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Kangas, Maarit, Development of accelerometry-based fall detection. From
laboratory environment to real life
University of Oulu, Faculty of Medicine, Institute of Biomedicine, Department of Medical
Technology,  P.O. Box 5000, FI-90014 University of Oulu, Finland
Acta Univ. Oul. D 1140, 2011
Oulu, Finland

Abstract
About one third of home-dwelling older people suffer a fall ech year. The most consuming falls
occur when the person is alone and unable to get up, resulting in long lies which are associated
with institutionalisation and high morbidity-mortality rate. Even though personal emergency
response systems provide applications to call for help, older people are not always able or willing
to activate them. Hence, an automatic fall detection system is an important setting. Even though
pilot applications and commercial fall detection systems exist, the real-life validation of these
systems is scant. The aim of this study was to develop a validated acceleration-based method for
fall detection to be adapted for real-life applications among older people. Methods capable of
discriminating between falls and activities of daily living (ADL) were determined based on
laboratory tests. The threshold-based algorithms were validated with intentional falls in 20
middle-aged test persons and ADL in 20 middle-aged and 21 older people. The algorithm for the
waist with impact and end posture detection was able to discriminate falls from ADL with 97%
sensitivity and 100% specificity. In order to validate the fall detection system, a field test was
performed with 16 residents in elderly care units wearing a wireless sensor. During the 6-month
test period, acceleration data from five real-life falls were collected. One of the falls resulted in a
hip fracture. These falls showed similar features as intentional falls. However, high pre impact
velocity was detected in the case with a fracture, but not in all falls with preventative actions. The
system had a fall detection sensitivity of 71.4% with a false alarm rate of 1.1 alarms over a 24-
hour time period in this real-life pilot test. The data from real-life falls provide important material
for further development of fall detection and studies on fall mechanism and fall prevention.

Keywords: acceleration, elderly, fall detection, fall detector, falling, older people, real-
life





Kangas, Maarit, Kiihtyvyysanturiin perustuva kaatumisen tunnistaminen.
Laboratoriokokeista käytäntöön
Oulun yliopisto, Lääketieteellinen tiedekunta, Biolääketieteen laitos, Lääketieteen tekniikka,  PL
5000, 90014 Oulun yliopisto
Acta Univ. Oul. D 1140, 2011
Oulu

Tiivistelmä
Kotona asuvista yli 65-vuotiaista kaatuu vuosittain kolmannes. Mikäli kaatunut ei kykene nouse-
maan omin neuvoin, avun saaminen saattaa viivästyä. Tämä suurentaa sekä laitoshoitoon joutu-
misen todennäköisyyttä että kuoleman riskiä. Erilaisia hälytysjärjestelmiä on kyllä saatavilla,
mutta ikääntyneet eivät aina kykene käyttämään niitä tai eivät jostain syystä halua tehdä häly-
tystä. Tämän vuoksi automaattiselle kaatumishälyttimelle on tarvetta.

Tässä tutkimuksessa kehitettiin ja testattiin ikääntyneiden tarpeisiin soveltuva kiihtyvyysan-
turiin perustuva kaatumisen tunnistumenetelmä. Aineisto koottiin laboratorio-olosuhteissa
kokeilla, joihin osallistui sekä nuoria että keski-ikäisiä. Raja-arvoon perustuvia tunnistusalgorit-
meja testattiin 20 keski-ikäisen ohjeistettujen testikaatumisten sekä 20 keski-ikäisen ja 21
ikääntyneen arkisten askareiden tuottamalla datalla. Kaatumistapahtuman impaktin ja loppu-
asennon tunnistaminen vyötäröltä mitatuista kiihtyvyysarvoista erotteli kaatumisen muusta liik-
keestä 95 % sensitiivisyydellä ja 100 % spesifisyydellä. Tunnistusmenetelmää testattiin kenttä-
kokeessa, jossa 16 ikääntynyttä hoitokodin asukasta piti vyötäröllään mittauslaitetta. Kuuden
kuukauden aikana kiihtyvyyssignaali saatiin viidestä kaatumisesta. Yksi niistä aiheutti lonkka-
murtuman. Analyysin mukaan näiden todellisten kaatumisten kiihtyvyyssignaalit muistuttivat
testikaatumisia. Lonkkamurtumatapauksessa ennen impaktia mitattu nopeus oli erittäin korkea.
Vastaavaa ei havaittu tapauksissa, joissa oli merkkejä siitä, että kaatumista oli yritetty estää.
Kenttäkokeessa kaatumishälytysjärjestelmän sensitiivisyys oli 71.4 % ja vääriä hälytyksiä oli 1.1
vuorokaudessa.

Tutkimuksessa saatua tietoa tosielämän kaatumistapahtumista voidaan käyttää hyväksi kehi-
tettäessä kaatumisten ehkäisyä, niiden mekanismin tutkimista sekä kaatumisen tunnistusta kiih-
tyvyysanturien avulla.

Asiasanat: ikääntyneet, kaatuminen, kaatumisen tunnistaminen, kaatumistunnistin,
kenttäkoe, kiihtyvyysanturi, vanhus
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1 Introduction 

The proportion of older population aged over 65 years is growing rapidly in most 

countries. In Finland alone, this would mean an estimated number of over 

1,500,000 older people in the year 2030 (Official Statistics of Finland 2009). 

Studies have indicated that about one third of home-dwelling older people fall 

each year (Tinetti et al. 1988). Falls are the leading cause of deaths by injury for 

the older population. On average 20% of falls result in injury, including major 

soft tissue injuries and fractures (Bergland & Wyller 2004, Lehtola et al. 2006). 

Besides physical injuries, falls may have other negative outcomes through 

resulting in or increasing fear of falling that affects the quality of life among older 

people, threatening their independent living and restricting their mobility and 

social activities (Suzuki et al. 2002, Yardley & Smith 2002).  

Older people are afraid of remain lying and being unable to get up after 

falling (Melander-Wikman et al. 2007), and in reality, around half of fallers were 

not able to get up themselves (Bueno-Cavanillas et al. 2000). On average, fallers 

lie helplessly for more than 10 minutes after a fall, and in 3% of non-injurious fall 

cases the faller had been waiting for more than one hour before getting help 

(Tinetti et al. 1993). These long lies are associated with hospitalisation, 

institutionalisation and a high morbidity-mortality rate (Gurley et al. 1996, Tinetti 

et al. 1993). Older people are interested in new technologies aimed to support 

their independence and safety (Brownsell & Hawley 2004, Melander-Wikman et 

al. 2007). To prevent long lies commercially available personal emergency 

response systems (PERS) provide applications to call for help. However, in the 

case of an emergency, the person may be unable or unwilling to activate the PERS 

alarm. According to some reports, around 80% of older people wearing PERS and 

being unable to get up after a fall did not use their alarm system to call for help 

(Fleming et al. 2008a, Heinbüchner et al. 2010). In such cases an automatic fall 

detector could detect a fall and call for help automatically. Hence, a highly 

accurate fall detection system is an important setting. 

Some commercially available automatic fall detection systems exist, typically 

applying accelerometry-based detection methods and attachment sites at the waist 

or wrist as summarised by Noury et al. (2008). However, most fall detection 

applications in the literature are prototypes or applications for research purposes 

(Bourke et al. 2007a, Diaz et al. 2004, Karantonis et al. 2006, Lindemann et al. 

2005, Mathie et al. 2004a, Yoshida et al. 2005). They are usually designed and 

tested with data collected from intentional falls and activities of daily living from 
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young test persons in a laboratory environment. Even though good fall detection 

sensitivity and specificity in laboratory settings has been reported, knowledge on 

the sensitivity and specificity as well as acceptability and usability of these 

systems in real life is still scant or missing.  

Fall mechanism may differ between age groups (Bergstrom et al. 2008), and 

self-initiated intentional falls differ from sudden unexpected falls (Robinovitch et 

al. 2004). So far, only few reports exist on acceleration data from real-life falls. 

Tamura (2005) reported that they were able to collect acceleration data from 19 

real-life falls from a Parkinson patient and that the falls were detected by the fall 

detection algorithm for impact and end posture. Boyle & Karunanithi (2008) 

recorded acceleration data from four falls during 309 days during stroke 

rehabilitation. However, they did not report detailed acceleration data from those 

falls. Thus, real-life data on falls among older people is important for studying 

fall mechanism among older people and for evaluation and validation of fall 

detection systems. 

The present study examined fall detection methods using accelerometry-

based data from intentional falls and activities of daily living in laboratory 

settings. Additionally, the data from intentional falls used for validation of the fall 

detection system were compared to data from real-life falls among older people. 

The fall detection sensitivity and false alarm rate were evaluated in a long-term 

real-life test.  
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2 Review of the literature 

2.1 Ageing population and falls  

In most countries people aged 65 years or more, here referred to as older people, 

are estimated to represent around 30% of the population in the next 20 years. In 

Finland the estimated proportion of older people by the year 2030 is around 26%, 

as opposed to 18% at the time. This would result in over 1,500,000 older people 

(Official Statistics of Finland 2009). A big proportion of older home-dwellers live 

alone. Based on data from the year 2009 in Finland, around 30% of home-

dwelling men over 80 years and more than 50% of women in age groups around 

80 years lived alone (Official Statistics of Finland 2010).  

Falls are one of the major health risks that affect the quality of life among 

older people by producing injuries and fear, resulting in decreased mobility and a 

high risk of hospitalisation and institutionalisation (Tinetti & Williams 1997, 

Tinetti & Williams 1998). As a consequence, the health care costs associated with 

falls are high, between 0.85–1.50% of total health care expenditure, and up to 

0.20% of the gross domestic product (Heinrich et al. 2010).  

The exact definition of a fall event is vague and it varies between studies. 

Two commonly used definitions are from the World Health Organisation (WHO)1: 

“A fall is an event which results in a person coming to rest inadvertently on the 

ground or floor or other lower level” and from the Kellogg International Work 

Group: “Unintentionally coming to the ground or some lower level and other than 

as a consequence of sustaining a violent blow, loss of consciousness, sudden onset 

of paralysis as in stroke or an epileptic seizure” (Gibson et al. 1987). Some 

studies exclude specific events such as coming to rest against furniture, wall, or 

another structure (Bueno-Cavanillas et al. 2000), or categorise falls from stairs or 

otherwise from higher than 1-metre level (Bergstrom et al. 2008), while some 

studies include all of these (Luukinen et al. 1994). The WHO definition is favored 

in this study since various kinds of falls can result in emergencies targeted at fall 

detection applications.  

                                                        
1 WHO, World Health Organisation, 
http://www.who.int/violence_injury_prevention/other_injury/falls/en/index.html 
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2.1.1 Falls among older people 

Falls occur through out the human life span, but the risk of falls increases greatly 

starting at the age of 50 years (Lord & Sturnieks 2005, Talbot et al. 2005). Among 

older population the incidence of falls varies depending on age and gender. In 

general, several studies have indicated that about 30% of community-dwelling 

people aged 65 years or more have a fall each year (Lach et al. 1991, Luukinen et 

al. 1994, Salva et al. 2004, Tinetti et al. 1988), and the percentage increases to 40% 

among those over the age of 80 (Fletcher & Hirdes 2002, Luukinen et al. 1994, 

Salva et al. 2004, Tinetti et al. 1988). The average fall incidence among older 

people is about 650/1,000 person years, PY (Rubenstein & Josephson 2002). It is 

higher among women compared to men (Luukinen et al. 1994), at least until the 

age of 90 years, after which the incidences are equal (Lehtola et al. 2006). 

Institutionalised older people have a two- or threefold higher rate of falls when 

compared to those living at home (Jensen et al. 2002, Luukinen et al. 1994). This 

is also the case for some special populations, such as patients with Parkinson’s 

disease (Wood et al. 2002) or stroke (Forster & Young 1995).  

In general, from 10% to 20% of older people fall recurrently, i.e., fall at least 

twice within the time period ranging from three to 12 months depending on the 

study (Fletcher & Hirdes 2002, Luukinen et al. 1994, Pluijm et al. 2006). The 

proportion of recurrent fallers increases with age, resulting in almost half of 

home-dwellers over 85 years being recurrent fallers (Fleming et al. 2008b, 

Lehtola et al. 2006). The number of falls for one individual is wide-ranging and 

not normally distributed. Ranges up to 11 falls within one year (Bergland & 

Wyller 2004) or even up to 76 falls within three months (Stevens et al. 2008) have 

been reported, although the median number of falls has been reported to be one 

within three months (Stevens et al. 2008) or two within two years (Talbot et al. 

2005). Falls are not necessarily evenly time-distributed and independent of each 

other, but clustered episodes of falls occur (Fleming et al. 2008b). 

The number of reported falls has been shown to be affected by the survey 

type (Ganz et al. 2005, Kunkel et al. 2011). Even though a similar proportion of 

fallers has been reported by retrospective and prospective methods, the recall 

methods may underestimate the number of repeated falls. It has also been shown 

that the longer the recall period, the higher the prevalence of falling and the lower 

the incidence of falls (Fleming et al. 2008b).  
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2.1.2 Circumstances of falls 

Even though falls are a multicausal phenomenon with variable factors, they can 

be classified according to the precipitating cause to either intrinsic or extrinsic. 

Intrinsic causes for falls are non-accidental and more health- and physiology- 

related risk factors for falls, including medication status and age-related changes 

in sensory system and balance and in the musculoskeletal function and gait. 

Intrinsic causes result in collapse episodes such as vertigo or syncope, or balance 

and gait disturbance. Extrinsic causes for falls are accidental and related to 

environmental factors such as footwear, uneven or slippery surface, steps or 

objects on the surface, and lightning. These episodes typically result in slips and 

trips. (Bueno-Cavanillas et al. 2000, Luukinen et al. 1994).  

The causes of falls differ with age groups. From young adulthood (20–45 

years of age) to older age intrinsic causes of falls, especially balance and gait 

impairment, become dominant over extrinsic causes (Talbot et al. 2005), 

especially after the age of 80 years (Luukinen et al. 1994).  

The majority of falls among home-dwelling older people occur during the 

active hours of the day (morning and afternoon) and around 55% of the falls take 

place indoors, and 45% while inside the home Falls happen most often when 

doing ambulatory activities such as walking (54%) and transferring, like rising to 

stand or sitting down (9–12%). Indoor falls are more common in women than in 

men, whereas men are more likely to fall outdoors. (Lehtola et al. 2006, Luukinen 

et al. 1994). 

The incidence of falls among older people shows some seasonal variation 

since low outdoor temperature has been reported to result in higher fall incidence 

(Luukinen et al. 1996). This relationship was not found in a recent Swedish study 

(Vikman et al. 2011), but they showed the incidence to be inversely proportional 

to the amount of daylight photoperiod.  

2.1.3 Consequences of falls 

Falls are one of the most common reasons for death among older people. 

According to a Finnish survey (Kannus et al. 2005a), the mean incidence of fall-

induced deaths was 36.0, 83.9, and 377.6 per 100,000 persons in age groups of 60 

to 69, 70 to 79, and 80 or more, respectively. In the following other consequences 

of falls are presented.  
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Injuries 

Among home-dwelling older population, more than half of the falls lead to fall-

related injury (Bergland & Wyller 2004, Talbot et al. 2005). Depending on the 

population, 16–24% of falls result in severe injuries requiring medical treatment, 

including 9–13% of fractures, the rest being for example soft tissue injuries and 

dislocations (Bergland & Wyller 2004, Lehtola et al. 2006). Hospitalised falls are 

mainly the result of slipping, tripping, and stumbling on the same level (Ellis & 

Trent 2001). Time of day affects the occurrence of non-injury and injury-causing 

falls. Injurious falls are overrepresented specifically in the morning and in the 

evening when compared to non-injury falls, which comprise the majority in the 

daytime. An equal number of non-injury and injury-causing falls occur in the 

night time (Abolhassani et al. 2006, Bergstrom et al. 2008, Lehtola et al. 2006, 

Luukinen et al. 1994, Luukinen et al. 2000). Recurrently falling women have an 

almost 14-fold risk of fall-associated fracture when compared to those with one 

previous fall or less (Bergland & Wyller 2004). 

The prevalence of head and lower limb injuries, such as knees and hip 

injuries, increases, while the prevalence of upper limb injuries decreases among 

older people when compared to younger population (Bergstrom et al. 2008). The 

distribution of fractures among older people differs between falls that occur 

indoors and outdoors: hip and wrist fractures are most common indoors, whereas 

rib and wrist fractures are most common outdoors (Abolhassani et al. 2006).  

Among older people, hip fractures are typically a result of falling from 

standing height or less. About 90% of hip fractures are the result of a fall (Grisso 

et al. 1991, Parkkari et al. 1999), even though only 1% of falls result in hip 

fracture. Hip fractures are the major and most consuming result of falls, 

associated with long hospital stay, high reference to long-term care facilities and 

high mortality (Abrahamsen et al. 2009, Lönnroos et al. 2009, Tinetti & Williams 

1997). From the late 1990s a decline in age-adjusted incidence of hip fracture has 

been reported in Finnish population (Kannus et al. 2006) as well as generally for 

Western populations (Cooper et al. 2011). The exact reason for this is unknown 

but it suggests a trend toward a healthier aging population and increased average 

body weight and improved functional ability among them (Kannus et al. 2006). 

On the other hand, based on the rising trend in age-adjusted incidences of severe 

head and cervical spine injuries, it has been suggested that a growing proportion 

of older people may fall more seriously than they predecessors (Kannus et al. 

2007a, Kannus et al. 2007b).  
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Long lies and fear of falling 

It has been established that the outcome for patients is generally the poorer the 

longer the time spent helpless after the accident. Long lies are associated with 

pneumonia, pressure sores, dehydration, and hypothermia and with hospitalisation, 

institutionalisation and high morbidity-mortality rate (Gurley et al. 1996, Tinetti 

et al. 1993). 

It has been described that older people are afraid of remain lying on the floor, 

unable to get up after a fall (Melander-Wikman et al. 2007). According to studies 

around half of the older people were not able to get up themselves after the fall 

(Bueno-Cavanillas et al. 2000, Fleming et al. 2008b). The average time lying 

helpless after a fall among older people was more than 10 minutes, and almost 20 

minutes in fall events not resulting in or resulting in injuries, respectively, and in 

approximately 3% of non-injurious falls the faller had been on the floor more than 

1 hour before getting help (Tinetti et al. 1993). In a cohort study with 110 people 

over 90 years of age, 82% of falls occurred when the person was alone and 

around 30% of fallers had lain on the floor for an hour or more before getting help 

(Fleming et al. 2008a).  

Fear of falling is common among older people. Around 40–60% of people 

who have fallen express fear of falling in surveys, but also among those who have 

not fallen 23–30% report fear of falling (Cumming et al. 2000). Fear of falling is 

a risk factor of falls, and it is associated with quality of life among older people 

(Ozcan et al. 2005, Suzuki et al. 2002). It contributes to insecurity and decline in 

ADL functions, restricting mobility and social activities (Curcio et al. 2009), 

especially among recurrent fallers and those fallers who have sustained serious 

injuries (Tinetti & Williams 1998).  

2.1.4 Fall mechanism 

Fall-associated injury severity is higher among older people when compared to 

younger population (Sterling et al. 2001). This has been suggested to be partly 

due to the increased incidence of falling and physiological factors related to 

fragility among older people (osteoporosis, loss of protective neuromuscular 

responses, and decreased energy absorption capacity of soft tissues). In addition, a 

role of differences in fall mechanism between young and older people has been 

suggested. (Järvinen et al. 2008).  
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Experimentally it has been shown that young adults use hands and stepping to 

avoid direct impacts or decrease the impact forces during sideway falls. Sudden 

unpredictable sideways falls resulted most frequently in impact cascade of the 

knee, hand, and hip (Feldman & Robinovitch 2007). During backward falls 

impact forces can be reduced by squatting response, i.e., flexing the lower 

extremity joints during fall (Robinovitch et al. 2004, Sandler & Robinovitch 

2001). The effect of active responses with the arm on decreasing impact forces on 

the shoulder and hip has also been shown in other reports (Lo & Ashton-Miller 

2008, Sabick et al. 1999). The review by DeGoede et al. (2003) presents these 

fall-arrest strategies aimed to reduce upper body injuries.  

It is known that older people have poorer balance performance when 

compared to younger persons (Aslan et al. 2008), which increases the likelihood 

of falling. Age-related decline in musculoskeletal function and longer reaction 

time affects older people’s ability to recover from falls (Hsiao-Wecksler 2008) 

and exploit strategies to decrease fall-associated impact velocities and forces at 

the hip and wrist (Grisso et al. 1991, Sandler & Robinovitch 2001). 

Experimentally it has been tested that the tilt angle from the vertical axis where a 

person could recover balance with forward steps is around 20 degrees for older 

people and over 30 degree for young men (Thelen et al. 1997, Wojcik et al. 1999). 

Among people under 60 years of age, the dominant fracture sites after a fall are at 

the upper extremities, such as wrist or forearm, and the ankles. With increasing 

age most fractures are a result of slips or falls from standing height or less, and 

the frequency of hip and pelvis as fracture sites increases. The frequency of wrist 

fractures decreases, indicating that older people are not able to stretch their arm to 

brake the fall (Bergstrom et al. 2008).  

In a prospective study by Parkkari et al. (1999), a typical fall event among 

older people resulting in hip fracture was a fall from standing height or lower 

directed sideways (76%) or obliquely backwards (12%), with the main impact at 

the greater trochanter (81%). In most (83%) of the cases the person was not able 

to brake the fall, e.g., with an outstretched arm. In fall cases not resulting in hip 

fracture the main fall directions were forwards (38%) or obliquely backwards 

(27%) with impacts directed on the buttocks, shoulder, and hands. In almost half 

(42%) of the cases, the faller was able to perform actions to brake the fall. 

(Parkkari et al. 1999).  

The impact-associated parameters have been studied experimentally with fall 

and failure load studies. During lateral and backwards falls average impact forces 

of 2251–3247N have been measured (Nankaku et al. 2005). These are equal to 
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the typical experimental failure loads of the hip for older people (Pulkkinen et al. 

2006).  

Based on the review by DeGoede et al. (2003) more than half of the falls 

among older people are directed forwards, the rest being equally divided between 

sideways and backwards falls. Most of the falls among the older people occur 

when walking; age-related decline in preferred speed of walking (Fitzpatrick et al. 

2007) may thus influence the fall mechanisms. Experimentally it has been shown 

that in some fall types, fall directions and impact sites are related to the walking 

speed during the event (Smeesters et al. 2001). While fainting from a walking 

speed typical for young and middle-aged persons (at least 1.43 ms−1) results 

almost entirely in forward falls, the distribution of fall directions after fainting 

from the slow gait speed more typical for older people (0.66 ms−1) is equally to 

front and sideways, and in 71% of cases the impact is located to the abdomen, 

whereas the rest of the impacts are located to the hip. Slipping from walking is a 

heterogeneous fall type resulting in backward (43%), sideway (36%) or front 

(21%) falls, thus resulting in impacts equally between the hip and buttock. 

Tripping results almost entirely in front falls with abdomen impacts, and a few 

sideways falls with hip impacts. Stepping down on empty air shows a similar 

distribution of impact locations compared to fainting but most of the falls are 

directed to the front. (Smeesters et al. 2001).  

2.2 Prevention of falls and consequent injuries 

Falling has been a motivating target for preventative strategies. They aim to 

reduce the incidence of falls by reducing the risk factors for falls, or to decrease 

the severity of falls by improving bone characteristics (bone mass and density) or 

by modifying the type of falls that occur. These strategies include regular exercise, 

vitamin D and calcium supplementation, withdrawal of psychotropic medication, 

cataract surgery, environment hazard modification, and hip protectors. (Kannus et 

al. 2005b, Lord & Sturnieks 2005). 

Evidence on the effectiveness of multifactorial fall prevention programmes is 

limited (Gates et al. 2008, Hendriks et al. 2008). However, the estimated effect of 

exercise was a 17% reduction in rate of falling among older people in community 

and residential facilities as reviewed by Sherrington et al. (2008). This survey 

highlighted that exercises including strength and balance training or the use of 

higher dose of exercise, but not including walking, can reduce the risk of falling. 

The advantageous effect of exercise on reduction of fall-related fractures among 
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individuals with lowered bone mineral density has also been shown (de Kam et al. 

2009, Korpelainen et al. 2010).  

Experimentally it has been analysed that older people are capable of learning 

to recover better or adjust to slip perturbation through repeated exposure (Pavol et 

al. 2002). Martial arts (MA) fall techniques involve rolling on after impact. They 

may reduce hip fracture risk, as they are known to reduce fall-associated hip 

impact forces in laboratory experiments with experienced judokas (Groen et al. 

2007) or after a short training session with young persons (Weerdesteyn et al. 

2008). Martial arts training among older people was shown experimentally to be 

able to reduce hip impact forces by a mean of 8%, and the fear of falling was also 

reduced (Groen et al. 2010a). By using hip protectors, MA training has been 

considered to be safe also for persons with osteoporosis (Groen et al. 2010b). 

Other MA training techniques, such as TaeKwon-Do (Brudnak et al. 2002) or Tai 

Chi (Hackney & Earhart 2008), have been shown to have beneficial effects on 

balance performance. The effect on reducing falls has not been so evident (Lin et 

al. 2006, Logghe et al. 2011).  

Hip protectors have been designed to absorb the hazardous fall-associated 

impact energy in order to prevent hip fractures. In a specific group of older 

women with fall history and low bone mineral density, the risk of hip fracture was 

reduced by hip protectors with incidence of 54.0/1,000 PY and 78.8/1,000 PY in 

intervention and control groups, respectively, while the risk of pelvis and other 

fractures was similar between groups (Koike et al. 2009). However, pooled data 

from several studies showed no significant reduction in hip fracture incidence 

among older people using hip protectors. The most common general problem with 

hip protectors is related to compromised user compliance and adherence as a 

result of discomfort, poor fit and skin irritation (Parker et al. 2003). A different 

strategy to protect the hip and head during falls is the use of wearable inflatable 

airbags, instead of foam pads or plastic shields, to protect the head and thighs 

from high fall-associated impacts, as suggested in the pilot system experimentally 

tested by Tamura et al. (2009).  

2.3 Fall detection 

Approaches for remote telemonitoring for older people have been seen as a way 

to meet the needs of an ageing population (Korhonen et al. 2003, Ni Scanaill et al. 

2006, Rocha et al. 2011). Detection of falls is one of the areas of interest. General 
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principles and methods of fall detection have been reviewed by Noury et al. (2007, 

2008) and Yu (2008). 

Applicable techniques for fall detection include a variety of methods and 

designs with body-worn or built-in devices. Worn devices include personal 

emergency response systems (PERS) that require the user to activate the alarm. 

Personal emergency response system is reported to have positive impact on user’s 

life and high satisfaction (De San Miguel & Lewin 2008, Heinbüchner et al. 

2010). Concern with falling is a major reason for activating PERS among older 

people. Mann et al. (2005) reported that 40% of alarms were generated because of 

fall-related reasons among people with disabilities and aged 60 years or more, and 

an even higher percentage (56%) was reported by De San Miguel & Lewin (2008). 

Among those who had not activated the alarm, 90% had never had an emergency 

situation where they needed to use it. Conversely, over 80% of fallen persons not 

able to get up did not activate the alarm (Fleming et al. 2008a, Heinbüchner et al. 

2010). Reasons for not activating the alarm button were the desire for 

independence and for being able to manage by themselves, waiting for someone 

else to come, or not remembering the PERS (Fleming et al. 2008a). The general 

compliance is rather low, as well as the use in the shower, bath or in bed (De San 

Miguel & Lewin 2008). This reflects the reduced night-time security.  

In automatic fall detector’s favour, they are designed to generate alarm 

automatically. Some systems monitor changes in the user’s activity level and 

generate alarms automatically if deviations from the normal long-term activity 

level occur (Särelä et al. 2003), whereas some systems are designed to detect 

specifically fall events (Noury et al. 2007, 2008). Studies on automatic fall 

detection methods based on ambient and body-attached sensors are presented in 

2.3.1 and 2.3.2.  

Evaluation of fall detection system is based on determining the number of 

falls detected (true positives TP) or not detected (false negatives FN) by the 

system, and the number of activity of daily living (ADL) detected (false positive 

FP) or not detected (true negative TN) as fall events. Based on those values 

sensitivity, specificity and accuracy of fall detection can be calculated as shown 

below. Sensitivity (Eq. 1) represents the percentage of true falls that were 

correctly detected, 100% indicating that all falls were detected.  

 100%
TP

Sensitivity
TP FN

= ×
+

 (1) 
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Specificity (Eq. 2) is related to the percentage of false fall alarms among ADL 

samples, 100% indicating that no false alarms were detected.  

 100%
TN

Specificity
TN FP

= ×
+

 (2) 

Accuracy (Eq. 3) represents the percentage of true discrimination between falls 

and ADL, 100% indicating 100% sensitivity and specificity.  

 100%
TP TN

Accuracy
TP TN FN FP

+= ×
+ + +

 (3) 

In addition, some reports calculate a false alarm rate as the number of false fall 

alarms over a certain time period of ADL.  

2.3.1 Ambient sensors 

Ambient systems with video cameras and sensors embedded on the floors, walls 

or furniture are considered to be passive and unobtrusive to the resident because 

they do not require the user to wear any devices. Video-based algorithms 

designed to detect fall-associated changes in the height or shape of the person 

(Anderson et al. 2009, Perry et al. 2005) or in the angle between the person’s 

main axis and floor level (Willems et al. 2009) have been reported. A pilot study 

with intentional falls showed fall detection sensitivity of 78–85% with 11–15% of 

ADL samples detected as falls (Willems et al. 2009). In addition to video, infrared 

technology has been used for developing algorithms for fall detection. Sixsmith & 

Johnson (2004) reported such a system with experimental fall detection sensitivity 

of 35.7% and specificity of 100%. In a field test over a two-month period the 

system generated one false fall alarm, but no real-life falls were reported. They 

also interviewed older people about the idea of using such a system. Some older 

participants expressed concerns about the intrusiveness and the replacement of 

human contact by technology (Sixsmith & Johnson 2004).  

Electromechanical film, EMFi (Paajanen et al. 2000), has been used for bed 

monitoring system for falls and wandering prevention or presence detector in a 

chair etc. The study of Rimminen et al. (2010) presented the use of near field 

imaging technique embedded on the floor for spatial distribution of objects, such 

as persons, in an elderly care facility. In a pilot test with intentional falls and ADL 

they showed fall detection sensitivity and specificity of 91% and 91%, 

respectively (Rimminen et al. 2010). Other methods for ambient fall detection 
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include for example acoustic- and vibration-based methods. An acoustic system 

was able to detect intentional falls with a specificity of 100% and false alarm rate 

of 5 alarms per hour (Popescu et al. 2008). A floor vibration-based fall detection 

method achieved 100% sensitivity and specificity in an experimental study with 

dummies for falls (Alwan et al. 2006). Litvak et al. (2008) combined these two 

techniques and tested the system experimentally with a human mimicking doll for 

forward falls, resulting in 95% sensitivity and specificity. No real-life evaluation 

of these ambient systems has been reported. In addition, these techniques are 

expensive and tied to fixed environment.  

2.3.2 Body-attached fall detection applications 

Body-worn systems are intrusive as they require the user to wear the detector 

device. One of the first fall detection applications was introduced by Williams et 

al. (1998). It was designed to detect fall-associated impacts, posture and recovery. 

Most of the body-attached fall detection applications include tilt sensors and/or 

inertial sensors, such as accelerometers and gyroscopes, to measure body posture 

and kinetic forces. The use of barometers has also been suggested as a method to 

detect height change related to a fall. Studies on fall detection applications using 

kinematic sensors and barometers are summarised in Table 1. In addition to these, 

the applicability of biosignals such as heart rate and skin resistance has been 

studied for fall detection (Nocua et al. 2009). Based on their results, monitoring 

of autonomic nervous system activation was able to detect experimental falls 

from standing-lying transition, but the system was not tested further. 

Most of the studies on fall detection applications include off-line data 

processing and analysis for evaluation of fall detection sensitivity and specificity 

(Bourke et al. 2007a, Lindemann et al. 2005, Quagliarella et al. 2008). Some 

applications exhibit wider system functionality, including real-time data 

processing and analysis in order to detect falls and generate alarms to a call centre 

or relatives (Benocci et al. 2010, Estudillo-Valderrama et al. 2009, Kang et al. 

2006). Today, many mobile phones include accelerometers; they can thus be 

applied for fall detection (Sposaro & Tyson 2009). In addition to these 

applications presented in scientific publications, commercial fall detection 

systems are available as shown in a review of Noury et al. (2008) with 7 

examples of commercially available fall detection systems and over 40 patents on 

fall detectors. Commercial applications include devices typically attached either 
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to the waist or the wrist. A bracelet-type solution has also been presented2. Even 

though commercial fall detection systems exist, knowledge on the sensitivity and 

specificity as well as acceptability and usability of these systems in real life is still 

scant or missing.  

Detection of fall phases 

Machine-learning methods applied for fall detection have been summarised by 

Noury et al. (2007). Dinh et al. (2009) evaluated five different machine-learning 

algorithms with data from an acceletometer and a gyroscope. They experimental 

results indicated that the Naïve Bayes algorithm performed most efficiently, 

showing fall detection accuracy of 97.3% and the shortest performance time. 

Lustrek & Kaluza (2009) used markers on the body and compared eight machine-

learning algorithms for activity and fall detection. They tested the system 

experimentally and reported the highest classification accuracy of over 95% by 

Support Vector Machine. However, most of the fall detection systems use 

analytical methods, such as threshold-based methods, to detect fall phases in 

order to distinguish falls from ADL. These simple analytic methods seem to 

perform equally well to more advanced methods (Table 1). 

Some characteristics of interrupted movement can indicate the incoming fall 

already some seconds before the actual fall event, as suggested by for example 

Tamura et al. (2000). However, most of the fall detection algorithms in the 

literature (Table 1) are designed to detect one or more of fall phases. Fall is a 

cascade of phases (Noury et al. 2008): 1) normal ADL, such as walking, sitting 

down; 2) critical phase or pre-impact phase, which can be further divided into 

sudden free fall-like movement of the body towards the ground and impact to the 

ground; 3) post-fall phase with the person lying on the ground; and 4) recovery 

phase if the person is able to get up and move after fall. Figure 1 shows an 

example of acceleration signal and fall phases in a fall starting from a standing 

posture and ending up in a horizontal end posture. 

Pre-impact velocity before the impact (Figure 1) has been used to distinguish 

falls from ADL. Monitoring the velocity instead of acceleration is used to 

determine activities where high acceleration values but low velocities are 

generated, for example, when lying down, sitting down, or walking the stairs.  

                                                        
2 Philips Lifeline, http://www.lifelinesys.com/content/lifeline-products/auto-alert 
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Video-based movement analyses have suggested that upper body horizontal 

and vertical velocities from ADL are within a well-controlled range, and only in 

one direction at the time, but during intentional falls velocities are much higher 

when compared to ADL, and the increase in two directions is simultaneous (Wu 

2000). Based on Bourke et al. (2007a) falls can be distinguished from ADL with a 

simple threshold for video-based vertical velocity.  

Fig. 1. Fall phases from 3D acceleration sum vector (SV) are detected with threshold 

(th) based methods. Start of the fall is detected at the pit before impact. By integrating 

the area in pit (dark) the pre-impact velocity from the free fall can be measured. The 

fall-associated impact is detected as a high peak in signal.  

Also inertial sensors have been used to measure pre-impact vertical velocity for 

fall detection (Wu & Xue 2008). It has also been shown that the velocity 

integrated (Figure 1) from acceleration sum vector, SV (Eq. 4), is comparable to 

vertical velocity from video-movement analysis (Bourke et al. 2008a).  

 ( ) ( ) ( )22 2

x y zSV A A A= + +  (4) 
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in which Ax, Ay, Az = acceleration (g) in x-, y-, and z-axes, respectively.  

Pre-impact velocity method has resulted in an average lead time of 300–400 

ms (Bourke et al. 2008a), which is the time between specific detection of the 

coming fall from the pre impact and the impact to the ground. An even longer 

lead time has been achieved when using gyroscopes to measure the tilt angle of 

the body. This method has resulted in average lead time of 700 ms (Nyan et al. 

2006, Nyan et al. 2008a, Nyan et al. 2008b). Pre-impact velocity has also been 

used for fall detection applications at the wrist (Degen et al. 2003) and head 

(Lindemann et al. 2005). In addition to velocity, the SV signal containing both 

dynamic and static acceleration components has been used to detect the start of 

the fall (Figure 1) from the pre-impact phase (Bourke et al. 2007a, Degen et al. 

2003).  

Fall-associated impacts have been detected with the threshold-based method 

for high acceleration (Karantonis et al. 2006, Bourke et al. 2010b) or a rapid 

change in acceleration (Yoshida et al. 2005). At its simplest, a single axis 

acceleration threshold value of 1.4g for waist has been used as a marker for a 

possible fall event (Diaz et al. 2004). However, the threshold for SV of triaxial 

accelerometer signal has been suggested to be more accurate in fall detection than 

single axis thresholds (Bourke et al. 2005). Chao et al. (2009) presented the use 

of cross product of current acceleration vector and reference acceleration vector 

from static standing to detect fall-associated impacts.  

Most of the falls among older people begin when a person is in upright 

position and ends up in sitting or lying posture. Gyroscopes and tilt sensors 

(Hwang et al. 2004) as well as accelerometers (Fahrenberg et al. 1997, 

Karantonis et al. 2006) have been used for body posture detection. The study by 

Culhane et al. (2004) reported long-term accelerometry-based monitoring of static 

postures of older people with accuracy of 92%, 98%, and 95% for sitting, 

standing, and lying, respectively.  

Body posture can be determined as an angle between the acceleration axis 

and gravity, by extracting the static gravitational component from the acceleration 

(Karantonis et al. 2006) or by taking the dot product of the reference gravity 

vector and the current gravity vector (Bourke et al. 2010b). Fall-associated 

posture is determined as a change in the posture before and after the impact 

(Boissy et al. 2007, Yoshida et al. 2005) or as the end posture a few seconds after 

the fall associated impact (Karantonis et al. 2006, Tamura 2005, Yoshida et al. 

2005). The recovery from a fall is recognised as an upright posture or as a certain 

amount of activity after a possible fall event (Karantonis et al. 2006). The 
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durations of posture changes from sitting to standing or from lying to standing 

were 3.5 and 6.0 s in a group of healthy 80- to 86-year-old people (Yoshida et al. 

2005). The recovery after a fall probably takes even a lot longer than indicated 

above.  

Evaluation of fall detection systems 

Fall detection applications vary substantially from study to study, showing 

diversity in terms of attachment sites on the body, fall detection algorithms and 

study designs for sensitivity and specificity evaluations (Table 1).  

The placement of an acceleration sensor for measuring body movements for 

fall detection has been studied to some extent. Doughty et al. (2000) showed that 

the acceleration patterns measured at the waist and chest are similar and evenly 

distributed between different fall types, while knee- or thigh-worn accelerometers 

result in lower fall-associated impact values when compared to signals from the 

waist (Doughty et al. 2000). Boissy et al. (2007) showed that the data from 

sensors on the chest or the underarm are similar. 

Waist-attached accelerometers are located near the body’s centre of gravity 

providing reliable information on subject’s movements and posture, with the 

exception of movements of the arms and legs (Brownsell & Hawley 2004). Most 

fall detection applications are attached on the torso at the waist or chest (Table 1). 

They have fall detection sensitivity varying from 70 to 100% and specificity from 

95 to 100% in laboratory settings with intentional falls. Fall detection sensitivity 

has shown variation between test subjects. For example, the study of Boissy et al. 

(2007) showed fall detection sensitivity of 80–100% and specificity of 50–80% in 

a test population of 10 young people.  
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At the trunk pre-impact velocity (Bourke et al. 2008a, Lustrek & Kaluza 

2009, Wu & Xue 2008) and pre-impact lean angle (Nyan et al. 2008a, Nyan et al. 

2008b) have been suggested to be able to distinguish falls form ADL with 100% 

sensitivity and specificity. Also those studies were performed with data collected 

from intentional falls and ADL. 

There have been suggestions to integrate a fall detector into another device, 

such as a wrist watch (Degen et al. 2003, Kang et al. 2006) or a hearing-aid 

housing (Lindemann et al. 2005). The usability of a wristband is considered to be 

excellent. However, the acceleration signal measured from the wrist varies widely 

as a function of fall type, and a person who has fallen and is incapable of getting 

up can still be able to move his/her arms (Doughty et al. 2000). The wrist-worn 

fall detector of Degen et al. (2003) showed experimentally good fall detection 

sensitivity as far as forward falls were concerned, but lower sensitivity for falls 

backwards (58%) and sideways (45%) resulted in moderate overall sensitivity of 

65% (Table 1). There were no false alarms during a two-day test in real life. Their 

fall detection algorithm was based on pre-impact velocity and impact detection 

(Degen et al. 2003). In a study by Kang et al. (2006) intentional falls were 

detected with 91.3% sensitivity based on an algorithm identifying fall-associated 

impact and horizontal end posture. The specificity of the system was not reported.  

The head as an attachment site is motivated by the argument that the people 

try to protect the head against high accelerations which are mostly associated with 

unpleasant movements, such as fall events. Head injuries are relevant injuries 

after falls among older people (Kannus et al. 2007a). Based on the pilot studies of 

Lindemann et al. (2005) and Wang et al. (2008), the detection of high pre-impact 

velocity and an impact resulted in fall detection sensitivity and specificity of 100% 

in experimental conditions. It is to be noted that not all older people use hearing 

aids, which may restrict the applicability of fall detection applications integrated 

on those.  

Multisensorial applications have been tested for fall detection. Combining a 

gyroscope to an accelerometer does not necessarily improve the specificity of fall 

detection (Bourke et al. 2005). However, Bianchi et al. (2009, 2010) showed 

recently in their experimental study indoors and outdoors that adding fall-

associated height change information from a barometer to acceleration data to 

detect fall phases, improves fall detection sensitivity, specificity and accuracy 

from 75.0% to 97.5%, from 91.5% to 96.5%, and from 85.3% to 96.9%, 

respectively. The system was not tested in real life with older people.  
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Because of the dangerous nature of fall events, fall detection studies are 

typically performed using intentional falls among young test persons (Table 1) to 

perform fall scenarios to mimicking falls among older people. Various fall 

scenarios have been summarised by Noury et al. (2007) including forwards, 

backwards and lateral falls with or without landing on knees, using protective 

movements such as arms or upper body rotation. There are some studies that have 

focused more on this issue, for example by using a stunt actor who was trained to 

fall like an older person (Popescu et al. 2008) or by showing young test persons 

videos of real-life falls among older people to mimic the characteristics of older 

people’s falling mechanism (Boyle & Karunanithi 2008, Boyle et al. 2005).  

Some attempts to collect real-life acceleration data from falls have been 

reported. Tamura (2005) reported that they were able to collect acceleration data 

from 19 real-life falls from a 82–year-old Parkinson patient. These falls were 

detected with algorithm monitoring characteristics for impact and end posture, but 

no acceleration signals or specificity evaluations were reported. Boyle & 

Karunanithi (2008) recorded acceleration data from four falls during 309 days in 

older stroke rehabilitation inpatients. However, they did not report detailed 

acceleration data on the falls. Recently, Klenk et al. (2011) reported acceleration 

data from five real-life backwards falls from four older Parkinson patients with 

progressive supranuclear palsy. However, they did not report any evaluation of 

fall detection algorithms.  

Some attempts to evaluate fall detection applications in real life have been 

reported. Bourke et al. (2008b) incorporated their earlier developed 

accelerometry-based fall detection system into a custom design vest. The system 

was tested with older people in real life for two weeks during daytime. The sensor 

was designed to generate fall alarms and send them via a Bluetooth connection to 

a mobile phone, which sent the alarm message further to a care centre via a 3G 

network and Internet. During the monitored 833 hours the test population reported 

no falls, but the system generated 42 false fall alarms and technical problems in 

data communications were reported. The usability of vest-worn application was 

found to be limited because they were uncomfortable and intrusive (Bourke et al. 

2008b). Another study involved testing of a waist-worn fall detection system for 

52 hours among older people in their home environment (Bourke et al. 2010a). 

No falls occurred among the test population in that study, either. 

Fall detection specificity is tested with ADL, mostly collected from instructed 

tasks, like walking, sitting down on a chair and standing up, and lying down on 

the bed and getting up. As seen in Table 1, fall detection specificity is often 100% 
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with instructed ADL, and in some reports also with short-term real-life tests. 

Bourke et al. (2010b) tested several fall detection algorithms with data collected 

from both instructed and real-life ADL among older people. Based on their study, 

algorithms resulting in 100% specificity with instructed ADL resulted in false 

alarm rate between 0.04 – 0.21 alarms per hour with data collected from real life.  

In conclusion, despite the growing number of applications and surveys on fall 

detection in a laboratory environment, knowledge on the sensitivity and 

specificity as well as acceptability and usability of these systems in real life with 

older people is still scant or missing. In addition, real-life acceleration data on 

falls among older people is very limited. 
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3 Aims of the study 

Falls are a serious health risk in the ageing population. Automatic fall detection 

has been suggested as a promising approach to decrease the consequences of falls. 

Even though some commercial fall detectors are available, knowledge on the 

sensitivity and specificity of fall detection in older people in real life setting is 

limited. This study examines accelerometric techniques to discriminate between 

falls and ADL for automatic fall detection applications. The general purpose of 

this study was to study methods for fall detection to be adapted for real-life 

applications in the older population.  

The specific aims of the study were:  

– to compare different attachment sites for measuring acceleration data for fall 

detection applications 

– to define an algorithm for discriminating between falls and ADL 

– to define the sensitivity and specificity of fall detection in a laboratory 

environment with the developed method 

– to compare real-life data from falls among older people with data from 

intentional falls in younger subjects 

– to define the sensitivity and false alarm rate of fall detection in real life with 

older people  
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4 Materials and Methods  

This study is composed of three laboratory tests and one field test in Oulu, 

Finland and in Kalix and Luleå, Sweden. The subpublications of this thesis are 

referred to in the text by their Roman numerals I-IV. Table 2 summarises the 

subjects and study design in each study.  

4.1 Subjects 

All test subjects were voluntary participants who received oral information about 

the study and from whom a written informed consent was obtained. The study 

protocols in III and IV were approved by the local ethical board in Umeå, Sweden, 

(05–105M and 2443–2009, respectively), and in IV also in Oulu, Finland, 

(39/2009). In III and IV, the average walking speed of test persons was 

determined based on a 10-m walking test indoors and cognitive functions were 

assessed using the Mini-Mental State Examination, MMSE (Folstein et al. 1975).  

In I and II, voluntary test persons were recruited by personal communication 

from among students and staff at the University of Oulu. In I two test persons 

(male and female, aged 22 and 38 years) performed intentional falls and ADL in a 

laboratory environment. In II three volunteers, one female (38 years) and two 

males (42 and 48 years), performed intentional falls. ADL samples collected in I 

were used (Table 2).  

Study groups in III were collected from two populations (Table 2). The first 

population included 20 middle-aged persons (age range 40–65 years) recruited by 

personal communication from among staff at Luleå University of Technology. 

The inclusion criterion was the age of 40–65 years. They performed intentional 

falls and instructed ADL sequence in a laboratory environment. The second test 

group was 21 voluntary older people (age range 58–98 years) recruited from those 

living in or participating in activities in two residential care facilities. An 

inclusion criterion was the ability to walk alone. Older people performed an 

instructed ADL sequence at the care facility. The average indoor walking speed 

was 1.43 ± 0.20 ms−1 and 0.75 ± 0.30 ms−1 for middle-aged and older people, 

respectively.  

In IV people living in elderly care units were recruited to wear the 

acceleration sensor system for real-life data collection. The inclusion criteria for 

the test subjects were age above 65 years and the ability to stand alone or with the 

help of one person. The test population of 16 subjects (age range 80–101 years) 
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included 7 (all females) and 9 (6 females, 3 males) persons from Sweden and 

Finland, respectively. The average indoor walking speed of the test subjects was 

0.56 ± 0.31 ms−1. The test period presented in this study was around six and two 

months in Sweden and Finland, respectively. The sensor system was used during 

waking hours or 24/7 if desired.  

4.2 Accelerometry 

Acceleration signals were collected during intentional falls and ADL (I, II, III) 

and during real-life falls (IV) with a body-attached sensor. Sensors were attached 

with elastic belts to the non-dominant wrist (I, II), to the waist in front of the 

anterior superior iliac spine (I, II, III), or in front of the forehead (I, II). The 

sensitive axes of accelerometers were mediolateral, anteroposterior, and vertical (I, 

II, III). In IV the sensor was attached with a clip into a pocket on an elastic belt to 

fix the vertical axis of the device. The attachment site was at the waist, in front of 

the anterior superior iliac spine, but some variation was accepted because of the 

nature of the long-term field test.  

The accelerometers used in I and II were custom-made devices (Vihriälä et al. 

2003) designed to collect acceleration data in short-term tests. The system 

included triaxial accelerometers, each constructed using three uniaxial capacitive 

accelerometers (VTI Hamlin SCA CDCV1G) with amplitude range of ±12g. Each 

triaxial accelerometer was connected to a separate data logger with a sampling 

frequency of 400Hz for each axis. The sensor dimensions were 20 mm x 15 mm x 

20 mm.  

A prototype device in III integrated a ±3g triaxial capacitive accelerometer 

(ADXL330, Analog Devices) with a sampling frequency of 50Hz for each axis. 

The hardware platform included a transceiver enabling RS232 communication. 

The sensor dimensions were 109 mm x 69 mm x 24 mm. Based on the 

protototype in III, a small-size wireless detector unit was developed (CareTech 

AB, Kalix, Sweden) containing a ±4g triaxial capacitive accelerometer (Analog 

Devices) and a transceiver (868.35 MHz). The dimensions of the device were 52 

mm x 33 mm x 24 mm, and it weighed 26 g (Fig. 2). 
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Fig. 2. Wireless sensor for acceleration measurements in real life worn on the waist 

with an elastic belt. The vertical axis of the system was marked as an arrow on the belt.  

The sensor monitors acceleration continuously with a sampling frequency of 

3200Hz. In order to minimise power consumption and data transmission, the 

device is designed to collect acceleration data using an event-based trigger. The 

trigger activates when the acceleration of all three axes is below a predetermined 

threshold of 0.75g as a marker for pre-impact phase. After activation, the 

implemented fall detection algorithm analyses the acceleration data at 3200Hz. To 

identify a fall, the algorithm detects impact from SVTOT signal with a threshold of 

2g and end posture from the vertical axis acceleration, with minor modifications 

(CareTech Ab, Sweden) from algorithm 1 used in this study.  

Once the data collection is activated, the history of acceleration data before 

the activation is collected from a data buffer (30 samples, sampling frequency 

6.25Hz), and 240 samples after the activation are collected with the sampling 

frequency of 50Hz, followed by data collection of 30 samples with sampling 

frequency of 6.25Hz. If a fall is detected, the collected acceleration data is 

labelled with a fall message. The collected data of around 14 seconds (Fig. 3) are 

transmitted to the base station located in each patient room. The data are 

transmitted further to the research database using IP-based technology.  

Activity monitoring of the device (CareTech Ab) was used to evaluate the 

usage of the system. During the day, inactivity periods exceeding three hours 

were excluded. At night, if indication of any activities is seen, all hours were 

included. 
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Fig. 3. Example of acceleration data collected from wireless detector in IV showing 

three data sets around 4.8 second each. Acceleration values form the database were 

converted into gravitation units (g). Axes: vertical (black), anterior-posterior (grey), 

lateral (dashed line).  

4.3 Fall and ADL data collection 

For this study, acceleration data from body movements were collected in a 

laboratory environment (I, II, and III) and in real life (IV).  

4.3.1 Intentional falls and sequential ADL in a laboratory 
environment 

The test protocol for intentional falls was selected to include typical fall type 

categories of older people (DeGoede et al. 2003, Lehtola et al. 2006, Luukinen et 

al. 1994). Test subjects performed falls (I, II, III) forwards, backwards and in 

lateral direction and falling out of bed towards a soft mattress as summarised in 

Table 3. Test subjects received short instructions for performing the test falls. 

They were asked neither to fall directly on their hand nor to make any recovery 

steps. The falls were documented using a digital video camera. 
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Table 3. Intentional fall types in studies I-III 

Fall type Instructions Study 

Forwards fall Standing, no steps are performed I, II 

Forwards fall, missing a step Step down from a platform I, II 

Forwards fall, tripping when getting  

up from a chair 

Sitting on a chair, get up, take a short  

step to trip on a mattress  

I, II 

Forwards fall, tripping when walking Walking, tripping on a mattress III 

Forwards fall, syncope Standing, plain fall from standing III 

Backward fall, sitting on empty air,  

missing a chair 

Standing, sitting down  I, II, III 

Backward fall, slipping Standing, leg swing to front I, II 

Backward fall, syncope Standing, rounded back and knees bended I, II, III 

Sideway fall Standing, no steps are performed I, II, III 

Sideway fall, missing a step Sideways, step down from a platform I, II 

Sideway fall, lateral-posterior Standing, starts falling back and turn to sideways I, II 

Falling out of bed  Lying on the bed, roll out of the bed III 

The number of collected acceleration samples is summarised in Table 2. The data 

in I were collected from the waist-, head- and wrist-attached accelerometer. These 

data were used for threshold determination. Thresholds as part of fall detection 

algorithms were validated with another set of samples in II (Table 2), during 

which acceleration samples from the waist, head, and wrist were collected 

synchronously. Because of malfunction of the sensors, all three synchronous data 

collections were not successful in some measurements. Acceleration samples 

from ADL represented dynamic activities (e.g. walking, walking on stairs, picking 

up an object from the floor, working on a computer) and posture transitions (e.g. 

sitting down, getting up, and lying down). 

In III middle-aged test persons performed six different fall types, each fall 

type twice, resulting in 240 acceleration samples (Table 2) collected with a waist-

worn accelerometer. In addition, middle-aged and older test subject performed an 

ADL protocol (sitting down on a chair and getting up, picking up an object from 

the floor, lying down on a bed and getting up, and both level walking and walking 

up and down the stairs) (Table 2). 

4.3.2 Acceleration samples from real-life falls  

In IV a wireless acceleration system worn on the waist was used to monitor and 

collect data from real-life falls among older persons living in residential care units. 
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Accidental falls among the test persons were documented by the care personnel 

according to their standard protocol and the acceleration data related to the event 

were obtained from the database. The documentation of falls included date and 

time of the accidental fall, place of accident, activity involved, the reason for the 

accident, general description of the accident, and injuries.  

For the study in IV, accidental falls were classified according to the 

intentional falls presented in III (Table 3). Classification was performed based on 

care personnel’s and older people’s description of the events and estimated 

posture based on the collected vertical acceleration signal from the database. 

False fall alarms were calculated from the acceleration database based on the fall 

messages generated by the fall detection system.  

4.4 Data processing 

Acceleration data collected during tests were processed in a virtual environment 

in a computer using custom-made Matlab (R2006a, MathWorks Inc., Natic, 

U.S.A) or LabVIEW (8.0, 8.2 and 2009, National Instruments, USA) programs. 

The acceleration data in I and II were loaded from data loggers, in III the data 

were collected into a computer, and in IV data were obtained from the research 

database. Calibration against the gravity component was performed for each axis 

for converting the raw data into gravitational units (1g = 9.81 ms−2).  

The measured acceleration signal in I and II was processed by resampling at 

50 Hz for each axis to reduce the amount of data. The sampling frequency of 

50Hz was chosen because it has been shown to be high enough for acceleration 

data analysis in fall-related motions (Karantonis et al. 2006, Mathie et al. 2004a). 

In I-III the data were median filtered with a window length of 3 samples to reduce 

noise and very fast acceleration peaks, such as knock, before any further analyses. 

The processed data were low-pass (LP) or high-pass (HP) filtered (cut-off 

frequency = 0.25Hz) (Mathie et al. 2004b) with a digital second-order 

Butterworth filter for posture detection and dynamic analysis, respectively. In IV 

the data from III were resampled to 50Hz without any further data processing for 

signal averaging. The use of accelerometer sensors with a limited acceleration 

amplitude range was simulated in LabVIEW environment restricting the 

amplitude of input acceleration data to ±2g or ±3g before data processing (III).  
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4.5 Data analysis 

For choosing parameters and thresholds capable of discriminating falls and ADL, 

the ranges of maximum value of major impact for ADL and falls were determined 

as described in more detail in I. Parameters are summarised in Table 4. The 

threshold values were adjusted to optimal detection of falls with minimised false 

alarms from ADL samples, i.e., maximal sensitivity with 100% specificity when 

possible. The thresholds were used in fall detection algorithms composed of 

detection of different fall phases (II and III) and in evaluation of real-life falls 

(IV).  

Different sum vectors, SV, were calculated from acceleration data as 

indicated in Eq. 1. Total sum vector SVTOT (Degen et al. 2003) was used for pre-

impact phase and impact detection (I, II, III, IV). The start of the fall (Degen et al. 

2003) was determined as the pit before the impact, SVTOT being equal or lower 

than the threshold chosen based on the data analysed in I. Velocity towards the 

ground v0 was calculated by integrating the area of SVTOT from the pit (Degen et 

al. 2003) between the beginning of the fall (SVTOT <0.95g), until the beginning of 

the impact, where the signal value exceeds 1g. The time period between the start 

of a fall and the impact was determined from the measurements at the waist, by 

recognising the minimum value of SVTOT in the pit and the impact-related 

maximum peak of SVTOT or Z2.  

The dynamic sum vector SVD was calculated as indicated in Eq. 4 from high-

pass filtered data (Karantonis et al. 2006). Fast changes in the acceleration signal 

were investigated by constructing a sliding sum vector SVMaxmin, a derivative 

which was calculated using the differences between the maximum and minimum 

values in a 0.1 s sliding window for each axis. The length of the window equals 

five samples at 50 Hz and was chosen to capture maximum acceleration change 

related to the fall-associated impact. 
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Table 4. Different parameters for fall phase detection using acceleration data. The 

detection of fall phases was used as different combinations in fall detection 

algorithms 1–3.  

Fall phase Parameter Algorithm 

Pre impact phase Start of the fall, from SVTOT 
1 2, 3 

Velocity towards to ground, v0 (ms-1), from SVTOT
1 3 

Impact SVTOT (g)1,2,3 1, 2, 3 

SVD (g)4 1, 2, 3 

SVMaxmin (g) 1, 2, 3 

Z2 (g) 1, 2, 3 

End posture Posture index, PI (g), from low-pass filtered vertical axis acceleration4, 5 1, 2, 3 

Adapted from 1Degen et al. 2003, 2 Bourke et al. 2005, 3 Lindemann et al. 2005, 4Karantonis et al. 2006, 
5Yoshida et al. 2005 

Calculated vertical acceleration Z2 was used for impact detection and calculated 

as indicated in Eq. 5: 

 
2 2 2

2 2
TOT DSV SV G

Z
G

− −=  (5) 

in which SVTOT = total sum vector (g), SVD = dynamic sum vector (g), and G = 

gravitational component = 1g. 

The detection of end posture was modified from earlier studies (Culhane et al. 

2004, Culhane et al. 2005, Karantonis et al. 2006). It was determined two seconds 

after the main impact from the LP filtered vertical signal, based on the average 

acceleration in a 0.4 s time interval, with a signal value of 0.5g (equal to tilt angle 

of 60 degrees) or lower considered to be a lying posture. 

For the averaging of the SVTOT signal from intentional falls (IV) the raw data 

from III with sampling frequency of 50Hz were used. The averaging of 

experimental falls was performed by aligning the SVTOT signal at the impact data 

point where SVTOT ≥ 2g. This data point was chosen based on the threshold used 

for impact detection in fall algorithms.  

4.6 Algorithms for fall detection 

In II and III three fall detection algorithms with increasing complexity were 

investigated. The thresholds of fall phase detection determined in I were used 

without further optimatisation for each algorithm separately. For the analysis of 
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data measured from the wrist the end posture detection was not used. The fall 

phases (Table 4) used in different algorithms are presented below:  

– Algorithm 1 (IMPACT +POSTURE) was based on detection of the impact by 

a threshold value of SVTOT, SVD, SVMaxmin, or Z2, followed by monitoring of 

the posture of the person.  

– Algorithm 2 (START OF FALL+IMPACT+POSTURE) detected the start of 

the fall by monitoring SVTOT lower than the predetermined threshold, 

followed by the detection of the impact within the pre-impact time frame by a 

threshold value of SVTOT or Z2, followed by monitoring of the posture.  

– Algorithm 3 (START OF FALL+VELOCITY+IMPACT+POSTURE) 

detected the start of the fall by monitoring SVTOT lower than the 

predetermined threshold, followed by detection of the velocity v0 exceeding 

the threshold, followed by detection of the impact within the pre-impact time 

frame by a threshold value of SVTOT or Z2, followed by monitoring of the 

posture. 

4.7 Statistical methods 

Test person characteristics, age (I-IV), MMSE score (III, IV), and walking speed 

(III, IV) were presented as mean ± standard deviation (S.D.). Value ranges in I 

were presented as quartile box plot with min, max, 25, 50 and 75 percentiles. 

Sensitivity (Sen) and Specificity (Spe) of fall detection (I, II, III) were calculated 

as indicated in Eq. 1 and 2. False alarm rate (IV) was determined by dividing the 

number of false alarms by the number of usage hours during the test period.  
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5 Results  

This study has determined threshold-based acceleration methods for detection of 

fall phases in order to discriminate between falls and ADL (I).The sensitivity and 

specificity of fall detection algorithms using intentional falls and ADL in a 

laboratory environment (II, III) and in real life was evaluated. In addition, 

acceleration data collected from real-life falls were compared with intentional 

falls (IV).  

5.1 Acceleration thresholds for discriminating between falls and 

ADL at various attachment sites on the body (I) 

In general, fall-associated impacts measured from the wrist had higher 

acceleration values than those measured from the waist or head. Detailed value 

ranges for SVTOT, SVD, SVMaxmin, and Z2 are presented in I. Acceleration thresholds 

for discriminating between intentional falls and ADL are summarised in Table 5.  

Table 5. Thresholds (Th) of different parameters and fall detection sensitivity (Sen, %) 

and specificity (Spe, %) based on impact detection and end posture for data collected 

from the waist or head. For the wrist, posture detection was not included.  

Parameters Waist  Head  Wrist* 

Th Sen//Spe Th Sen//Spe Th Sen//Spe 

Start of the fall, SVTOT (g) ≤0.6 ND  ≤0.6 ND  ≤0.6 ND 

Velocity, v0 (ms-1) ≥0.7  ND  ≥1 ND  ≥0.9 ND 

Posture PI (g) ≤0.5 ND  ≤0.5 ND    

Impact SVTOT (g) ≥2.0  100/100  ≥2.0  100/100  ≥5.2 45/100 

Impact SVD (g) ≥1.7  100/100  ≥1.2  100/100  ≥5.1 32/100 

Impact SVMaxmin (g) ≥2.0  100/100  ≥1.7  100/100  ≥6.5 41/100 

Impact Z2 (g) ≥1.5  95/100  ≥1.8  100/100  ≥3.9 75/100 

*Posture detection not applied in method, ND = not determined 

At the waist and wrist the value ranges of the accelerometry-based parameters for 

impacts were overlapping between falls and ADL. However, when the impact 

detection was combined with monitoring horizontal end posture for the waist 

measurements, parameters SVTOT, SVD, and SVMaxmin were able to discriminate 

between falls and ADL, with sensitivity of 100% and specificity of 100% (Table 

5). At the waist, the velocity towards the ground, v0, before the fall-associated 

impact ranged from 0.8 to 3.4 ms−1.  
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At the wrist, the thresholds for impact alone were able to discriminate falls 

from ADL with sensitivity of 32–75% and specificity of 100% (Table 5). Posture 

detection was not included in the wrist measurement since posture determined 

from the wrist is not optimally related to the posture of the torso. The best fall 

detection at the wrist was achieved when a calculated acceleration towards the 

ground, Z2, was used for impact detection.  

In contrast to waist and wrist measurements, the value ranges of SVTOT, 

SVMaxmin, SVD, and Z2 measured from the head had specific value ranges for falls 

and ADL with no overlapping. Thus, thresholds for impact detection were able to 

discriminate between falls and ADL with specificity of 100% (Table 5). However, 

in II posture detection was included in fall detection algorithms for the head-worn 

application in order to certify high sensitivity and specificity of fall detection. 

Based on the data in I, thresholds of velocity and start of the fall for waist-, 

head-, and wrist-worn application were chosen empirically for effective fall 

detection sensitivity and specificity (Table 5). On average, the main fall-

associated impact was detected 0.3 s after the beginning of the fall, but the time 

range was up to 1 s; thus, the pre-impact phase in II, III and IV was determined in 

the time frame of 1 s before the impact.  

5.2 Sensitivity and specificity of different fall detection algorithms 
in a laboratory environment (II, III) 

Sensitivity and specificity of fall detection algorithms with different complexity is 

presented in detail in II and III and summarised in Table 6 showing the results 

from the parameter giving the highest fall detection sensitivity and specificity.  

Based on the results in II, a head-worn accelerometer using fall detection 

algorithm 1, regardless of the parameter used for impact detection, would provide 

the best sensitivity (98%) and 100% specificity for fall detection (Table 6). 

However, the waist-worn application with algorithm 1 is almost as effective with 

sensitivity of 97% (Table 6). At the waist, falls were best recognised when using 

SVTOT or Z2 as markers for fall-associated impacts. At the wrist, the tested 

algorithms had only moderate fall detection sensitivity, varying from 71% with Z2 

in algorithm 1 to 37% in algorithm 3. Specificity was 100% for all algorithms 

(Table 6).  
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Table 6. Sensitivity (%, fall samples) and specificity (%, ADL samples) of different fall 

detection algorithms using the most effective parameter for impact detection, SVTOT 

for head and waist, Z2 for wrist.  

Activity (study) Algorithm 1a  Algorithm 2b  Algorithm 3c 

waist head  wristd waist head wristd waist head wristd 

Fall (II) 97.0 98.0 71.0  95.0 86.0 64.0  76.0 47.0 37.0 

Fall (III) 97.5 ND ND  92.5  ND ND  78.3 ND ND 

ADL (II)  100.0 100.0 100.0  100.0 100.0 100.0  100.0 100.0 100.0 

ADL (III) 100.0 ND ND  100.0 ND ND  100.0 ND ND 
aAlgorithm 1 (impact+posture), bAlgorithm 2 (start of the fall+impact+posture), cAlgorithm 3 (start of the 

fall+velocity+impact+posture), dposture detection not included, ND = not determined 

The results from II and III show no big differences between sensitivity of 

algorithm 1 and 2 at the waist (Table 6), indicating that impact and start of the fall 

phase were detected on average in 94% of the test falls. High velocity towards the 

ground was not detected in such a high proportion of falls, since algorithm 3 was 

able to detect 76.0% and 78.3% of falls in II and III, respectively. At the head the 

sensitivity of algorithm 2 was lower than the sensitivity of algorithm 1, and 

algorithm 3 detected less than half of the falls (Table 6).  

In general, at the waist algorithms 1 and 2 detected forward and lateral falls 

more efficiently when compared to backward falls. More detailed analysis in III 

revealed that some backward falls were missed because the end posture was not 

detected as horizontal. In some cases fall-associated impacts were not detected, 

maybe due to the test persons bending their knees or rounding their backs when 

falling. Different fall detection algorithms showed the biggest difference in 

detection of fall from a bed (III). While algorithm 1 at the waist was able to detect 

100% of those falls, algorithms 2 and 3 were able to detect 72% and 17.5% of the 

falls, respectively.  

At the wrist the overall fall detection sensitivity of algorithm 2 using Z2 was 

64%, varying from 41% to 73% between fall types. When analysed in more detail, 

most of the falls (79%) had a pre-impact phase before the impact, but impact 

detection was not achieved in all cases. At the wrist, the overall fall detection 

sensitivity of algorithm 3 using Z2 was 37%. The two-stage criteria for the start of 

the fall and high velocity before the impact were met in 56%, 69%, and 27% of 

the forwards, backwards, and sideways falls, respectively. 

Based on the results presented I and II, acceleration measured from the head 

or waist would provide data for efficient fall detection. The waist was chosen as a 

measurement site in III and IV because of expected better real-life usability as an 
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attachment site when compared to head-worn application. The effect of 

acceleration amplitude of the device was simulated with restricted acceleration 

values in II. Even though the maximum amplitude value of the impact 

acceleration exceeded ±10g in raw data in I (data not shown), the results 

suggested that the use of an accelerometer with at least ±3g amplitude range had 

no effect on the sensitivity or specificity of the fall detection algorithms tested 

here using the data measured from the waist level. 

5.3 Comparison of real-life falls with intentional falls (IV) 

The combined average signal of SVTOT from all intentional falls (data from III) 

starting from a standing posture showed pre-impact and impact phases (Fig. 4). 

The averaged signal of falling out of bed did not show the typical SVTOT pit (Fig. 

4). Based on III, over 80% of intentional falls from a bed have low pre-impact 

velocity when calculated from the acceleration signal measured from the waist. 

Average signals for different fall types are presented in IV. Fall-associated 

impacts of all intentional fall types were averaged to one peak only. The highest 

average fall-associated impacts were measured from falls straight backwards and 

sideways.  

Fig. 4. Comparison of average acceleration signal (SVTOT) from intentional falls starting 

from standing posture (dashed line) and falling out of bed (solid line).  
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During the field test in Finland and Sweden (IV), altogether 14 fall events were 

reported among eight older test persons. During five fall events, the fall detection 

system was known to be out of use because of battery or software update, server 

malfunction or loss of data connections. During two falls (Table 7, falls #8 and #9) 

the fall detection system was functional but the sensor was not worn at the time of 

the fall. Among the 7 falls during which the sensor was worn and the fall 

detection system was functional, data collection was activated in five cases (Table 

7, falls #1 - #5). The details of these real-life falls are presented in Table 7 

including the categorisation of falls corresponding to the intentional fall types 

used in III. Falls occured when the persons were alone in a bedroom or a toilet 

and they were unable to get up by themselves after the falls. 

Falls #1 and #2 presented very similar fall events, during which the person 

had got entangled in a blanket and fallen forwards (Table 7). The falls had 

similarities also in acceleration SVTOT signals showing multiple fall-associated 

impacts as shown for fall #2 in Fig. 5. The profile for fall #1 is presented in IV. 

Both of these real-life falls showed the start of the fall phase, but fall #1 had a 

velocity lower than expected for a fall event based on an intentional fall model 

(Table 8). Real-life falls #1 and #2 showed higher amplitude of fall-associated 

SVTOT impacts than the average signal of intentional falls on a mattress (Fig. 5). In 

fall #2 the first peak after pre-impact phase was lower than 2g, but the main 

impact was more than 4.5g from the SVTOT signal (Fig. 5). 

The pre-imapact phase data from fall #3 was sampled at a frequency of 

6.25Hz, which is too low for identifying movements in detail. The profile for fall 

#3 is presented in IV. However, the start of the fall and impact were detectable 

from the SVTOT signal (Table 8). The fall-associated impact was higher than the 

average of intentional falls.  
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Fall #4 resulted in a hip fracture (Table 7). The fall mechanism was not 

known for this event. The comparison of fall #4 to intentional falls from standing 

height is shown in Figure 6. The real-life fall had a profile similar to intentional 

falls since all fall phases were detected from this fall (Table 8). The first fall-

associated impact after pre-imapct phase was the main one, and it was higher than 

the average impact from intentional falls (Fig. 6). The comparison of fall #4 with 

backwards and sideways intentional falls is presented in IV.  

Fall #5 was categorised as falling out of bed based on the care personnel’s 

description. The sum vector SVTOT signal of this fall event did not have the pre-

impact phase detectable from the SVTOT (Table 8). This was a feature similar to 

the average of intentional falls of the same category (Fig. 4). The real-life fall out 

of bed had one fall-associated impact, and it was lower than the average impact of 

intentional falls from a bed. However, the impact was higher than the threshold 

for fall-associated impact (Table 8). All real-life falls in this study ended up with a 

lying posture (Table 8).  

5.4 Fall detection sensitivity and false alarm rate in real-life (IV) 

The acceleration data of real-life falls by older people were collected from five 

out of seven falls than occurred during the usage hours of the sensor. The data 

collection of the system was not activated in two cases. Our earlier validated fall 

detection algorithm 1 would detect all five real-life falls presented here (Table 8), 

resulting in a fall detection sensitivity of 71.4% with the triggering criteria used. 

Start of the fall was detected in all falls starting from a standing posture (#1-#4), 

while high pre-impact velocity was detectable in falls #2 and #4 (Table 8). The 

fall resulting in hip fracture showed all fall phases monitored in this study. 

Table 8. Detection of fall phases based on parameters in I and II. 

Fall  Pre-fall phase Impact 3  End posture4 

Start of fall1 High velocity 2  

1 + - + + 

2 + + + + 

3 + ND5  + + 

4 + + + + 

5 - - + + 
1SVTOT<0.6g, 2 v0>0.7 ms-1, 3SVTOT>2g, 4PI<0.5g, 5Sample rate 6.25Hz. ND = not determined. 
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Fig. 5. Comparison of real-life fall #2 (solid line sampling frequency of 50Hz, open 

circles 6.25Hz) with intentional forward fall by middle-aged persons (dotted line).  

Fig. 6. Comparison of real-life fall #4 (solid line) with intentional falls from standing 

posture by middle-aged persons (dotted line).  

During the field test altogether 9,096 hours of real life were monitored with the 

sensor system among older people living in care units (Table 9). Most of the test 
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subjects wore the sensor during waking hours. The false alarm rate varied from 

0.000 to 0.178 alarms per hour, with an average value of 0.045 alarms per hour, 

corresponding to 1.1 false alarms over a 24-hour time period.  

Table 9. The usage of the sensor system among older people and the false alarm rate 

of the fall detection system.  

Person* Days (number)** Usage  

(hours) 

Average usage 

(hours/day)*** 

False alarm rate 

(alarms/hour) Worn Not worn 

A3 149 14 1673 11.5 ± 2.6 0.014 

B1 127 16 1232 9.8 ± 2.8 0.035 

C3 33 19 359 10.9 ± 6.1 0.178 

D1 37 46 265 7.8 ± 2.9 0.050 

E3 5 0 25 5.0 ± 2.6 0.080 

F3 24 18 198 8.6 ± 6.2 0.086 

G3 28 1 590 21.1 ± 3.9 0.015 

H3 134 32 2412 18.7 ± 6.2 0.054 

I1 61 17 909 15.0 ± 6.1 0.050 

J2 18 1 197 10.9 ± 4.2 0.020 

K3 16 0 176 11.7 ± 1.3 0.085 

L2 11 20 120 10.9 ± 3.8 0.025 

M3 35 10 503 14.4 ± 5.2 0.068 

N3 6 35 52 8.7 ± 1.6 0.058 

O3 13 1 220 16.9 ± 3.4 0.000 

P2 14 15 165 11.4 ± 6.2 0.000 

TOT 711 245 9096 13.1±1.0 0.045 ± 0.004 

*Status at the end of the test period: 1dead or excluded because of decline in health status; 2withdrawal 

from the study; 3completed the test period; **Technical failure days excluded; ***Non-use days excluded. 
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6 Discussion 

This study presents a validation of accelerometry-based fall detection method in a 

laboratory setting and an evaluation of the method in real life with older 

population. In addition, it is one of the first to present acceleration data from real-

life falls of older people. The results showed similarities between real-life falls 

and intentional falls and they support our fall detection concept of waist-worn 

accelerometer for monitoring movement and simple threshold-based algorithm to 

detect fall-associated impact and horizontal end posture.  

Our results showed that even if the different parameters measured from the 

waist showed typical characteristics for intentional falls and ADL, the value 

ranges had some overlapping. This indicates that using a simple threshold for 

impact alone is not optimal for practical fall detection. This is contrary to the 

report of Bourke et al. (2007a) where they were able to determine a simple SV 

threshold value for impacts capable of discriminating between intentional falls 

and ADL with 100% sensitivity and specificity. However, their experimental 

procedure used the chest as an attachment site for the sensor. Additionally, they 

used young test subjects for fall events and older people for ADL, whereas we 

used data collected from the waist from the same subjects for both falls and ADL.  

In our study I, the acceleration data from the head showed specific value 

ranges for intentional falls and ADL with no overlapping. The reports from 

Lindemann et al. (2005) and Wang et al. (2008) with head-attached accelerometer 

and algorithm with pre-impact velocity and impact to detect experimental falls 

resulted in 100% sensitivity and specificity. Because a waist-worn sensor is 

expected to have better usability than a head-worn sensor, the waist was chosen as 

an attachment site in our further studies. Based on I and II, the wrist as an 

attachment site for an accelerometry-based fall detector showed lower fall 

detection sensitivity, but the parameter for calculated acceleration towards the 

ground (Z2) showed some potential for further development. Other reports (Degen 

et al. 2003, Kang et al. 2006) have shown fall detection sensitivity between 65 

and 91.3% with a wrist-worn detector in experimental studies.  

Based on our studies in I, II and III, fall detection at the waist would be 

reliable with the algorithm detecting impact and end posture resulting in fall 

detection sensitivity of 97% and specificity of 100% in a laboratory environment 

with intentional falls. This has also been the strategy in other studies (Benocci et 

al. 2010, Chao et al. 2009, Tamura 2005), and the results have been supported by 

Bourke et al. (2010b), who tested sensitivity and specificity of various fall 
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detection algorithms with intentional falls and samples from instructed and real-

life ADL among older people. The data analysed in IV supports the use of 

accelerometry-based fall detection algorithm with impact and end posture 

detection in real life as well.  

Fall detection specificity and false alarm rate affect the usability and 

acceptability of systems among end users. Bourke et al. (2008b) reported 42 false 

fall alarms during 833 hours of monitored real-life ADL among older people. This 

would result in a false alarm rate of 0.050 alarms per hour. The results of Bourke 

et al. (2010b) showed that even though impact detection alone resulted in a 

specificity of 97.8% with selected instructed ADL, the false alarm rate in real life 

was 1.37 alarms per hour with data collected during 52 usage hours by older 

people. Adding the end posture information based on a reference dot product 

method to the detection algorithm decreased the false alarm rate to 0.11 per hour. 

However, when combining pre-impact velocity with impact and end posture 

detection the false alarm rate decreased to 0.04 (Bourke et al. 2010b). Recently 

Bianchi et al. (2010) tested fall detection algorithms and reported that combining 

the detection of pressure change with accelerometric impact and posture change 

detection decreased the false alarm rate from 11 alarms to zero in a real-life 125-

minute ADL test. Our results with real-life data from 9,096 hours showed an 

average false alarm rate of 0.045, which is in good agreement with the previous 

pilot studies.  

The WHO definition of falls does not require horizontal end posture. Thus, 

using end posture as one determinant in fall detection may result in some 

unmissed fall cases. The attachment of the sensor may also affect the accuracy of 

posture recognition. During our experimental tests, some intentional backward 

falls were missed because the end posture was not detected as horizontal even 

though all intentional falls ended up with the subject in a lying position on the 

floor. The attachment configuration of the sensor was obviously not optimal in the 

missed cases. 

Even though technical solutions, such as wireless sensor systems capable of 

collecting acceleration data from long-term real-life fall events have been 

proposed (Benocci et al. 2010, Nguyen et al. 2009), the use of real-life data from 

falls among older people has mostly been missing. Boyle & Karunanithi (2008) 

recorded acceleration data of four real-life falls from stroke patients and Tamura 

(2005) of 19 falls from a Parkinson patient, but they did not report the actual data 

from those falls. Thus, fall detection studies have mainly used younger test 
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persons performing intentional falls designed to mimic typical fall scenarios 

among the elderly. However, this may result in data different from real-life falls.  

Younger people may use preventative strategies to compensate high fall-

associated impacts, and older people with longer reaction time and decreased 

neuromuscular function are considered to be less able to use these strategies 

efficiently. Preventative strategies include the use of arms or knees to brake the 

fall, bending the knees, ankles and pelvis to decrease impact velocity and impact 

force (Hsiao & Robinovitch 1998, Robinovitch et al. 2003, Robinovitch et al. 

2004). In addition to differences of fall mechanisms between young and older 

population, intentional falls may differ based on the study design. As shown by 

Robinovitch et al. (2004), self-initiated falls result in lower pre-impact velocities 

and differences in impact sites when compared to falls that result from sudden 

release from lean angle or sudden disturbance of balance.  

In our studies I, II and III, the test persons performing intentional falls were 

instructed not to try using their hands or knees to soften the major impact at the 

torso and not to take recovery steps to prevent the fall. Some falls did, however, 

show protective knee bending and a rounded back to soften the falls. The 

averaging of intentional fall signals resulted in one main fall-associated impact 

peak, implying that in most falls already the first impact was the major one with 

SVTOT value of 2g or greater. In study IV, real-life falls showed multiple impact 

peaks. The two forward falls resulting in only minor injuries showed multiple 

peaks around the major impact and relatively low velocity at the pre-impact phase, 

suggesting protective motions. This is in agreement with a recent study by Klenk 

et al. (2011), who reported five real-life backwards falls in a specific disease 

population suffering from progressive supranuclear palsy, a disease with typical 

symptoms of loss of balance, lunging forward when mobilising, and falls. By 

calculating variance of acceleration from the pre-impact phase, they showed 

statistically significant differences between real-life falls and intentional falls with 

or without attempts to prevent the fall. According to their study, the pre-impact 

phase of real-life backwards falls showed some compensating strategies to 

prevent the fall. However, these compensating movements were less evident than 

in an intentional fall with an attempt to brake the fall (Klenk et al. 2011).  

The pre-impact phase before the fall-associated impact has been suggested to 

be a usable marker for several fall associated applications. It has been used for 

fall detection algorithms (Bourke et al. 2010b, Chen & Bassett 2005, Degen et al. 

2003, Wu 2000) and for launching the inflation of a wearable airbag to protect the 

head and thighs from high fall-associated impacts (Tamura et al. 2009). The pre-
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impact phase has been characterised in intentional falls by detecting the start of 

the fall from the acceleration sum vector SV (Degen et al. 2003), or by 

calculating velocity towards the ground (Bourke et al. 2007b, Wu & Xue 2008). 

The pre-impact velocity range in our laboratory falls (I) was 0.8 to 3.4 ms−1, 

which is in good agreement with the average velocity of 3.0 ms−1 reported by 

Feldman & Robinovitch (2007). Here, we found that the pre-impact velocity not 

to be successful in either intentional falls in II and III or real-life falls in IV. The 

two forward falls resulting only in minor injuries showed multiple peaks around 

the major impact and relatively low velocity at the pre-impact phase, suggesting 

protective motions. 

Interestingly, in IV, the acceleration profile of the real-life fall resulting in a 

hip fracture had very high pre-impact phase velocity and one major impact peak 

followed by smaller impacts. The actual fall mechanism for that fall event is not 

known, but the hazardous outcome of this real-life fall may be partly due to lack 

of protective actions, resulting in a major impact at the hip. Most hip fractures 

occur when falling from standing level or during walks, and they are results of 

lateral falls without the person being able to slow the fall, for example with an 

outstretched arm or taking a grip of furniture (Parkkari et al. 1999). ). In the hip 

fracture case in IV the inertial velocity at the pre-impact phase was 5.6 ms−1, 

which is even higher than suggested by van den Kroonenberg et al. (1996) for 

intentional sideways falls from standing height.  

Earlier surveys have suggested that older people are willing to accept security 

applications to improve their safety (Brownsell & Hawley 2004, Brownsell et al. 

2000, Melander-Wikman et al. 2007). Our co-workers (Vikman 2011) collected 

acceptability feedback from older people receiving home-help services about 

using a waist-worn automatic fall detector capable of sending an alarm in a case 

of a fall event. Based on the results, 74% of the participants agreed that such a 

system would increase their feeling of security, 66% agreed that it would reduce 

the fear of falling, while 57% stated that it would increase their sense of freedom 

of movement. However, only 28% felt that the system could affect their privacy. 

This study has some limitations. The number of individuals in I and II was 

very low, and we used young or middle-aged test persons to mimic real-life falls 

among older people. This has been typical in earlier studies as well (Mathie et al. 

2004a, Yoshida et al. 2005, Karantonis et al. 2006). However, we validated the 

concept with a reasonable number of middle-aged test persons, and showed that 

these falls have similar features as real-life falls in older people. The thresholds of 

fall phase detection determined in I were used without further optimatisation for 
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each algorithm separately. Improved sensitivity might have been obtained using 

more fine-tuned thresholds in triggering and fall phase detection. This study used 

an elastic belt as a method for sensor attachment. The attachment method and 

usability need to be further optimised for high compliance in large-scale use. 

Even though the data from real life were collected during a long-term field 

test and from a reasonable number of test persons, the number of real-life falls 

recorded remained low and they present fall events from three individuals only. In 

addition, the mechanisms of the real-life falls were not known precisely, since 

they were not video-recorded and occurred when the faller was alone. The fallers 

in our study were people aged 90 years of age or more living in care units. It may 

be argued that they differ from home-dwelling older people; nevertheless, they do 

provide a heterogeneous source of knowledge on fall mechanism among older 

population. In the population aged 65 years or more, forward falls are the most 

common type of fall, and falls often happen when doing ambulatory activities 

such as walking or transferring (Luukinen et al. 1994, Talbot et al. 2005). This 

was also the case in our study. 

In the future, more data on real-life falls among the elderly are needed to 

confirm the results and to obtain information on the sensitivity and specificity of 

fall detection. Usability issues should also be considered as an important field of 

future research and development. In addition to reliable fall detection, the effect 

of systems on older people’s quality of life and sense of security has to be 

carefully studied. In this study a single sensor system was introduced, but in the 

future, multisensorial systems that alao detect general physical activity and health 

status with body-worn and embedded ambient sensors are the most probable 

visions.  
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7 Conclusions 

The present study confirmed that body-worn accelerometers can be used for fall 

detection. The study suggests that the use of a waist-worn fall detector with a 

simple threshold-based algorithm provides a reliable system for discriminating 

falls from ADL. Moreover, this study presents acceleration data from real-life 

falls among older people. Based on the results, real-life falls show similar features 

as the intentional falls used for fall detection concept development. Based on the 

aims of this study, it can be concluded that:  

– Acceleration signals measured from the head or waist are applicable for fall 

detection with simple fall detection algorithms. The wrist as an accelerometer 

attachment site did not provide good accuracy in detecting intentional falls 

with the algorithms used in this study.  

– The acceleration signal from body-worn accelerometers shows differences 

between falls and ADL, and threshold-based methods for fall phases, such as 

pre-impact, impact and end posture are reasonable candidates for fall 

detection.  

– The fall detection concept using a triaxial accelerometer worn on the waist 

with a fall detection algorithm recognising fall-associated impact and end 

posture resulted in a fall detection sensitivity of 97% and a specificity of 100% 

with intentional falls by middle-aged persons.  

– The acceleration signals from real-life falls among older people present 

similar features as signals from intentional falls by middle-aged test persons. 

However, there is some difference in pre-impact velocity.  

– The fall detection sensitivity was 71.4% and false alarm rate 0.045 per hour 

in a real-life pilot study among older people.  
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