for improving the
performance of IMMU. Generally, there are two phases that
included inertial sensors calibration [21] and magnetometers
calibration in �eld [22]. 	e inertial sensors are of low cost
and low precision, the deterministic errors such as bias and
scale factor exist inevitably, and the calibration methods
should be designed to improve the accuracy. Moreover,
the magnetometers in the �eld would be a
ected by the
iron-based materials, which generate their own magnetic
�eld. 	erefore, the measurements of magnetometers are the
combination of earth’s magnetic �eld and the extra magnetic
�eld caused by the environmental e
ects. Hence, magne-
tometers calibration should be implemented for lessening
the disturbance and improving the azimuth angle. Fusion
algorithm is another key procedure to estimate orientations
by combining the signals of gyroscopes, accelerometers,
and magnetometers. 	e Kalman �lter is a useful tool for
sensor fusion. 	e extended Kalman �lter is [23] a general
method for estimating orientations and has been applied
in the products of AHRS [24]. Nevertheless, the EKF is
not easy to choose the appropriate parameters and hard for
computation. 	en the complementary �lter that combines
two independent noisy measurements of the same signal
is proposed [25]. Complementary �lters are the high-pass
signals provided by gyroscopes and the data from low-pass
accelerometers and magnetometers which provide relatively
accurate measurements at low frequencies fused to estimate
the true orientation. Reference [26] proposed a nonlinear
invariant observer, with respect to the symmetries of the
system equations. In addition, the deterministic algorithm is
another class for estimating the orientations.

	e novel wearable device proposed is developed for
gesture capturing based on the IMMUs. 	e paper is orga-
nized as follows. Section 2 presents the designs of the
wearable device. Section 3 describes the calibration of the
sensors and the algorithms of attitude estimation, and the
position estimation is deduced. Section 4 reports the results
of the calibration, the orientations, and gesture capturing
experiments, which verify the e
ectiveness of the proposed
device. Section 5 gives the conclusions of the paper.

2. Wearable Device Design

2.1. Inertial and Magnetic Measurement Unit Design. One of
the major designs of the wearable device is the development
of the low-cost inertial and magnetic measurement units.
Commercial IMMU commonly contains processing units
and transceiver modules except the MEMS inertial and
magnetic sensors. 	is increases the weight and packaging
size; hence, it is not suitable to use these IMMUs to put
on the right positions of the �ngers or arms. Moreover,
it is di�cult to add more IMMUs with small distance in
order to bene�t from redundant measurements or gain more
accurate measurements of �ngers because of the structure
and size of the unit. Here, the MPU9250 [27] that deploys
system in package technology and combines 9-axis inertial
and magnetic sensors in a very small package is used. Hence,
the low-cost, low-power, and light-weight IMMU can be
designed and developed. It also enables powering of multiple
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Figure 1: 	e wearable device.

IMMUs bymicrocontrol unit (MCU), which reduces the total
weight of the system.Moreover, small IMMU can be fastened
to the glove, which makes it more convenient and easier to
use. 	e MPU9250 sensor is mounted on a solid PCB with
dimensions of 10 × 15 × 2.6mm and a weight of about 6 g.

Connectivity is another important issue in the design.
Di
erent types of connections between sensor units and
access points on the body have been described in [28].
Wireless networking approaches for the connections are con-
venient, but the complexity of wireless networks is increased
and the system has to trade o
 energy consumption for data
rates. To avoid this problem, a wired approach is used in [29].
All sensor units are directly connected to a central controlling
unit by cables, which lead to a very complex wiring. In the
present work, a cascaded wiring approach [30] is used and
developed by exploiting the master SPI bus of each IMMU.
	is approach simpli�es wiring without any need for extra
components. Since measurements reading from a string of
IMMUs, the MCU need not switch to all the IMMUs to
fetch the data, which leads to lower power consumption.
Meanwhile, the textile cables are used to connect the IMMU
to each other and to the MCU for increasing the �exibility.
Here the STM32F4 microcontroller is used to develop the
MCU.

2.2. Device Design. A
er determining the above designs,
the wearable design of device can be determined. 	ere are
thirty-six IMMUs in the device, and a pair of device is
separately put on the right hand and le
 hand. Each side has
eighteen IMMUs, which covers all the segments of the arm,
palm, and �ngers. Each string deploys three IMMUs, and six
strings are used. Five of them are used to capture the motions
of the �ve �ngers, and the other one is used to capture the
motions of the palm, upper arm, and forearm. 	e battery
and MCU are attached to the wrist. 	e wearable device is
shown in Figure 1.

	e proposed wearable device is designed based on the
low-cost IMMUs, which can capture more information of the
motion than traditional sensors.	e traditional sensors used
in the data glove such as �ber or hall-e
ect sensors are frail.
Nevertheless, the board of inertial and magnetic sensor is
an independent unit. It is more compact, more durable, and
more robust. Commercial data gloves are too costly for the
consumer market, but the proposed data glove in the paper is
low-cost (US$ 200). Moreover, the proposed wearable device

can not only capture the motion of hand but also capture
the motion of arm, and the estimated results of motion are
outputting real time.

3. Methods

In this section, the gesture capture algorithms are presented.
First, models of the sensors are described, and the calibra-
tion method is presented to improve the measurements of
the IMMUs. 	en the absolute orientations �lter based on
quaternion-based extended Kalman �lter is deduced, and the
relative orientations algorithm integrated kinematics of arm-
hand are proposed. Finally, the position estimation algorithm
is deduced.

3.1. Models of the Sensors. Before analyzing the models of
inertial andmagnetic sensors, two coordinate frames that are
the navigation coordinate frame� and the body frame �need
to be set up. 	e orientations of a rigid body in the space are
determined when the axis orientation of a coordinate frame
attached to the body frame with respect to the navigation
frame is speci�ed. According to the frames, the sensors’
models are separately built as follows.

(1) Rate Gyros. Because the MEMS rate gyros do not have
enough sensitivity to measure the earth angular velocity, the
model can get rid of the earth angular vector. And the output
signal of a rate gyro is in�uenced by noise and bias; that is,

�� = � + �� + ��, (1)

where �� is measured by the rate gyros, � is the true value,�� is the gyro’ bias, and �� is the noise that supposed to be
Gaussian with zero-means.

(2) Accelerometers. 	e measurements of accelerometers in
the body frame � can be written as

a� = C
�
�M
� (a + g) + b� + w�, (2)

where a� is 3 × 3 matrixes measured by the accelerometers,

C�� denotes the Orientation Cosine Matrix representing the
rotation from the navigation frame to the body frame, g and

a ∈ R3 are the gravity vector and the inertial acceleration of
the body, respectively, expressed in the navigation frame, and	 = 9.81m/s2 denotes the gravitational constant;M� is 3 × 3
matrixes that scale the accelerometers outputs;b� is the vector
of accelerometers’ bias;w� ∈ R3 is the vector of Gaussian with
zero-means.

Commonly, the absolute acceleration of the rigid body in
the navigation frame is supposed to be weak 
 ≪ 	 or the
rigid body is static. 	en, the model of accelerometers can be
simpli�ed as

a� = C
�
�M
�
g + b� + w�. (3)

(3) Magnetometers. 	e ideal magnetic vector expressed in
the navigation frame is modeled by the unit vector Hℎ. 	e
measurements in the body frame � are given by

h� = C
�
�M
ℎ
Hℎ + bℎ + wℎ, (4)
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where Mℎ is a 3 × 3 matrix that scales the magnetometers
outputs, bℎ denotes the disturbance vector including magne-

tometers’ bias and magnetic e
ects, andwℎ ∈ R3 is the noises
that supposed to be Gaussian with zero-means.

According to the above presentations, we can know that
the models of accelerometers and magnetometers include
errors, which would lead to errors in estimating orientations.
Hence, the calibration should be implemented to improve the
accuracy of the sensors.

3.2. Calibration. In order to improve the accuracy of the
IMMU, calibration is a necessary procedure. 	e typical
calibration method is to assign the inertial sensors to a
known angular velocity and linear acceleration. 	is method
normally needs some speci�c equipment, such as turntable.
Here, a novel calibration method is proposed that do not
need the speci�c equipment and is easy to implement. 	e
calibration procedure has two steps. First, the accelerometers
and magnetometers are calibrated by the o�ine procedure.
	en the gyro is calibrated by the online procedure.

	e uni�edmathematical models of the calibration of the
accelerometers and magnetometers can be used as follows:

h
�
� = M

ℎ
h
� + b
ℎ + w�,

a
�
� = M

�
a
� + b
� + w�, (5)

where triaxial sensor model is written in the vector form and
bℎ, b� are constant o
set that shi
 the outputs of sensors.

	e calibration is the process that determines coe�cients

bℎ, b�, Mℎ, M� to improve the measurements of sensors.
When the unit has omnidirectional rotation, the magnitudes
of the true magnetic �eld and gravity �eld remain constant,

and the loci of the true magnetic �eld measured h� and a� are
spherical. Meanwhile, the measured h�� and a

�
� are ellipsoids,

and they can be expressed as follows [31]:

�����h������2 = (h��)�Aℎh�� − 2 (bℎ)�Aℎh�� + (bℎ)�Aℎbℎ
+ w̃�

�����a������2 = (a��)�A�a�� − 2 (b�)�A�a�� + (b�)�A�b�
+ w̃�,

(6)

where Aℎ = (Gℎ)�Gℎ, Gℎ = (Mℎ)−1, A� = (G�)�G�, G� =(M�)−1, and w̃� and w̃� are assumed noise.
Equations (6) are the expressions of the ellipsoid. In

other words, the measurements are constrained to lie on an
ellipsoid. 	us, the calibration of the magnetometers and
accelerometers is to seek ellipsoid-�ttingmethods to solve the

coe�cients ofG�,Gℎ, b�, bℎ. And the least squares algorithm
is commonly used to determine the parameters. 	e device
is rotated adequately to ensure that each unit gets enough
measurements to determine the calibration parameters by
least squares algorithm. Hence, the accelerometers and mag-
netometers of all units of the device are entirely calibrated.

A
er calibration, the magnetometers are calibrated to
lessen the environmental magnetic e
ect, and the biases

of the sensor outputs are compensated. Accordingly, the
previous equation can be rewritten as follows:

h� = C
�
�Hℎ + wℎ. (7)

Since the scale and bias errors from the accelerometers
are calibrated, the models of the accelerometers rewritten as
follows:

a� = C
�
�g + w�. (8)

	e o�ine calibration is implemented to determine the
bias and scale of the accelerometers andmagnetometers. And
the online calibration is implemented to remove the gyro bias.
We keep the data glove stationary for a while before use. So
the readings are zeros. 	e bias can then be computed by the
mean value of the measurements. 	e model is expressed as
follows:

�� = � + w�, (9)

where �� are the measurements of gyros, � are the true
angular velocity, and w� are the noise of gyros.

	e calibration parameters of the sensors are compen-
sated into the measurements so that the accuracy can be
improved for further work.

3.3. Orientation Filters. Based on these kinds of sensors, two
independent ways can determine the attitude and heading.
One is determined by open-loop gyros. 	e angular rate of
the rigid body is measured using gyros with respect to its
body axis frame. 	e angles are estimated by the open-loop
integration process, which has high dynamic characteristic.
However, the gyro errors would cause wandering attitude
angles and the gradual instability of the integration dri
ing.
	e other way is determined from open-loop accelerome-
ters and magnetometers. 	e orientations can be correctly
obtained from accelerometers and magnetometers in the
ideal environment. However the disturbance and noises
would lead to large errors and make results lack reliability.
	e two ways are both quite di�cult to achieve acceptable
performance. Sensor fusion is a great choice to attain the
stable and accurate orientations. 	en, the fusion algorithm
of quaternion-based extended Kalman �lter will be deduced.

	e frames are shown in Figure 1. In the �gure, the global
frame is � and local reference frame is, respectively, located
in each IMMU. 	e global reference frame �-axis is de�ned
along the axial axis (from the head to the feet) of the subject,�-axis along the sagittal (from the le
 shoulder to the right
shoulder) axis, and �-axis along the coronal axis (from the
back to the chest). 	e local frame �-axis is de�ned along
the axial axis (normal to the surface of IMMU along the
downward) of the subject, �-axis along the sagittal (from
the le
 side to the right side of the IMMU) axis, and �-
axis along the coronal axis (from the back to the forward of
IMMU).Meanwhile, two assumptions about data glove in use
aremade: (1) the body keeps static and only arm and hand are
in motion; (2) the local static magnetic �eld is homogeneous
throughout the whole arm.
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3.3.1. Absolute Orientation Filter. Combining the measured
angular velocity, acceleration, and magnetic �eld values of
one single IMMU, it can stably determine the orientations
with respect to a global coordinate system. 	e global
coordinate� and each coordinate � of IMMUs are shown in
Figure 1. 	e transformation between the representations of
a 3 × 1 column-vector x between� and � is expressed as

x
� = C
�
� [q] x�, (10)

where quaternion q = [�0;Q], [Q] is the antisymmetric
matrix given by

[Q] = [[
[

0 �3 −�2−�3 0 �1�2 −�1 0
]]
]
. (11)

	e attitude matrix C is related to the quaternion by

C (�) = (�20 −Q ⋅Q) I + 2QQ
� + 2�0 [Q] , (12)

where I is the identity matrix.
	e state vector is composed of the rotation quaternion.

	e state transition vector equation is

x	+1 = �	+1 = Φ (�
, �	) + �	 = exp (Ω	�
) �	 + ��	,
��	 = −�
2 Γ	�k	 = −�
2 [["	×] + �4	I−"�	 ] �k	, (13)

where the gyro measurement noise vector �k	 is assumed
small enough that a �rst-order approximation of the noisy
transition matrix is possible.

	en the process noise covariancematrix�	 will have the
following expression:

�	 = (�
2 )
2 Γ	Γ�Γ�	 . (14)

	e measurement model is constructed by stacking the
accelerometer and magnetometer measurement vectors:

z	+1 = [ a	+1
m	+1

]

= [C�� (�	+1) 0
0 C�� (�	+1)] [

g

h
] + [�k	+1�

k	+1
] .

(15)

	e covariance matrix of the measurement model R	+1 is

R	+1 = [
�R	+1 0
0 �R	+1

] , (16)

where the accelerometer and magnetometer measurement
noise �k	+1 and

�
k	+1 are uncorrelated zero-meanwhite noise

process and the covariancematrixes of which are �R	+1 = -2�I
and �R	+1 = -2�I, respectively.

Upper arm Forearm Palm Proximal Medial Distal

N H

Arm Hand Finger

Y

Z X z3 z4 z5 z6x1

y1 y3 y4 y5 y6y2

z1 x2z2 x3 x6x5x4

L1 L2

Wearable position of the IMMUJoint

A1 A2 F3F1 F2
L4 L5 L6L3

Figure 2: 	e model and frames of the arm-hand.

Because of the nonlinear nature of (15), the EKF approach
requires that a �rst-order Taylor-Maclaurin expansion is
carried out around the current state estimation by computing
the Jacobian matrix:

Η	+1 = //x	+1 z	+1
33333333x�+1=x−�+1 . (17)

	en, the orientations are estimated by the following EKF
equations.

Compute the a priori state estimate:

x
−
	+1 = Φ (T
,�	) x	. (18)

Compute the a priori error covariance matrix:

P
−
	+1 = Φ (T
,�	)P	Φ(T
,�	)� +Q	. (19)

Compute the Kalman gain:

K	+1 = P
−
	+1H
�
	+1 (H	+1P−	+1H�	+1 + R	+1)−1 . (20)

Compute the a posteriori state estimate:

x	+1 = x
−
	+1 + K	+1 [z	+1 − 4 (x−	+1)] . (21)

Compute the a posteriori error covariance matrix:

P	+1 = P
−
	+1 − K	+1H	+1P

−
	+1. (22)

According to the above algorithm, the absolute orienta-
tions of each IMMU can be estimated. 	en, the kinematics
of the human arm and hand is considered.

3.3.2. Relative Orientation Filter. 	e kinematic frames of
the arm, hand, and the fore�nger are presented. 	ere are
six joints, and the coordinate frames are built including the
global coordinate (�), upper-arm coordinate (51), forearm
(52), palm coordinate (6), proximal coordinate (71), medial
coordinate (72), and distal coordinate (73). And the lengths
between the joints are :1, :2, :3, :4, :5, and :6. 	e frames
are shown in Figure 2.	en the relative orientations between
two consecutive bodies can be determined by the following:

q
�

� = q
−1

 ⋅ q�, (23)

where q�
� is the quaternion of the relative orientations,

q
 is the quaternion of the absolute orientations of the
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�rst coordinate, and q� is the quaternion of the absolute
orientations of the second coordinate.

Meanwhile, the kinematic models of the arm, hand, and
�ngers are considered to determine the orientations of each
segment. Human arm-hand motion can be supposed to be
the articulatedmotion of rigid body parts.	ese segments are
upper arm (between the shoulder and elbow joints), forearm
(between the elbow and wrist joints), hand (between the
wrist joint and proximal joint), proximal �nger (between the
proximal joint and medial joint), medial �nger (between the
medial joint and distal joint), and distal �nger (from the distal
joint). Every joint has its own local frame. Shoulder can be
modeled as a ball joint with three DOFs and a �xed point
representing the center of the shoulder.Movements are repre-
sented as the vector between the upper arm and body. Elbow
is the rotating hinge joint with two DOFs. Wrist is modeled
as a rotating hinge joint with two DOFs that is calculated
between the vector representing the hand and forearm. Prox-
imal joint is modeled as rotating hinge joint with two DOFs.
Medial joint and distal joint aremodeled as rotating joint with
one DOF. 	us, the kinematic of this model consists of ten
DOFs: three in the shoulder joint, two in the elbow joint, two
in the wrist joint, two in the proximal joint, one in the medial
joint, and one in the distal joint. Hence, the responding
constraints are used to determine the orientations of each
segment.

3.4. Positions Estimation. We assume the body keeps static
and the motion of arm and hand is formed by rotation of the

joints. Hence, the position of the �ngertip p��3 , expressed in

the hand coordinate frame (see Figure 2) can be derived using
forward kinematics:

[p��31 ] = T
��1T�1�2T�2�T��1T�1�2T�2�3p�3�2

= T
��3 [p�3�21 ] ,

(24)

where the transformation between two consecutive bodies is
expressed by T��1 , T�1�2 , T�2�, T��1 , T�1�2 , and T�2�3 .

	e total transformation T��3 is given by the product of
each consecutive contribution:

T
��3 = [< (���3) p��30�3 1 ] , (25)

where <(���3) is the orientation of the distal phalanx with

respect to the body and p��3 is the position of the distal frame

expressed in the global frame.

3.5. Summary. 	e gestures capture method is proposed in
the section. 	e two procedures of the calibration are �rstly
implemented to improve the measurements of the sensors.
	e inertial sensors are calibrated by the o�ine calibration,
and the gyros are calibrated by the online calibration. 	en
the orientations of the IMMUs are estimated by the QEKF.
And the kinematics of arm-hand is considered and the con-
straints are integrated to determine the relative orientations.
Finally, the kinematic parameters are used to estimate the
positions. A complete diagram of the method is depicted in
Figure 3.
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Table 1: 	e calibration results.

Scale Bias

Accelerometers G� = [[[[
[

1 −0.02 0
0 0.95 0.12
0 0 0.92

]]]]
]

b� = [[[[
[

0.56
0.87
−0.87

]]]]
]

Magnetometers Gℎ = [[[[
[

1.11 0.02 0
0 1.10 0
0 0 1.05

]]]]
]

bℎ = [[[[
[

5.71
−39.54
−82.98

]]]]
]

4. Experiments and Results

	e calibration is implemented to improve the sensors accu-
racy, and then the comparison experiments are testi�ed to
investigate the stability and accuracy of the orientations esti-
mation. 	e real-time gesture motion capture experiments
prove the validness of the proposed device.

4.1. Calibration Results. 	e calibration results of the triaxis
accelerometers and triaxis magnetometers are presented in
the section. 	e calibration samples of IMMUs are collected
by rotating in various orientations. 	en, the proposed
method was used to determine the correctional calibration
parameters as G�, Gℎ, b�, and bℎ. 	e outputs of the
accelerometers and magnetometers are shown in Figure 4.
	e blue sphere in Figure 4 is the raw date of sensors and the
red sphere is the calibrated data of sensors. 	e calibration
parameters are listed in Table 1.

4.2. Evaluation Experiments. A
er calibrating all the sensors
of the device, the evaluation experiments are designed to
assess the accuracy of the orientation estimation. One of the
strings of the device is attached to the robotic arm. 	ree
IMMUs are set the same directions, shown in Figure 5. And
the robotic arm is rotated from the �rst state to the second
state. 	en the estimated orientations of IMMUs compare

Table 2: 	e RMSE of the orientations.

Static (∘) Dynamic (∘)

Yaw Pitch Roll Yaw Pitch Roll

IMMU-1 0.04 0.01 0.02 2.43 0.05 1.02

IMMU-2 0.11 0.01 0.02 1.68 0.51 1.03

IMMU-3 0.10 0.02 0.02 1.77 0.02 0.07

with the true orientations of robotic arm. 	e results of the
orientations of three IMMUs are shown in Figure 6. And
the results of the root mean square error (RMSE) of the
orientations are listed in Table 2.

As shown in Figure 6, during 5∼8 s, the robotic arm
is dynamic. And, in static case, it can be known that the
results have smaller variance and higher precision than the
results of the dynamic case. Moreover, the yaw angle has the
lager variance compared with the roll and pitch. It should
be caused by the motors of the robotic arm, because the
magnetometers are disturbed. When the robotic arm is in
static, the device can compute the accuracy orientations. 	e
comparison results proved the accuracy of the orientations of
the IMMUs of the device. 	en the real-time gesture motion
capture experiments are implemented.

4.3. Gesture Capture Experiments. 	e IMMUs’ data is sam-
pled, collected and computed by the MCU, and subsequently
transmitted via Bluetooth to the external devices. 	e MCU
processes the raw data, estimates the orientations of the each
unit, encapsulates them into a packet, and then sends the
packet to the PC by Bluetooth.	e baud rate for transmitting
data is 115200 bps. 	e frequency is 50HZ. By using this
design, themotion capture can be demonstrated by the virtual
model on the PC immediately. 	e interface is written by C#.
	e wearable system is shown as Figure 7.

To further verify the e
ectiveness of proposed device,
upper arm is swung up and down. 	e results of the
orientations of the gestures are shown in Figure 8. And the
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Robotic arm

IMMU-1

IMMU-2

IMMU-3

z1

x1

y1

(a) 	e �rst state

(b) 	e second state

Figure 5: 	e comparison experiments with robotic arm.

positons of the �ngertip of the right fore�nger are shown
in Figure 9. As shown in the �gures, the wearable device
can determine the realistic movements of the arm and
hand. Meanwhile, the accuracy of the results is assessed by
the statistics. 	e root mean square error (RMSE) of the
orientations is listed in Table 3. 	e RMSE of the positons
are listed in Table 4. Furthermore, the wearable device is
also tested by ten healthy participants; the real-time motion
gestures capture experiments are implemented to prove the
validity of the proposed system.

4.4. Discussion. In this paper, a novel wearable device for
gestures capturing based on magnetic and inertial measure-
ment units is proposed. As a practically useful application,
the proposed device satis�es the requirements including the
accuracy, computational e�ciency, and robustness. First, the
calibration method is designed to improve the accuracy of
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Figure 6: 	e results of orientations of the IMMUs.

IMMU

Bluetooth

Data glove
PC

Virtual modelTrajectory

Figure 7: 	e wearable system.

Table 3: 	e RMSE of the orientations of the arm-hand.

Angle (∘)

Upper arm 1.07 1.10 0.44

forearm 0.23 0.24

Palm 0.19 0.18

Proximal 0.11 0.26

Medial 0.10

Distal 0.08

Table 4: 	e RMSE of the positions of the �ngertip.

� (cm) � (cm) � (cm)

Positions of the �ngertip 3.45 1.35 2.34

the measurements of the sensors. In particular, the magnetic
e
ects of the �eld are attenuated in advance. 	en the
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20
40

60
80 −1.5

−1
−0.5

0
0.5

1

−20

0

20

40

60

y (cm)
x (cm)

z
 (

cm
)

Start

End

Figure 9: 	e positions of the �ngertip of the right fore�nger.

orientations of gesture are divided into absolute orienta-
tions and relative orientations. 	e absolute orientations are
determined by the QEKFs, and the relative orientations are
estimated by integrating the kinematics of the arm-hand.	e

positions are then easily computed. 	e proposed method is
simple and fast. 	e algorithm is operated in the embedded
system at 50Hz. 	e results of the experiments proved the
advantages of the proposed device.

5. Conclusion

	is paper presents the design, implementation, and exper-
imental results of a wearable device for gestures captur-
ing using inertial and magnetic sensor modules containing
orthogonally mounted triads of accelerometers, angular rate
sensors, and magnetometers. Di
erent from commercial
motion data gloves which usually use high-cost motion-
sensing �bers to acquire hand motion data, we adopted
the low-cost inertial and magnetic sensor to reduce cost.
Meanwhile, the performance of the low-cost, low-power, and
light-weight IMMU is superior to some commercial IMMU.
Furthermore, the novel device is proposed based on thirty-
six IMMUs, which cover the whole segments of the two arms
and hands. We designed the online and o�ine calibration
methods to improve the accuracy of the units. We deduced
the 3D arm and hand motion estimation algorithms that
integrated the proposed kinematic models of the arm, hand,
and �ngers and the attitude of gesture and positions of
�ngertips can be determined. For real-time performance and
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convenience, the interface with virtual model is designed.
Performance evaluations veri�ed that the proposed data
glove can accurately capture the motion of gestures. 	e
system is developed in the way that all electronic components
can be integrated and easy to wear. 	is makes it more
convenient and appealing for the user.
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