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�e performance behavior of the lithium-ion battery can be simulated by the batterymodel and thus applied to a variety of practical
situations. Although the particle swarm optimization (PSO) algorithm has been used for the battery model development, it is
usually unable to 	nd an optimal solution during the iteration process. To resolve this problem, an adaptive random disturbance
PSO algorithm is proposed. �e optimal solution can be updated continuously by obtaining a new random location around the
particle’s historical optimal location.�ere are two conditions considered to perform the model process. Initially, the test operating
condition is used to validate the model e
ectiveness. Secondly, the veri	cation operating condition is used to validate the model
generality.�e performance results show that the proposedmodel can achieve higher precision in the lithium-ion battery behavior,
and it is feasible for wide applications in industry.

1. Introduction

A battery management system (BMS) is an electronic system
used to manage a rechargeable battery or battery pack, and
it is widely applied to many applications that use a battery or
batteries, such as portable electronic devices, electric vehicles,
and power grids [1]. To ensure safe and e�cient operation,
it is essential for a BMS to be able to predict the static and
dynamic behavior of the batteries.

Currently, there are three general types of battery models
available in the literature: the electrochemical battery model,
arti	cial neural network model, and equivalent circuit model
(ECM) [2–9]. Among them, ECMs have been extensively
researched in recent years owing to their excellent adaptabil-
ity and simple realization [10, 11].

Parameter identi	cation is an essential step in battery
modeling, and its results directly a
ect the accuracy and relia-
bility of themodel. Identi	cationmethods are usually divided
into two types [12, 13]: online and o�ine, corresponding to
online and o�ine modeling, respectively.

Online identi	cation methods adjust the parameters of
the model in real time based on the condition and current

state of the battery. Furthermore, the BMS makes use of such
parameters and other information such as current, voltage,
and temperature to evaluate the state of charge (SOC), state
of health (SOH), and so on [14, 15], which are required for
real time control [16, 17]. However, the processor should
require higher calculation speed. O�ine identi	cations can
adopt mass experimental data that re�ects the characteristics
of the batteries. As a result, the identi	ed parameters have
higher precision and adaptability, and this makes such o�ine
identi	cations more suitable for battery or battery pack
modeling.

At present, there are two major types of o�ine identi	ca-
tions. �e 	rst type of methods is generally called traditional
identi	cation methods, like 	tting method based on Least
Squares [8], subspace identi	cation [16], multiple linear
regression method [18], and so on. �is type of methods is
simple and intuitive; however, the identi	ed parameters have
larger errors, and hence it is usually used in applications
with lower accuracy demand [19, 20]. �e second type of
methods is generally called bionic intelligent optimization
algorithms, like PSO [21], genetic algorithm (GA), [22] and
so on. Compared with the 	rst type of methods, the second
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one has obvious advantages in accuracy and reliability, and it
has become a popular method for parameter identi	cation.
However, when GA is used in parameter identi	cation [22–
24], there are certain issues that cannot be avoided, such as the
high computation time and easily falling into local optimum,
i.e., local extremum. �e particle swarm optimization (PSO)
algorithm may have low precision and o�en fall into local
optimum [24–29]. According to [25–27], the convergence
speed and the inertia weight � control can be improved. In
[28], both GA and PSO were combined, and in [29], the
double quantum PSO was adopted to identify the system
parameters, which can increase the traverse ability of particles
and simplify the evolution equation without using a velocity
vector. However, the abovementioned method may not solve
the problem in easily falling into the local optimum. In
[30–32], the chaotic optimization algorithm (COA) and the
improved PSO algorithm were combined to identify the
parameters of the battery, load, and solar cell models. In
abovementioned papers [30–32], upon accepting that the
PSO algorithm has an issue of falling into local optimum,
the COA is adopted to 	nd the new searching swarm and
continue the search, in order to increase global convergence
and calculation precision. In [30], the di
erence between the
covariance matrix of the particle location and the predeter-
mined threshold has been used as the basis, while in [32]
the di
erence between the variance of the population’s 	tness
and the predetermined threshold is used as the basis to judge
whether the solution falls into local optimum. In addition,
the predetermined threshold, which has certain in�uence on
calculation precision, is set according to the experience.

For the development of the battery model using PSO
algorithm, the particles may hover around local optimal
solution during the iteration process without reaching the
real optimal location. For this reason, an adaptive random
disturbance PSO (ARDPSO) is proposed and its perfor-
mances are validated by using a classical single model and a
multiplex model as target optimization functions. Also, this
algorithm can be used for identifying the parameters of the
battery model thus achieving higher calculation precision.

�e remaining contents of this paper are arranged as
follows: Section 2 introduces the standard PSO algorithm.
Section 3 describes ARDPSO algorithm and validates its per-
formance. ECM parameters identi	cation using ARDPSO is
illustrated in Section 4.�e experiment results and discussion
are presented in Section 5. Section 6 concludes this paper.

2. Standard PSO Algorithm

Particle swarm optimization (PSO) is an evolutionary com-
putation technique, especially searching for optimization for
continuous nonlinear, constrained and unconstrained, and
nondi
erentiable multimodal functions [21]. It can optimize
a problemby iterativelymoving particles around in the search
space over the particle's position and velocity. Each particle's
movement is updated as better positions in the search space
[33]. Assume � particles appear in a D-dimensional search
space, and the sets can be expressed as

� = {�1, �2, . . . , ��}

�� = {��1, ��2, . . . , ���} ; � = 1, 2, . . . , �
V� = {V�1, V�2, . . . , V��} ; � = 1, 2, . . . , �

	
��� = {	
���1, 	
���2, . . . , 	
����}
�
��� = {�
��1, �
��2, . . . , �
���}

(1)

where � denoted by �� represents the group containing �
particles with �-dimensional vector in the search space. �e
term V represents the velocity of the particles.�e term	
���
represents the local optimal solution, that is, the individual
best solution of particle �. �e term Gbest represents the
global optimal solution.

In each iteration, every particle updates its position and
velocity in search space according to its individual best
solution 	
��� and the global optimal solution of the group
Gbest, as follows:

V
�+1
� = V

�
� + �1�1 (	
���� − ��� ) + �2�2 (�
��� − ��� ) (2)

��+1� = ��� + V�+1� (3)

where � is the current number of iterations; �1 and �2 are two
positive constants called acceleration factors. �1 and �2 are
random numbers in the range 0–1.

For a particle swarm optimization, a better global search
is needed from a starting phase to help the algorithm con-
verge to a target area quickly, and then a stronger local search
is used to get a high precision value. �erefore, the modi	ca-
tion of improved standard PSO introduces the inertia weight� in formula (2), and its velocity is represented as follows:

V
�+1
� = � ⋅ V�� + �1�1 (	
���� − ��� ) + �2�2 (�
��� − ��� ) (4)

For getting a high precision solution, � needs to be
kept as a variable value, generally a decreasing value. In the
improvements of the standard PSO, the linear PSO (LPSO)
[25] is very representative, which uses a linearly decreasing
inertia weight, given by

� = (�max − �min) (� − �� ) + �min
(5)

in which� is current inertia weight,�min is theminimum
value (that is, the 	nal value) of inertia weight, �max is the
maximum value (that is, the initial value) of inertia weight,� is the current iteration number, and � is the maximum
number of allowable iterations.

3. ARDPSO Algorithm

3.1. �e Principle of ARDPSO. Although some related PSO
algorithms in convergence speed and inertia weight control
have been reported in the literature, the particles may still
encounter problems such as hovering around the real optimal
location but being unable to locate it. It means that the
local optimal solution of the particle is not updated, then
resulting in the global optimal solution not to be updated.
Consequently, the distance between the searched solution
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Figure 1: Optimization procedure: (a) the motion curve of the global optimal solution of the standard PSO; (b) the 	tness curve of the global
solution of the standard PSO; (c) the motion curve of the global solution of the LPSO; (d) the 	tness curve of the standard LPSO.

and the real optimal solution will not become closer. For
illustrating such a problem, a typical experiment uses the
standard PSO and LPSO algorithms to 	nd a solution that

minimizes the singlemode target function�(�, �) = �2+�2
and obviously the real optimal solution is (0, 0). Without loss
of generality, the number of particles is set as 50, and the
maximum number of iterations is set as 100 in the tests. Note
that the performances with di
erent initial settings such as
the number of the particles, iterative times, the initial range
of the particles, and velocity may produce di
erent results.

Figures 1(a) and 1(c) show themotion curves of the global
optimal solution of the standard PSO and LPSO, respectively.
On the other hand, Figures 1(b) and 1(d) show the corre-
sponding 	tness for standard PSO and LPSO, respectively.

From Figure 1, the following can be seen.
(1)�e global optimal solution (Gbest)may stop updating

during a certain period of iterations. For example, as shown in

Figure 1(d), from the 10th to 15th iteration, the global optimal
solution stops updating, while the global optimal solution

continues to update a�er the 16th iteration.

(2) During the iteration process, the global optimal solu-
tion of the standard PSO and LPSO gradually tends to the real
optimal position (0, 0). However, it is noted that the standard
PSO algorithm stops updating the global optimal solution at

the 24th iteration, and its 	tness is 1.702324344665708e-05.
On the other hand, the LPSO algorithm stops updating the

global optimal solution at the 78th iteration, and its 	tness is
1.6916e-12.

(3) �e inertia weight � shown in formula (4) in LPSO is
the key factor to achieve a better 	tness value than standard
PSO by increasing the number of iterations to be closer to a
real optimal solution.

However, both standard PSO and LPSOwould encounter
such problems:

(1) During the iterations, the global optimal solution may
not be updated for each iteration.

(2)�e global optimal solution may stop updating before
the maximum number of allowable iterations is achieved.

For this reason, the ARDPSO algorithm is proposed to
give the particle more opportunities to continue to update
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Figure 2: �e principle of the ARDPSO: (a) the global optimal solution updating; (b) the convergent procedure of ARDPSO.

its local optimal solution and thus to 	nd the global optimal
more accurately. �e global optimal solution updating from
the ARDPSO algorithm is shown in Figure 2(a). During
the iteration process, the moving of the particle will update
the global optimal location if a new location has a smaller
distance from the real optimal location than the global
optimal location.

Figure 2(b) illustrates the procedure of the ARDPSO
algorithm performance as follows.

(1) In each iteration process, for each particle, if the
	tness of its current solution (that is, ��+1� ) is inferior to the
	tness of its local optimal solution (that is, 	
���� ), 	
����
will not be updated in this iteration. It is noted that the
current solution ��+1� is got from formula (3), i.e., ��+1� =��� + V

�+1
� ; if, in the (�)�ℎ iteration, 	
���� is updated, then,	
���� = V

�
� . In the (� + 1)�ℎ iteration, if ������(��+1� ) is

inferior to ������(	
���� ), it means ������(��+1� ) is inferior
to������(��� ); the most likely reason for this is that (a) ���
is the real optimal solution and (b) the moving speed is too

rapid so that ��+1� exceeds the real optimal solution. If it is due
to the 	rst reason, then the algorithm has already achieved
the optimal solution. In the second reason, a relatively slow
moving speed needs to be set.

If 	
���� in the (�)�ℎ iteration is not updated and

if ������(��+1� ) in the (� + 1)�ℎ iteration is inferior to������(	
���� ), it means that the current location of the

particle ��+1� comparing with 	
���� has a relatively long
distance from the real optimal solution. In this situation, a
new solution should be got around 	
���� .

During the evolution of the global optimal solution, the
distance between the global optimal solution and the real
optimal solution decreases with increasing iteration time, and

the coverage of the random disturbance thus becomes less. In

Figure 2(b), it can be seen that the coverage of the (� + 1)�ℎ
random disturbance is less than that of the (�)�ℎ random
disturbance.

A new random location generation function can be
de	ned as formula

��+1� rand = 	
���� + V�+1� ∗ exp (−� ∗ (� + 1)� )
∗ rand () (6)

If the 	tness of its current solution (that is,��+1� ) is inferior
to the 	tness of its local optimal solution, then it will use
formula (6) to get a new location. In formula (6), exp(−� ∗�/�) is used to scale the coverage of the random disturbance,
commonly, a is a constant, n presents the current iteration
number, and N presents the total iteration numbers. �e
function rand() is a random value between 0 and 1.

(2) By comparing the 	tness of the randomly obtained
new solution to that of the abovementioned current solution,
the better solution is selected as the new current location of
the particle.

(3) If the new current location of the particle is superior
to its local optimal solution, thus the local optimal solution is
updated.

As above, the process of the ARDPSO is concluded as
follows.

At (� + 1)�ℎ iteration, for particle �, we have the following.
Step 1. Get the moving speed: V�+1� = � ⋅ V�� + �1�1(	
���� −��� ) + �2�2(�
��� − ��� ).
Step 2. Get the new location: ��+1� = ��� + V�+1� .
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Table 1: Benchmarks.

No. function formula minimum

�1 Sphere Model �1(�) = �∑
�=1
�2� − 100 ≤ �� ≤ 100 0

�2 Schwefel’s Problem 2.22 �2(�) = �∑
�=1

���������� + �∏
�=1

���������� − 10 ≤ �� ≤ 10 0

�3 Schwefel’s Problem 1.2 �3(�) = �∑
�=1
( �∑
�=1
��)2 − 100 ≤ �� ≤ 100 0

�4 Schwefel’s Problem 2.21 �4(�) = max
�
{���������� , 1 ≤ � ≤ �} − 100 ≤ �� ≤ 100 0

�5 Rosenbrock Function �5(�) = �−1∑
�=1
[100 (��+1 − ��)2 + (�� − 1)2] − 30 ≤ �� ≤ 30 0

�6 Step Function �6(�) = �∑
�=1
(⌊�� + 0.5⌋)2 − 100 ≤ �� ≤ 100 0

�7 Rastrigin Function �7(�) = �∑
�=1
[��2 − 10 cos (2*��) + 10] − 5.12 ≤ �� ≤ 5.12 0

�8 Ackley Function �8(�) = −20 exp(−0.2√ 1� �∑�=1��2) − exp(1�
�∑
�=1

cos 2*��) + 20 + � − 32 ≤ �� ≤ 32 0

�9 Griewank Function �9(�) = 14000 �∑�=1��2 −
�∏
�=1
cos( ��√�) + 1 − 600 ≤ �� ≤ 600 0

Step 3. If the 	tness of the current location ��+1� is inferior to
the 	tness of its local optimal solution, then a new location��+1� rand = 	
���� + V

�+1
� ∗ exp(−� ∗ (� + 1)/�) ∗ rand()

is obtained. Compare the 	tness of ��+1� and ��+1� rand, and

then choose the best one as the current location ��+1� .

Step 4. Get 	
���+1� . If the 	tness of ��+1� got in Step 3 is

superior to that of 	
���� , then 	
���+1� = ��+1� . Otherwise,	
���+1� = 	
���� .
And then, for all of the particles, we have the following.

Step 5. Get �
���+1.
3.2. Testing andAnalyzing the ARDPSO. In order to verify the
availability and wide applicability of the proposed ARDPSO
algorithm, nine benchmarks from the BBO repository are
adopted to test its performance, shown in Table 1, in which�1 − �5 are single mode functions, �6 is a step function, and�7 − �9 are multiplex mode functions [34–36].

Without loss of generality, the parameters setting for each
benchmark in Table 1 are as follows:

(i) �e dimensions of these functions are all set as 2.

(i) �e solution range of the benchmarks is based on
Table 1.

(ii) Generate the initial position of the particles randomly
within its solution range.

In addition, we have the following.

(i) For LPSO andARDPSO, themaximum inertia weight
is set as 0.9, while the minimum one is 0.5.

ii. For ARDPSO, the parameter � in the formula (5) is
set as 1.

Following the above rules, in the MATLAB 2015 (b)
environment, standard PSO, LPSO, and ARDPSO are used
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Figure 3: Statistical results diagram of historical local optimal
updating (in which the red point presents the standard PSO,
the green point presents the LPSO, and the blue point presents
ARDPSO; the abscissa values 1-9 correspond to benchmarks 1-9, and
the ordinate value indicates the number of updating times).

to test 9 benchmark functions in Table 1, respectively, where
each benchmark function was tested 30 times.�e number of
local optimal solution (that is, 	
���) updating is shown in
Figure 3. �e abscissa values 1-9 correspond to benchmarks
1-9, and the ordinate value indicates the number of updating
process. Table 2 shows the average updating times for the local
optimal solution of the particle.�enumber of global optimal
solution (that is, Gbest) updating is shown in Figure 4.
Similarly, in Figure 4, the abscissa values 1-9 correspond
to benchmarks 1-9, and the ordinate value indicates the
number of updating process. Table 4 shows the minimum
error, maximum error, and mean error between the 	tness
of optimal solution and the real optimal solution.

�e performance results as above indicate the following:
(1) For local optimal solution (Pbest) from Figure 3 and

Table 2, all benchmarks except the step function �6 show that
the average updating times by standard PSO and LPSO are
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Table 2: Average updating times of the historical local optimal solution.

Algorithm �1 �2 �3 �4 �5 �6 �7 �8 �9
Average times

PSO 4.81 4.64 4.63 4.80 5.42 4.47 3.32 3.45 3.42

LPSO 18.95 18.70 18.77 18.52 19.22 6.92 15.69 18.06 16.01

ARDPSO 65.74 63.08 65.47 63.69 65.52 5.06 38.49 64.20 35.28

Table 3: Average updating times of the global optimal solution.

Algorithm �1 �2 �3 �4 �5 �6 �7 �8 �9
Average times

PSO 7.6 8.23 6.5 8.03 11.07 4.83 5.7 6.07 6.5

LPSO 31.73 31.07 32.3 28.53 33.87 5 29.73 30.5 30.53

ARDPSO 64.8 63.73 64.13 63.87 64.7 2.93 36.5 61.63 32.27

PSO

LPSO

ARDPSO

1 2 3 4 5 6 7 8 9 100

function
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Figure 4: Statistical results diagram of global optimal updating (the
abscissa values 1-9 correspond to benchmarks 1-9, and the ordinate
value indicates the number of updating times).

about 5 to 18, respectively. However, the average updating
times by ARDPSO are about 64 for �1 −�5 and �8, while they
are about 36 for �7 and �9. It is found that the benchmark �6
may achieve relatively small updating times in standard PSO,
LPSO, and ARDPSO.

(2) For global optimal solution (Gbest) from Figure 4 and
Table 3, for all the benchmarks except the step function �6,
the average updating times by standard PSO are about 6 to
12, and they are about 28 to 32 by LPSO.�e average updating
times by ARDPSO are more than 60 for �1 −�5 and �8, while
they are about 33 for �7 and �9. Similarly, the benchmark �6
has relatively small average updating times in standard PSO,
LPSO, and ARDPSO.

(3) From the error statistics in Table 4, both LPSO
and ARDPSO algorithms are superior to the standard PSO
algorithm in all performance evaluations. For step function�6, both LPSO and ARDPSO can 	nd the real optimal result,
reaching an average error=0. For�1−�5 and�8, APDPSO has
much lower errors than LPSO. For �7 and �9, the relatively
small updating times for local and global optimal solution
imply that the global optimal solution will not be updated if
the real optimal solution is found.

�e following can be concluded:
(1) For step function �6, many solutions may get the

optimal 	tness, and it means that there are more chances to
	nd the real solution. In this situation, the Pbset and Gbest
are relatively small for standard PSO, LPSO, and ARDPSO.

(2) From formula (2) and (4), it can be seen that LPSO
adds an inertia weight �, compared to the standard PSO. �
decreases with the increasing iterations, and this gives the
particles more chances to update its Pbest as well as the Gbest
for better solution.

(3) When the particle could not update its 	
���, the
current solution (��+1� ) is not a better solution. A too rapid
moving speed may make it happen and thus lose the real
optimal solution. In the proposed ARDPSO model, when
the particle could not update its 	
���, it can obtain a new
solution ��+1� rand around the 	
���. If the 	
��� is not the
real optimal solution, choosing the better one from ��+1� and��+1� rand as the new position of the particle can encourage	
��� to be updated. From the results shown in Tables 2–4, it
can be seen that if the real optimal position is not found, the
Pbest andGbest updating times by ARDPSOmay increase far
higher than that of LPSO.

4. ECM Parameters Identification Based on
the Proposed ARDPSO

In this section, the ARDPSO algorithm is used to identify the
parameters of the ECM.

4.1. Preparation for the Experiment. �e following experi-
ments use NEWARE BTS-4008 as the power battery test
system and 18650 NMC batteries (the positive material is
LiCoxNiyMnzO2) as the experiment object. �e selected
18650 NMC battery wasmanufactured in Tianjin with a rated
capacity of 2000 mAh and a rated voltage of 3.7 V. �e rated
charging and discharging cut-o
 voltages are 4.2 V and 2.5 V,
respectively.

�e open circuit voltage- (OCV-) state of charge (SOC)
curve of the above tested battery is obtained according to the
method described in [37].

�e error criterion is a crucial factor to determine the
precision of parameters identi	cation so that the root square
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Table 4: Comparison of performance results.

Algorithm Error f1 f2 f3 f4 f5 f6 f7 f8 f9

Standard
PSO

Minimum Error 0.001238535 0.015541741 0.000359473 0.012069324 0.00312616 0 0.002253 0.015926 3.47E-08

Average Error 0.07380834 0.331487833 0.061015048 0.139138918 0.362969219 1 0.846391 0.103188 0.004895

Maximum Error 0.681954989 0.808067334 0.24427567 0.446676649 2.771664211 0.133333 2.130416 0.41696 0.010275

LPSO

Minimum Error 3.93E-14 3.03E-07 2.63E-14 8.81E-08 7.55E-14 0 1.53E-13 2.42E-08 7.77E-16

Average Error 7.59E-12 3.48E-06 1.15E-11 2.90E-06 6.72E-10 0 0.1990 3.71E-07 0.0043

Maximum Error 4.22E-11 1.01E-05 1.05E-10 9.85E-06 1.35E-08 0 0.994959 1.58E-06 0.0074

ARDPSO

Minimum Error 8.89E-33 1.26E-16 2.61E-32 3.08E-17 1.23E-32 0 0 8.88E-16 0

Average Error 3.22E-29 1.98E-15 1.70E-29 2.05E-15 3.90E-27 0 0.0099 4.09E-15 0.0023

Maximum Error 5.11E-28 7.08E-15 1.18E-28 1.78E-14 7.31E-26 0 0.994959 1.15E-14 0.0074

error is commonly used for battery models parameters
identi	cation [9]. However, many factors may in�uence the
precision of the battery model, like the OCV-SOC relation-
ship, the model itself, SOC initial value, and so on. For this
reason, a weighted 	tness function shown in formula (7) is
de	ned as

������ = ? ∗ √ 1A
	∑

=1
(C�,
 − C�,
)2 + D

∗max (����C�,
 − C�,
����
=1:	) ,
0 ≤ ? ≤ 1, 0 ≤ D ≤ 1, ? + D = 1

(7)

whereA represents the total number of measurement inter-
vals, C� is the terminal voltage of the battery system that
can be obtained by measurement, C� is the voltage that is

calculated from the battery model, and G represents the G�ℎ
sampling. In the following experiments, ? = D = 0.5.
4.2. ECM Model Used by the Experiments. At present, the
simple model, the 	rst-order RC model, and the second-
order RC model are the most applied battery models [9, 38]
in industry. �e simple model shown in (8) has a simple
structure and operating principle.�e�évenin ECM shown
in (9) is known as the 	rst-order RCmodel.�e second-order
RCmodel shown in (10) is an extension model from the 	rst-
order RC model.

C� = C�� (HIJ) − K�� (8)

C� = C�� (HIJ) − K�� − L� (9)

C� = C�� (HIJ) − K�� − L�1 − L�2 (10)

In above formulae, C� represents the terminal voltage of
the battery, C��(HIJ) represents the value of the OCV
corresponding to the value of the SOC, �� represents the load
current, andK represents the internal resistance of the battery.
In (9), L� represents the polarization voltage and its discrete
form can be shown using the following formula [39].

L�,
+1 = L�,
�−Δ�/� + K���,
 (1 − �−Δ�/�) (11)

where M = K�J�, Δ represents the sampling interval of the
system, and K� and J� represent the polarization resistance
and the polarization capacitor, respectively. In formula (10),L�1, L�2, respectively, represent the electrochemical polar-
ization voltage and the polarization voltage, and the discrete
form of L�1, L�2 can be expressed as

L�1,
+1 = L�1,
�−Δ�/�1 + K�1��,
 (1 − �−Δ�/�1)
L�2,
+1 = L�2,
�−Δ�/�2 + K�2��,
 (1 − �−Δ�/�2) (12)

where M1 = K�1J�1, M2 = K�2J�2, Δ represents the sampl-
ing interval of the system, K�1 and J�1 represent the elec-
trochemical polarization resistance and the electrochemical
polarization capacitor, respectively, and K�2 and J�2 repre-
sent the concentration polarization resistance and the con-
centration polarization capacitor, respectively. In formulae

(10) and (11), G represents the G�ℎ sampling.
For the three ECMs, the dynamic behavior of the battery

cannot be e
ectively modeled by the simple model due
to the lack of consideration in the battery polarization
e
ect. For example, when the battery is at rest a�er it is
charged/discharged for a certain time, its SOC value is a
constant with 0 current. �en, the simple model will output
a constant terminal voltage, but in fact its terminal voltage is
variable.�e 	rst-order RCmodel is based on the connection
with one RC network in series with the simple model, and
the delay characteristic of the 	rst-order RC network is used
to simulate the polarization e
ect of the battery. �erefore,
during the battery rest, the 	rst-order RC model can output
a variable. However, it is unsuitable for the voltage transient
process of the battery. �e second-order RC model that con-
nects two RC networks in series with the simple model can
simulate the electrochemical polarization and concentration
polarization separately. Accordingly, it could bettermodel the
dynamic behavior of the battery. In this study, the in�uence
from di
erent parameter identi	cation methods is mainly
considered.

4.3. Parameter Identi
cation Based on RDPSO Algorithm.
�e RDPSO algorithm evaluated with the 	tness function
shown in (7) is used to identify the parameters of the battery
model, and the process is indicated in Figure 5.
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Figure 5: Flow diagram of system identi	cation based on ARDPSO.

5. Performance Results and Discussion

5.1. �e Working Conditions. Based on the known capac-
ity and the OCV-SOC curve of the battery, the LPSO
and ARDPSO are used to identify the parameters of the
abovementioned three ECM models. In this section, two
di
erent operating conditions are selected for experiments.
�e 	rst one is the test operating condition shown in Figures
6(a)–6(d), and it is used to validate the e
ectiveness of the
ARDPSO. �e second one is the veri	cation operating con-
dition shown in Figures 7(a)–7(d), and it is used to validate
the generality of the ARDPSO. In other words, the battery
model parameters identi	ed by one operating condition can
suit other operating conditions. In both operating conditions,
four types of battery information are provided, shown in
Figures 6 and 7. In Figures 6(a)–6(d) and 7(a)–7(d), the
abscissa is time and themeasurement interval is 1 s;moreover,
Figures 7(a)–7(d) have the samemeaningwith corresponding
(a)–(d) shown in Figure 6.

In these 	gures, we have the following.

(i) Figure 6(a) shows the current for each measurement
interval.

(ii) Figure 6(b) shows the battery voltage obtained from
each measurement interval.

(iii) Figure 6(c) shows the value of the SOC from each
measurement interval. In the test operating condi-
tion, the battery rests for two hours so that the

terminal voltage of the battery can be used as initial
OCV. Consequently, the initial SOC value can be
obtained via the OCV-SOC relationship. Other SOC
values can be obtained throughAmper–Hour integral
[8] using the known initial SOC value and the current
shown in Figure 6(b).

(iv) Figure 6(d) shows the value of OCV corresponding to
the SOC value for each measurement interval.

5.2. E�ectiveness Veri
cation. �e simple, 	rst-order RC,
and second-order RC models were used to test the least
square method [8], LPSO, and ARDPSO in the parameters
identi	cation under the condition shown in Figure 6. In
Table 5, the performance results are concluded according to
the root mean square (RMS) error, maximum error (Max
error), and the accumulative error (Acc error), where each
error formula is expressed as

RMS error: √ 1A
	∑

=1
(C�,
 − C�,
)2

Max error: max (����C�,
 − C�,
����
=1:	)
Max error:

	∑

=1

����C�,
 − C�,
����
(13)

Note that each variable in formula (13) has the same
de	nition as that of formula (7).
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Figure 6: Test operating condition: (a) battery current; (b) measurement voltage; (c) SOC; (d) OCV.
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Figure 7: Veri	cation operating condition: (a) battery current; (b) measurement voltage; (c) SOC; (d) OCV.
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Figure 8: Testing results of the second-order RC model: (a) the measured voltage of the battery and the simulation results of the battery
model; (b) simulation errors of the battery model.

Table 5: Error result of least square, LPSO, and ARDPSO in test operating conditions.

Algorithm Error Simple model First-order RC Second-order RC

Least Square

RMS Error 0.0472 0.0451 0.0426

Max Error 0.7836 0.7045 0.7264

Acc Error 578.7310 413.8880 383. 9528

LPSO

RMS Error 0.0472 0.0443 0.0434

Max Error 0.7836 0.7196 0.7494

Acc Error 578.5120 386.2990 347.1315

ARDPSO

RMS Error 0.0461 0.0421 0.0397

Max Error 0.7836 0.7139 0.7217

Acc Error 544.5102 323.9048 313.6077

�e above three models based on the same parameters
have similar output voltages and error distributions, and only
the results of the second-order RCmodel based on LPSO and
ARDPSO are shown in Figure 8.�emeasured voltage of the
battery and the simulation result are shown in Figure 8(a).
�e simulation errors of the battery model are shown in
Figure 8(b).

From the experiment results, the following can be con-
cluded:

(1)When the three abovementionedmodels are identi	ed
under the same operating conditions, the global optimal
location is further optimized by the ARDPSOwith the added
random disturbance function, as compared to the LPSO. As a
result, the output voltage obtained from theARDPSO ismuch
closer to the true battery voltage than the LPSO.

(2) Under the same operating conditions, the same
identi	cation method is used to obtain the parameters of the
three models. �e second-order RC model that uses two RC
networks to simulate the electrochemical polarization and
concentration polarization has more precision than the 	rst-
order RC model with one RC network. However, the simple
model does not consider the polarization characteristics;
comparing with the simple model, the 	rst-order RC model
is more precise.

(3) From Figure 8(a), it is shown that, during the battery
discharging process, when the value of SOC is small, the
voltage drops relatively fast for the same current due to the
battery inherent characteristic. It would result in a large error
in this case. Consequently, most of the literatures use only the
20%–80% of SOC information [9, 40]. It can be seen from
Figure 8(b) that LPSO and ARDPSO have relatively small
errors as the value of SOC is in between 20% and 80%.

(4) Table 5 reveals that the RMS error, the max error, and
themin error of ARDPSO are smaller than those of the LPSO;
therefore, it can be seen that the novel method combination
with the adaptive random disturbance can produce a better
performance.

(5) From Table 5, comparing with the least square
algorithm, LPSO and ARDPSO could get lower Acc Error.
However, the result of least square algorithm is very sensitive
to the initial value setting, and an improper initial settingmay
cause a large error.

5.3. Generality Veri
cation. To validate the generality of the
ARDPSO for each of ECMmodels, the parameters identi	ed
under the test operating condition are used as the input to
obtain the output voltage of ECM model. Figure 9 shows the
output voltage error distribution in di
erent ECM models.
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Figure 9: Error distribution of the battery models with the parameters identi	ed by ARDPSO: (a) simple model; (b) 	rst-order RC model;
(c) second-order RC model.

Figure 10: Error results of the battery model parameters by
ARDPSO.

Figure 10 concludes the statistical results of the maximum
error, RMS error, and the average error.

�e following can be seen from Figures 9 and 10:
(1) For the three abovementioned models, the results of

the veri	cation operating condition (as shown in Figure 7)
using the parameters identi	ed under test operating condi-
tion (as shown in Figure 6) indicate that the output voltage
of the ECMs almost coincides with the real battery voltage,
shown in Figure 7(b). As a result, throughout the whole
simulation process, the maximum error is low enough within
a small range, as shown in Figure 9.

(2) Among the threemodels, the second-ordermodel can
better simulate the static and dynamic behavior of the battery.
�us the second-order RC model has smaller maximum
error, RMS error, and average error than simple model and
the 	rst-order RC model.

(3) �e parameters identi	ed by the proposed ARDPSO
under one operating condition are suitable for other operat-
ing conditions for ECM models, verifying the e
ectiveness
and generality of the ARDPSO.�at is, the battery model can
be used by BMS to predict the states of the battery.

6. Conclusions

�ePSOhas beenwidely used inmany applications like iden-
ti	cation of ECM model. It and its extended algorithm such
as LPSO could update both local and global optimal solutions
bymoving particles to achieve the target. However, it is found
that the solution either local or global optimummay not keep
updating for a period of time during the particles movement.
�e ARDPSO algorithm is proposed to continue to update
the optimal solutions. Test results from multiple benchmark
functions have veri	ed that the ARDPSO can improve the
updating process for both local and global optimal solutions.
Accordingly, the ARDPSO can reach higher solution preci-
sion than the standard PSO and LPSO.

As ECM model parameters can a
ect the static and
dynamic behaviors of the battery model, the ARDPSO there-
fore introduces a new weighted 	tness function to identify
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ECMparameters. Based on the evaluation tool using themax-
imum error, RMS error, and the average error, it is obvious
that the parameters of ECMmodel have been identi	ed accu-
rately under the test operating condition. Besides, it indicates
the ARDPSO promises a better performance than the LPSO.
For future work, the black box algorithms such as neural net-
work and support vector machine will be used to model the
battery and further compared with the ARDPSO algorithm
in the state of charge (SOC) and state of health (SOH).
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