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I. INTRODUCTION 

1.1 BACKGROUND AND PRESENT NEEDS 

The cost-effective and reliable design cf protective struc¬ 

tures for the land-based MX system requires that the dynamic 

behavior of concrete, under the severe loading conditions produced 

by design attack scenarios, be understood and appropriately 

described by mathematical models. Economic considerations dictate 

that the design of modern protective structures include the con¬ 

siderable strength and ductility associated with the post-yield 

behavior of reinforced concrete. The design environments of 

protective structures require that a multiplicity of stress states 

reached through different stress paths, including reversals, be 

considered. Thus, a rational design and analysis of a protective 

structure requires a knowledge of nonlinear material behavior under 

multiaxial, hysteretic stress states and paths. Further, the 

environment is dynamic. Hence, the influence of loading or 

deformation rate must be understood and included in any theoretical 

model intended for use in such applications. 

In the past, the design of protective shelters for land-based 

strategic weapons systems has generally relied on either linear 

elastic models of concrete behavior or, at best, on relatively 

simple elasto-plastic models developed on the basis of quasi-static, 

low-pressure laboratory data on concrete. Generally speaking, the 

present state-of-the-art in modeling even the quasi-static low 

pressure behavior of concrete is unsophisticated and approximate, 

compared with the present capability to model many other materials, 

such as metals, plastics, composites, etc. This is clearly due to 

the fact that concrete is the most complex structural material 

presently used. 

The inability of the currently operational constitutive models 

to adequately describe the nonlinear behavior of plain and/or 

reinforced concrete appears to be the primary cause of the poor 
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correlation observed between experimental data and theoretical pre¬ 

dictions, and the main reason for the lack of confidence in 

numerical simulations of structural response. The inaccuracies 

associated with the currently operation models of reinforced 

concrete stem from two main sources: (1) the mathematical descrip- 

tion(s) of plain concrete and (2) the method(s) by which steel and 

concrete are mixed or overlayed to form a composite material. In 

both cases, the nature of the problem requires research at a fun¬ 

damental level. The reason: although considerable research has 

been conducted on both plain and reinforced concrete members over 

the past fifty years, the emphasis was not on the highly nonlinear, 

highly dynamic material response regime. Such problems consequently 

necessitate the development of improved modeling techniques and 

corresponding experiments to validate such techniques. 

The need for more sophisticated modeling of concrete came into 

focus as the MPS basing concept was being considered for the MX 

system.The original plan to construct a large number 

(4,600) of reinforced concrete protective structures signaled the 

need for an improved generation of design tools which could produce 

more reliable and cost-effective shelter designs. In response to 

this need, the Air Force and the Defense Nuclear Agency initiated 

research programs to advance the present state-of-the-art in 

modeling concrete behavior. But, because the stress levels 

and strain rates of interest in the MPS basing concept were 

relatively low, the major emphasis en these research programs was 

directed toward the low pressure low strain rate behavior of 

concrete. 

During the past several years, emphasis has shifted from the 

MPS mode of basing to several alternative modes, including Deep 

Basing, Close Spaced Basing and Advanced Silo Hardening (ASH). In 

the ASH Program, many issues pertaining to the survivability of the 

superhardened shelters are being explored. For the ASH concept to 

be successful, the protective shelters must be capable of surviving 

in 



stress leveis as high as 75,000 psi and strain rates in the range 1 

to 100 sec”*. Such severe dynamic loading conditions drive the 

concrete into regions of response that are well outside the range 

where our present knowledge of response has been obtained. There is 

sufficient evidence, however, from both laboratory and field tests, 

to Indicate that concrete rapidly loaded to high stress levels 

behaves much differently than when loaded qausi-statically under low 

confining pressures. This is not surprising, however, since there 

is a critical confining pressure -- called the brittle/ductile 

transition pressure — which separates the two different types of 

constitutive behavior that concrete exhibits. Below the brittle/ 

ductile transition pressure, concrete behaves as a rate-dependent 

brittle material, with the rate-dependence arising from the micro¬ 

cracking processes. Above the transition pressure, concrete behaves 

in a rate-dependent ductile manner, with the rate-dependence arising 

from the time-dependence of the mortar as it flows around the 

embedded aggregate. 

Despite the importance of concrete as a structural material in 

the design of strategic weapons systems, relatively little effort 

has been devoted over the years by the defense community to develop 

an understanding of its dynamic properties. Even now, the models 

used for protective structure design are crude and unable to 

represent many aspects of the response of concrete to static, low 

pressure loading. If present issues related to the ASH concept are 

to be resolved, the present knowledge of concrete behavior must be 

extended into the high pressure, high strain rate region of par¬ 

ticular Interest to ASH. This will require not only the development 

of more sophisticated reinforced concrete models, but also the 

development of new experimental technology, since existing testing 

devices are not designed to operate in this response region. 

11 
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1.2 OBJECTIVE 

The primary objective of the research described here is to 

construct an advanced, nonlinear, multiaxial, nonphenomenological 

constitutive model of reinforced concrete that will provide simula¬ 

tion accuracy that is superior to existing models in the nonlinear 

response regime. The term 'advanced nonlinear multiaxial' implies a 

model that will provide accuracy superior to existing models in the 

inelastic, nonlinear response regime and for arbitrary paths in 

multiaxial stress or strain space. The term 'nonphenomenological' 

implies a model that is capable of synthesizing the global pro¬ 

perties of reinforced concrete from a knowledge of the plain concret 

and steel properties, the concrete-steel interface properties, and 

the geometry of the steel reinforcement. 

1.3 SCOPE AND APPROACH 

The nonlinear response of reinforced concrete is largely 

dominated by complex interactions between the steel and the con¬ 

crete. Consequently, an accurate model of reinforced concrete must 

be capable of accounting for such interactions. Further, in an 

effort to minimize the number and type of tests necessary to define 

the parameters of a given model, it is highly desirable that it be 

nonphenomenological, i.e., that the global properties of reinforced 

concrete be synthesized from the properties of the steel and 

concrete, the steel-concrete interface physics, and the steel 

geometry. 

A candidate that satisfies the above objectives is the "mix¬ 

ture theory with microstructure." As was noted previously, this 

modeling concept is a result of previous successful attempts to 

describe the nonlinear behavior of fibrous composites. 

According to the mixture concept, the composite constituents 

(steel and plain concrete) are modeled at each instant of time as 

superposed continua in space. Each continuum is allowed to undergo 



individual deformations. The microstructure of an actual composite 

of steel and concrete is then simulated by specifying the nature of 

the interactions between the continua. With respect to reinforced 

concrete, previous "smearing" or "homogenizing" techniques may be 

viewed as a mixture theory in which each component is constrained to 

have the same deformation gradient at the same spatial point. 

Relaxation of this constraint through an improved mixture framework 

obtained by micromechanical considerations regarding the inter¬ 

actions of the components leads to a marked improvement in the 

simulation of real material behavior. 

The key to the development of mixture models for reinforced 

concrete is an asymptotic procedure called "multivariable asymptotic 

expansions." This mathematical technique, together with a 

"smoothing" operation, leads to the desired mixture forms. The 

methodology is applicable to both dense and sparse steel layouts. 
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II. PROGRESS SUMMARY AND CURRENT STATUS OF RESEARCH 

Tht progress made during the course of this contract toward 

achieving the research objectives described earlier is summarized in 

this section. First, the progress toward developing an advanced 

mixture theory with microstructure for reinforced concrete is 

described. Next, the effort to develop a realistic constitutive 

model of plain concrete for use in conjunction with the mixture 

theory is summarized. Finally, a list of the publications and 

technical interactions which resulted from the research performed 

under this contract is given. 

2.1 MIXTURE THEORY FOR REINFORCED CONCRETE 

The nonlinear response of reinforced concrete is largely 

dominated by complex interactions between the steel and the 

concrete. Consequently, an accurate model of reinforced concrete 

must be capable of accounting for such interactions. Further, in an 

effort to minimize the number and type of tests necessary to define 

the parameters of a given model, it is highly desirable that it be 

nonphenomenological, i.e., that the global properties of reinforced 

concrete be synthesized from the properties of the steel and con¬ 

crete, and steel-concrete interface physics, and the steel geometry. 

As was noted in Section I, a model that satisfies the above 

objectives falls into the category of a "mixture theory with micro¬ 

structure." Using this approach, the problem of formulating a 

procedure for analytically mixing steel and concrete to furnish an 

accurate model of reinforced concrete can be partitioned into two 

basic problems: (a) dense steel layout and (b) sparse steel lay¬ 

out. Within each of these, there are four fundamental sub-problems 

that must be considered: (1) the steel-concrete bond problem, 

(2) the steel-concrete dowel problem, (3) the concrete aggregate 

interlock problem, and (4) the steel buckling-concrete spallation 

problem. Problem (1) plays a dominant role in the bending and the 

15 



nonlinear stretching of reinforced concrete beams, plates and 

shells. Problem (2) plays a major role in the transverse shear 

deformation of reinforced concrete beams, and the transverse and 

in-plane shear deformation of reinforced concrete plates and 

shells. Problem (3) plays an important role in those cases where 

relative motion occurs across existing cracks. Problem (4) concerns 

containment of the concrete by the rebar mesh, spallation of the 

concrete, and subsequent buckling of the rebar; this problem plays 

an important role in cases where reinforced concrete structural 

elements experience significant direct compression. 

The following progress has been made during the course of this 

study with respect to the aforementioned problem areas. 

Dense Steel Layout: 

A general nonlinear mixture theory has been formulated for a 

dense unidirectional steel layout. The latter can be curvilinear. 

The theory accommodates a class of nonlinear material and inter¬ 

facial constitutive behavior as well as nonlinear geometrical 

effects. The theory was developed in invariant notation and thus is 

applicable to any coordinate system. This work is presented in 

Section 3.1. 

Sparse Steel Layout: 

A general nonlinear mixture theory has been formulated for a 

sparse steel layout. As in the case of the dense steel development, 

the theory accommodates nonlinear material and interfacial consti¬ 

tutive behavior as well as nonlinear geometrical effects. The con¬ 

figuration of the rebar in the initial, unstressed state is 

arbitrary. This work is presented in Section 3.2. 

Variational Principles: 

Variational principles have been developed for both of the 

above mixture theories. Such principles are needed for proper 



boundary condition formulations. They also serve as the basis for 

the development of a finite element method. This effort is dis¬ 

cussed in Sections 3.1 and 3.2. 

The Steel-Concrete Bond Problem: 

The simulation capability and accuracy of the mixture formu¬ 

lations for both dense and sparse steel layouts have been assessed 

in considerable depth and detail for the special case of the steel- 

concrete bond problem. As part of this work, a steel-concrete 

interface model was developed based upon available experimental 

data. The mixture relations were transformed to numerical form and 

a computer subroutine was developed to allow test simulations. 

Using this subroutine, a number of problems involving both monotonie 

and hysteretic loading of reinforced concrete specimens were 

investigated. Initial simulations with available experimental data 

revealed good agreement and simulation capability. In particular, 

items such as strain hardening, strain softening, stiffness 

degradation, hysteresis, and the degree of cracking were satis¬ 

factorily modeled. This work is reviewed in Section 3.3. 

The Dowel and Aggregate Interlock Problem: 

A substantial effort has been made to solve the dowel and the 

aggregate interlock problems. Both problems concern the manner in 

which shear is transferred across a crack that may be oblique to the 

principal steel directions. Both problems involve considerable 

difficulty. However, we have succeeded in formulating a mixture 

framework that accounts for both dowel action and aggregate inter¬ 

lock. This was accomplished by incorporating surfaces of discon¬ 

tinuity into a general multi-axial mixture formulation. 

The simulation capability of the mixture formulation has been 

addressed for a special dowel problem. The mixture relations were 

transformed to numerical form and a computer subroutine was 

developed to allow test simulations. Using this subroutine, both 



monotonie and hysteretic loading of reinforced concrete dowel 

specimens were investigated. These simulations reveal that the 

model reflects the basic features of the experimental data. The 

above effort is discussed in Section 3.4. 

Based on the validation studies conducted thus far, it appears 

that the mixture theory framework furnishes a means of incorporating 

the complex interactions between the steel and concrete. Given an 

adequate concrete model, the result is a theory which is capable of 

accurate simulations of reinforced concrete nonlinear response. 

2.2 PLAIN CONCRETE MODELING 

In the first year's work under this contract, the advanced 

constitutive models of plain concrete available in the literature 
(41 were reviewed, and from this it was concluded' ' that the plastic 

fracturing model was the best of the existing models for the 

present purposes, A detailed examination of this model was con¬ 

ducted, and, as a result, a number of difficulties and inconsis¬ 

tencies were uncovered, which were discussed in Reference 4. 

Despite these problems, it was felt that the plastic-fracturing 

approach had considerable merit, and we decided to attempt to recon¬ 

struct the model in a consistent manner. 

At the start of the second year's work,* we began an effort 

to reconstruct the plastic-fracturing framework. Our attention was 

initially focused on a feature of the model that had only received 

cursory consideration earlier; this feature, called "jump-kinematic" 

hardening, had been introduced into the plastic-fracturing framework 

to make the description of unloading-reloading behavior more realis¬ 

tic. On close examination, we found "jump-kinematic" hardening to 

be objectional on fundamental grounds because it violated Prager's 
(121 Continuity Condition for multi-axial elastic-plastic be¬ 

havior.** In view of these difficulties, as well as those reported 

A complete description of the progress made during the second 
year's effort is given in Reference 5. 
See also a recent discussion of jump-kinematic hardening given 
in Reference 13. 
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earlier in Reference 4, we removed the plastic-fracturing model of 

plain concrete from further consideration, and turned attention 

toward developing a new constitutive theory of plain concrete, using 
(14 15) 

the new endochronic theory, that we had recently developed, 

as a starting point. 

Considerable progress was made toward developing a constitu¬ 

tive model of plain concrete, based upon the new endochronic 

theory.As part of this effort, we focused on obtaining a 

realistic representation of failure for use with this model, and 

from this emerged a new failure criterion which provides, in a 

simple and elegant manner, an excellent description of the failure 

of plain concrete over a wide range of confining pressures. 

Toward the end of the second year's effort, Schreyer*17^ 

proposed a new and novel elasto-plastic constitutive framework for 

describing materials, such as concrete, soils and rock, whose 

inelastic response depends upon the first and third invariants of 

stress. The particular attraction of this new model lay in its 

apparent ability to describe many of the salient response features 

of these materials with a relatively simple mathematical formalism. 

The model employs a non-associated flow rule, describes both dila¬ 

tency and compaction, as well as hardening and softening, and 

because of its incrementally linear form is computationally attrac¬ 

tive. As shown in Reference 17, the model provides an excellent 

representation of the failure of plain concrete, rock and soils 

under a variety of loading conditions, as well as the response of 

these materials to triaxial compression. Inasmuch as this model 

appeared to have most of the capabilities we were looking for and, 

moreover, was conceptually quite simple, work on the endochronic 

concrete model was temporarily suspended, and we turned our 

attention to examining this elasto-plastic model in further detail. 

Our investigation of the Schreyer model focused mainly on the 

yield and failure surfaces, although a numerical scheme and corre¬ 

sponding computer program were developed for the complete model. We 

performed an extensive check of the failure model against a wide 



variety of plain concrete failure data, including that obtained 

under uniaxial, biaxial, triaxial, proportional loading, pure tor¬ 

sion and torsion-compression loading conditions.* Except for the 

torsion data, the failure model provided an impressive description 

of all the other types of failure data, which encompassed a range of 

confining pressures from 0 to nearly 75,000 psi. The torsion data, 

on the other hand, are more closely correlated by another failure 

surface, which appears to be a possible failure surface permitted 

within the model's mathematical framework. Thus, the mathematical 

structure of the model allows for the possibility of two different 

failure surfaces and, from an examination of a variety of concrete 

failure data, we found that some types of data are best correlated 

with one failure surface while another type of data (torsion) is 

best correlated by the other failure surface; such a nonuniqueness 

is troubling and requires further attention. In addition to the 

problem of nonuniqueness, the yield and failure surfaces behave in a 

physically unacceptable manner for negative pressures, indicating 

that the model is probably unable to realistically describe tensile 

states. Because of these undesirable features, as well as the 

uncertainty in the effort that might be required to revise the basic 

model to eliminate them, we felt that it was not worthwhile pursuing 

this model any further for the purposes of the present study. 

At the beginning of this past year's work, we set out to com¬ 

plete the development of the new endochronic theory for plain con¬ 

crete, which had been started during the latter part of the previous 

year's effort. There were several aspects of this theory that 

needed further development, and attention was first turned to the 

representation of shear-volumetric coupling. Before the work had 

progressed very far, however, we received a copy of a letter that 

Weidlinger Associates had prepared for the Defense Nuclear 

Agencythis letter focused on the concept of strain softening 

and raised a number of important theoretical questions regarding 

♦Details are given in Reference 5. 

20 



the acceptability of incorporating strain softening in rate-indepen¬ 

dent constitutive models intended for use in wave propagation 

studies. Subsequently, Weidlinger Associates conducted a one-dimen¬ 

sional numerical study of wave propagation in a simple strain 
(191 softening material to further explore these issues, and the 

results obtained clearly showed that strain softening caused an 

unacceptably large sensitivity of the numerical solutions to very 

small changes in the initial conditions. This was felt to be an 

important result, with widespread implications for the constitutive 

modeling community. In essence, it implies that meaningful wave 

propagation studies cannot be conducted with constitutive models 

that exhibit strain softening. On the other hand, extensive 

laboratory testing by numerous experimentalists have established the 

fact that concrete, rock and dense soils exhibit pronounced strain 

softening, especially under uniaxial and triaxial compression. This 

raises the following question: Do the results from the Weidlinger 

Associates' study therefore mean that one cannot obtain meaningful 

wave propagation solutions for such materials? Because of the 

importance of this question to the modeling of plain concrete, it 

was necessary to suspend further model development and turn 

attention to this question. In effect, the basic question which 

lays at the root of this issue is whether or not strain softening is 

a true material property, or simply a by-product of the manner in 

which the data from the uniaxial and/or triaxial compression tests 

are interpreted. 

The major portion of the plain concrete modeling effort during 

the past year was focused on addressing the fundamental questions 

surrounding the strain softening issue. In the sequel, the experi¬ 

mental and theoretical evidence that were assembled for this pur¬ 

pose, as well as results from the numerical studies that we con¬ 

ducted independently, are presented and discussed in Section IV. On 

the basis of this evidence, a conclusion is drawn regarding the 

nature of strain softening and the question of whether or not it 

should be rightfully included in constitutive models of plain 

concrete, rock and soils. 



2.3 PUBLICATIONS AND TECHNICAL INTERACTIONS 

The following is a list of publications that have resulted 

from the present research program: 

• Trangenstein, J. A., and H. E. Read, "A Potential 
Difficulty with Endochronic Plasticity Theories in 
Implicit Numerical Schemes," accepted for publica¬ 
tion by the Journal of Applied Mechanics, pending 
revision. 

• Read, H. E., Discussion of "Hysteretic Endochronic 
Theory for Sand" by Z. P. Bazant, R. J. Krizek and 
C.-L Shi eh. Journal of Engrg. Mechanics, ASCE, 
August 1983, to a opear in same journal. 

• Read, H. E., and G. A. Hegemier, "Strain Softening 
in Soils, Rocks and concrete" (in preparation). To 
be submitted to Mechanics of Materials for possible 
publication. 

• Hegemier, G. A., H. Murakami and L. J. Hageman, "On 
Bond-Slip Analyses of Cracked Reinforced Concrete," 
to be submitted to Mechanics of Materials for 
possible publication. 

• Murakami, H., and G. A. Hegemier, "A Mixture Theory 
for Cracked Reinforced Concrete Elements," to be 
submitted to Mechanics of Materials for possible 
publication. 

• Hageman, L. J., H. Murakami and G. A. Hegemier, "The 
Simulation of Monotonie and Cyclic R/C Tests by a 
Mixture Bond-Slip Model," to be submitted to Mech¬ 
anics of Materials for possible publication. 

The following is a list of presentations made at technical 

meetings and seminars which reported on work done under the present 

program: 

• Hegemier, G. A., and H. E. Read, "Some Comments on 
Strain Softening," Proceedings of Workshop on the 
Theoretical Foundation of Large-Scale computations 
of Nonlinear Material Behavior, Northwestern 
University, Evanston, Illinois, October 24 - 26, 
1983. 



Read, H. E., "Strain Softening of Concrete, Rock and 
Soil," presented at DNA Concrete Material Properties 
Meeting, Terra Tek, Salt Lake City, Utah, March 7, 
1984. 

Hegemier, G. A., "An Advanced Mixture Theory for 
Reinforced Concrete," presented at DNA Concrete 
Material Properties Meeting, Terra Tek, Salt Lake 
City, Utah, March 7, 1984. 

Hegemier, G. A., "A Mixture Theory with Micro¬ 
structure for Reinforced Concrete," seminar 
presented at University of California, Berkeley; 
Berkeley, California, February 22, 1984. 
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III. REINFORCED CONCRETE MIXTURE THEORY 

Two models for reinforced concrete are developed in this 

section. The first, which is treated in subsection 3.1, applies for 

a dense steel layout; for this case the reinforced concrete com¬ 

posite is mathematically replaced by an equivalent homogenized 

two-phase material. The second, which is treated in subsection 3.2, 

applies for a sparse steel layout; here the steel and a certain 

volume of concrete cover are mathematically replaced by an 

equivalent homogenized two-phase element; the latter is intended as 

a new FEM rebar element. 

In addition to model development, model validation studies are 

documented in this section. Information on this topic is presented 

in subsection 3.4. 

The works presented in subsections 3.1 and 3.2 represent 

generalizations of the theories for dense and sparse steel layouts, 

respectively, that were developed during the first two years of this 

research contract, and which are documented in Reference 5. These 

generalizations, which represent formidable tasks and major portions 

of the third year's research effort, have taken place along three 

lines. The first consists of an extension of the previous theories, 

which are limited to small strains and rotations, to include finite 

strains and rotations. The second involves an extension of the 

previous models, which are limited to rectilinear steel layouts and 

rectangular Cartesian coordinates, to include curvilinear steel 

layouts and general curvilinear reference coordinate systems. The 

third concerns a generalization of the variational principle that is 

used in the model construction process. Generalization of the 

mixture models to include finite deformations and curvilinear steel 

layouts was necessary in order to provide simulation capability for 

an important class of practical structural problems. 
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Inclusion of finite deformation simulation capability 

necessitated a selection of a reference configuration. Two such 

configurations are discussed in subsection 3.3. In one, the current % 

configuration is selected as the reference. This choice is optimum 

from the standpoint of theoretical developments and "updated 

Lagrangian" numerical schemes. In the other, the original config¬ 

uration is selected as the reference. The latter choice, which » 

constitutes a total Lagrangian description, is useful for problems 

involving moderate deformations. 

The model validation studies presented in subsection 3.4 are , - 

devoted to the Steel-Concrete Bond Problem and the Dowel Problem 

(see Section II). For the former, which concerns material nonlin¬ 

earities but not geometrical nonlinearities, the new theories reduce 

to the previous^. Theoretical versus experimental comparisons, ¢- 

a number of which were extracted from Reference 5 and included 

herein for completeness, reveal excellent modeling capability for 

this mode of response. In the case of the Dowel Problem, all 

previous validation studies^ were limited to linear interaction ^ — 

terms and small deformations. These studies, conducted during the 

second year's effort, revealed the necessity of including nonlinear 

geometrical and constitutive effects. This was accomplished, from 

the standpoint of both theoretical modeling and simulation % 

exercises, during the third year's work. As part of this effort, a 

numerical subroutine designed to provide hysteretic simulation 

capability for the Dowel Problem was constructed. A subset of the 

nonlinear comparisons conducted between numerical simulations and % 

experimental results are provided in subsection 3.4. These 

comparisons reveal that the mixture model is capable of simulating 

complex nonlinear features associated with dowel action. These 

studies also demonstrate the need for additional high quality test % __ 

data. 
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3.1 MIXTURE RELATIONS FOR DENSE STEEL 

In this section, a mixture theory is formulated for the case 
of a dense, uniaxial steel layout. This effort represents an exten¬ 
sion of our previous theory. The new formulation 

incorporates finite deformations, and provides closure of the 
mixture theory without the necessity of solving complex nonlinear 
micro-boundary value problems. This is accomplished by combining 
the multivariable asymptotic technique with a variational principle. 

Basic Relations 

Consider a uniaxial steel layout with a local periodic array 
occupying a volume VQ with boundary 3VQ in the initial config¬ 
uration as illustrated in Figure 3.1. In the current configuration 
the corresponding volume and surface will be denoted V and aV, 

respectively. 

If a spatial (Eulerian) description of motion is adopted, and 
if J denotes the global position vector of material particles, then 

the basic conservation equations of each constituent are: 

Dp(aVot + p^V.v*0^ = 0 in V , (3-1) 

7.7(a) ♦ Tla) = ^“’dv^'/DT inV , (3-2a) 
“■'w r*j 

f(a) ^ v(a) -(a) on a) (3-2b) 

ãU) = 7(!,)T in r , (3-3) 

p(a)De(a)/Dt = - V.^a) + p(a)q(o,) + â(cx):ïï(o,) , in V (3-4) 

« 9 
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where V is the gradient operator with respect to x, v is the 
velocity vector, d.. = l/2(v. . + v. .) is the rate-of- 
deformation tensor, IF denotes the Cauchy stress tensor, p denotes 
material density, I is a body force per unit (current) volume, T is 
the traction vector acting on the surface aV with unit outer normal 
v, ë denotes internal energy per unit mass, ¿P is the heat flux 
vector per unit time and current area, q is a heat source rate per 
unit time and mass, superscript a = 1,2 denotes material a with 
o = l representing steel and o = 2 concrete, ( denotes trans¬ 
position of the tensor indices, D( )/Dt is the material time 
derivative, and V'a' is the current volume occupied by material o 
with boundary aV^. In the sequel both the direct and index 

notations will be used. Lower case indices refer to a fixed 
rectangular Cartesian coordinate system and repeated subscripts are 
summed. Superscripts do not refer to tensor components. Repetition 
of unbracketed superscripts implies summation. Bracketed super¬ 
scripts are not summed. Thus, a is not summed in the foregoing 
equations. Equations (3-1) - (3-4) represent the conservation of 
mass, linear momentum, angular momentum, and energy, respectively. 
In (3-2), the components of V.ã and v.£ are and v^o^. 

respectively. In (3-4) the components of are 

In what follows, attention will be focused upon physical 
processes that occur over time intervals that are short compared to 
typical thermal diffusion times. Consequently, an adiabatic premise 

will be adopted. Accordingly, in (3-4) one sets 

q<a) = 0,.í1“1 = 0 . (3-5) 

The conservation equations must be supplemented by appropriate 
constitutive relations. A reasonably general class of constitutive 
behaviors may be characterized by assuming^^ that an objective 
stress rate relates linearly to the rate-of-deformation tensor, i.e., 



(3-6) IM =i(«):3(a) 
rw ~ 

where is the instantaneous elastic-plastic modulus tensor 

for material a and the componenbts of g:d are The 

tensor is assumed to be independent of the stress rate and 
n*/ 

the rate of deformation, but may depend upon the current stress 

state, internal energy, and certain deformation measures. Isotropy 

of may not be assumed in general due to plastic flow and/or 

prior cracking of the concrete. While 2>la' is symmetric with 

respect to the exchange of i and j, and k and i, it is not, in 

general, symmetric with respect to the exchange of ij and ki. 

The stress rate in (3-6) deserves comment. The Jaumann rate 

corotational with the material is most frequently adopted in 

constitutive relations of the type (3-6). In this case 

£(a) 
a /DÏ - (3-7) 

where components of, say, W.ã are w^õj^. However, a number of 

other objective stress rates have been introduced by various 

authors^20! While each rate is admissible from the standpoint of 

being objective, each leads to a different constitutive relation. 

An appropriate choice depends upon the problem under consideration. 

The constitutive form (3-3) covers a wide class of elastic- 

plastic and elastic-plastic-brittle fracture behavior. Yet, it is 

not intended to be comprehensive. Rather, it is selected for 

instructional purposes. Other constitutive relations can be incor¬ 

porated into the theoretical development to follow if necessary. 

A remark concerning the foregoing Eulerian description of 

motion is in order at this point. For computational purposes it is 

often convenient to employ an "updated Lagrangian" description of 

motion. Accordingly, the Kirchhoff stress is adopted as the stress 

measure and the current configuration is used as the reference. In 

view of the latter, 
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(3-8) 
1 = 0 

<*X/ /-'S»' 

where ï denotes the Kirchhoff stress tensor. However, Dx/Dt 4 Da/Dt 

since 

Dt/Dt = Dã/Dt + d ã , d = V. V (3-9) 
-v/ '■"o-' -w 

Thus, for an updated Lagrangian description, one need only replace ¿ 

by T in the conservation equations (3-1) - (3-4) and interpret 

D( )/Dt as a material time derivative. However, the constitutive 

relation (3-6) must be altered. For this purpose (3-6) is replaced 

by 

¥a) =iF(a):ïï(a) . (3'10) 

From (3-6), (3-8) and (3-9), one finds 

5U) - °Mi • °r f(a) - 5(a) * • (3-u) 
where aö denotes the tensor product, i.e., components of are 

aij6k£ 'thls Product often wr*tten a®¿). 

In addition to the above conservation and constitutive equa¬ 

tions, relations between tractions and velocities for each consti¬ 

tuent across the steel-concrete interface must be specified. For 

modeling purposes this interface is idealized as smooth. Let 

denote that part of in contact with aV^, where both are 

smooth. Then, continuity of the traction vector requires that 

T(1)--T(2),T*onÿ . (3-12) 

With respect to displacements, relative slip across J must be 

allowed to simulate steel-concrete bond slip and dowel action. 

Accordingly, a relative velocity [v] is defined by 
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An interface "constitutive law" is next postulated in the form of a 

linear relation between an objective traction rate and the relative 

velocity, i.e., 

0 _ 
T* [v] on & (3-14a) 

0 
T* = DT*/Dt - w . T* , (3-14b) 

where ,¾ is a second rank tangent modulus tensor which may depend on 

the current states of stress and relative slip on ¿f. 

It should be noted that the normal component of velocity (to 

the surface./) may be discontinuous as well as the tangential com¬ 

ponent in (3-9) and (3-10). This degree of freedom is necessary to 

allow proper simulation of actual steel-concrete interaction under 

certain conditions using the idealized smooth surface </. 

If contact between aV^ and aV^ is lost, then one sets 

T^) = 0. = 0 over those segments of aV^ and aV^ 
-V 9 'rv 

corresponding to no contact. This situation can also be incor¬ 

porated into the form (3-14a) by a suitable choice of J. 

The foregoing relations (3-1) - (3-14), must be supplemented 

by initial conditions at t = 0 and boundary conditions on aV. 

Sealing 

It will be convenient to nondimensional ize the basic 

equations. For this purpose let 

Ã = typical macrosignal wavelength 

J 3 typical steel spacing 

C(m),p(m) = reference wave velocity and macrodensity 



r(m) - ^)%) =reference raod,,'us 

t(m) = typical macrosignal travel time (= A/C(mj) 

e = Ã/Ã = ratio of micro-to-macrodimensions. 

With the aid of the above notation, nondimensional variables are now 

introduced according to 

X = x/a a t = t/t( 
rv/ (m) 

v = ^(m) • i = ^(m) • 

'W = . I* = r^m) . (m) 
(3-15) 

(mV 

= P/P(m) » 1, ~ * m 

In terms of the nondimensional variables, the basic equations 

take the following form: 

(a) Conservation Relations 

Dp^Vot + p*o)v.v(o^ = 0 in V(a) 
rw» 

V.a(a) + f(a) =0 , f(o)=?(a) - pDv(a)/Dt in V(a) 

i'«1 = on 3V<“> 

(a) (<.)T „„ u(o) 
a = a on V 
r^i rw 

p(a)De(o)/Dt = »(o,):dU) 1n V(a) 
“ rs,/ 

(3-16) 

(3-17a) 

(3-17b) 

(3-18) 

(3-19) 
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(b) Constitutive Relations 

.(Vv^ + vVah in V(a) (3-20) 

(c) Interface Relations 

(3-21) 

0 
T* =J?.[v] [v] s - v(1) on (3-22) 

(e) Initial Conditions at t = 0, Boundary Data on aV. 

Microcoordinates 

It is expected that stress and deformation fields will vary 
significantly with respect to two basic length scales: (1) a 
"global11 or "macro" length typical of the body size or loading 
condition, and (2) a "micro" length typical of a "cell" planar 
dimensions as depicted in Figure 3.2. These macro and micro dimen¬ 
sions will be associated with the variables Ã, Ã respectively. 
Further, it is expected that these scales will differ by at least 
one order of magnitude in most cases. This suggests the use of 
multivariable asymptotic techniques.^ This approach commences 

by introducing new independent variables* according to 

X* = «íT^eJx , fi( e) > 0 as e » 0, 
I 'N* /ooox 

X = Iii(e))< , 4)(e) > 1 as e >• 0 . 

For the present analysis it will suffice to set 

0(e) = e , ip(e) = 1 (3-24) 

*In what follows, it is implicitly assumed that the cell aspect 
ratio is of order one. 



Figure 3.2. Cell geometry for densely reinforced 
concrete (shown in initial configura¬ 
tion). 
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Thus, all field variables are now functions of the "microco- 

ordinates" x* as well as the "macrocoordinates" x = x, i.e., 

f(x,t) = F(x,t;x*;e) . (3-25a) 

Spatial derivatives of a function f(x,t) then take the form 

Vf = VF + e'1 V*F . (3-25b) 

For notational convenience in the following development, the func¬ 

tions f and F will both be written as f. 

For some problems it is necessary to introduce time-micro¬ 

variables as well as the foregoing space-microvariables. These 

additional variables will not be advantageous for the present 

formulation, however. 

It is noted that, for the present unidirectional steel layout, 

it is appropriate to constrain the vector >c* according to 

x*.t = 0 (3-25c) 

where t denotes the tangent vector to the steel centerline. 

Synthesized Field Equations 

The operations (3-25), when applied to all field variables, 

lead to the following "synthesized" governing field equations: 

(a) Conservation Relations 

Dp^Vot + p(a)V.v(a) + - v*.(p(a)v{a)) = 0 in V(a) (3-26) 

V.o(oi) + l£*.a(a) + f(a) = 0 in V(a) , (3-27a) 

T(a) = *MJa) on 3V(a) , (3-27b) 
<-W ^ * 

t 
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9 
(3-28) a1“’ = o(“)T in V(a) 

d*(a) = (v*V + V*Tv) . 
~ C£ ~ ~ ~ ~ 

(3-29) 

(b) Constitutive Relation 

%(a) =®(a):(d(a)+ d*(a)) in V(ct) ^ 
(3-30) 

(c) Interface Relations 

(3-31a) 

0 
T* =^.[v] , 

[v] = v{2) - v(1) on ^ (3-31b) 

(c) Initial Conditions at t = 0, Boundary Data on aV. 

In the above, V* is the gradient operator with respect to x*, 

e.g., components of £*^v are 3V^/ax*j. The material derivative 

D( )/Dt refers to the macrovariables x^ only. 

Constraints 

In what follows, attention will be restricted to processes in 

which: 

(1) The constitutive and interface relations do not 

depend on the internal energy. 

(2) The micro-deformation gradient is sufficiently 

small that micro-flux or micro-convection terms 

may be neglected in the material derivative. 

(3) The micro-rotation is sufficiently small that 

its contribution to the stress rate may be 

neglected. 
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(4) The micro-deformation is sufficiently small 

that microvariations in the mass density may be 

neglected. 

Under the above constraints, which are considered to be appro¬ 

priate for the analysis of reinforced concrete, the last term in 

(3-26) can be neglected, the energy equation (3-29) need not be 

treated, and the material and stress-rate derivatives are to be 

interpreted in terms of the macrocoordinates only. 

9 

Periodicity Condition 

At this point a local periodicity condition is introduced. 

This condition consists of the premise that local periodicity in the 

micrcvariable x* may be invoked for all field variables. This # 

premise allows one to analyze a single cell in an effort to deter¬ 

mine the distribution of any field variable with respect to the 

mirocoordinate x^*. A typical such cell is illustrated in Figure 3.2. 

The local periodicity premise is motivated by extrapolation 

from linear analysis.^ It is expected to provide a good 

representation of the field variables for dense steel layouts. 

Variational Principle for Synthesized Fields 

A variational principle is now constructed for the synthesized 

field variables. For this purpose consider the relation # 

38 

mmrniá. 



In the above, dA* = dA*t, where t is the unit tangent vector to the 

steel centerline in a given cell. Thus, if a plane with normal £ 

intersects the steel centerline within a cell, then A^ is the 

projected area of material a on this plane. The integration is 

carried out over the micrococrdinates, e.g., if x*k, k = 2,3 

denote local Cartesian coordinates in the above plane, then dA* = 

dx*2dx*3. The quantity ^ = 3Ä(i.e., ^ is the projection of 

the steel-concrete boundary on this plane. 

Let the boundary aV = 3VT + 3Vu. Then, the following is 

assumed: 

V, K 

T'0* prescribed on aV, 
H T (3-34) 

6v^a^ = 0 on aV . 
~ u 

In addition, let 

V 

T (1) on = aA (1) (3-35) 

where T* is prescribed. Finally, let 

ôv^^e C on A^ with respect to x,x*, 
(3-36) 

6V(a) e £* - Pen‘odic • 

If 6V^a^ is the variation of the exact velocity field, then 

the first term of (3-33) vanishes due to (3-27a), the second 

vanishes due to (3-27b) and (3-34), the third vanishes due to 

(3-27b), and the last term vanishes due to (3-32). Thus, the 

validity of (3-33) is established if v(ol) is the exact velocity 

field. 



If v(a) is not the exact field, then (3-33) corresponds to a 
weighted residual procedure for generating weak solutions of the 
governing equations. The weighting functions are In the 
latter case the solutions are of course approximate. 

With the aid of Gauss' Theorem, and (3-34) - (3-36), (3-33) 

can be placed in the following form: 

Equation (3-37) corresponds to the Principle of Virtual Work 

for the synthesized fields. This relation constitutes an important 
tool, in the form of a variational principle, for generating mixture 
field equations for the highly nonlinear class of problems of 

interest herein. 

Test Functions 

Kantorovich's direct variational method is now used to 
generate the desired mixture equations. The trial velocity field 

(test functions) is selected in the form 

v(<,,(x,t;x*¡€> =Û(a)(x,t) * eSK(,,)(x,t)gKU,(x*) * 0(.2). (3-38) 

The "weight" functions gK^(x*) are to be prescribed for each 
material (a = 1,2). The vector reflects the macro contri¬ 
bution to the velocity field whereas the vectors S^01^ reflect the 

micro contribution; these variables play the role of new dependent- 
type displacement variables. In the above, and in what follows, the 
summation convention is used with respect to the index K with range 

1 to n. 
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Equations of Motion, Boundary Conditions 

Substitution of the test functions (3-38) into the variational 

principle (3-34) furnishes, after some algebraic manipulation and 

integrations by parts, the following relation: 

/ £ «Ù(oi).(Tp(a)-v.N{a)) + 5Sk(a).(Tk(a)- v.Mk(ct) dS 

3V, 
(3-39) 

/"¡¿. iil'“1 .(v.Nlal * F(a) * (-l)1+aP) 
J ( a=l ~ ~ ~ ~ ~ 

+ 6Sk(a).(V.Mk{a) - Rk(ot) + Fk(a) + (-l)1+aQk)J dV = 0 . 

In (3-39), the following quantities have been defined: 

{F(a) pkU)) _ f d egk(a))f(aidA* 

~ ~ i(a) 

(N(a),Mk(a))= f (l,egk(o))a(a)dA* 
~ ~ -[(a) 

f ea^a^.V*gk^a^dA* , 

(£(<*) yMot)] _ /* (l,egk(a))T(a) dA* 
U ~ ’ »(a) 

(3-40) 

(3-41) 

(3-42) 

(3-43) 

p = I /'l*ds* , Qk = T* gk^ds* (a = 1 or 2) . (3-44) 
~ z J ~ ~ J ~ 

3 # 
The Euler-Lagrange equations associated with the variational 

equation (3-39) are 

V.N^ + + (-1)1+0P = 0 in V , (3-45) 

V.Mk(a) - irk(a) + Fk(a) + (-l)1+aQk = 0 in V . (3-46) 
rsa 
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The boundary conditions are 

= v.N^ or 5Ú^ = 0 on aVT , (3-47) 

Tk(ot) = v,Mk(a) or 6Sk(ot) = 0 on aVTc 
<«vc /¾¾. '"w I 

(3-48) 

Equations (3-45) are the "smoothed" equilibrium relations. 

They have the form of a binary mixture. The dependent variables 

fjU) represent "partial stress" tensors, i.e., stress averages 

over the cell area occupied by the appropriate constituent. The 

quantity P represents a stress interaction vector which reflects 

stress transfer between the steel and the concrete across the 

interface & 

In addition to direct averages of the stress field over the 

cell, weighted averages also enter the formulation via the 

variational principle. Equation (3-46) governs these new dependent 

variables. 

The variational principle provides appropriate boundary condi¬ 

tions for the displacement-type variables and the 

stress-type variables Mk^. These conditions are 

expressed by (3-47) and (3-48). 

Mixture Constitutive Relations 

The test functions (3-38) furnish the following rate-of- 

deformation tensor: 

(3-49) 

where 

= ¿(vil^ + (3-50a) 

(3-50b) 
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Substitution of (3-49) into the constitutive relation (3-40), 

and the latter into (3-41), gives 

¿(a) _ E(a).¿(a) + ^(ci^ta) + a) a) (3-51a) 
“ ~ ~ - ~ ~ K, = 1 to n 

^k(a) = Ak(a);(¿(a) + qKKo)^ + cKL(a) ^L(a) (3-515) 
ixw I** ^ 

where 

E(a)_ f D(a)dA* f AMa)H f eD(a)gk(a^dA*, (3.52a,b) 
,(a)~ ~ í(a) ~ 

,k(a)_ D(oi).v*gk(a)dA* , 

Gkl(a)_ y ^gkMgLUya)^* J 

A(a) 

QkUa)^ /" egMa)D(a) v* LU) dA* _ 

(3-53) 

(3-54) 

(3-55) 

In addition, (3-49), (3-30) and (3-45) give 

jjk(a) _ ak(a);J,(a) + bkL(a);;ÿ. + ckL(a) gKa) 

where 

ak(a)= f eV*gk(a).D(o,)dA* , 

~ " A(a) ^ 

bkUa)=/ 62gk(,,)V*9k(a)-a(<‘)dA* - 
(a) 

ckl(a) = f eV*gk(a\D^a).v*gLia)dA* . 
/(a) ~ ~ X 

(3-56) 

(3-57a) 

(3-57b) 

(3-57c) 



# 

Interaction Terms 

Using (3-44a), (3-38) and (3-31b), the interaction term P can 

be expressed in the form 

& ds 

In deriving (3-58), terms of 0(e) were neglected in (3-38). 

(3-58) 

In a similar manner, (3-44b), (3-38) and (3-31b) furnish 

?k =L/^k.[U] , ^ = <£§gk(1)ds* . (3-59) 
— ~ ~ / ~ 

Summary of Mixture Equations 

The basic equations of the mixture model for dense, uniaxially 

reinforced concrete are now summarized below. 

(a) Equations of Motion 

v>N(a) + pU) + (.D^p = o , 

V.Mk(Œ) - + Fk^°^ + (-l)1+aQk = 0 ; 

(b) Constitutive Equations 

jj(a) _ E(a);;,(a) + Ak(a)ü¿/k(a) + Bk(a).^k(a) 

^k(a) _ Ak(a).<¿(a) + gkKai^Ma) + ckL(a) jl(a) 
**+>?+* 

gkU) = aK(a) -(a) . bkL(a).J.(a)t ckL(a)jL(a) 

(c) Interaction Terms 

P = ^.[Ll] , Qk [Cl] 

(d) Boundary Conditions on aV 

Tict) = v.Nia) or 6Ú(a) = 0 on aV T , (3-64a) 

Tk^ = v.Mk^a^ or 5Sk^a) = 0 on aVT , (3-64b) 
r+mt /v^ S 
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(3-60) 

(3-61) 

(3-62a) 

(3-62b) 

(3-62c) 

(3-63) 

j 

! 

! 

J 



(3-65a) 

(e) Kinematic Relations 

¿M= i(vil(<,) ♦ VTÙ(“») , 

^a)s i(vSkU) ♦ vTSk(<,)) , (3-65b) 
^ ¿ '■'S**' '-V» ^ 

(f) Averages 

(E(a) Ak(a) Bk(a) GkL(a) pkKa)^ ï (D(a)jeD{a)gk(a), (3-66a) 

AVOt) 

D(“'.v*gk*,>1 ,e2gk*<,*gl'(<,V‘,',Egk('llD*a'.7<,gL*‘*')(iA* , 

( Kla) bkl-lo) ckLf“>)= f (eV*9k(<>'.D(o''>e2gk(',1v*gk(<,1-£(o'1. 
r(a) 

ev*gk(a).D(a).V*gL(a))dA* 

3 
(3-66c) 

Weighting Functions 

In order to utilize the preceeding mixture equations, the 

weighting functions g^aNx*) must be selected. For the dense 

steel layout, weighting functions are introduced in conjunction with 

a "concentric cylinders approximation."Accordingly, the outer 

cell boundary is approximate by a circle which is defined based upon 

equal area of the original and approximate cell. This procedure is 

depicted in Figure 3.3 (for a hexagonal steel array). 

Subsequent to the introduction of the approximate cell, the 

weighting functions are defined as follows: 



Figure 3.3. Circular cylinders approximation (shown for 
periodic hexagonal steel array). 

4b 



The relations (3-65) satisfy the x* - periodicity condition on the 

(approximate) outer cell boundary. 

The form (3-67) represents the first relevant terms of a 

Taylor expansion in the singly connected region and a Laurent 
(2) 

expansion in the annular region A' . 

The quantities n^, n^ denote, respectively, the volume 

fractions of the steel and concrete. If r^, r^ represent 

the current steel and cell radii, respectively, then n^ = 
(rU)/r(2))2^ n(2) _ J _ n^1^. The dimension 2r^^ 

represents essentially the steel spacing. 

Additional Constraints 

For some applications, it may be appropriate to introduce the 

constraint: 

$k(l) _ 5M2) . (3-68a) 
'"N* /«W 

In accordance with the reduction of the number of dependent vari¬ 

ables represented by (3-68a), the relation (3-61) is replaced by 

V.MK - + Fk = 0 (3-68b) 

where 
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(3"68c) 

2 

(MK,ïïk,Fk) = E. (Mk(a),H*(oi),Fk(a)) . 
*** 7 ^ ^ <X=i ^ o«* 

k k 
Constitutive equations for the new dependent variables M , IN 

are obtained by adding (3-63) for a = 1,2 or by adding (3-64) for 

a = 1,2. The result is 

Vk 
Mk £ [Ak('1,:Ja, * SkLla,¿x|■la, * CKLIa,.SL] 

a=l 
(3-69a) 

ÏÏ11 = [ak(a':<^“) * bkL(a)yf(t,) + ckU<,).5L] (3-69D) ~ a=l ~ ~ ~ ~ ~ 

Remarks on Coordinate Systems 

The mixture relations (3-60) - (3-66) are based on the assump¬ 

tion that the current configuration is also the reference configu¬ 

ration. Otherwise, the equations are general with respect to 

coordinate systems. In particular, since direct notation has been 

used, the mixture relations are valid for arbitrary coordinate 

systems. 

Remarks on Curvilinear Steel Layouts 

In the construction of the mixture model, a rectilinear, 

unidirectional dense steel such as is depicted in Figure 3.4(a) was 

envisaged in which the cell geometry was constant. However, if the 

cell geometry (e.g., the steel and concrete volume fractions) varies 

sufficiently slowly with respect to the microcoordinates, then the 

governing equations can also be used to model a curvilinear, uni¬ 

directional dense steel array, as depicted in Figure 3.4(b). This 

opens the door to the simulation of a number of practical steel 

layouts. 
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<• 

(a) Rectilinear 

(ë 

(b) Curvilinear 

Figure 3.4. Unidirectional dense steel arrays. 

- 
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Mixture Equations - Compoment Form 

The mixture relations (3-60) - (3-66) can be written in 

compoment form once the reference base vectors are selected» For 

later use, we list below the compoments referred to fixed 

rectangular Cartesian base vectors (in which case the description 

becomes Eulerian). 

(a) Equations of Motion 

NU) + F(a) + p = o , 
J I j J 1 » 

(3-70a) 

Ma] . + + (-1)^¾ = 0 
j i, j i ' 

(3-70b) 

(b) Constitutive Equations 

(a) F(a) Aa) . .k(a) J^k(a) + Rk(a){.k(a) 
ij Eijk£ ®k£ NjkjTkü Bijk bk 

(3-71a) 

2k(a) Ma)x[a) + rkL(al^L(a)+ rkL(a)Al(a) 
Mij = Aijk ^ki Sjki^ki Cijk Sk 

(3-71b) 

äc(a) k(a)¿(a) . hkL(a)^L(a) + rkL(a)Al(a) 
"ij ‘ a1jkrk{ “ijki ki c1jk ak 

(3-71c) 

(c) Interaction Terms 

?i =á?i;j [Ùj] , qJ ^jCÚj] (3-72) 

(d) Boundary Conditions on aVT 

f|a) = or öLl]a) = 0 on aVT (3-73) 

(3-74) 

(e) Kinematic Relations 

•(a) 1 ,,'.(a) . r,(a) 



(3-76) jrkU)s . 
C 1 , J J j i 

3.2 MIXTURE RELATIONS FOR SPARSE STEEL 

In this section a mixture model is formulated for the case of 

a sparse steel layout. This work represents an extension of our 

previous model The new formulation incorporates arbitrary 

curvilinear rebar geometry and finite deformations. 

The work on the sparse mixture model forms the basis for a new 

finite element rebar element that properly models progressive 

cracking of the concrete, steel-concrete bond degradation and slip, 

and dowel action. 

In what follows two formulations of the sparse steel case are 

presented. The first formulation employs the current configuration 

as the reference state. The second formulation utilizes the initial 

configuration as the reference. The former is more convenient from 

a theoretical standpoint. The latter may be more useful for certain 

numerical applications. 

Geometry 

With reference to Figure 3.5(a), we consider a single steel 

reinforcing bar together with surrounding concrete cover. The 

geometry of the resulting composite element is a matter of modeling 

convenience at the time of discretization, i.e., at the time a 

finite element mesh is created. However, if possible, the cell 

should be constructed in such a manner that the aspect ratio is one. 

The geometry depicted in Figure 3.5 represents the current 

configuration of a rebar plus cover segment. The position of a 

material point in the cell is defined by the position vector £ = 

X + X* where x denotes the position of the steel centerline and x* = 
rs* ft* 

e^ (k = 2,3). The vectors e2 and e3 are unit base vectors 
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Figure 3.5(b). Cross-sectional geometry. 
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(see Fig. 3.5). The coordinate ^ is a convected coordinate 

directed along the steel centerline. The coordinates ^ anc* £3 

are convected coordinates in a plane with normal in the direction of 

h- 
In what follows, finite deformations of the rebar element will 

be allowed. However, cross-sectional deformations will be restric¬ 

ted to be sufficiently small that the current cross-sectional 

geometry may be approximated by the initial cross-sectional geometry. 

Variational Principle 

The formulation of the sparse-case mixture model is based upon 

the use of a variational principle. This principle can be con¬ 

structed as follows: With the current configuration selected as the 

reference, and using the notation described in Section 3.1, the 

Principle of Virtual Work for the steel can be written (note that 

the cell in Figure 3.5(b) has been nondimensionalized in a manner 

similar to that described in Section 3.1) 

where d^ = ( v v^ + v^Vah/2 and dA = dç9dç,. Simi- 
'■Nrf /"W 'S* 'S* C. O 

larly, for the concrete one has 



On the steel-concrete interface, in general 

T(1) = - T(2) = T* on ¿2 (3-79) 

v(1) ¿ v(2) on (3-80) 

Let us define the "slip" as 

[v] =v(2) - v(1) on (3-81) 's* ^ 

If one now adds (3-77) and (3-78), then the Principle of 

Virtual Work for the composite element becomes 

J 

/( E / fU).Sv<“>dA*/ T<2'.5v(2>ds)dÇ 
Ot= 1 a(®) 0 A 

2 

J 

o 

i 

= /(Z £(a,:«áU)dA */l* . «Mds^dCj . 

(1-82) 

V 
The additional virtual work term T* . 5[v] in (3-82) depends 

upon the particular interface constitutive law specified. However, 

it is possible to develop a mixture model of the composite cell 

without direct reference to this law if the slip [v] is treated as a 

dependent displacement-type variable. 

Test Functions 

In a manner similar to that described in Section 3.1, the 

following test functions are now introduced and Kantorovich's direct 

variational method is used to derive a set of "lowest order" mixture 

relations: 

v(a)(x,x*,t) ¿ Û(a)(x,t) 
/■»w /-s^ /**«* 

SK(a)(x,t)g1<(a)(x*) (3-83) 
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where K ranges from 1 to n (summation on K is implied), the 

quantities SK^ denotes the Kth director for material a, and 

K(oi)(x*) denotes a "weight" function for each K and a. 

As a result of (3-83), and assumed continuity of the 

qK(°)(x*) across the steel-concrete interface, 

[v] = il(2) - li(1) = [Ú] (3-84) 

and 

d(a) = i(a) + qK(“feX(a) + d*(a) (3-85) 

where 

i(a) »vjÄ1“1) . (3-86a) 

^(VxtK(a) *^¿K(<,)) , (3-86b) 

^(a) l(j(a) K(a) , 5(1) T Kla), _ (3-86c) 

The gradient operators 

defined according to 

V and v* in the above equations are 
~x ~ 

i**£ic l^z-3) (3-87’ ~ 3Çk 

where g1denote the contravariant base vectors associated with the 

coordinates 

Equations of Motion, Boundary Conditions 

Substitution of (3-83) - (3-86) into (3-82) and integration by 

parts gives 



where 

fli ' ZM * I-"1'“? > \2l> 
0 U=1 

+ ä5K(‘,).(v •M1'1'1' - H*1"’ * FKU) * t * (-1)1* gK)jdC] (3-88) ~ #^x ~ ~ ~ a¿~ ~ ) 1 

CJ— 1 '-w »-W ^wJL ^ 

^1=f 

jV° 

0, 

(1, gK(“))f(“)dA , 

A1“) 

(N(«)jMK(a)\ T (1>gK(a))o(a) _ 

~ ' {m 

SK(<,) = jT) a(a).a,gK(c,,dA , 

(f(a),TK(a)) = / (l,gK(a))T(a) dA , 

A a 

p= /r*ds , (ij.tfls /(i,gK(2|)T(2|ds /«tad ^ /■Nrf j' 

jfs ÍT*gK(a)ds (a = 1 or 2) 

& 
The Euler-Lagrange equations of (1-88) on 0< £^< f are: 

(3-89a) 

(3-89b) 

(3-89c) 

(3-89d) 

(3-89e) 

(3-89f) 

V .N(a) + F{o) + 6 «ÏÏ + (-l)1+aP = 0 , 
~X ~ ~ a¿~ ~ 

(3-90a) 

y .MK(a) - #(a) + FK(a) + 5 + (-l)1+a QK = 0 , (3-90b) 
~X ~ ~ a¿~ ~ 
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Further, at ^ = 0 and we have 

(3-91a) 

(3-91b) 

Equations (3-90a,b) are the desired mixture equations of 

motion for the composite cell. Equations (3-91a,b) represent 

boundary conditions at the cell termini. 

Mixture Constitutive Relations 

The mixture constitutive relations are obtained by substitu¬ 

tion of the rate-of-deformation tensor d^, defined by (3-85), 

into the definitions (3-89b,c) for N, a^, M1^01^» and 

The result is 

N(a) = E(a):J,(a) + AK(a)üiK{a) + BK(o,):SK{a) , (3-92a) 

where 

(3-92b) 

(3-92c) 

(3-93a) 



Steel-Concrete Interaction Terms 

With use of the interface constitutive relation (3-31b), the 

trial displacement function (3-83), and the definition of the 

interaction term P from the first of (3-89e), the interaction term P 

can be written 

P«^.[0] , S'- /áffds (3-94) 

¿f 
In a similar manner, from the second of (3-89e), (3-31b), and 

(3-83), one obtains 

Crack Interface Relations 

Consider a crack in the concrete. Across such a crack 
V 

surface the traction vector T must be continuous. Thus, if ^ is the 

unit normal to 2) (Figure 3.6), then 

on . (3-96) 

As was noted in the case of the dense steel layout, a reasonably 

wide class of crack phenomena, including crack dilatancy, can be 

modeled using incremental relations of the form 

T(2) =«!t(2), [U(2)] ¡.[U(2,r (3-97) 
~ ¡25) ^ ¡2* 

/ow (2} 
The notation [ULÄ = U' 1 -U , and <8 denotes a second rank (J) ^ ~ ^ 

tensor. Specific forms of (3-97) will be treated later. 

Summary of Mixture Equations 

The basic equations of the mixture model for a sparse steel 

layout can be summarized as follows: 



Crack Q Steel 

Concrete 

Figure 3.6. A cracked reinforced concrete with 
dense steel layout. 



(a) Equations of Motion 

7x.N(<,) * F1“1 * Sa2 J* (-1)1'“? = 0 

„ - #,a) ♦ fk(<,) * s / * (-1)i*aQK = 0 

(b) Constitutive Equations 

et) _ £(a).J,(a) + ^Ktaí^ía) + gK(a).^K(a) 

^K(a) _ ^K(a).^(a) + ^KKaî.^L + ^KKa) ^L(a) 
f** i-W /-w * <-W * Orf ^ 

SK(a) = aK(a):^(a) + bKL(a):kL + cKL(a‘)<sL(a) 

(c) Interaction Terms 

R = «'.[U] , qK =u/.[û] 
~ ~ ~ ~ 

(d) Crack Interface Terms 

(3-98a) 

(3-98b) 

(3-99a) 

(3-99b) 

(3-99c) 

(3-100) 

on 9 _ 

T(2) = ^.[Ú{2)1 on 2! . 
^ CJ) 

(e) Boundary Conditions on ^ = 0 and = í 

4(a) M(a) T = V, .N or 6Û{a) = 0 

TK(a) = v..MKU) or äSK(a) = 0 

(3-101) 

(3-102a) 

(3-102b) 

(f) Kinematic Relations 

¿(a)= i(V Ú(a) + VTÚ(a)) , (3-103) ~ C ~x~ ~x 

#(a)= 2-(VxSK(oi) + vJsK(a)) , (3-104) 

(g) Averages 

(E(a),AK(a),Bl<(a)>GKL(c,),CKL(a)) = \ (g(a),2(a)gK(ci)ig(a). v*gK(a) , 

gK(o)gL(aya)> gMc.)g(o) _&gL(a), ^ (3-105) 

■«—i» 

; 

bü 



(aKU) „KLUl KLU>)$ í , 

A a 

V;kg1((a)^(ot).V*gL(a))dA (3-106) 

(^/)= /(á8*^gK(1))ds (3-107) 

Remarks 

Equations (3-98) - (3-107) are similar in form to Equations 

(3-60) - (3-66) for the dense periodic steel layout. An important 

difference, however, concerns the terms Q, Q . These variables 

are the result of (weighted) tractions integrated around the outer 

cell boundary ÿ (see Equation (3-89e)). Such terms vanish in the 

dense case due to the assumed local periodicity condition. Their 

presence in the sparse steel problem renders the mixture equilib¬ 

riums equations "nonsymmetric" with respect to materials "1" and "2". 

The dependent variables JN^ in the mixture relations are, 

again, "partial stresses". The dependent variables 

represent weighted averages of the stresses over the cell 

area A^ occupied by material "a". 

(a) 
As in the case of a dense steel layout, the quantities U , 

represent displacement-type dependent variables which are 

introduced by the displacement field (3-83) which, in turn, is 

utilized as a test function in the Principle of Virtual Work. 

Weighting Functions 

For the case of a sparse steel layout, the following elemen¬ 

tary weighting functions appear to be adequate: 

(3-108) 

3 
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Additional Constraints 

As in the dense steel discussion, it is appropriate for some 

problems to introduce the constraint 

SK(1) = SK(2) (3-109) 

And, as before, in accordance with the reduction of the number of 

dependent variables, the relation (3-98b) is replaced by 

V .MK - fl* + FK + s , if = 0 
'-‘-X »-w ^ (XL. ^ 

(3-110) 

where 

(3-111) 

Constitutive relations for M^,N^ are obtained by addition of 

(3-99b) or (3-99c) for a = 1,2. The result is given by (3-66d,e). 

Mixture Equations - Component Form 

For later use, we list below the compoments of the mixture 

equations under the restrictions that (1) the initial geometry is 

rectilinear, (2) the deformations are small, and (3) the constraint 

(3-109) applies: 

(a) Equations of Motion 

(3-112a) 

(3-112b) 

(3-113a) 

F? * ¡¡3 - (N<|> * N<f) . 0 (3-113b) 



(b) Constitutive Equations 

»(a) r (a) ¿(a) + AK(a)y;/K(a) + BK(a).K 
Nij = Eijki éki Aijkrlki Bijk bk 

•K ^ iiK(a) ¿(a) + pKLiai^L + pKL(a)il. 
Mij 2 h. Aijkt ‘îu Gijki cijk sk 

nK(oi) y' K(a);(a) + .KL(a|»L + qKLÍcOjíL 
^ij = èl aijkrk£ bijkr% Lijk bk 

(c) Steel-Concrete Interface Law 

N [ùj] 

(d) Crack Interface Law 

tÍ2^ s^Cû!2^] on crack S) 

(e) 

i = u1jLUj 

Boundary Conditions on = 0, Í 

ôUÎ^ = 0 or N^. 

«U 

(1) id) 
li = 1 i 

I2' . 0 or NJ21 . I|2) , 

öS 

öS 

0 or M 

0 or M 

li 

,3 
li 

= T i 

Ti 

(f) Boundary Terms 

f (i,gK(z,)Tj2) ds 

w(2) * 
where T: 1 must be specified. 

3.3 OTHER DESCRIPTIONS OF THE MIXTURE RELATIONS 

In Sections 3.1 and 3.2, mixture relations for 

sparse steel layouts were constructed based upon the 

(3-114a) 

(3-114b) 

{3-114C) 

(3-115) 

(3-116) 

(3-117a) 

(3-117b) 

(3-117C) 

(l-117d) 

(3-118) 

dense and 

use of the 



current configuration as the reference configuration» For some 
problem types, it may be more convenient from a computational 
standpoint to employ a Lagrangian description of motion wherein the 
initial configuration serves as the reference state. In view of 
this, a Lagrangian formulation of the mixture model for the sparse 
case is constructed in this section. The derivation for the dense 

case follows in a similar manner. 

3.3.1 Sparse Steel 

Geometry 

As before, we consider a single steel reinforcing bar together 
with the surrounding concrete cover, Figure 3.7. In this case, 
however, the initial configuration of the cell is selected as the 
reference state. With reference to Figure 3.7, let £ denote the 
steel centerline in the initial configuration, The vector 

j(* lies in the plane whose normal is tangent to this centerline at 
the location defined by the vector JR. Thus, material points in 

are located by the position vector X = R + X*. The quanti¬ 
ties A^, aJ2\ Sq, S", L in Figure 3.7 denote steel, 

concrete cross-sectional areas, steel-concrete interface, outer cell 
boundary, and cell length, respectively — all with respect to 

Normals to the areas A^, aJ2) are tangent to the 

steel centerline. 

Variational Principle 

In a manner similar to that outlined in Section 3.2, one 
begins the analysis by constructing a variational principle for the 
composite cell. This is accomplished by first writing the Principle 
of Virtual Work for both compoments. When the initial configuration 
is used as the reference, the appropriate forms are: 

+ (TiaEldv!^ 

(a = 1,2) 



n
o
lío

 

Figure 3.7. Initial configuration of cell. 
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where x is the Piola-Kirchoff stress tensor of the second kind, E is 

the Green's strain tensor 

i = Î (¾¾ * ÄxJi * 2.XÄ -¾11 1 > 
(3-120) 

is the pseudo-traction vector, fn is a body force per unit 0 
mass which includes inertial terms, u is the displacement vector, 

and SQ, VQ denote surface area and volume, respectively. 

On the steel-concrete interface S*Q: 

Î11* - - îi2) = "ï onS* ~0 ~0 ~0 0 
(3-121) 

results from continuity of the traction vector. However, continuity 

of the displacement ju may not be assumed. To account for 

displacement discontinuities, we define the "slip" [u] as follows: 

Cü] = ia(2) - all) on S*. (3-122) 

Upon addition of (3-119) for a = 1, a = 2 with use of (3-121) 

and (3-122), the Principle of Virtual Work for the composite cell 

becomes : 

r(a) s^-s* 
0 0 

= Ely T(a):0E(a)dS + a=l| •'i V ~ ~ 0 J ~0 ~ 0 
U/U) c* 

SS 

(3-123) 

With the application of Gauss' Theorem, equation (3-123) can 

also be written 



w 

a=l 
Cä-ii-£T> * Xt \ ' ''cr^o' 

(a) 

Í CL, - n.x.£T](a).6U(2)dS = /lí .«[u]dS 
Jo\ ~o ~ ~ ~ 0 ¿ 0 ~ si2)“sî 0 0 

(3-124) 

s; 

where 

F = vlx , FT= Vv X 

defines the deformation gradient, F and its transpose F 

The operator is given by 

o - rk 3 
~X ^ 30,, 

(3-125) 

(3-126) 

where Gk are the contravariant base vectors of the coordinate 
~ k k 

system and e^ are the coordinates. Thus, £ .¾ = «s 

where G s aX/ao and 6k is the Kronecker delta. 
S 5 

Since the current position vector £ and the initial position 

vector & are related by 

X = X + u , 
/■w '■w '■w 

The deformation gradient can be written 

F1 = I + VyU 

where ¿is the unit tensor with Cartesian compoments 6^. 

In addition, since X = R + X*. one can write 

~X = -¾ + ¾* 

(3-127) 

(3-128) 

(3-129) 

where 
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(3-130) „ _ ri a „ _ ri 3 
Ir " ~ 3^. * ^X* - ~ 30? 

The coordinates , e| are defined by 

dR = G1^?. , dX* = Gidet 
'-w 1 * '"V' 1 

(3-131) 

Test Functions 

A trial displacement field is now assumed in the form 

u(o)(X,t) s U(<,)(R,t) + SK{a)(R,t)gK(a)(X,*) (K = 1 to N)(3-132) 

(K summed, no sum on a) 

where gK^(X*) are weight functions which are continuous across 

the steel-concrete interface $*0. Thus 

[u] = U(2) - U(1) = [U] on S* (3-133) 
r-* ~ ~ ~ 0 

Equations of Motion, Boundary Conditions 

Upon combining (3-128), (3-129), and (3-132), one finds 

* d-FT)•gK«SK * vx*.(t.FT).gKiSK 

where 

* vx*9¥ 

(3-134a) 

(3-134b) 

Following substitution of (3-134a,b) into (3-125), one obtains 
K 2 

after algebraic manipulation and neglect of 0(g ) terms: 
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0 

^KLtaï- y gU«) Vx49K(t‘).^l,)dA0 , 

Ao 

rKL(o)_/vgK(«),(»).vgU«) dA. (3-136e) 

gK{2))î(21ds , y '~o o 
$ 

(p.aK>=/a.9K(<,)^ dso 

(3-136f) 

(3-136g) 

(a = 1 or 2) 

The Euler-Lagrange equations of (3-135) are 

either öU^ s 0 or 

''r • [jl(a)-(I * ^",1> * öI<(“'-2rSK('>> * 

* (-l)1*“? ♦ «„J* F or + F(a) a2~ O = 0 , (3-137a) 

K(a) _ either «S ' = 0 or 

h 
. [V1“'. (I * v.u('*)) * nlksl<<,'1 - U * V U(,,)) 

I ~ --w ^ ~ J ^ ^ K 

(3-137b) 

+ NKL(a).^¿L(a) +xKL(a)¿L(a) + (-i)1+aQK + ia2ÿ + zl(a) = 0 

The boundary conditions at s0 = 0 and s0 = L are 

5U 
1 fl 

(a) = 0 or T(a) = n,. T N(a\(I+ V_U(a)) + MK(a). VDSK(o) + NK(aîSK(a^ (3-1^ ~ ~I L ~ ~ ~K~ ~ ~ J 

«¿K(a) = 0 or TK(a) = n,. rMK(a).(l+VRU(a))+NLK(c‘)SL(a)l (3-138b) /¾ ~ —• ~K~ ~ ~ J 

where n^ denotes the normal to the end surfaces. 
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Equations (3-137a,b) are the mixture equations of motion for 

the Lagrangian description. Equations (3-138a,b) are the 

appropriate boundary conditions for the mixture equations. 

3.3.2 Equations of Motion for Initial Rectilinear Geometry 

If the initial geometry is rectilinear, Figure 3.8, then 

R = . 2r = Si * 2x* = 4 (L = 2>3) (3-139) 

where eg are orthogonal unit base vectors. In addi¬ 

tion, if the weight functions (see (3-108)) 

K(o,) = X* (k = 2,3, a = 1,2) g = *k 

are selected, then 

(3-140) 

Vx*gK(a) = eL -fl* (X*) = eL«LK = ^ (3-141) 

whence 

jKla) = y ,,(«). 3(,gl(<«))dA0 . ( f rla\).eK = 

i(a) (a) 

/LU) = y gUa) r^0Ao . e,. / gL<«> !<«» = , 

(a) (a) 

,KL( 
al = /v9K('l)-i(C‘1-Ä*9L<a)dAo 

e. = e^.N^V ~L ~ ~L 
(a) 

(3-142) 

Under (3-139) and (3-142), the mixture relations (3-137) can be 

written in compoment form as follows 
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Figure 3.8a. Reinforced concrete cylinder. 

X3 

Figure 3.8b. Cross-sectional geometry of the rein¬ 
forced concrete cylinder. 



ôuja)=0 or 

«11 * Vl,l + «îlSi,l * N1KSÍ 

sS*1“'» 0 or 

(“’11-1'1"?,- * * fò: 
J , 1 

+ F^) 
i 

= 0, (3-=143a 

/u * m5iuu * - N1KU1,1 + MK1S1,1 

* «KL^i * + ‘Â * Fo‘al = 0 • 

In the above i = 1 to 3; K,L = 1 to 2; a = 1,2 . 

The corresponding boundary conditions are 

(3-143b) 

«ul“' = 0 or ¿(a) = [Nl1 ♦ NUU1(1 * * rf“', (3-1440) 

sS^“1 = 0 or yku) = [Mi, * * M^SI|]I<,) (3-144b) 

on Xj^ = 0,1. 

3.3.3 Dense Steel 

An analysis similar to that discussed under Section 1.5.1 may 

be used to generate the Lagrangian form of the mixture momentum 

equations for the case of a dense steel layout. The resulting 

equations can be obtained from (3-137a) by invoking the following 

changes: 

V , p- = o , ÿ = 0 . (3-145) 

The independent spatial variable is the position vector X and 

V = e43/3X. if a rectangular Cartesian triad is used. 
~ 1 
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3.4 APPLICATIONS 

Several important special cases of the mixture relations 

developed in the previous sections are considered in this section. 

The problems investigated are intended to both validate, and 

demonstrate the modeling capability of, the mixture theory. 

3.4.1 The Steel Concrete Bond Problem 

The "steel-concrete bond problem" is significant from three 

different viewpoints. First, this problem type reflects a mode of 

deformation that often dominates the nonlinear behavior of a 

reinforced concrete structure. Second, it provides a means for 

validating a segment of the mixture model. Finally, the 

steel-concrete bond problem is central to the evaluation of a subset 

of the mixture model parameters. 

Below, the general mixture relations are specialized to the 

steel-concrete bond problem. Subsequent to this, solutions of the 

resulting equations are compared with experimental data for both 

monotonie and hysteretic deformations. 

Problem Definition, Sparse Steel 

The steel-concrete bond problem is concerned with initial 

geometry that is rectilinear (Fig 3.1 for dense steel, Fig 3.8 for 

sparse steel). While the component (steel, concrete) and interface 

(steel-concrete) relations may be nonlinear, the deformations are to 

be sufficiently small that all nonlinear geometric terms may be 

neglected. 

Within the context of the above mentioned rectilinear geometry 

and small deformations, the steel-concrete bond problem for sparse 

steel is defined by the constraints: 

u<“' = U<a) = 0 , (3-146a) 

= 0 p(a) pK 
Fi = Fi 

(3-145b) 



I—
I 

(3-146c) 

Equation (3-146a) indicates that the average displacement is the 2- 

and 3-directions is zero (recall that uH represents the 

cell-averaged displacement in ^he ith direction). Eouation (3-146b) 

results from the premise that the body force fi vanishes. Equa¬ 

tion (3-146c) results from the premise that the traction vector 

^ vanishes on the cell boundary 3 (Fig. 3.8); thus, the cell 

outer boundary is presumed to be stress free. 

Our analysis of the steel-concrete bond problem will be con¬ 

fined to the idealized situation wherein the concrete is elastic- 

brittle and the steel is elastic-plastic. Further, the influence of 

Poisson's ratio on the concrete response will be neglected. Under 

these conditions, and assuming that SK^ = 0 at = 0,i which 

in turn implies that the displacement field is uniform in X2,X3 

at the cell termini, then it can be shown (see Reference [5]) that 
$K(a)^ g. As a consequence of the above, the basic mixture 
-V# 

equations (3-98) - (3-100) reduce to the elementary relations: 

Nu!l = ° - Nn!i-pi-° 

. , N<2> = 2„(2>n(2)E2U<2» 

p. = K*(ur' - u ,[2> 
(1! 

(3-147a,b) 

(3-147c,d) 

(3-147e) 

where K* denotes a tangent slip modulus which, in general, depends 
(2) 

on the steel-concrete relative slip history, and \i denotes an 

elastic-plastic tangent modulus for the steel. The remaining 

dependent variables vanish, i.e., 

U^a) = U^a) = 0 , = 0 (i,j 4 1) , 

|2(a) ii3(a) _ 
'ij = = 

0 (3-147f) 



Equations (3-147a-e) are the governing relations for the 

steel-concrete bond problem under the assumption that Poisson's 

ratio may be neglected, and that the steel layout is sparse. 

Problem Definition, Dense Steel 

For dense steel, the steel-concrete bond problem is defined by 

l4a) = U^2) = 0 (3-148a) 

Fja) = F* = 0 . (3-148b) 

If the concentric cylinder approximation of the cell and the 

weighting functions (3-167) are adopted, then it can be shown (see 

Reference [5]) that, if Poisson's ratio is neglected, the basic 

mixture relations (3-60) - (3-63) reduce to 

1 ) + p _ o - p - n • 
‘11,1 ^1 - u » Nll,l - u * (3-149a) 

^ = , = 2An(2)ù[2} ; 

^ = K*(ú[2) - ú}^) . 

(3-149b) 

(3-149C) 

All other dependent variables vanish. 

It is evident that, upon neglecting the influence of Poisson's 

ratio, the mixture equations have the same form for both sparse and 

dense steel. 

Theory Versus Experiment 

Several comparisons will now be made between theory and 

experiment in an effort to demonstrate the simulation capability of 

the mixture model. This discussion will be descriptive in nature. 

For additional details concerning numerics, material properties, and 

specimen geometries, the reader is referred to References 4, 5, and 

21. 
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The parameters in the mixture equations that must be specified 

in order to allow a test simulation are: (1) the steel volume 

fraction, (2) the steel and concrete moduli, (3) the concrete 

tensile strength, (4) the steel yield point, (5) the initial 

specimen length, and (6) the coefficient K* in the interaction 

term. Item 1 results from a knowledge of the steel percentage in 

the specimen. Items 2-4 can be obtained from simple compoment 

tests. Item (5) is a matter of test specimen geometry. Item 6 must 

be deduced from a pullout test or a tension test; this subject (in 

contrast to items 1 - 5) is non-trivial and deserves some discussion. 

Typical pullout and tension-test geometries are depicted in 

Figure 3.9. In order to define the interaction term Pp it is 

necessary to "back-out" a local bond stress versus relative slip 

(between steel and concrete) relation from test data, and then to 

evaluate the interaction term. For this purpose, it has been found 

that a rigid-perfectly plastic interface description suffices in 

most cases involving monotonie deformation. The ultimate local bond 

stress is known to be proportional to f where f'c denotes the 

uniaxial compressive strength of the concrete. In terms of^the 

difference of the average constituent displacements, (uj 
u[2)), the interface behavior becomes elastic-perfect! y 

plastic, Figure 3.10. The elastic segment is determined by a 

separate elastic analysis and represents no problem. More sophis¬ 

ticated interface constitutive relations can be postulated if 

necessary. Figure 3.11, for example, shows a fit to experimental 

data from a pullout test*22^ using a piece-wise linear relation. 

For hysteretic deformations, the rigid-perfectly plastic bond 

behavior must be extended to allow relative slip reversals; here the 

incorporation of bond degeneration is necessary. Figure 3.12 

illustrates a modified rigid-plastic model that has been success¬ 

fully applied to problems involving cyclic loading. 

Let us turn now to experimental versus theoretical 

comparisons. The first case to be considered involves a pullout 



test. Based upon an analysis of the available experimental 

literature, the local bond stress versus slip relation depicted in 

Figure 3.13 was postulated as a general bond constitutive law for 

monotonie slip. Figure 3.14 shows the simulation accuracy of the 
(221 

mixture model using this law for one set of experiments . Upon 

consideration of the experimental data scatter, it can be concluded 

that the simulation accuracy in this example is good. Also shown in 

Figure 3.14 is the influence of a rigid-plastic bond-slip relation 

(with the same peak bond strength) on simulation. The use of a 

simple rigid-plastic bond model appears to provide adequate simula- 

tion accuracy. Theoretical versus experimental' comparisons 

for another set of pullout test specimens are shown in Figure 3.15. 

The bond law shown in Figure 3.13 was again used in the simulation. 

Agreement in this case is reasonable, but not as good as in the 

previous example. The primary difference in the test specimens was 

the degree of concrete cover. 

The second case to be examimed concerns tension tests. Figure 
(23) 

3.16 shows simulation versus experimental data for two sizes 

of tension specimens. Agreement is considered to be satisfactory 

when one considers the data scatter typical of such tests. Again it 

is emphasized that the bond slip law defined by Figure 3.13 was used 

in the simulations. In particular, it is noted that no effort to 

"tune" the model to the data was made. 

The third case to be considered involves monotonie extension 

of a scaled reinforced concrete specimen with a dense unidirectional 
(24) 

steel layout, Figure 3.17. Experimental versus theoretical 

comparisons for load controlled tests are shown in Figures 3.18 and 

3.19. Because of the load-control, the tests in this series were 

not "clean." In particular, expected sharp drops in global stress 

due to progressive fracture of the concrete are "smeared" due to the 

specimen loading procedure. In addition, the method of testing led 

to significant data scatter. Nevertheless, the experimental- 

theoretical comparisons shown, which represent essentially monotonie 
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Tension Test Pull-Out Test 

Figure 3.9. Typical tension and pullout test specimens. 



extension, demonstrate that the mixture formulation is capable of 

good simulations for a wide range of steel layouts in all major 

response stages, Figure 3.20. The latter consists of: elastic 

response with no cracking, debonding, or slip (State I), progressive 

cracking with debonding and slip (Stage II), and slip only (Stage 

III). In addition to global stress-strain response, reasonable 

agreement has been observed between predicted and observed crack 

patterns. An example is furnished by Figure 3.21. 

The fourth case to be examined involves cyclic loading 

(tension-compression) of full-scale reinforced concrete masonry 

specimens^) with sparse unidirectional steel layouts, Figure 

3.22. In contarast to the previous example, the tests in this 

series were carefully conducted under displacement control. Figures 

3.23 and 3.24 indicate typical experimental versus theoretical 

comparisons. The experimental points in Figure 3.23 represent the 

(average or global) stress-strain envelope. Figure 3.24 depicts 

specimen stiffness degradation as measured by average unload-reload 

slopes. The agrément of test results and theoretical predictions is 

observed to be excellent. It is noted that both bond slip and 

progressive cracking of the concrete were active in these tests and 

simulations. 

In addition to the above global stress-strain envelop, 

detailed comparisons have been made between theory and experiment 

for each unload-reload cycle. A sample of these comparisons is 

provided by Figures 3.25 and 3.26. It is evident that the mixture 

model is capable of simulating complex details concerning the 

hystere tic response of reinforced concrete within the context of the 

"steel-concrete bond problem." 

3.4.2 The Dowel Problem 

Dowel action occurs in many problems involving the progressive 

cracking of reinforced concrete. The term refers to the global 

contribution of steel rebar penetrating a shear plane to the overall 



U^L u{2) 

Figure 3.10 Behavior of constituents and steel-concrete interface 
for monotonie extension example. 
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Figure 3.11 Simulation of pull-out test (average bond stress, x, is 
the pull-out force divided by the steel surface area). 
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Figure 3.12a Proposed local bond-slip relation for reversed load cycles 
with fixed slip limits. The first cycle is represented by 
solid lines, all subsequent cycles by dashed lines. 

Figure 3.12b Proposed local bond-slip relation for reversed load cycles 
with increasing slip limits. 
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Figure 3.18. Comparisons of experiment and theory. 
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Figure 3.19. Comparisons of experiment and theory. 
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Stages of Response 

NORMALIZED STRAIN 

Figure 3.20. Stages of response predicted theoretically. 
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Figure 3.22. Sparsely reinforced concrete. 
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• Figure 3.23. Comparison of experiment (squares) and theory 
(curves) effective stress versus effective 
strain envelope. 
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Figure 3.25. Effective stress versus effective strain for cyclic 
deformation of reinforced concrete (masonry) (a) test 
data, (b) numerical simulation. 
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Figure 3.26 Comparison of experiment (dashed lines) and theory 
(solid lines) effective stress versus effective 
strain curves for the first two deformation cycles. 
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shear transfer across this plane. The shear plane itself is a crack 

in the concrete. In addition to dowel action (DA) the shear trans¬ 

fer is influenced by interface shear transfer (1ST) and adhesion. 

1ST refers to friction and aggregate interlock. DA and 1ST are 

interconnected in that DA can influence 1ST significantly by 

changing the effective normal stress on the shear plane and hence 

the frictional effects. Consequently, it is important to check this 

element of the mixture model in order to properly validate its 

simulation capability. 

In what follows, two problems are explored. The first is a 

linearized dowel problem, which is convenient from an analytical 

viewpoint since a closed-form solution is available. The second is 

a nonlinear version of the first. The latter more closely simulates 

the actual physical problem. 

The Linearized Problem 

For illustrative purposes the dowel problem depicted in Figure 

3.27 will be considered. In this example, the planar transverse 

deformation of a reinforced element with a sparse layout and a 

pre-existing crack is to be examined. Consequently, within the 

context of the weighting functions (3-108) and the constraint 

(3-109), one has 

u[a) = U^a) = sj = S3 = S3 = 0 . (3-150) 

This, in turn, implies 

5u[a) = 6U^a) = ôsJ = ¢$2 = 0S3 =0 . (3-151) 

In addition, the example dowel problem shall be selected such that 
( 21 2 

Ug and Sj are specified (the boundary displacement of 

the concrete elements are to be specified such that each piece 

suffers opposite uniform transverse displacement as shown in Figure 

3.27). Thus, 



W.ILM», «,1«, I,  .HIM —.....-.. 

3 

(b) After Deformation 

Figure 3.27. A dowel action test simulation 
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(3-152) 6u£2) = öS2 = O 

Upon combining equations (3-150), (3-152), (3-198a) and (3- 

110), one finds that, in the absence of body forces, the only 

mixture equilibrium equation that must be satisfied is 

+ p - n 
N12,l k2 * u (3-153) 

Now, for illustrative purposes the example dowel problem will 

be restricted to elastic response. The appropriate mixture 

constitutive and interaction relations for this response are 

M(l) (l)n(l)„(l) Niz = u n U2jl 

P2 = 82(U22) ’ U21}) 

(3-154) 

(3-155) 

where 82 = constant (determined from a separate elastic analysis). 

The dowel problem boundary conditions on the lateral surfaces 

are selected as 

U {ZZ) = * a/2 for xj ^ (3-156) 

The boundary conditions at the cell termini are prescribed, from 

Equations (3-117), as 

nJ^ = 0 at X| = * £/2 (3-157) 

Further, symmetry of the problem requires 

= 0 at xx = 0 . (3-158) 

The symmetry condition allows one to examine only 0 < Xj < £/2. 

Substitution of Equations (3-154), (3-155) into Equation (3- 

153) furnishes 
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4 

M{1)n(1)U^1j1 - = - ßo a/2 (3-159) 

Solution of Equation (3-159) with the boundary conditions 

(3-157) and (3-158) yields 

U, 1 
7 1 - cosh 

/ »2 \1/2 / »2/ \1/2 / “2 {'I 
(TryTr)*! * s,nh 

(1-160) 

This, from Equation (3-154), provides the following stress field: 

l(1) 12 = A 

O nU) (1) 1/2 n 1/2 

(J-V—) [^(717717) 
1/2 

1 

1/2 

+ tanh 
(¡7^) cosh (7^) Xl 

(3-161) 

Equations (3-160) and (3-161) are the steel transverse dis¬ 

placement (U^) and shear (partial) stress 

fields. These are graphed in Figures 3.28 and 3.29 respectively. 

The significance of Equation (3-161) is evident. Given a 

displacement a, the maximum average shear stress in the steel can be 

evaluated and a failure analysis can be conducted. 

Based upon experimental observations, the forms of (3-160) and 

(3-161) appear to be qualititátively correct for sufficiently small 

a. It is evident that the dowel problem leads to a "boundary layer" 

phenomena wherein the steel deformation is confined to a narrow 

region adjacent to the crack. 

The Nonlinear Problem 

As the dowel offset a increases, a point is reached when the 

above linear formulation is no longer valid. For larger offsets, a 

nonlinear theory is needed. Such a theory must account for finite 
9 

4 
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Figure ^ ?ñ. Displacement profile of steel. 
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a 

Figure 3.?9 Shear stress in steel. 



rotations of the steel, crushing of the concrete, and bond degener¬ 

ation and slip. In what follows, therefore, the foregoing dowel 

problem is re-examined within the context of a nonlinear mixture 

theory. 

The governing equilibrium equations to be used in the non¬ 

linear analysis are given by (3-143a,b). 

In contrast to the linear analysis, separate directors 

will be adopted for each material. The latter furnish 

the capability to adequately model the reinforcing steel bending 

mode. Consequently, the constraint (3-109) is replaced by 

¢.3(1) -3(2) 
h = bl 

,K(1) <.K(2) J<(1) M2) 
b2 = ^2 ’ ^3 = ^3 

(3-162) 

If the average deformation is confined to the X^.Xg-plane, 

then 

U^a) = 0 , $3(a) = 0 ; 5l4a) = 0 , öS3{o)= 0. (3-163) 

If, in addition, the lateral boundary displacement of the 

concrete is prescribed, then 

iU<2) = 0 , ^121 = 0 . (3-164) 

Equations (3-164b) and (3-162b) furnish 

«s5(1) = 0 (3-165) 2 

(2) 
äU,(1), Thus, ôU^ , o u i 

remaining arbitrary variations. 

SU (1) 6$ 2(1) 6$ 
2(2) are the 

Finally, if the von Karman approximation is now invoked 

wherein only nonlinear terms involving the transverse displacements 

are retained in the equilibrium equations, then one obtains from 

(3-143a,b) and (3-162) - (3-165) the following steel equilibrium 

equations: 



(3-166) 

% 

€1 

ijd) + p _n 
Nll,l Kl - u 

,M) + M(l)i|(l)\ 
{N12 N11 

+ Po = 0 , 

1*2 ( 1 ) M(l) + n2 n 
Mll,l - N12 + ^1 = 0 

where 

p1 = P1(uj^) - u{n) , 

p2 = P2(U22) ‘ » (3-167) 

q{2> = Q^ÍS^) . 

The above steel relations are to be supplemented by appropri¬ 

ate steel constitutive relations. If the effect of the transverse 

stresses on the normal stress are neglected, then one obtains 

for elastic steel and a circular cell: 

.ur 

N<J> = n(1)E2E(1)(U<|> * ^-) , 

. nd'eV11^} * S2(1)) , (3-168) 

where n^1^, E^1^, denote volume fraction, Young's Modu¬ 

lus, and the shear modulus, respectively, for the steel. Equations 

(3-168) were obtained by (1) assuming small strains (but moderate 

rotations), (2) relating the Kirchhoff stress and the Green's 

strain E.. via Hooke's law, and (3) averaging according to 
* V 

,„(1) „(1) ,,2(1), 
(Nn ^21 >Mn > / (T(1) Td) 

1 11 ,T21 xil)g2(1))dAc (3-169) 
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In the case of elastic-plastic steel behavior, equations 

(3-168) are replaced by the incremental relations 

Ñ<}> = * U2>1 02jl) , 

^2(1) = 1(1),(1)52(1) 

where are elastic-plastic tangent moduli. 

(3-170) 

For the dowel problem posed, the interaction terms are 

selected as follows: 

Pi = - új1*) , K1 = constant 

P2 = K2(022^ - f>) , K2 = tangent modulus (3-171) 

The forms (3-171) are motivated by independent linearly elastic 

solutions and experimental data. 

The boundary conditions of the nonlinear dowel problem are 

specified as follows: 

uJ^tO) = 0 , U^iO) = 0 , 1^^(0) = 0 

= 0 , \i{2l)(l) = a , Vllll)(L) = 0 . 

(3-171) 

The conditions (3-171) are based, in part, on asymmetry with respect 

to Xj = 0. 



A numerical program was constructed to solve Equations 

(3-166), (3-170), (3-171) and (3-171) in the region 0 <X1< L. A 

solution for -L < 0 was obtained by asymmetry conditions. 

Typical resultant transverse force (dowel force) versus offset 

displacement, a, behavior, via the mixture model, is shown in Figure 

3.30a,b for monotonie and hysteretic A-displacement histories. When 
(26 27) 

one compares this response with experimental data, ’ such as 

that shown in Figure 3.31a,b, it is evident that the mixture model 

is simulating the basic features of the complex dowel response. 

Details concerning the experimental setup are provided in Figure 

3.32. 

A search is presently in progress for dowel experimental data 

suitable for quantitative comparisons. Since dowel data is known to 

be sparse, it may be necessary to generate the appropriate experi¬ 

mental information. 

3.5 CLOSURE 

It has been observed by many researchers that the nonlinear 

response of reinforced concrete is largely dominated by complex 

interactions between the steel and the concrete. In an effort to 

simulate these interactions, a mixture theory approach was adopted 

as a basis for the construction of a new model for reinforced 

concrete. In a further effort to minimize the number and type of 

tests necessary to define the parameters of the model, a 

microstructural, in contrast to a phenomenological, approach was 

selected. 

Based upon the microstructural mixture methodology, two 

nonlinear models for reinforced concrete have been constructed 

to-date: one for a dense steel layout, the other for a sparse steel 

layout. These theories allow finite deformations and include a wide 

class of component and component interface descriptions. Further, 

they include curvilinear steel layouts. At this time, however, the 

latter are restricted to unidirectional geometries. 
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Figure 3.32. Experimental setup (Ref. 26). 



The validation studies conducted thus far are of two types: 

(1) The Steel-Concrete Bond Problem and (2) the Dowel Problem. 

These studies, which consist of comparisons of analytical/numerical 

simulations and actual test data, reveal that the mixing procedures 

used in model construction provide excellent simulation capability 

for the global esponse of reinforced concrete under both monotonie 

and hysteretic loading conditions. 

Continued research is, of course, necessary in order to bring 

the modeling process to fruition. Included in the necessary 

research tasks is the generalization of the current model to include 

multi-directional steel layouts. Continued validation studies are 

also necessary. These should include additional dowel and dowel 

plus interface shear transfer simulations, and steel buckling — 

concrete spallation simulations. Such studies will requies test 

data of a higher quality than is currently available. The 

generation of the necessary data could be part of a continued 

research effort. 
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IV. STRAIN SOFTENING IN CONCRETE, ROCK AND SOIL 

There are a number of materials, such as rock, concrete and 

dense soils, which when compressed at constant axial strain rate 

under conditions of either uniaxial stress or triaxial compression 

exhibit a phenomenon called "strain softening." Materials which 

exhibit such softening are characterized by a constitutive response 

in the axial direction in which the stress first rises monotonically 

with strain to a peak, and then decreases with further increases in 

strain. 

Under general states of deformation, a material element is 

and said to undergo strain softening when its stress rate 

strain rate ¿^. satisfy the following condition:^^ 

°ij eij 
< 0 (4-1) 

For those materials whose constitutive behavior can be described by 

an incrementally linear relation of the form: 

¿ij = cijkeèkr 
(4-2) 

where C.^,.« is the fourth order tangent stiffness tensor, it 'ijk£ 
follows that the condition for strain softening reduces to the form: 

C j • i. d ê • • éi,. < 0 'ijkc ij kc 
(4-3) 

Thus, for the incrementally linear models, strain softening occurs 

when the matrix of the tangent stiffness components ceases to be 

positive definite. In almost all cases, the experimental data which 

show strain softening in concrete, rock and soils come from either 

uniaxial compression or triaxial compression tests. To observe 

strain softening in such tests, it is necessary that the displace¬ 

ment of the end platens be governed by a closed-loop servo-con¬ 

trolled system.* Softening is observed when the axial stress 

decreases with increases in the axial strain. 

*If load control instead of displacement control is used, the test 
specimen will become unstable at the peak of the stress-strain curve 
and suddenly fail; the test will therefore terminate before the 
descending branch of the stress-strain curve can be established. 
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Until recently, strain softening was generally viewed as a 

true material property and routinely incorporated into constitutive 

models. As a result, the literature abounds with advanced, complex 

constitutive models for materials such as concrete, rock and soils 

which contain strain softening. The notion of a constitutive model, 

however, is fundamentally a continuum concept, and.to include strain 

softening in a constitutive model implies that strain softening can 

occur in a homogeneous material element at the continuum level, 

i.e., it's a material property. Most of the data from which the 

notion of strain softening in rocks, concrete and soils developed 

has come from unconfined compression and triaxial compression tests 

conducted with displacement control in the axial direction. Since 

the unconfined compression test is the simplest to discuss and is 

sufficient for illustrating the major issues of concern here, 

attention will be restricted to this type of test in the discussion 

below. 

Let us recall that the type of data generated by the 

unconfined compression test consists of the variation of the axial 

force F with the servo-controlled axial displacement u, i.e., F = 

F(u). It is common practice to transform this type of data to 

obtain the stress-strain relationship through the following 

equations: 

where a, e denote, respectively, the stress and strain, and A0> 

L0 are the original cross-sectional area and length of the 

unstrained specimen. 

The validity of using the above equations to determine the 

stress and strain depends, however, on the following conditions 

being satisfied: 



• The specimen must be homogeneous 

• A homogeneous state of stress must exist in the 
specimen at all times 

• No significant changes in the geometry of the 
specimen can occur during a test. 

If these conditions are not met, the constitutive relationship for 

the material cannot be inferred from the force-displacement data. 

As increasing deviations from the above conditions arise in a test, 

the use of Eqs. (4-4) to determine the stress-strain relationship 

becomes increasingly in error. Consequently, strain-softening 

models that are based on the descending branch of the force-dis¬ 

placement curve, without consideration of the physical condition of 

the specimen, must be viewed with considerable caution. 

In the sections which follow, the above issues are explored in 

some further detail. The results from previous experimental studies 

that bear on these questions will be discussed. Pertinent and 

related theoretical concepts and studies are also reviewed. 

4.1 EXPERIMENTAL OBSERVATIONS 

4.1.1 Rocks. 

While there are numerous laboratory studies which reveal 

strain softening in rocks, there are three studies, in particular, 

that provide important insight into the nature of the strain 

softening in these materials. One of these studies, conducted by 

Hudson, Brown and Fairhurst,{30) examines the unconfined com¬ 

pression response of marble. Another study, by Hallbauer, Wagner 

and Cook,*31^ investigates the triaxial compression behavior of 

jacketed specimens of quartzite. Finally, Brady, Duvall and 

Horino*32^ attempt to establish the true stress-strain relation¬ 

ship for six different rocks, compressed under uniaxial stress con¬ 

ditions, by using both experimental and theoretical methods to 

determine the variation of the true load bearing area with strain in 

the post-failure regime. From these three studies it is evident 

that the strain softening which appears in the force-displacement 



curves does not reflect a true property of these materials, but 1s 

Instead due to non-homogeneous deformation of the test specimens 

past the peak of the force-displacement curve. Further details of 

these studies are given below. 

In the series of unconfined compression tests reported in 

Reference 30, cylindrical specimens of Georgia Cherokee marble, of 

various sizes and L/D ratios, were examined in a testing machine 

having axial displacement control. The tests were conducted at a 

constant strain rate of 1.5 x 10"^ sec.* The purpose of these 

tests was to establish if the descending branch of the stress-strain 

curve for uniaxial compression is a true material property -- and 

thus independent of specimen size and geometry — or the result of 

non-homogeneous deformation and therefore dependent upon specimen 

geometry. 

A total of 45 tests was performed, and the results are sum¬ 

marized in Figure 4.1, where the effects of both specimen geometry 

and size on the complete stress-strain curve are shown. Each test 

was repeated twice so that the curves shown actually represent the 

average of three tests. The curves in Figure 4.1 were scaled from 

the measured force-displacement (F-u) curves by using Equation 

(4-1) given earlier, and in that which follows we shall refer to 

these as "apparent" stress-strain curves. It is evident from the 

figure that the portions of the apparent stress-strain curves up to 

near the peak are virtually unaffected by variations in specimen 

geometry and size, while the peak values and the descending branches 

are strongly dependent upon them. 

In the experiments, it was found that progressive structural 

breakdown of the specimens began at about 50 percent of the ultimate 

strength. The inhomogeneous and anisotropic nature of the material 

*Yhe authors failed to note in their paper whether or not there was 
lubrication between the end plates and the test specimens. 
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Figure 4.1. Influence of specimen size and shape on 
the complete stress-strain curve for 
marble loaded in uniaxial compression. 
(From Reference 30). 
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on the microlevel induces local tensile stresses which produce 

microcracks that grow and become aligned with the loading axis.* As 

the loading increases, the density of microcracks rapidly prolifer¬ 

ates, leading to vertically aligned macrocracks which result in 

gross slabbing of material from the specimens' lateral surfaces. 

Illustrations of such slabbing in specimens are given in Figures 4.2 

and 4.3. In general, the axial cracks are concentrated in the 

central portions of a specimen's length because lateral restraint at 

the specimen ends, due to friction, inhibits their growth near the 

specimen-platen interface. This is particularly true of the longer 

specimens. For the short specimens (L/D = 1/3), however, the axial 

cracks appeared to be uniformly distributed over the entire length. 

These differences in crack patterns no doubt cause the variations in 

the shapes of the stress-strain curves shown in Figure 4.1. 

As noted above, the apparent stress-strain curves shown in 

Figure 4.1 were obtained by scaling the measured force-displacement 

curves according to Equations (4-1). The gross slabbing of material 

on the lateral surfaces of the specimens during testing, however, 

continuously reduces the cross-sectional area of the remaining 

intact material and, to determine the true stress at some cross- 

section, the current (true) area of the intact material at that 

cross-section should be used in Eq. (4-4), instead of the original 

area. The true (load bearing) cross-sectional area of a specimen, 

which will be denoted by A, will diminish during a test due to the 

slabbing (axial fracturing) of material at or near the free lateral 

surface. The true cross-sectional area A will thus decrease as the 

axial compressive strain e increases with the result that 

*A recent paper by Horii and Nemat-Nasser^) provides an inter¬ 
esting discussion of axial splitting of rocks in terms of out-of- 
plane crack growth. 



Figure 4.2. Cross-section of 1:1 specimens at an advanced 
state of failure. (Georgia Cherokee marble) 

% (From Reference 30). • 
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Figure 4.3. Cross-section and end view of 1/3:1 specimen 
(4-inch diameter) at advanced state of failure. 
(Georgia Cherokee marble) (From Reference 30). 
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(4-5) A(e) < ^0 

Consider now Figure 4.4 which depicts two test specimens, one of 

which has a large L/D ratio and the other a small one. For small 

L/D specimens, the slabbing of material from the lateral surface 

does not significantly reduce the effective load bearing cross- 

sectional area and, in this case, one can write A(e) « Aq. If, in 

addition, it can be assumed that the state of stress in the short 

specimen is reasonably homogeneous, then it can be concluded that 

the true stress-strain curve is described quite closely by the 

apparent stress-strain curve, as shown in the figure. Now note from 

Figure 4.1 that the apparent stress-strain curves for the shortest 

specimens (L/D = 1/3) do not show any strain softening. On this 

basis then it may be concluded that the true stress-strain curve 

also does not exhibit strain softening; the validity of this con¬ 

clusion will be further substantiated by the work of Brady, Wagner 

and Horino^32^ to be discussed in the sequel. 

For the tall specimens, the true cross-sectional area A can be 

drastically reduced as the test proceeds, with the result that the 

applied force F may drop while the true stress continues to 

increase. In this case, A < AQ and the apparent stress-strain 

curve provides a poor representation of the true stress-strain 

curve. Thus, it follows that the extent to which the apparent and 

true stress-strain curves differ depends upon the L/D ratio of the 

specimen. Parenthetically, it should also be noted that the 

material near the axes appears to experience more confinement in the 

case of specimens with small L/D ratios than for those with large 

ones; this enhanced confinement results from friction between the 

specimens and the load platen and tends to reach a maximum at the 

axis. 
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Hallbauer, Wagner and Cook reported a series of triaxial 

compression tests on quartzite.{31) The tests were done on 

cylindrical specimens (L/D = 3) which were jacketed in thin copper 

tubes so that their lateral expansion would be resisted by the 

increasing confinement. The rate of axial strain was kept constant 

at 10"3/min during the tests. The purpose of these tests was to 

determine the microstructural changes that progressively take place 

in the rock as it is compressed to failure. Particular emphasis was 

given to the structural changes that occur in the vicinity of the 

peak of the stress-strain curve. To accomplish this, the tests were 

stopped at various predetermined points along the strain path; the 

specimens were unloaded and removed for sectioning and microscopic 

examination. 

Figure 4.5 shows the nominal stress-strain curve obtained from 

the tests, and photographs of specimen sections at the various 

points along this curve. Little damage is evident until the stress 

reaches about 80 percent of the ultimate stress. As the stress is 

increased from 80 to 90 percent of ultimate, a rapid proliferation 

of microcracks occurs, with the number of microcracks increasing 

about seven-fold. 

A very important observation which resulted from this study is 

that, at the ultimate stress, a macroscopic fracture plane first 

appears in the central portion of the specimen. With further com¬ 

pressive straining, the fracture plane grows toward one or both of 

the ends, eventually leading to complete splitting of the specimen. 

The rapid drop in the load carrying capacity after the peak of the 

stress-strain curve was attributed to the complete failure of 

existing partially fractured material ahead of the macroscopic 

failure plane. Thus, on the basis of this evidence, it is concluded 

that the falling branch of the stress-strain curve in Figure 4.5 is 

actually not a material property, but the result of the propagation 

of a macroscopic fracture plane through the specimen. Beyond the 

peak of the stress-strain curve, the specimens were in the pocess 

of splitting and therefore could not be treated as a homogeneous 
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continua. It is therefore concluded that the observed strain- 

softening is the result of inhomogeneous deformation and fracturing, 

and is not a material property phenomenon. 

Finally, Brady, Duvall and Horino(32^ conducted an inter¬ 

esting study of the unconfined compression behavior of rocks which 

offers considerable insight into the true nature of strain 

softening. Six different rock types were studied, including marble, 

two types of granite, sandstone, limestone and a schist. Tests were 

conducted on five specimens from each of the rock types; the tests 

were done in a conventional testing device which was artificially 

stiffened by placing high-strength steel columns in parallel with 

the specimens. The axial deformation of a specimen was measured by 

three LVDT devices connected in series. A small load cell in series 

with the specimen measured the applied load. The test specimens 

were 2.125 inches in diameter and 4.295 inches in length. 

Each specimen was loaded to a preselected position along the 

post-failure curve, unloaded and then cast in hydrostone. It was 

then sectioned at one-half inch intervals normal to the specimen 

axis, and the resulting disks were ground smooth. The disks were 

impregnated with fluorescent dye to reveal the cracked portions of 

the cross-sections. By assuming that the load was carried essen¬ 

tially by the uncracked cross-section, the true stress acting upon 

the specimen can be found. In this manner, the true stress-strain 

curve under uniaxial compression was determined for the six rock 

types, and it was found that (a) there is a maximum true stress that 

the solid (intact) rock can sustain without extensive inelastic 

deformation and (b) the maximum true stress does not change with 

axial strain. Figure 4.6, from Reference 32, shows the general 

shapes of the true and apparent (nominal) stress-strain curves 

obtained from this study. While the nominal stress-strain curve 

shows the usual strain-softening, the true stress-strain curve does 

not; the true curve has the form of an elastic-perfectly plastic 

material. This study, therefore, clearly reveals that strain 
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softening is not a true material property of the six rocks con¬ 

sidered, but is the result of scaling the force-displacement data by 

the original cross-sectional area, instead of the true cross-sec¬ 

tional area of the unfractured material. 

4.1.2 Soils 

The evidence of strain softening in soils comes essentially 

from standard triaxial compression tests on dense specimens. It is 

well-known that, because of friction between end plates and specimen 

and the possible development of modes of bifurcation (instabili¬ 

ties), it is difficult in such tests to maintain a state of homo¬ 

geneous deformation within the specimen as the deformation pro¬ 

gresses. Furthermore, as pointed out by Hettler and Vardou- 

lakis,^34^ experiments with "perfect" boundary conditions (ideally 

lubricated) and "perfectly" homogeneous material cannot insure, in 

general, homogeneous deformation, since various modes of bifurcation 

are possible and do actually develop. Examples of such modes of 

instability are barreling, bulging, necking and shear banding, some 

of which are depicted in Figure 4.7; these instability modes can 

occur in tests with lubricated as well as non-lubricated ends. 

There is a growing body of evidence which supports the view¬ 

point that the observed strain softening in soils is not a true 

material property but mainly the result of non-homogeneous deforma¬ 

tion of the test specimens during the experiments. To illustrate 

the point, several recent laboratory studies of the triaxial 

compression behavior of dense soils, in which special precautions 

were taken to produce homogeneous deformations, are described and 

discussed below. In these studies, it was found that when the 

deformations are homogeneous, or nearly so, the soils exhibit very 

little or no strain softening. 

Deman*35^ used X-ray techniques to investigate strain fields 

inside cylindrical specimens of dry dense sand produced by triaxial 

compression. In these tests, small metal spheres were carefully 

positioned in the material in a vertical plane which was parallel to 

and passed through the specimen axis. By measuring the movement of 



the spheres with X-rays as the tests progressed, the deformation 

field inside the specimens was determined. Tests were performed 

with and without lubrication. 

Figure 4.8 shows typical stress ratio versus strain curves 

obtained by Deman for specimens having L/D ratios of about 1:3 and 

tested with lubricated and non-lubricated end platens. As this 

figure reveals, both curves show a peak, but the softening is much 

more pronounced in the case of the non-lubricated platens. An 

inspection of the corresponding internal strain fields, shown in 

Figure 4.8, reveals that the non-lubricated end platens resulted in 

a non-homogeneous mode of deformation (barrelling) in which rigid 

cores of material developed adjacent to the end plates. The 

greatest deformation occurred near the central portion of the speci¬ 

men. On the other hand, when the end platens were lubricated, the 

deformation was very nearly homogeneous, as shown in the figure. 

Thus, from these tests, it appears that the apparent strain¬ 

softening observed in these tests was essentially due to non-homo¬ 

geneous deformation caused by the friction on the end plates and is 

therefore not a true property of the material; when the deformation 

was homogeneous or nearly so, very little softening was evident. 

More recently, Hettler*36^ performed a series of triaxial 

compression tests on relatively short cylindrical specimens of the 

same dry dense sand studied by Deman. The dimensions of the speci¬ 

mens (L/D = 0.35) were chosen, on the basis of theoretical work by 

Vardoulakis/37^ so that disturbances in homogeneity of deforma¬ 

tion due to bulging instability or due to imperfections in the 

specimen height should not arise. The end plates were lubricated to 

prevent friction. Typical results from these tests are depicted in 

Figure 4.9S where stress ratio versus strain curves are shown for 

several confining pressures. Notice that for the range of strains 

studied (0 - 10 percent), no significant strain softening was 

apparent, while the test results for taller specimens of the same 

material, shown in Figure 4.8a, show various degrees of softening by 
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(a) Stress ratio versus axial strain. 
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( 38 ) 
10 percent strain. Thus, as Dresher and Vardoulakis concluded1 

"These (Hettler's) results mean that true material softening is very 

slow and can be neglected for relatively large strains after the 

limiting state has been reached." 

(351 
Further testing of the sand investigated by Deman and 

Hettler*36* was done by Hettler and Vardoulakis/34^ using a 

newly developed triaxial device designed specifically to accommodate 

short cylindrical specimens and to virtually eliminate friction at 

the specimen-platen interfaces. Specimens with an L/D ratio of 

0.36, sufficient to prohibit bulging instability, were tested. The 

specimens had different initial porosities ranging from the minimum 

porosity (0.36) to the maximum porosity (0.45). The confining pres¬ 

sure was 50 kN/m2 in all tests. Figure 4.10 shows the stress 

ratio versus axial strain curves for these tests. For axial strains 

out to at least 10 percent, the specimens deformed with near-perfect 

homogeneity. The three lower curves show no softening while the 

upper two curves exhibit a small amount of softening, which for 

practical purpose can be reasonably neglected. These tests there¬ 

fore confirm the earlier results of Deman^3^ and Kettle/3*^, 

and demonstrate that very little or no softening arises in homo¬ 

geneously strained samples of this sand, at least for axial strains 

of at least 10 percent. For larger strains, say 14 percent, it was 

found*34 * that shear banding (instability) occurs and further 

deformation becomes non-homogeneous and exhibits strain softening. 

The careful studies by Deman, *3!^, Hettler*3*^ and 

Hettler-Vardoulakis*34* clearly establish that, when sand is 

deformed homogeneously in triaxial compression, very little or no 

softening occurs for axial strains of at least 10 percent. For 

larger strains, bifurcation (instability) modes inevitably develop, 

producing subsequent non-homogeneous deformation accompanied by 

pronounced strain softening. Unfortunately, it is impossible to 

avoid such instabilities even if it were possible to achieve 

"perfect" boundary conditions and "perfectly" homogeneous material. 
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Figure 4.10 Test series with constant confining pressure 
Op = 50 kN/m^) and varying initial density for 
specimens with L/D ratio of 0.36 (From Refer¬ 
ence 34). 
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These studies therefore demonstrate that the strain softening 

observed in the conventional triaxial tests on dense sands is not a 

true material property, but the result of inhomogeneous deformation 

due to either end friction or instability modes. 

4.1.3 Plain Concrete 

Despite the effort that has been devoted in the past to mea¬ 

suring and mathematically modeling the descending branch of the 

stress-strain curve for plain concrete, very little has been 

reported regarding the corresponding conditions of the test speci¬ 

mens during such tests. Figure 4.11, for example, shows recently 

reported^39^ stress-strain data at several different strain rates 

for a plain concrete loaded in unconfined compression. The stress 

denoted in the figure was determined by dividing the measured axial 

force by the original cross-sectional area of the specimen. Unfor¬ 

tunately, no information was given concerning the conditions of the 

specimens during the tests, except that " ... the plain concrete had 

virtually disintegrated" by a strain of 1 percent. As a result, it 

is not known at what point on the stress-strain curve macroscopic 

cracking first appeared, although it is very likely that it occurred 

near the peak of the stress-strain curve, as was the case for rock 

considered earlier. 

Because of the similarities between the deformation mechanisms 

of rock and concrete, however, it is expected that concrete will 

behave much like rock, and therefore experience the onset of macro¬ 

scopic cracking near the peak of the stress-strain curve. There are 

several studies that provide insight into the relationship between 

the macroscopically observed behavior of plain concrete and the 

internal microstructural changes that take place during deforma¬ 

tion. The first to directly relate the shape of the stress-strain 

curve of plain concrete to the type and extent of internal 

microcracking were Hsu, Slate, Sturman and Winter.These 

investigators made direct observations of microcracking in 
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Figure 4.11.Stress-strain relationship for plain 
concrete under different strain rates 
(from Reference 39). 



plain concrete cylinders axially compressed over a range of strains 

from 0 to 0.003. The ends of the cylinders were lightly greased to 

minimize frictional effects; this treatment promoted a vertical 

splitting mode of failure, in contrast to the "hour-glass" failure 

mode. The direct observation of microcracks in the strained con¬ 

crete was achieved by two methods. In one, the specimen was cut and 

the cracks filled with colored dye; it was then examined under a 

microscope. In the other method, a thin slice was removed from the 

strained cross-section and then X-rayed. In this manner, the shape 

of the stress-strain curve was correlated with the nature of the 

internal microcracking. 

It is well-known that microcracks can be divided into three 

types, e.g., cracks at the interface between aggregate and mortar 

(bond cracks), cracks through the mortar, and cracks through the 

aggregate. Bond cracks exist before concrete is subjected to any 

load, while the mortar cracks remain negligible until a later 

loading stage. Moreover, the bond cracks are the weakest link in 

the heterogeneous concrete system. At all stages of straining, the 

total extent of mortar cracking is considerably less than that of 

bond cracking. The authors note that "at about 70 percent of the 

ultimate load, the stress-strain curve begins to curve more sharply 

toward the horizontal, indicating the beginning of the breakdown of 

internal structure." They go on to state "On the descending branch 

of the stress-strain curve, concrete is extensively cracked. The 

amount of cracking is greater when the slope of the stress-strain 

curve is steeper. The descending branch of uniformaly compressed 

plain concrete represents a disintegration of internal structure, as 

is shown by the extensive interconnecting of mortar and bond 

cracks." (Underscores added.) An example of this is shown in 
(41) 

Figure 4.12 which is taken from the work of Shah and Slate. 

Here, the cross-sectional cracking patterns are shown for two 

different positions on the post-failure curve. Figure 4.12(a) shows 

the cracking pattern near the peak of the stress-strain curve while 

Figure 4.12(b) gives the pattern well into the post-failure region. 
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(a) Specimen 111 W 11-12 
Strain: 0.0012 

(b) Specimen 111 W 3-30 
Strain: 0.0030 

Figure 4.12.Cracking maps and stress-strain curves 
for concrete specimens compressed uni¬ 
axial ly into the post-failure region 
(from Reference 41). 



Notice that very little mortar cracking is evident near the peak of 

the stress-strain curve, while extensive interconnecting cracks are 

present in Figure 4.12(b). From this study, Shah and Slate con¬ 

cluded^^ "... when a continuous crack pattern has developed 

extensively, the carrying capacity of concrete decreases and the 

stress-strain curve begins to descend." 

From the results reported in References 40 and 41, it there¬ 

fore appears that plain concrete, like rocks, experiences the 

beginning of extensive macro-crack development at or slightly beyond 

the peak of the stress-strain curve, and that further straining is 

simply accompanied by increasing disintegration of the material and 

increasing inhomogeneity of deformation. 

Further experimental evidence in support of this position has 
(42) recently been reported by Maher and Darwin,' ' who conducted 

unconfined compression tests at constant strain rate with a servo- 

controlled testing device on plain concrete specimens. They 

reported that "Hairline cracks begin to appear in the specimens 

shortly after crossing the peak of the stress-strain curve. As the 

strain increases, the size and length of these cracks increase, 

accompanied by a large increase in the lateral strain. At larger 

strains, sliding of material in the cracked zone is observed. This 

sliding appears to be the major component of both the longitudinal 

and lateral strains in the descending branch of the stress-strain 

curve." (Underscores added.) 

On the basis of the work reported in References 40 to 42, it 

appears that the descending branch of the stress-strain curve for 

plain concrete is due essentially to inhomogeneous deformation, 

consisting of progressively increasing macroscopic fracture and 

material sliding, similar to that observed in rock. Further 

studies, of the type reported in Reference 32 for rock, are clearly 

needed on plain concrete to further confirm the validity of this 

conclusion. In the future, it is also suggested that investigators 

take additional care to monitor and report on the condition of the 



specimens during tests so that the validity of scaling the measured 

force by the original cross-sectional area to obtain the stress can 

be assessed. On the basis of the evidence presented here, it is 

concluded that strain-softening of plain concrete is not a real 

material property but simply a manifestation of inhomogeneous defor¬ 

mation and macroscopic cracking. 

Before leaving the subject of concrete, a few comments 

regarding strain softening in reinforced concrete are appropriate. 

The effect of confinement on the response of reinforced concrete has 
(43-451 

been examined in the past by a number of investigators.' A 

recent study by Dilger, Koch and Kowalczyk' is of particular 

interest, however, inasmuch as it considers the effects of both 

strain rate and confinement on the response of concrete. In this 

study, uniaxial compression tests were performed at various strain 
5 1 -1 

rates from 3 x 10 sec to 0.2 sec on concrete prisms with 

square cross-sections and transverse reinforcement. The reinforce¬ 

ment consisted of discrete square ties and continuous square 

spirals, which were spaced at distances of 1, 2, and 4 inches in the 

test specimens. 

Typical results from Reference 39 are shown in Figure 4.13, 

where the uniaxial compression responses of specimens having dif¬ 

ferent amounts of transverse displacement and at two different 

strain rates are depicted. At the high strain rate, the plain 

concrete virtually exploded at the peak stress, causing termination 

of the stress-strain curve, as shown. It was found that although 

the ultimate strength of the specimens did not increase as a result 

of the addition of the transverse reinforcement, the shape of the 

stress-strain curve was very significantly affected by the presence 

of the transverse steel. As the spacing of the reinforcements is 

decreased, the concrete experiences greater confinement and shows 

less tendency toward softening. As Figure 4.13 shows, the strain 

softening that occurs in the specimens having reinforcements with 

1 inch spacing is small and could reasonably be neglected for 

practical purposes. Again, there is no information given in 
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(a) Strain rate of 3.3 x 10 sec . 

STRAIN (XIO3) 

(b) Strain rate of 0.2 sec 

Figure 4.13. Uniaxial compression response of concrete with 
different amounts of transverse reinforcement 
and at two different strain rates. The letter 
S denotes the spacing between reinforcements. 
(From Reference 39). 
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Reference 39 regarding the conditions of the specimens after the 

ultimate strength had been reached, so little is known regarding the 

homogeneity of the specimens during the strain softening stage. 

Most likely, however, there was increasing inhomogeneity, since it 

was noted that, by a strain of 1 percent, the specimens had "vir¬ 

tually disintegrated." 

4.1.4 Closure 

In the preceding sections, an attempt has been made to 

identify and review relevant experimental studies that shed some 

light on the physical nature of strain softening in soils, rock and 

plain concrete. In all cases examined, the reported strain 

softening appears to be the result of inhomogeneous deformation of 

specimens during testing, and is not attributable to the inherent 

properties of homogeneous material. In fact, in reviewing the 

literature, we did not uncover any instance where strain softening 

was observed in materials that were homogeneously deformed. On the 

basis of this review, it is therefore concluded that strain 

softening is not a real property of such materials and, as a result, 

should not be incorporated into constitutive theories intended for 

the continuum representation of their response. 

4.2 IMPLICATIONS OF STRAIN SOFTENING IN STRESS WAVE PROPAGATION 

In the preceding section, it was concluded, on the basis of 

what is generally accepted as accurate, credible experimental 

evidence, that strain softening does not appear to be a true mate¬ 

rial property of soils, rocks or concrete. In the present section, 

however, we will assume that strain softening is a true material 

property and explore the consequences of this assumption, 

theoretically and numerically, on stress wave propagation. To keep 

the following discussion relatively simple, attention is restricted 

in the remainder of this section to wave propagation in one- 

dimension. 



The system of equations which govern the transient one-dimen¬ 

sional nonlinear response of isotropic media that strain soften will 

be examined using the method of characteristics; this will include 

both rate-independent and viscous materials. Then, a recent theo¬ 

retical study^) of "deformation-trapping" in strain softening 

materials, aimed at increasing the understanding of slip band 

formation in metals, will be reviewed. Finally, the results from a 
( 191 recent numerical study of one-dimensional wave propagation in 

a strain softening material will be discussed, and it will be shown 

that the insight provided by Reference 46 allows a theoretical 

explanation of the numerical results reported in Reference 19. 

4.2.1 On The Nature of the Governing Systems of Equations for 
Several Different Constitutive Modei? 

Consider the one-dimensional motion of a semi-infinite 

material which strain softens after reaching some critical strain. 

Letting a and e denote, respectively, the stress and strain*, the 

equations of momentum balance and continuity for small strains have 

the form: 

ll + Ü 
ax po at = 0 (4-6) 

(4-7) 

where p0 is the unstrained density, v is the velocity, and x is a 

coordinate along a line normal to the surface of the half-space 

which is measured positively in a direction into the material from 

the surface. In addition to Eqs. (4-6) and (4-7), the constitutive 

equation for the material must be specified and, in that which 

follows, several different constitutive models with strain softening 

are considered, including both inviscid and viscous models. 

*Here, stress and strain are assumed to be positive in compression. 
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Simple Rate-Independent Model 

Consider a simple, rate-independent constitutive model with 

strain softening whose limiting curve in compressive loading is of 

the general form: 

a = F(e) (4-8) 

where F has a continuous derivative. If eQ denotes the strain at 

the peak of the stress-strain curve, then the function F(e) satis¬ 

fies the conditions: 

F'(e) > 0, for 0 < e < E 
- 0 (4_g) 

F'(e) < 0, for e > e0 

where the superposed prime denotes differentiation with respect to 

e. Upon combining Eqs. (4-6), (4-7) and (4-8), the following system 

of quasi-linear first order partial differential equations result: 

3V n 
po at " 

3V 
3X 

3e 
3t = 0 

(4-10) 

which has the characteristic determinant: 

F* (e) 0 

0 -1 

dx dt 

0 0 

It follows from this that the characteristics are given by 

0 

+1 

0 

dx 

-pc 

0 

0 

dt 

= 0 (4-11) 

(4-1?.) 

When F'(e) > 0, which corresponds to the hardening range of 

behavior, the characteristics are real and distinct; in this case. 



the system is hyperbolic and the solution to the initial value 

problem is unique. When F'U) < 0, which corresponds to the strain 

softening regime, the characteristics are complex and the system of 
(471 

equations is elliptic. Well known mathematical theorems' lead 

to the conclusion that, if a set of quasi-1inear first order partial 

differential equations has complex characteristics, it is ill-posed 

as an initial value problem. Lack of well-posedness caused by the 

existence of complex characteristics implies growth of disturbances 

of all wave lengths*, which of course leads to numerical instabil¬ 

ities when these equations are treated by finite difference or 

finite element techniques. Finally, the case F'U) = 0, which can 

only occur at a point, e = eg, results in the system of equations 

being parabolic. Therefore, in view of the above considerations, 

mathematical and numerical difficulties are expected to occur in 

one-dimensional wave propagation problems as soon as the material 

enters the strain softening range, making the subsequent solution 

non-physical. 

Simple Rate-Dependent Model 

Perhaps the simplest one-dimensional model which exhibits both 

rate-sensitivity and strain softening during loading is given by the 

expression 

a = F(e) + m-^r (4-13) 

where F(e) has the properties given in Eq. (4-9) and m is a material 

constant. Upon combining Eqs. (4-6), (4-7) and (4-13), the 

following system of semi-linear first order partial differential 

equations results: 

3a 
3X (4-14) 

mfï.,-FU) 

*For an excellent discussion of this, see pages 62 and 63 of Refer¬ 
ence 48. 



The corresponding characteristic determinant is: 

1 

0 
dx 

0 

0 0 

0 m 
dt 0 

0 dx 

(4-15) 

from which it follows that the system (4-14) is parabolic, regard¬ 

less of the specific form of F(e). One therefore concludes from 

this that no unusual mathematical or numerical difficulties are to 

be expected in using such a model, even when strain softening is 

reflected in the quasi-static loading curve, F(e). 

Malvern's Rate-Dependent Model 

A one-dimensional rate-dependent model which has received con¬ 

siderable attention is that proposed by Malvern.This model 

is described by the expression: 

Eo If = ft * - F<'>} . (4-16) 

where EQ is the elastic modulus, K is a positive material constant 

which reflects the strain rate sensitivity, and FU) is the quasi- 

static loading curve. Since the function F(e) is quite general, it 

can have the properties given by Eq. (4-9) and thereby provide the 

model with the capability to describe strain softening under quasi- 

static deformation. When Eqs. (4-6), (4-7) and (4-16) are combined, 

the following set of semi-linear first order partial differential 

equations results: 

3o 
3X 

3V 

P0 3t = 0 

3ff + n 3V 
3t S 3X = K|a - FU)} 

The corresponding characteristic determinant is: 

(4-17) 
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1 o o -p, o 
o 
dx 

O 

-1 Eo 
dt O 

O dx 

O 

dt 

(4-18) 

which leads to the following expression for the characteristic 

directions: 

(4-19) 

From this equation it follows that, since both EQ and pQ are 

positive, the characteristics are real and distinct. The system of 

equations is therefore hyperbolic, irrespective of the nature of the 

rate dependence and of the form of the quasi-static loading curve, 

FU). Consequently, F(e) can exhibit strain softening without 

destroying the hyperbolicity of the system of governing equations. 

Parenthetically, let us note that Valanis, in a more general 

context, recently derived^*^ the condition under which 

rate-dependent, strain-softening materials, whose constitutive 

relations are derivable through internal variable theory, possess 

unique solutions to initial value problems. He considers the 

general class of materials whose free energy density üj depends upon 
(r ) 

the strain e and n internal variables q , i.e., 

f . *U>q(n)) (4-20) 

The stress a is therefore given by the expression: 

(4-21) 

and the internal variables follow evolutionary equations of the form: 

(4-22) 
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To insure a positive rate of irreversible entropy production, it is 

necessary that 

< 0 (4-23) 

Within the context of the above constitutive framework. Val ams 
2 2 

found that the fourth order tensor, 3\p/dz, must be positive 

definite to insure uniqueness of the initial value problem. Inter¬ 

estingly, this condition is independent of the forms of the 
Í r ) 

functions f and and holds irrespective of whether the 

thermodynamic inequality (4-23) is satisfied or not. Because of 

this, the question of uniqueness of the initial value problem does 

not depend on a positive rate of irreversible entropy production. 

Work is presently underway by Valanis to explore the full implica- 
2 2 

tions of the condition a >_ 0 with the specific goal of 

identifying the particular class of rate-independent, strain¬ 

softening materials which satisfy it. 

In this section, the nature of the system of equations which 

govern the one-dimensional behavior of several types of materials 

which exhibit strain softening has been examined via the method of 

characteristics. When the materials are rate-independent, we showed 

that the equations are hyperbolic and therefore have a unique solu¬ 

tion, so long as the material is hardening; when softening occurs, 

however, the equations become elliptic. Since initial value prob¬ 

lems for elliptic equations are notoriously ill posed, analytical 

and numerical difficulties arise and, as a result, numerical 

instabilities develop in the governing equations if they are treated 

by either finite-difference or finite-element methods. On the other 

hand, we showed that for several rate-dependent strain softening 

materials the governing system of equations were either hyperbolic 

or parabolic, depending upon the exact form of the rate-dependence. 

« 

f 

146 



In these cases, unique solutions to the initial value problem can be 

obtained regardless of whether or not the quasi-static loading curve 

exhibits strain softening. More general studies by Valanis^^ 

are presently underway to determine the general class of rate- 

dependent, strain softening materials which provide unique solutions 

to initial value problems. Without rate-dependence, initial value 

problems become ill-posed as soon as the material begins to soften. 

4.2.2 Deformation Trapping 

The one-dimensional initial value problem mentioned in the 

preceding section is considered further below to illustrate the 

concept of deformation trapping and to expand somewhat on the notion 

of well-posedness. The basic mathematical approach adopted below is 

closely modeled on that given recently by Wu and Freundwho 

considered a somewhat different physical problem, namely, shear wave 

propagation in a half space of strain softening material.* Despite 

the physical differences, however, the mathematical formulation of 

both problems leads to identical systems of equations. 

Consider a half-space or semi-infinite rod, x > 0, occupied by 

a nonlinear rate-independent strain softening material described by 

the constitutive relation: 

a = F(e) (4-24) 

where a,e denote, as before, the stress and strain, respectively, in 

the x-direction, and F has a continuous derivative. The material is 

stress free and at rest for time up to t = 0 and, thereafter, the 

material is subject to the boundary velocity V(t) in the x-direc¬ 

tion, that is: 

v(0,t) = V(t) , t > 0 (4-25) 
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where V(t) is a non-decreasing function of time. Upon combining 

Eqs. (4-6), (4-7) and (4-24), the following system of quasi-linear 

first order partial differential equations is obtained (see Eqs. 

(4-10) also): 

(4-26) 

For F' > 0, the system (4-26) is hyperbolic, and the solution 

subject to quiescent initial conditions and the boundary condition 

(4-25) is unique, having the form of a simple wave. Accordingly, a 

given level of particle velocity propagates into the material from 

the boundary x = 0 along a straight line characteristic of slope 

dt/dx in the x-t plane at a speed c, where 

(4-27) 

Consider now the situation in which the boundary velocity V 

has increased to the point where the material at the boundary 

attains the condition F'U) = 0 at e = e* and t = t*. Then, from 

Eq. (4-27b), the speed of propagation of this particular strain 

level is zero and the associated characteristic is aligned with the 

t-axis in the x-t plane (see Figure 4.14a). When this occurs, the 

boundary itself becomes a characteristic and it is therefore no 

longer possible to transmit boundary information to interior points 

in the material. As V increases further for t > t*, a discontinuity 

in the velocity field develops at x = 0; this discontinuity can only 

exist, however, if the above characteristic remains aligned with the 

t-axis. Thus, for t > t* and for points in the neighborhood of the 

boundary, the fields v, a and e become uniform at levels v*, a* and 

e*, respectively, and there is accordingly a discontinuity of 

magnitude V(t) - v* across x = 0, where 



« 

V* = 

e* 

C ( e) de (4-28) 

Based on the above considerations, the development of the velocity 

profiles with time, and the velocity discontinuity at x = 0 for 

t > t*, are depicted in Figure 4.14b. 

The vanishing of the tangent modulus F'(e) at e = e* leads to 

the concept of "deformation trapping" in general, and shear banding 

for the particular problem considered by Wu and Freund.Here, 

one argues that, since the speed of propagation of increasing strain 

levels vanishes at the critical strain e*, strains greater than e* 

are trapped at the boundary and are accumulated into an infinitely 

thin deformation band. This, then results in an infinite strain 

rate at x = 0, and indicates that strain rate effects must become 

increasingly important as F'(e) > 0. However, it must be noted that 

an infinite strain rate is not consistent with the assumption of 

small strains implicit in the deveopment of the governing equations, 

since such a strain rate will lead to finite strain for any small 

finite time. 

Physically, the velocity discontinuity noted above cannot 

actually develop in a half-space since this would result in the 

volume of the material element at the boundary going to zero. From 

experience, we know that real materials resist such a condition 

through corresponding increases in hydrostatic pressure, a feature 

which is not reflected in the simple constitutive model, Eq. (4-8), 

being considered. Therefore, to avoid such difficulties, it appears 

that the limiting velocity at which the boundary can in a practical 

sense be driven is V = v*. Consequently, since the prescribed form 

of V is such that 

V(t) > v* for t > t* (4-29) 

JP 
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Figure 

(a) Evolution of characteristics 

(b) Velocity profiles. 

.14. Wave propagation features for inviscid case treated by 
Wu and Freund (Ref. 46). 
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it follows that the problem as formulated is not compatible with the 

behavior of the physical system, and thus the problem is improperly 

posed for t > t*. 

How does the picture change if the material is rate-depen¬ 

dent? As shown by Wu and Freund/4*^ the velocity profile near 

X = 0 for such a material will show a continuous drop from V(t) at 

X = 0 to V* at some small distance 6 into the material as shown in 

Figure 4.15; the distance ò may be thought of as a boundary layer 

thickness, and it is to be expected that this thickness will depend 

on the particular form of rate-dependence in the model.As V 

increases beyond v* for t > t*. the strain in the boundary layer 

will increase accordingly, with the result that the assumption of 

small strain implicit in the governing equations becomes increas¬ 

ingly in error. Therefore, while rate-dependence removes the 

discontinuity in velocity at x = 0, the solution to the problem can 

only be carried out to some small time slightly beyond t* before the 

small strain assumption implicit in the governing equations breaks 

down. For times greater than this, the problem is improperly posed. 

In summary, we have examined in this section a one-dimensional 

initial value problem for a strain-softening material. The assump¬ 

tion of small strains was implicit in the governing equations. For 

the rate-independent model, we conclude: 

1. The initial value problem is improperly posed 

for all times greater than that at which the 

material at the boundary x = 0 first reaches 

the peak of the stress-strain curve, say t*. 

Meaningful analytic or numerical solutions 

cannot be obtained for t > t*. 

2. Information pertaining to the descending 

(strain softening) branch of the stress-strain 

curve cannot be communicated to interior points 

of the material. 
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For the rate-dependent model, we conclude: 

1. The velocity field near the boundary x = 0 is 

continuous. For t > t*, the drop in velocity 

from V to V* is confined to a thin boundary 

layer. 

2. Meaningful solutions can be obtained only for -, 

values of t slightly greater than t* before the 

strains in the boundary layer become suffici¬ 

ently large to violate the small strain 

assumption. 9 

4.2.3 Numerical Solutions 

The purpose of this section is to illustrate, via example, the 

difficulties that arise when one attempts to solve an initial value # 

problem involving a rate-independent strain-softening material. For 

this purpose, we consider below a recent numerical study reported by 

Wright and Sandler,' ' in which the numerical aspects of such a 

problem were explored with a standard one-dimensional finite-differ¬ 

ence method. It is shown that the results from this numerical study 

are completely consistent with the theoretical conclusions arrived 

at in the preceding section, namely, (a) that the problem is ill- 

posed whenever the material is strained past the peak of the stress- 

strain curve, and (b) that no information about the strain-softening 

branch of the curve can be communicated to the interior of the 

material. 
# 

Wright and Sandl er considered a rate-independent strain¬ 

softening material whose limiting stress-strain curve for loading is 

of the form: 

a = F(e) 

where 

F(e) = EQe exp(-e/e0) 

0 

(4-30) 

(4-31) 
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(a) Velocity profiles at two different times 

(b) Strain profiles at two different times 

Figure 4.15. Velocity and strain profiles for rate-dependent models. 
(From Reference 46) 
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and E0> e0 are material constants. The small strain assumption 

was adopted, with the strain e defined as in Eq. (4-7) given 

earlier. Compressive unloading and reloading beneath the limiting 

loading curve were taken to occur reversibly and parallel to the 

initial slope E0, as illustrated in Figure 4.16a. Moreover, the 

material was not allowed to support tension. The velocity boundary 

condition at x = 0 was prescribed as follows: 

j VQ [1 - cos(irt/t0)]/2 , for t £ t0 

V(t) = (4-32) 
(v„ , for t > t0 

where t = 0.2 msec; the variation of V with time according to Eq. 

(4-32) is illustrated in Figure 4.16b. At t = 0, the material was 

assumed to be quiescent and stress free. The following values of 

the material parameters were adopted which are typical of plain 

concrete: E = 3 x 10® psi, e,, = 0.002 and = 150 -,0 r o o 
Ib/ft . The governing system of equations to be solved numer¬ 

ically therefore consists of Eqs. (4-10a), (4-10b), (4-30) and 

(4-31), subject to the boundary condition, Eq. (4-32). 

Numerical solutions for the initial value problem described 
(19) above were obtained by Wright and Sandler' for two different, 

but very close, values of the peak boundary velocity, V0. In one 

case, the value VQ = 127 in/sec was selected so that the material 

was driven very near to, but not over, the peak of the stress-strain 

curve. For this case, the tangent modulus, F'(e), is always posi¬ 

tive and the equations remain hyperbolic. In the other case, the 

value VQ = 128 in/sec was adopted, which was just large enough to 

drive the material into the strain-softening region; as noted in the 

preceding section, the problem becomes ill-posed as soon as material 

begins to strain-soften and, as demonstrated in Reference 19 and 

illustrated below, the corresponding numerical solution develops 

peculiar features when this occurs. 



f0 * .002 € 

(a) Softening stress-strain model. 

(b) Input boundary velocity history at x = 0. 

Figure 4.16. Some features of the one-dimensional initial value 
problem considered numerically in Reference 19. 
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Figure 4.17(a) depicts the numerical results given in Refer¬ 

ence 19 for the case VQ = 127 in/sec.* Here, the calculated 

velocity histories at a depth of 12 inches for two different zone 

sizes are shown. As this figure reveals, such zoning was adequate, 

as evidenced by the fact that the two calculated velocity histories 

essentially overlay one another. 

The numerical results for the case V0 = 128 in/sec are given 

in Figure 4.17(b). Here, calculated velocity-time histories at 

X = 12 inches for three different zone sizes are shown. The 

prescribed boundary velocity drives the material into the softening 

region and, when this occurs, the problem becomes ill-posed; this is 

reflected in the numerical results in several ways. 

1. Strain softening was confined, in all cases studied, 

to the zone adjacent to the boundary. Therefore, 

the amount of material that strain softens is 

actually dictated by the numerics (zone size) and 

not the physics. As a result, as the zone size is 

reduced toward zero, the amount of material that 

actually softens can be reduced to zero. Thus, the 

material can be prevented from exhibiting, under 

dynamic response conditions, the strain softening 

that is an integral part of its constitutive model. 

This is the way the numerical solution reflects the 

observations arrived at earlier on theoretical 

grounds that, as soon as the system is overdriven, 

the boundary information cannot be transmitted into 

the interior material. 

2. The calculated velocity profiles depicted in Figure 

4.17(b) show an extraordinary sensitivity to zone 

♦Numerical studies of the problems discussed in this section were 
also performed independently by the authors as part of the present 
study and the results were in complete agreement with those reported 
in Reference 19. 
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Figure 4.17.Velocity profiles at depth of 12 inches for various grid 
sizes and two different peak input velocities. (From 
Reference 19) 



size that was not present in Figure 4.17(a). This 

evidently occurs because the softening is always 

confined to the first zone and the resulting 

response transmitted from this zone to the others 

depends on the size of the first zone. 

3. The strain in the first zone grows very rapidly 

after the material begins to soften and quickly 

invalidates the assumption of small strains. The 

calculated strain-time history for the case ax = 1 

inch, shown in Figure 4.18, illustrates the point. 

In spite of the fact that the problems became ill-posed, the 

corresponding numerical solutions were smooth and remained stable 

after the softening took place. Perhaps this is due to the fact 

that only the first zone experienced softening while the material in 

the remaining zones never got past the peak of the stress-strain 

curve and therefore the equations remained hyperbolic. 

4.2.4 Summary 

In the preceding sections, it was assumed for the sake of 

discussion that strain softening is a true material property, and 

the implications of this assumption for one-dimensional wave 

propagation problems were explored from both the theoretical and 

numerical standpoints. The major results that emerged from this 

examination are summarized below. 

1. Theoretical analysis of the rate-independent, 

strain-softening material showed that whenever the 

tangent stiffness, F'(e), becomes negative (strain 

softening), the governing equations change from 

hyperbolic to elliptic, and the initial value 

problem then becomes ill-posed. Attempts to 

theoretically or numerically analyze the problem 



* 

(a) Stress-time history 

(b) Strain-time history 

Figure 4.18. Calculated histories of stress and strain in zone 
adjacent to boundary for ax = 1 inch and V0 = 128 
in/sec (from present study). 
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beyond this point proves, of course, to be mean¬ 

ingless. Consequently, the problem becomes ill- 

posed before any material interior to the body can 

experience strain softening. Thus, despite the fact 

that the material model itself exhibits strain 

softening, the body can never experience strain 

softening under dynamic conditions; this appears to 

pose a physical contradiction. 

2. The results from the numerical study by Wright and 

Sandler for the rate-independent, strain-softening 

material were independently confirmed in the present 

study and are fully consistent with the theoretical 

developments presented herein. In essence, both 

confirm the fact that material interior to the body 

never experiences softening. Furthermore, after the 

material at the boundary reaches a state of 

incipient softening, the numerical solution begins 

to exhibit a peculiar dependence on zone size, which 

evidently is its way of reflecting the ill- 

posedness of the problem. At no time, however, did 

the numerical solution show any evidence of 

instability. 

3. The introduction of several forms of rate-dependence 

into the model kept the system of equations from 

becoming elliptic, and therefore ill-posed, even 

through the quasi-static loading curve exhibited 

strain-softening. It was shown that in the case of 

linear rate-dependence, the equations are para¬ 

bolic (diffusive), while Malvern's rate-dependent 

model leads to a hyperbolic system of equations. 

4. A rate-dependent, strain-softening model leads to 

"deformation trapping," i.e., a boundary layer 
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region in which the fields are highly nonhomo- 

geneous. The strain softening which the body 

experiences is confined to this region, in which 

large strains develop. 

Finally, it must be noted that the simple one-dimensional 

material models considered in this section only approximate, at 

best, the behavior of real materials under the conditions of dynamic 

deformation considered. If one considers the one-dimensional 

response to be that of a half-space (uniaxial strain), then 

increasingly large hydrostatic pressures will simultaneously occur 

with the increasing strain; this hydrostatic hardening, which is not 

reflected in the models, can be sufficient to counter the effect of 

deviatoric softening. On the other hand, if one considers the 

one-dimensional response to be that of a bar, the effect of radial 

inertia could prove to be important as the bar begins to soften, and 

this effect is not accounted for in the models considérée. It 

would, therefore, oe interesting to reexamine the problems consid¬ 

ered herein with more realistic material models and with the assump¬ 

tion of small strains removed. 

The above comments apply to the one-dimensional problems 

considered herein. The extent to which they can be applied also to 

multi-dimensional problems requires further study. 

4.3 NUMERICAL ANALYSIS OF QAUSI-STATIC PROBLEMS INVOLVING STRAIN 
SOFTENING 

The wave propagation problems considered above illustrate the 

difficulties that arise in the numerical analysis of such problems 

when the materials exhibit strain softening. Difficulties of a 

different type have been reported in numerical studies of the quasi- 
Í52-54) 

static loading of strain softening materials. It has been 

found, for example, that if standard numerical approaches are used, 

the numerical solutions suffer from instability and mesh size sensi¬ 

tivity as soon as the material enters the strain softening range; 

the deformations tend to localize along thin bands whose width is 

sensitive to the selected mesh size. 



A special finite element approach was recently proposed by 

Pietruszczak and Mroz for numerically analyzing the behavior of 
(551 

materials which soften through shear banding.' In this 

approach, a shear band of specified thickness and orientation is 

introduced into those finite elements which reach a prescribed shear 

band initiation criterion. The characteristic thickness of the 

shear band is supposed to be determinable from compression test 

data. The incremental stiffness matrix of the elements is 

accordingly modified to reflect the effect of the shear bands. To 

illustrate the advantages of the proposed approach, the authors 

considered the plane strain response of a strain softening material 

that was compressed between two rigid parallel plates; the material 

was assumed to be bonded to the plates at their common interface. 

In addition, the material was loaded by applying specified incre¬ 

ments in vertical displacement to the rigid plates. Figure 4.19(a) 

depicts the problem geometry and the three finite element meshes 

considered. In the proposed approach, the thickness of the shear 

band is held fixed as the mesh size is changed. The load-dis¬ 

placement relationship calculated by the proposed approach is 

depicted in Figure 4.19(b). Here, it is seen that the results are 

nearly insensitive to the mesh size. In contrast, Figure 4.19(c) 

shows the corresponding load-displacement relationship calculated 

with the conventional finite element approach; it is seen that the 

resulting curves are very sensitive to the element mesh size. It 

has been pointed out by Ottosen,^®^ however, that the two largest 

meshes considered in the study are probably too crude to provide a 

realistic description of a linear elastic stress field. 

The above approach appears to be potentially useful in 

threating materials for which softening is known a priori to occur 

through shear banding. On the other hand, for brittle materials 

such as rocks and concrete which deform and macroscopically soften 

through microcracking, the usefulness of the above method is 

doubtful. 



(a) Geometry of the problem and the three discretizations considered. 
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Figure 4.19. Plane strain compression problem considered by 
Pietruszczak and Mroz.(From Reference 55) 
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In a more recent study,Ottosen employed a standard 

finite element method, to analyze the unconfined concrete cylinder 

test. For this purpose, a relatively simple constitutive model, 

similar to the elastic-fracturing model, was used to describe the 

concrete behavior; the model accounted for strain hardening and 

strain softening in the pre- and post-failure regimes, respec¬ 

tively. The concrete cylinder was compressed between thick steel 

loading plates, and a perfect bond was assumed to exist between the 

cylinder and the loading plates. Numerical calculations were 

performed for several cylinders, with L/D ratios ranging from 1 to 

3. Triangular finite elements were employed in the study, and the 

corresponding finite element meshes used for most of the calcula¬ 

tions are depicted in Figure 4.20(a). To investigate the sensi¬ 

tivity of the results to mesh size, the case of the cylinder having 

L/D = 2 was recalculated, using twice as many zones as before. 

Interestingly, it was found that for variations of the mesh size 

within the limits otherwise required to obtain a realistic solution, 

the calculated results were virtually insensitive to mesh size; in 

fact, the predicted strength in both cases differed by only one 

percent. This insensitivity to mesh size for strain softening 

materials appears to be in conflict with the numerical studies 

reported earlier in References 52 to 54, where substantial 

sensitivity was found. Further work is needed to resolve this 

apparent discrepancy. 

Despite the apparent success that Ottosen has reported in 

simulating the unconfined compression test for concrete with a 

finite element technique, it is the writers' opinion that Ottosen's 

work is not based on sound physical modeling of the material 

behavior. Based upon evidence presented in Section 4.1.3, we 

concluded that strain softening is not a true material property of 

concrete but results from (a) extensive macrocracking of material 

which eventually separates test specimens into a number of discon¬ 

nected pieces and (b) using the original cross-sectional area to 
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Figure 4.20. Finite elemçnt.meshes used in numerical study conducted 
by Ottosen. (From Reference 56) 
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determine the stress-strain relationship from the measured force- 

displacement curve. We seriously question the use of a homogeneous 

continuum model, such as Ottosen employed, to describe the behavior 

of inhomogeneous material having macrocracks whose size is on the 

order of the specimen dimensions. 

4.4 DISCUSSION 

In the preceding sections, a variety of evidence pertaining to 

strain softening in concrete, rock and soil has been presented and 

examined for the purpose of determining whether or not strain 

softening is a true property of these materials. The subject has 

been approached from the experimental, theoretical and numerical 

viewpoints. Without exception, the evidence presented supports the 

conclusion that strain softening is not a true property of these 

materials but is simply a manifestation of the effects of pro¬ 

gressively increasng inhomogeneity of deformation. In tests on 

concrete and rock, the development of internal cracking of material 

caused by imperfect boundary conditions between the specimen and the 

loading plates was found to be the source of strain softening while, 

for soils, strain softening was found to arise from either stable 

inhomogeneous deformation caused also by imperfect boundary condi¬ 

tions or through unstable deformation modes which can occur irre¬ 

spective of the nature of the boundary conditions. In all cases 

where strain softening was reported for these materials, the 

measured force-displacement data from laboratory tests was trans¬ 

formed to a stress-strain curve by simply using the original values 

of the length and cross-sectional area of the specimen; little or no 

attention was given to the physical condition of the specimen during 

the test. In some cases, the specimen had "virtually disintegrated" 

by the end of the test.^39^ 

Since the evidence presented here indicates that strain 

softening is not a true material property of concrete, rock or soil, 

it therefore follows that it is not legitimate to incorporate it 

into constitutive models for these materials intended for use within 



a continuum mechanics framework. It should be emphasized that it is 

not simply the inhomogeneity of deformation, by itself, that makes 

the use of a constitutive model for treating strain softening 

invalid; it is the scale of the inhomogeneity that accompanies 

strain softening which is important. The deformation of a material 

may appear to be homogeneous on the macrolevel, but a sufficiently 

small scale can always be found for which the deformation, when 

viewed on this scale, is inhomogeneous. Metals, for example, can 

deform in a macroscopically homogeneous manner through the motion of 

dislocations along glide planes in the lattice and by twinning, both 

of which are locally inhomogeneous on a microscale. Soils deform 

through inhomogeneous sliding of granular particles. Reasonable 

continuum representations for the mechanical behavior of these 

materials can be constructed so long as the scales of inhomogeneity 

remain sufficiently small compared with the size of the material 

element under consideration. The difficulty with strain softening 

in concrete, rock and soils is that the scale of the inhomogene¬ 

ities that accompany it are of the same order as the specimen size 

and, when this is the case, the use of a continuum representation is 

difficult to justify on physical grounds. 
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