
DEVELOPMENT OF ADVANCED

COMPUTATIONAL FLUID DYNAMICS TOOLS

AND THEIR APPLICATION TO SIMULATION

OF INTERNAL TURBULENT FLOWS

V.N. Emelyanov1, A.G. Karpenko2, and K.N. Volkov3

1Faculty of Power Engineering, Baltic State Technical University
1, 1-ya Krasnoarmeyskaya Str., St. Petersburg 190005, Russia

2Faculty of Mathematics and Mechanics, St. Petersburg State University
Universitetsky Prosp., Old Petergof, St. Petersburg 198504, Russia

3Faculty of Science, Engineering and Computing, Kingston University
Friars Av., Roehampton Vale, London SW15 3DW, United Kingdom

Modern graphics processing units (GPU) provide architectures and new
programming models that enable to harness their large processing power
and to design computational §uid dynamics (CFD) simulations at both
high performance and low cost. Possibilities of the use of GPUs for the
simulation of internal §uid §ows are discussed. The ¦nite volume method
is applied to solve three-dimensional (3D) unsteady compressible Euler
and Navier�Stokes equations on unstructured meshes. Compute Ini¦ed
Device Architecture (CUDA) technology is used for programming imple-
mentation of parallel computational algorithms. Solution of some §uid
dynamics problems on GPUs is presented and approaches to optimiza-
tion of the CFD code related to the use of di¨erent types of memory are
discussed. Speedup of solution on GPUs with respect to the solution on
central processor unit (CPU) is compared with the use of di¨erent meshes
and di¨erent methods of distribution of input data into blocks. Perfor-
mance measurements show that numerical schemes developed achieve 20
to 50 speedup on GPU hardware compared to CPU reference implemen-
tation. The results obtained provide promising perspective for designing
a GPU-based software framework for applications in CFD.

1 INTRODUCTION

Fluid §ow and heat transfer occur in nature and engineering. There are nu-
merous naturally occurring phenomena as well as technical and technological
applications in which §uid §ows and heat transfer play an important role.

Progress in Flight Physics 7 (2015) 247-268
DOI: 10.1051/eucass/201507247
© Owned by the authors, published by EDP Sciences, 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article available at http://www.eucass-proceedings.eu or http://dx.doi.org/10.1051/eucass/201507247

http://www.eucass-proceedings.eu
http://dx.doi.org/10.1051/eucass/201507247

PROGRESS IN FLIGHT PHYSICS

The methods of CFD are extensively applied in design and optimization of
industrial devices to get more insight into 3D unsteady §ows through §uid or
gas passages. Accurate prediction of internal §ows still remains a challenging
task despite a lot of work in this area. The quality of CFD calculations of the
§ows strongly depends on the proper prediction of §ow physics and turbulence
phenomena. Investigations of heat transfer, skin friction, secondary §ows, §ow
separation, and reattachment e¨ects demand reliable numerical methods, accu-
rate programming, and robust working practices.

The stagnation in the clock speed of CPUs has led to signi¦cant interest in
parallel architectures that o¨er increasing computational power by using many
separate processing units. Modern graphics hardware contains such an archi-
tecture in the form of the GPU. These platforms make it possible to achieve
speedups of an order of magnitude over a standard CPU in many CFD applica-
tions and are growing in popularity [1].

Figure 1 shows that a recent GPU is signi¦cantly more powerful than its
CPU contemporary and that the computing power of GPUs are increasing at
a greater rate than that of CPUs. The GPU employs a parallel architecture;

Figure 1 Floating point operations per second (§ops) for the CPUs and GPUs:
GT680 ¡ GeForce GTX 680; GT580 ¡ GeForce GTX 580; GT480 ¡ GeForce GTX
480; GT200 ¡ GeForce GTX 200; G92 ¡ GeForce 9800 GTX; G80 ¡ GeForce 8800
GTX; G71 ¡ GeForce 7900 GTX; G70 ¡ GeForce 7800 GTX; NV40 ¡ GeForce 6800
Ultra; NV35 ¡ GeForce FX 5950 Ultra; and NV30 ¡ GeForce FX 5800

248

INLETS, NOZZLES, AND INTERNAL FLOWS

so, each generation improves on the speed of the previous ones by adding more
cores, subject to the limits of space, heat, and cost. Central processing units, on
the other hand, have traditionally used a serial design with a single core, relying
instead on greater clock speeds and shrinking transistors to drive more powerful
processors. While this approach has been reliable in the past, it is now showing
the signs of stagnation as the limit of current manufacturing technology is being
reached. Recent CPUs, therefore, tend to feature two or more cores but GPUs
still enjoy a signi¦cant advantage in this area for the time being [2].
Speed and accuracy are the key factors in the evaluation of §ow solver per-

formance. In CFD applications, the increasing demands for accuracy and simu-
lation capabilities produce an exponential growth of the required computational
resources. High-performance computing (HPC) resources are widely used in
aerospace engineering.
The use of GPUs is a cost-e¨ective way of improving substantially the per-

formance in CFD applications. Taking advantage of any multicore architecture
requires programs to be written for parallel execution. For CFD, this has tra-
ditionally meant splitting the §ow domain into several parts that are solved
independently on each processor node in a cluster, with the §ow properties at
boundaries being communicated between the nodes after each time step. This is
also the process adopted for GPUs, but the GPU introduces several additional
constraints that make the stream programming paradigm particularly useful.
Depending on the complexity of the problem to represent and solve, a struc-

tured or unstructured mesh is used. Algorithms are more e©ciently implemented
on structured meshes, and data structures to handle the mesh are easy to imple-
ment. However, structured meshes present poor accuracy if the problem to be
solved has internal or external boundaries of complex shape (in this case, special
treatment of boundary conditions is required on structured meshes). It is di©-
cult to generate structured or block-structured mesh in real geometry. On the
other hand, unstructured meshes present more §exibility and higher accuracy
to represent problems that have complex geometries and boundaries. However,
the data structures to handle it are not easy to implement, and also explicit
neighboring information should be stored. In general, unstructured meshes are
more utilized because of their §exibility and higher accuracy.
Much of the e¨ort in running CFD codes on GPUs has been directed toward

the case of solvers based on structured meshes [3�8]. These solvers are easily to
implement on GPUs due to their regular memory access pattern.
Unstructured mesh-based analysis methods on shared memory and dis-

tributed memory systems have been largely studied. However, shared and dis-
tributed memory systems are fundamentally di¨erent from GPUs. A GPU is
a SIMT (Single Instruction Multiple Thread) engine, whereas shared and dis-
tributed memory systems are MPMD (Multiple ProgramMultiple Data) engines.
However, the common aspect of these parallel engines is that in both of them,
the mesh application is limited by memory latency.

249

PROGRESS IN FLIGHT PHYSICS

There has also been interest in running unstructured mesh-based CFD solvers
on GPUs. Achieving good performance for such solvers is more di©cult due to
their data-dependent and irregular memory access patterns [9�12].
Explicit time-marching algorithms are the most convenient ones to be ported

on to the GPU. This is because there is no iteration and the new value of a vari-
able depends only on the old time values. Hence, the update of a given variable
is done independent of variables being updated on other threads. There is no
recursive relation between the variables on the threads, since they are all known
at the old time step. However, even for explicit algorithms, a few changes are
needed for e©ciently implementation of numerical algorithms on the GPU. These
relate to the use of shared memory and the layout of data structures. Memory
coalescing and block size in§uence on the speed have been achieved. The data
should be organized such that adjacent threads access adjacent nodal data. In
addition, data should be, where possible, copied to shared memory and reused
as much as possible. Therefore, even explicit algorithm based CFD codes need
to be reorganized to take advantage of the GPU architecture.
When an implicit algorithm is used, the e©ciency as well as the convergence

is impacted. Implicit algorithms directly ported to a GPU do not usually work
because of the mixed implicit and explicit updates. It is necessary to remove
any recursive updates; so, the algorithm could be run on parallel threads.
The most of the work done so far has either been for relatively small codes

written from scratch or for a small portion of a large existing code. The present
work is undertaken as a part of a larger e¨ort to establish a common CFD code
for simulation of internal §ows in aerospace and related applications and involves
some basic validation studies. The paper describes some of experiences of using
GPUs as a paradigm for performing large-scale CFD computations. The govern-
ing equations are solved with ¦nite volume code on hybrid meshes. Parallel com-
putations are implemented using the message passing interface (MPI) (clusters)
and CUDA technology (GPU). The results obtained are generally in reasonable
agreement with the available experimental and computational data. Capabilities
and accuracy of various ¦nite di¨erence schemes, acceleration e©ciency calcula-
tions due to parallelization of computational algorithms are compared and im-
plementation of various approaches to decomposition of computational domain
and load balancing are discussed.

2 GOVERNING EQUATIONS

In Cartesian coordinates (x, y, z), an unsteady 3D §ow is described by the fol-
lowing equation written in conservative form:

∂Q

∂t
+

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= 0.

250

INLETS, NOZZLES, AND INTERNAL FLOWS

The equation of state of ideal gas is

p = (γ − 1)ρ

[
e −
1

2

(
v2x + v2y + v2z

)]
.

The §ow variables vector, Q, and the §ux vectors, Fx, Fy and Fz , have the form:

Q =

ρ
ρvx

ρvy

ρvz

ρe

; Fx =

ρvx

ρvxvx + p − τxx

ρvxvy − τxy

ρvxvz − τxz

(ρe+ p)vx − vxτxx − vyτxy − vzτxz + qx

;

Fy =

ρvy

ρvyvx − τyx

ρvyvy + p − τyy

ρvyvz − τyz

(ρe+ p)vy − vxτyx − vyτyy − vzτyz + qy

;

Fz =

ρvz

ρvzvx − τzx

ρvzvy − τzy

ρvzvz + p − τzz

(ρe+ p)vz − vxτzx − vyτzy − vzτzz + qz

.

The components of viscous stress tensor and components of heat §ux vector are
found as

τij = µe

(
∂vi

∂xj
+

∂vj

∂xi
−
2

3

∂vk

∂xk
δij

)
; qi = −λe

∂T

∂xi
.

Here, t is the time; ρ is the density; vx, vy, and vz are the velocity components
in the coordinate directions x, y, and z; p is the pressure; e is the total energy
per unit mass; T is the temperature; and γ is the speci¦c heat ratio.
The governing equations are suitable for both laminar and turbulent §ows,

and they formally coincide with unsteady Reynolds-averaged Navier�Stokes
(RANS) equations. The e¨ective viscosity, µe, is calculated as a sum of molec-
ular viscosity, µ, and eddy viscosity, µt, and the e¨ective thermal conductivity,
λe, is expressed in terms of viscosity and Prandtl number:

µe = µ+ µt ; λe = cp

(
µ

Pr
+

µt

Prt

)

where cp is the speci¦c heat capacity at constant pressure. Molecular and tur-
bulent Prandtl numbers are Pr = 0.72 and Prt = 0.9 for air. The Sutherland£s
law is used to obtain molecular viscosity as a function of temperature:

µ

µ∗

=

(
T

T∗

)3/2
T∗ + S0
T + S0

where µ∗ = 1.68 · 10
−5 kg/(m s), T∗ = 273 K, and S0 = 110.5 K for air.

251

PROGRESS IN FLIGHT PHYSICS

3 NUMERICAL METHOD

The equation solved by the CFD code is of the form dQ/dt = R(Q) where Q
is the §ow variables vector. The §ow residual is R(Q) = H(Q) − L(Q) where
L(Q) denotes all the spatial di¨erencing terms and H(Q) denotes the terms from
boundary conditions and possible source terms.
The Navier�Stokes equations are numerically solved by local time-stepping

using an upwind scheme with Godunov£s exact or Roe£s approximate Riemann
solver on an unstructured mesh with di¨erent shape of cells. A Runge�Kutta
formulation is used for the time integration.
Analysis using an unstructured mesh is implemented as an iterative method

where the values of the variables at each solution point are updated until they
converge to the solution or reach a number of iterations. The relative L2 norm
of the §ow residual is taken as a criterion to test convergence history.
The code user needs to specify physical §ow inputs and boundary conditions

which typically de¦ne solid walls and in§ow or out§ow regions. Along with
these physics-type inputs, there are inputs which choose particular numerical
algorithms and specify parameters for them. Some details of the CFD code are
provided in [13].
The unstructured CFD code developed uses an edge-based data structure to

give the §exibility to run on meshes composed of a variety of cell types. The
§uxes through the surface of a cell are calculated on the basis of §ow variables
at nodes at either end of an edge and an area associated with that edge (edge
weight). The edge weights are precomputed and take account of the geometry of
the cell. The nonlinear CFD solver works in an explicit time-marching fashion,
based on a Runge�Kutta stepping procedure. The governing equations are solved
with upwind ¦nite di¨erence scheme for inviscid §uxes and central di¨erence
scheme of the 2nd order for viscous §uxes. For simulation of low-speed §ows,
convergence to a steady state is accelerated by the use of low Mach number
preconditioning method. The computational procedure involves reconstruction
of the solution in each control volume and extrapolation of the unknowns to ¦nd
the §ow variables on the faces of control volume, solution of Riemann problem
for each face of the control volume, and evolution of the time step.

4 PROGRAMMING MODEL

Technology CUDA is a parallel computing architecture which introduces a new
programming model based on high-level abstraction levels that avoid the former
graphics pipeline concepts and ease the porting of a scienti¦c CPU application [2].
According to the CUDA framework, both the CPU and the GPU maintain their
own memory. It is possible to copy data from CPU memory to GPU memory
and vice versa.

252

INLETS, NOZZLES, AND INTERNAL FLOWS

4.1 Overview

Programming of GPUs is unlike traditional CPU programming, because the
hardware is dramatically di¨erent. It is often a relatively simple task to get
started with GPU programming and get speedups over existing CPU codes, but
these ¦rst attempts at GPU computing are often suboptimal and do not utilize
the hardware to a satisfactory degree. Achieving a scalable high-performance
code that uses hardware resources e©ciently is still a di©cult task that takes
months and years to master.
Framework CUDA is a technology for GPU computing from NVIDIA. The

GPU is formed by a set of SIMD (single instruction multiple data) multiproces-
sors, each one having a number of processors depending on speci¦c architecture.
At any clock cycle, each processor of the multiprocessor executes the same in-
struction, but operates on di¨erent data. A function executed on the GPU is
called a kernel. A kernel is executed by many threads which are organized form-
ing a mesh of thread blocks that run logically in parallel. All blocks and threads
have spatial indices, so that the spatial position of each thread could be identi-
¦ed in the program. Each thread block runs in a single multiprocessor. A warp
is the number of threads that run concurrently in a multiprocessor. Warp size is
32 threads. Each block is split into warps and periodically, a scheduler switches
from one warp to another. This allows to hide the high latency when access-
ing the GPU memory, since some threads continue their execution while other
threads are waiting.
The performance-critical portion of the CFD solver consists of a loop which

repeatedly computes the time derivatives of the conserved variables. The con-
served variables are then updated using an explicit Runge�Kutta time-stepping
scheme. The most expensive computation consists of accumulating §ux contri-
butions across each face when computing the time derivatives. Therefore, the
performance of the CUDA kernel which implements this computation is crucial
in determining whether or not high performance is achieved.

4.2 Memory Access

The operations that are carried out in each iteration are divided into three parts:

(1) local cell analysis to obtain a coe©cient for each solution point based only
on the interaction with the other solution in the same cell;

(2) neighbor cell analysis to compute a coe©cient for each solution point based
on the interaction with its neighbor solution point; and

(3) update local magnitudes when the local value of the magnitude at the
solution point is updated using the two previously computed coe©cients.

253

PROGRESS IN FLIGHT PHYSICS

The three main stages perform computations based on information stored in
main memory, such as the solution point variables, geometry information, and
a set of parameters for cell-oriented or neighbor-oriented (edge-oriented) analysis.
Although solution point variables and parameters are heavily used in all three
main stages, they are accessed with di¨erent patterns at each stage. These
memory patterns limit data locality between and inside the stages, diminishing
e©ciency of data caches for reducing memory latency.
In cell-oriented analysis, a set of coe©cients for each solution point is com-

puted based on its own information as well as the information of the solution
points that belong to the same cell. The solution point information is performed
in two steps. The ¦rst step involves retrieving the pointer to the beginning of the
cell in the array of solution point variables and the second step involves accessing
sequentially all the information in the current cell.
In edge-oriented analysis, a set of coe©cients for each solution point is com-

puted based on its own information and the information of its neighbor solution
point. Unlike cell-oriented analysis that traverses the mesh at cell-level, edge-
oriented analysis traverses the mesh at edge-level. Accessing the solution point
information is done in three steps. The ¦rst step involves retrieving the pointer
to the solution point, in the second step the pointer to the left and right so-
lution point variables, and the third step involves accessing the two solution
points variables. Left and right solution point variables are not physically adja-
cent, and information is read and used only once, hence, either on a unithreaded
or multithreaded solution the cache memories do not help to reduce memory
latency.
In the last stage, the solution point variables are updated utilizing only cur-

rent solution point information and coe©cients (read and utilized once). Since
coe©cients and solution point variables arrays are processed sequentially, cache
memories take advantage of spatial locality and by this way help to reduce mem-
ory latency for both unithreaded and multithreaded solutions.
A GPU implements di¨erent types of memory for storing data (global mem-

ory, constant memory, texture memory, shared memory, and registers). This
memory structure allows to reduce global memory accesses and collaboration
among threads in the same thread block. In terms of latency, global memory
access is the slowest whereas registers are the fastest. Since the GPU execution
model requires that the information is ¦rst placed in global memory and then
accessed by the GPU application, it is necessary to optimize global memory ac-
cess. Global memory access is optimized by achieving peak bandwidth and by
reducing the number of accesses.
Although GPU provides large bandwidth for global memory operation, the

access pattern of the threads of a warp reduces the achieved bandwidth. To
achieve peak bandwidth usage, the GPU coalesces warp memory operations into
two or four memory transactions depending on the size of the words accessed.
Therefore, warp memory access is organized in such a way that threads access

254

INLETS, NOZZLES, AND INTERNAL FLOWS

adjacent memory locations. When data are reutilized, it is possible to reduce
the number of global memory accesses by storing the data either in registers or
in shared memory. Shared memory is common for all the threads in the thread
block which allows collaboration among them. Since shared memory is organized
in banks, to avoid bank con§icts, threads should access data in di¨erent banks.

4.3 Redundant Computation

The time derivative computation is parallelized on a per-element basis, with one
thread per element [10]. First, each thread reads the element£s volume, along
with its conserved variables from global memory, from which derived quantities
such as the pressure, velocity, total energy, and the §ux contribution are com-
puted. The kernel then loops over each of all faces of the control volume in order
to accumulate §uxes. The face£s normal is read along with the index of the
adjacent element, where this index is then used to access the adjacent element£s
conserved variables. The required derived quantities are computed and then the
§ux is accumulated into the element£s residual.
This approach requires redundant computation of §ux contributions, and

other quantities derived from the conserved variables. Another possible ap-
proach is to ¦rst precompute each element£s §ux contribution, thus avoiding
such redundant computation. However, this approach turns out to be slower for
two reasons. The ¦st of which is that reading the §ux contributions requires
three times the amount of global memory access than just reading the conserved
variables. The second is that the redundant computation is performed simul-
taneously with global memory access, which hides the high latency of accessing
global memory.

4.4 Numbering Scheme

In the case of an unstructured mesh, the global memory access required for
reading the conserved variables of neighboring elements is at risk of being highly
noncoalesced, which results in lower e¨ective memory bandwidth. This is avoided
however, if neighboring elements of consecutive elements are nearby in memory.
This is achieved here in two steps. The ¦rst step is to ensure that elements
nearby in space are nearby in memory by using a renumbering scheme [10]. The
scheme works by overlaying a mesh of bins. Each point in the mesh is assigned to
a bin, and then the points are renumbered by assigning numbers while traversing
the bins in a ¦xed order. With such a numbering in place, the connectivity of
each element is then sorted locally, so that the indices of the four neighbors
of each tetrahedral element (for triangular mesh) are in increasing order. This
ensures that, for example, the second neighbor of consecutive elements are close
in memory.

255

PROGRESS IN FLIGHT PHYSICS

4.5 Shared Memory

Shared memory is an important feature of modern graphics hardware used to
avoid redundant global memory access amongst threads within a block. The
hardware does not automatically make use of shared memory, and it is up to
the software to explicitly specify how shared memory is used. Information is
made available that speci¦es which global memory access is shared by multiple
threads within a block. For structured mesh based solvers, this information
is known a priori due to the ¦xed memory access pattern of such solvers. On
the other hand, the memory access pattern of unstructured mesh based solvers is
data-dependent. With the per-element/thread based connectivity data structure
considered here, this information is not provided, and therefore, shared memory
is not applicable in this case.

5 PARALLELIZATION TECHNIQUE

The ¦nite volume mesh is generated from the input data with the appropriate
setting of initial and boundary conditions. The time stepping is performed by
applying a Runge�Kutta method.

The computation steps required by the problem considered is classi¦ed into
two groups: computations associated to edges and computations associated to
volumes. The numerical scheme exhibits a high degree of data parallelism be-
cause the computation at each edge/volume is independent with respect to the
computation performed at the rest of edges/volumes. Moreover, the scheme
presents a high arithmetic intensity and the computation exhibits a high degree
of locality. Solution scheme with the use of GPU resources is shown in Fig. 2.

The implementation is split between the CPU and the GPU. All pre- and
postprocessing is done on the CPU, leaving only the computation itself to be
performed on the GPU. For example, the CPU constructs the mesh and evaluates
the face areas/normals and cell volumes. The initial guess of the §ow¦eld is also
done on the CPU. Each time-step of the computation then involves a series of
kernels on the GPU which evaluate the cell face §uxes, sum the §uxes into the
cell, calculate the change in properties at each node, smooth the variables, and
apply boundary conditions. Each kernel operates on all the nodes (no distinction
is made between boundary nodes and interior nodes). This causes di©culties if
an e©cient code is to be obtained. For example, the change in a §ow property at
a node is formed by averaging the §ux sums of the adjacent cells (for mesh with
quadrangle cells, four cells surround an interior node, but only two at a boundary
node). This problem is overcome using dependent texturing. The indices of the
cells required to update a node are precomputed on the CPU and loaded into
GPU texture memory. For a given node, the kernel obtains the indices required

256

INLETS, NOZZLES, AND INTERNAL FLOWS

Figure 2 Solution of problem with the use of GPU resources

and then looks up the relevant §ux sums which are stored in a separate GPU
texture. This avoids branching within the kernel.

A graphical description of the parallel algorithm, obtained from the math-
ematical description of the numerical scheme, is shown in Fig. 3. The main
calculation stages are identi¦ed and the main sources of data parallelism are
represented indicating that the calculation a¨ected by it are performed simul-
taneously for each data item of a set (the data items represent the volumes or
the edges of the ¦nite volume mesh). Time stepping process is repeated until
the ¦nal simulation time is reached. At the (n + 1)th time step, the residual
is evaluated to update the state of each cell. In order to add the contributions

257

PROGRESS IN FLIGHT PHYSICS

Figure 3 Main calculation stages in the parallel algorithm

associated to each edge, two variables are used in the algorithm for each volume.
The ¦rst variable is used to store the contributions to the local time step size of
the volume and the second variable is used to store the sum of the contributions
to the state of cell.
The most costly stage in the algorithm is edge-based calculations involving

two calculations for each edge communicating two cells. This contribution is
computed independently for each edge and is added to the partial sums associ-
ated to each cell. For each control volume, the local time step is computed. The

258

INLETS, NOZZLES, AND INTERNAL FLOWS

computation for each volume does not depend on the computation for the rest
of volumes and, therefore, this stage is performed in parallel. The minimum of
all the local time steps previously obtained for each volume is computed. The
(n+1)th state of each volume is approximated from the nth state using the data
computed in the previous phases. This stage is also completed in parallel.

6 FLUX CALCULATIONS

The implementation of the ¦nite volume method using a global memory and
register ¦le is illustrated in Fig. 4. Each time layer calculation is performed in two
stages. Two kernels are used for the parallel implementation of the ¦nite volume
method on GPU, one of which calculates the §ow through the faces of control
volumes (stage 1, Fig. 4a), and the other one provides §ow variables calculation
on the next time layer (stage 2, Fig. 4b). On the ¦rst stage, §ow variables in the
centers of control volumes are stored in array Q in global memory. One thread
is used to calculate the §uxes through the faces of control volume. Each thread
uses the §ow variables vector in the control volumes i and i+1. Fluxes through

Figure 4 Flux calculation (a) and calculation of §ow variable vector on a new time
layer (b)

259

PROGRESS IN FLIGHT PHYSICS

Figure 5 Use of shared memory and §ux calculation

faces are stored in array F . On the second stage, a set of threads correspond
to the same number of control volumes. To calculate the §ow variables vector
on a new time level, the §uxes through the faces i − 1/2 and i + 1/2 are used,
and the solution computed in the control volume i. The solution is stored in the
array Q.

The use of shared memory in the calculation of §ow variable vector is pre-
sented in Fig. 5, which shows how to copy the data from global memory to shared
memory. For example, the implementation of upwind-type scheme require the
use of three control volumes to calculate §uxes and limiters. On step 1, §ow
variables vector corresponding to the centered location is copied (Fig. 5a), and
on steps 2 and 3, §ow variables vectors corresponding to the left and right lo-
cations are copied (Figs. 5b and 5c). Each thread makes treatment of the three
§ow variables vectors stored in the shared memory (Fig. 5d).

260

INLETS, NOZZLES, AND INTERNAL FLOWS

Table 1 Updating of §ow variables and §ux calculation

Step
Thread

i − 1 i i+ 1

Variables ui−2, ui−1, ui ui−1, ui, ui+1 ui, ui+1, ui+2

Reconstruction uL
i−1, ui−1, u

R
i−1 uL

i , ui, u
R
i uL

i+1, ui+1, u
R
i+1

Restriction uL∗

i−1, ui−1, u
R∗

i−1 uL∗

i , ui, u
R∗

i uL∗

i+1, ui+1, u
R∗

i+1

Evolution ûL
i−1, ui−1, û

R
i−1 ûL

i , ui, û
R
i ûL

i+1, ui+1, û
R
i+1

¡ Synchronization

Flux function f(ûR
i−2, û

L
i−1) f(ûR

i−1, û
L
i) f(ûR

i , ûL
i+1)

¡ Synchronization

Flux fi−2 − fi−1 fi−1 − fi fi − fi+1

Table 1 shows the order of updating §ow variables vector in the shared mem-
ory. In the simulation of two-dimensional §ows (four §ow variables), each thread
is processing four §ow vectors, and the total number of used shared memory is
estimated as 4 ∗ nv ∗ blockDim.y ∗ blockDim.x.

7 RESULTS AND DISCUSSION

The GPU version of the CFD code is tested for a variety of benchmark cases.
Numerical calculations are performed with unstructured in-house ¦nite volume
CFD code. An equivalent solver is made in C++ to be run in a CPU for bench-
marking purposes. All meshes are treated as unstructured meshes. This issue
is related to the presentation of the meshes used in the solution of practical
problems in the CFD code and not to the visual representation of the meshes.

7.1 Sod Problem

The Sod problem constitutes a particularly interesting and di©cult test case,
since it presents an exact solution to the full system of one-dimensional (1D)
Euler equations containing simultaneously a shock wave, a contact discontinuity,
and an expansion fan [14]. This problem is chosen to validate the numerical
schemes and assess the temporal accuracy of the numerical solution obtained by
the present method, since an analytical solution exists. The initial conditions in
the present computation are the following: ρL = 1.0, uL = 0.75, and pL = 1.0 if
0 ≤ x ≤ 50, and ρR = 0.125, uR = 0, and pR = 1.0 if 50 < x ≤ 100.

261

PROGRESS IN FLIGHT PHYSICS

Table 2 Sod problem. Time and speedup

No.
Mesh 1 Mesh 2 Mesh 3 Mesh 4

CPU GPU S CPU GPU S CPU GPU S CPU GPU S

1 1.63 0.13 12.43 47.70 0.20 245.25 460.64 0.92 502.50 4627.61 8.06 574.39
2 0.14 0.07 1.87 5.51 0.17 33.17 43.58 0.57 76.00 436.09 5.22 83.48

Calculations are performed on di¨erent meshes. A number of cells increases
from 1024 cells for mesh 1 to 30,720 cells for mesh 2 and to 307,200 cells for
mesh 3. The ¦nest mesh, mesh 4, contains about three million cells. The time
step is 15.2 µs, and the total calculation time is 7.63 ms. Courant number
is equal to 0.85. Calculations are performed on one module of Tesla S1070
platform with 1.44 GHz (number of cores is 256) and on a single core of CPU
AMD Phenom 2 with 3 GHz.
The time required for calculation of one time step, and speedup of calcula-

tions are given in Table 2 (time is given in milliseconds). Option 1 corresponds
to Godunov scheme, and option 2 corresponds to Roe scheme. For both op-
tions, a good growth of speedup, S, is observed. However, Godunov method is
not ideal from the parallelization point of view, since the exact solution of the
Riemann problem involves a large number of data exchange, reducing the GPU
performance.
Speedup and memory required are compared based on numerical solutions

of di¨erent test cases. Numerical accuracy of the results obtained is similar
for di¨erent meshes used in calculations. For 1D case, Godunov£s scheme is
less expensive from the computational point of view requiring a small number
of communications between processors. In 3D calculations, numerical solution
based on Godunov£s method is more time consuming as compared to Roe scheme.

7.2 Shock Tube Problem

Three-dimensional model and unstructured mesh are used to solve the shock
tube problem. The length of the computational domain is L = 10 m (Fig. 6).
Calculations are based on di¨erent meshes. The coarsest mesh contains about
104 cells (mesh 1) and the ¦nest mesh contains about 107 cells (mesh 4). The
intermediate meshes contain 105 cells (mesh 2) and 106 (mesh 3) cells. The time
step is 15.2 µs, and the total computational time is 7.63 ms. Courant number
is equal to 0.85. The calculations are performed on one module of Tesla S1070
platform with 1.44 GHz (a number of cores is 256) and one core of CPU AMD
Phenom 2 with 3 GHz.
Time of calculation of 1000 time steps and speedup of calculations are pre-

sented in Table 3 (time is given in seconds). Three indices are used to specify

262

INLETS, NOZZLES, AND INTERNAL FLOWS

computational option. The

Figure 6 Shock tube problem

¦rst index corresponds to the
solution of Euler equations
(option 1) or to the solution of
Navier�Stokes equations (op-
tion 2). The second index cor-
responds to the time-marching
scheme used in calculations
based on one-step (option A)
or two-step (option B) Runge�
Kutta scheme. The third index
corresponds to the exact (in-
dices 1 and 3) or approximate
(indices 2 and 4) Riemann
solver of the ¦rst (indices 1
and 2) or second (indices 3 and 4) order. The calculations based on the ¦nest
mesh containing about 10 million of cells (mesh 4) with Godunov scheme give
speedup of 42 (option 1A2). For the solution of viscous problem with the scheme
of the second order, the speedup drops to 22 (option 2A2).

The time required for calculation of 1000 time steps on the mesh with 107

cells and memory usage are given in Table 4. Option 1 corresponds to GPU cal-
culations based on Godunov scheme, option 2 corresponds to CPU calculations
based on Godunov scheme, and option 3 corresponds to calculations based on
commercial package Ansys Fluent with 8 nodes.

Table 3 Shock tube problem. Time and speedup

No.
Mesh 1 Mesh 2 Mesh 3 Mesh 4

CPU GPU S CPU GPU S CPU GPU S CPU GPU S

1A1 6.63 0.47 13.96 69.99 2.64 26.50 671.22 22.67 29.61 6329.61 198.63 31.87
1A2 14.72 0.62 23.68 121.83 3.73 32.68 934.05 31.60 29.56 8787.27 207.82 42.28
1A3 12.03 1.29 9.30 130.33 10.41 12.52 1262.17 94.27 13.39 11018.60 826.18 13.34
1A4 20.66 1.55 13.33 193.47 12.81 15.11 1630.47 115.92 14.06 13934.40 872.42 15.97

2A1 18.79 1.36 13.83 198.96 10.98 18.12 1918.32 99.60 19.26 17485.10 874.99 19.98
2A2 27.79 1.60 17.35 261.63 13.31 19.65 2285.81 120.88 18.91 20542.40 914.83 22.46

1B1 12.63 0.91 13.95 133.88 5.07 26.39 1283.90 44.05 29.14 12163.30 382.90 31.77
1B2 29.14 1.20 24.30 242.48 7.29 33.26 1909.59 61.83 30.89 16989.20 406.65 41.78
1B3 23.47 2.50 9.37 254.60 20.39 12.49 1630.47 186.18 8.76 22484.20 1636.73 13.74
1B4 41.57 3.04 13.67 380.87 25.60 14.88 3227.67 230.86 13.98 27978.30 1734.85 16.127

2B1 36.83 2.63 13.98 388.74 21.25 18.29 3776.11 197.58 19.11 35257.70 1736.47 20.30
2B2 56.28 3.14 17.90 515.97 26.28 19.63 4672.10 240.95 19.39 40595.40 1822.97 22.27

263

PROGRESS IN FLIGHT PHYSICS

Table 4 Shock tube problem. Time and memory

No. Memory, MB S/M Time, s S/M

1 2582.28 ¡ 305.29 ¡
2 2696.72 1.04 14916.60 48.86
3 8210.16 3.18 7662.00 25.10

Graphics processing unit implementation of the CFD code is preferable
against parallel implementation of similar algorithms in commercial CFD pack-
age (for the given computational resources).

7.3 Lid-Driven Cavity Problem

Large-eddy simulation of lid-driven cavity §ow is considered at Re = 103. The
Smagorinsky model is used [15] as a subgrid scale model and a projection method
is applied to discretization of the Navier�Stokes equations. The mesh contains
1283 nodes.

Time costs are presented in Fig. 7 for various parts of the computational
procedure.

Poisson equation is solved with the red/black Gauss�Seidel method (routines
red kernel and black kernel), taking about two third of the total computation
time.

Figure 7 Time consuming for di¨erent steps

264

INLETS, NOZZLES, AND INTERNAL FLOWS

Table 5 Lid-driven cavity problem. Time and speedup

Mesh
nx = ny = nz = 4 nx = 32, ny = 1, nz = 8

CPU, s GPU, s S CPU, s GPU, s S

163 0.34 0.39 0.86 0.34 0.31 1.11
323 3.08 1.24 2.50 3.08 0.66 4.73
643 31.14 6.49 4.81 31.14 2.71 11.51
1283 291.05 50.92 5.72 291.05 18.35 15.88

The next expensive routine in terms of computational time is a routine
adams bashworth implementing time evolution.
The routine residp calculates the residuals of the Poisson equation.
Copy and memory allocation for §ow variables is produced by the routine

memcopy.
Routines coe¨p kernel and smagorinsky kernel produce calculations of the co-

e©cients related to the discrete Poisson equation and calculations based on the
Smagorinsky model.
The routines update kernel and adams bashworth kernel are used to go to the

next time step.
Contributions of other routines such as prodp, restrp, mresid kernel, per-

turb kernel, and visc, supporting some nonimportant operations, are relatively
small.
Speedup of calculations on di¨erent meshes with di¨erent partitioning tech-

niques into blocks of size nx × ny × nz are presented in Table 5 (computational
time is given in seconds for 100 time steps). On the mesh containing 1283 nodes,
speedup changes in 2.8 times for di¨erent partitioning techniques.
The most time consuming part of the computational algorithm is the solu-

tion of Poisson equation for pressure. The developed CFD solver uses a simple
iterative scheme to solve Poisson equation. More advanced methods (Krylov
subspace methods, multigrid methods) could be applied in the future. Prelimi-
nary results obtained show their advantages against iterative methods in terms
of computational time and overall speedup (however, computational work per
time step increases).

7.4 Channel Flow Problem

Large-eddy simulation of turbulent §ow in a channel with square cross-sectional
shape is carried out at the Reynolds number Reτ = 360 on the mesh with
256 × 64 × 64 nodes. The ratio of the channel length to its width is L/H = 4.
The mesh is uniform along the x coordinate and the mesh is stretched near the
walls; so, y+ ∼ z+ ∼ 1 on the channel walls.

265

PROGRESS IN FLIGHT PHYSICS

Table 6 Channel §ow problem. Time and speedup

Mesh
nx = ny = nz = 4 nx = 32, ny = 1, nz = 8
CPU GPU S CPU GPU S

256× 64× 64 208.09 34.56 6.02 208.09 14.32 14.50
512× 64× 64 448.47 64.29 6.98 ¡ ¡ ¡

The calculations are based on the Smagorinsky subgrid scale model [15].
The nonlinear CFD solver works in an explicit time marching fashion, based on
a three-step Runge�Kutta stepping procedure and piecewise parabolic method.
The governing equations are solved with Chakravarthy�Osher scheme for inviscid
§uxes and the central di¨erence scheme of the 2nd order for viscous §uxes.
Calculations are performed on the CPU Intel Core 2 Duo with 3 GHz and GPU
card GeForce GTX 480.
Speedup of calculations on di¨erent meshes is shown in Table 6 based on

di¨erent partitioning techniques. The computational time is given in seconds for
the 100 time steps. On the mesh with 256×64×64 nodes, changing a partitioning
technique into blocks leads to speedup increasing by 2.4 times.

7.5 Flat Plate Flow

The turbulent §ow over a smooth §at plate is well-known CFD benchmark so-
lution [16], and it is used for veri¦cation and validation of other CFD codes.
The length of the computational domain is 30L (10L before the plate and 20L

behind the plate) and the width of the computational domain is 20L where L
is the length of the plate (L = 1 m). Free stream velocity (U = 10 m/s), static
pressure (p = 101 325 Pa), and static temperature (T = 300 K) are ¦xed on
the inlet boundary. No-slip and no-penetration boundary conditions are used
on the plate. The plate is adiabatic. Weak boundary conditions are applied
to the outlet boundary. Slip boundary conditions are used on the far-stream
boundaries.
The §at plate boundary layer problem is solved on di¨erent meshes. Laminar

§ow calculations are performed on one core of AMD Phenom 2.3 GHz and one

Table 7 Flat plate problem. Time and speedup

Number of nodes CPU GPU SSS

1.3 · 105 0.140 0.003 46.67
1.3 · 106 1.406 0.026 54.08
6.6 · 106 7.091 0.126 56.28
1.3 · 107 14.06 0.251 56.02

266

INLETS, NOZZLES, AND INTERNAL FLOWS

module of Tesla S1070 platform consisting of 240 cores with 1.44 GHz. The mesh
consists of 111,670 nodes. Computational time of one iteration is 462.6 s on CPU
and 11.5 s on GPU and speedup is 40.2. The turbulent §ow calculations are based
on CPU Xeon X5670 2.93 GHz and one module of Tesla S2050 platform. The
computational time and speedup of calculations are shown in Table 7 for one iter-
ation. Increasing a number of nodes from 105 to 107, speedup increases on 10%.

8 CONCLUDING REMARKS

Graphics processing units have evolved as a new paradigm for scienti¦c compu-
tations. They are essentially multicore machines with a large number of compu-
tational units sharing a common memory. They are viewed as SIMD computers.
Their cost/performance ratio and low power consumption make them attractive
for high-resolution CFD computations. However, in order to exploit the inherent
architecture of the device, the numerical algorithm as well as data structures are
carefully tailored to minimize the memory access and any recursive relations in
the algorithm.
Possibilities of the use of GPUs for CFD calculations are discussed. The ¦nite

volume method is applied to solve full Euler and Navier�Stokes equations on
unstructured mesh. Technology CUDA is used for programming implementation
of parallel computational algorithms. Solution of some CFD problems on GPUs
is presented and approaches to optimization of the CFD code related to the use
of di¨erent types of memory are discussed. Speedup of solution on GPUs with
respect to solution on CPU is compared with the use of di¨erent meshes and
di¨erent methods of distribution of input data into blocks. Speedup of CFD
calculations changes from 10 to 50 depending on the problem, computational
procedure, and computational resources. This makes GPUs very attractive for
computing industrial §uid §ows.
The computational procedure is used as a part of CFD package LOGOS

developed in the Institute of Theoretical and Mathematical Physics of the Rus-
sian Federal Nuclear Center (Sarov, Russia). LOGOS package is widely used in
mechanical engineering and aerospace applications.
Further work is focused on parallel implementation of implicit schemes and

convergence acceleration techniques.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant
13-07-12079). The authors wish to thank colleagues from the Russian Federal
Nuclear Center (Sarov, Russia) for the access to the computational resources
and discussion of the computational results.

267

PROGRESS IN FLIGHT PHYSICS

REFERENCES

1. Owens, J. D., D. Luebke, N. Govindaraju, M. Harris, J. Kr”uger, A. E. Lefohn, and
T. J. Purcell. 2007. A survey of general-purpose computation on graphics hardware.
Comput. Graph. Forum 26(1):80�113.

2. Sanders, J., and E. Kandrot. 2011. CUDA by example: An introduction to general-
purpose GPU programming. Boston: Pearson Education. 312 p.

3. Scheidegger, C. E., J. L.D. Comba, and R.D. da Cunha. 2005. Practical CFD simu-
lations on programmable graphics hardware using SMAC. Comput. Graph. Forum
24(4):715�728.

4. Hagen, T. R., K.-A. Lie, and J.R. Natvig. 2006. Solving the Euler equations on
graphics processing units. Computational science. Eds. V.N. Alexandrov, G. Dick
van Albada, P.M.A. Sloot, and J. Dongarra. Lecture notes in computer science
ser. Berlin�Heidelberg: Springer Verlag. 3994:220�227.

5. Brandvik, T., and G. Pullan. 2009. An accelerated 3D Navier�Stokes solver for
§ows in turbomachines. ASME Paper. No.GT2009-60052.

6. Thibault, J. C., and I. Senocak. 2009. CUDA implementation of a Navier�Stokes
solver on multi-GPU desktop platforms for incompressible §ows. AIAA Paper
No. 2009-758.

7. Shinn, A. F., S. P. Vanka, and W.W. Hwu. 2010. Direct numerical simulation of
turbulent §ow in a square duct using a graphics processing unit (GPU). AIAA
Paper No. 2010-5029.

8. Kuo, F.-A., M.R. Smith, C.-W. Hsieh, C.-Y. Chou, and J.-S. Wu. 2011. GPU accel-
eration for general conservation equations and its application to several engineering
problems. Comput. Fluids 45(1):147�154.

9. Kampolis, I. C., X. S. Trompoukis, V.G. Asouti, and K.C. Giannakoglou. 2010.
CFD-based analysis and two-level aerodynamic optimization on graphics processing
units. Comput. Method. Appl. Mech. Eng. 199(9�12):712�722.

10. Corrigan, A., F. Camelli, R. L”ohner, and F. Mut. 2011. Semi-automatic porting of
a large-scale Fortran CFD code to GPUs. Int. J. Numer. Meth. Fl. 69(2):314�331.

11. Volkov, K.N., V.N. Emelyanov, A.G. Karpenko, I. V. Kurova, A.E. Serov, and
P.G. Smirnov. 2013. Numerical solution of §uid mechanics problems on general-
purpose graphics processor units. Numer. Meth. Programming 14(1):82�90.

12. Volkov, K.N., V.N. Emelyanov, A.G. Karpenko, P.G. Smirnov, and I.V. Teterina.
2013. Implementation of a ¦nite volume method and calculation of §ows of a vis-
cous compressible gas on graphics processor units. Numer. Meth. Programming
14(1):183�194.

13. Volkov, K.N. 2010. Large-eddy simulation of free shear and wall-bounded turbulent
§ows. In: Atmospheric turbulence, meteorological modelling and aerodynamics.
USA: Nova Science. 505�574.

14. Sod, G.A. 1978. A survey of several ¦nite di¨erence methods of systems of nonlinear
hyperbolic conservation laws. J. Comput. Phys. 27(1):1�31.

15. Smagorinsky, J. 1963. General circulation experiments with the primitive equations.
Mon. Weather Rev. 91(3):99�164.

16. Schlichting, H., and K. Gersten. 2000. Boundary layer theory . Berlin: Springer
Verlag. 799 p.

268

