Development of Advanced Inductive Scenarios for ITER

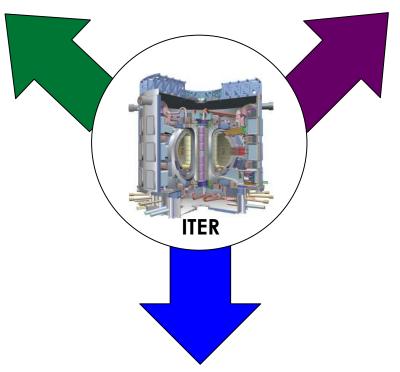
by

T.C. Luce

for the ITPA Integrated Operation Scenarios Topical Group Members and Experts

Presented at 23rd IAEA Fusion Energy Conference Daejeon, Republic of Korea

October 11, 2010

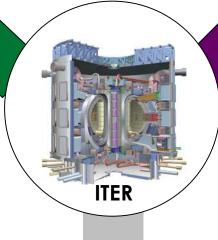


Operational Scenarios Investigated by the ITPA IOS Group Are Focused on ITER Project Goals

Sustained operation at high fusion gain ($P_{fus} = 500 \text{ MW}$, Q = 10)

Sufficient fluence for nuclear testing

In-principle steady-state operation (Q = 5)

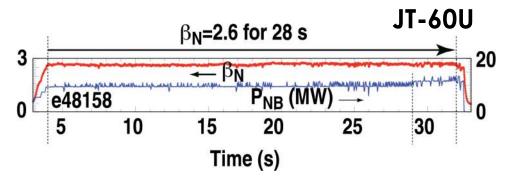

"Advanced Inductive" Scenarios Should Contribute Significantly to 2 of the 3 ITER Project Goals

Sustained operation at high fusion gain ($P_{fus} = 500 \text{ MW}$, Q = 10)

Sufficient fluence for nuclear testing

Possibility of Q = 10 at reduced current (11 MA)

Possibility of higher fusion power and gain at 15 MA



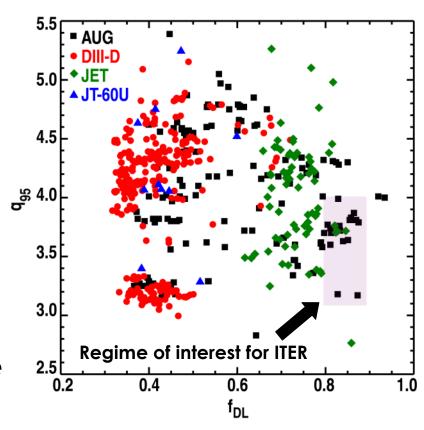
Maximum fluence/pulse combining inductive and non-inductive current drive ("hybrid")

In-principle steady-state operation (Q = 5)

Metrics for Assessing Advanced Scenarios

- Normalized quantities are used to compare performance on existing tokamaks and project to ITER
 - Pressure: $\beta_N \equiv \beta / (I/aB)$
 - Energy confinement: H-mode scaling (H_{98v2}) , L-mode scaling (H_{89P})
 - $H_{98v2} = 1$, $H_{89P} = 2$ are "good" confinement
 - Fusion gain: $G = \beta_N H_{89P} / q_{95}^2$
 - G = 0.4 corresponds approximately to Q = 10 in ITER
- "Stationary" plasmas are considered constant on the current relaxation timescale
 - 4 tokamaks have achieved durations $\geq 3 \, \tau_{R}$
 - Longest duration is >15 τ_{R} on JT-60U

Outline of ITPA Role in Establishing the Physics Basis for Advanced Inductive Scenarios


- Establishing Performance Domain and Boundaries
- Projecting present performance to ITER

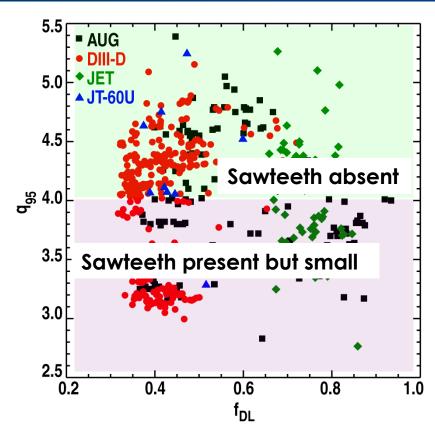
Open questions and conclusions

For this presentation, "advanced inductive" scenarios will be defined as those that achieve $\beta_N \ge 2.4$ and $H_{98y2} \ge 1$ for durations $\ge 5 \, \tau_F$

Advanced Inductive Plasmas Are a Robust Operating Scenario

- Advanced inductive plasmas are found throughout the operational current and density domains of interest for burning plasmas
 - Current limits are given by the safety factor (q₉₅)
 - Density limit is the fraction of the Greenwald empirical limit (f_{DL})
- ITER dimensionless plasma parameters and operational space parameters not possible simultaneously in present-day experiments
 - e.g., collisionality and proximity to the density limit

Database of >500 plasmas from AUG, DIII-D, JET, JT-60U meet the definition of advanced inductive


MHD Phenomena Exhibit Qualitative Similarities

Trends in MHD appear similar

- Sawteeth usually absent for $q_{95}>4$ and small or infrequent for $q_{95}<4$
- Fishbones tend to be the dominant instability at high density, while n>1 tearing modes tend to dominate at low density (not correlated with the density limit)

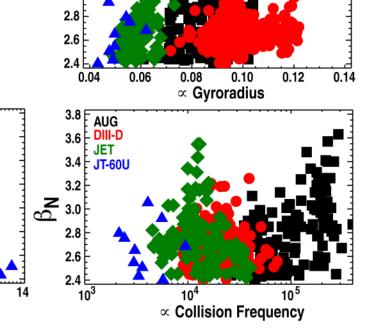
Limit to pressure is almost always an n=1 tearing mode

 Limit is rarely disruptive because the relatively slow growth rate allows the possibility of mitigation or shutdown

283-10/rs

Achieved Pressure Appears Insensitive to Dimensionless Plasma Parameters

• Pressures giving significant fusion performance (β_N up to 3) found across a broad range of normalized gyroradius, normalized collision frequency, and safety factor


 Scalar proxies derived from the database are used for the dimensionless parameters:

Gyroradius ∝ (W_{th}/nV)^{1/2}/Ba

Pressure ∝ W_{th}/VB² (used later)

- Collision frequency $\propto (n^3V/W_{th}^2)(R^5/a^3)^{1/2}$

2.8

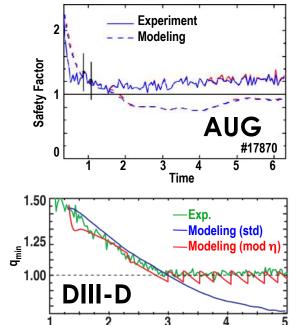
AUG

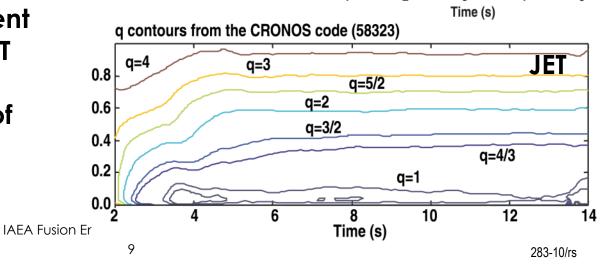
DIII-D

JT-60U

3.6

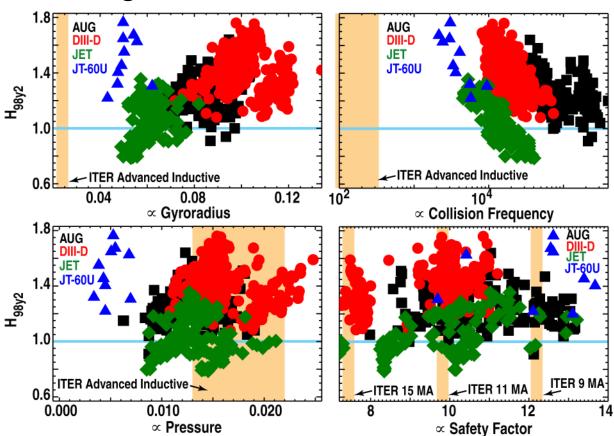
IAEA Fusion Energy Conf/2010/T.C. Luce


11

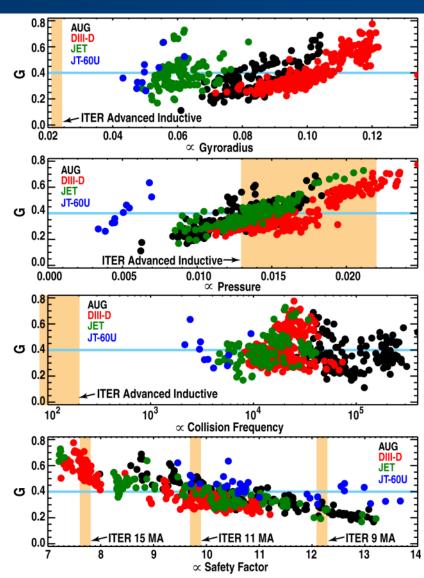

12

10

Current Profile Evolution is Not Described by Standard Model In Many Cases


- Modeling of the evolution of the current profile in AUG and DIII-D shows min(q) < 1, contrary to experimental measurements
 - Standard conductivity and current drive models used
- DIII-D experiments show m=3/n=2 tearing mode is essential to maintaining min(q) > 1
 - Not by broadening of the conductivity profile
- Modeling of the current profile evolution in JET shows min(q) ≈ 1, consistent with lack of sawteeth

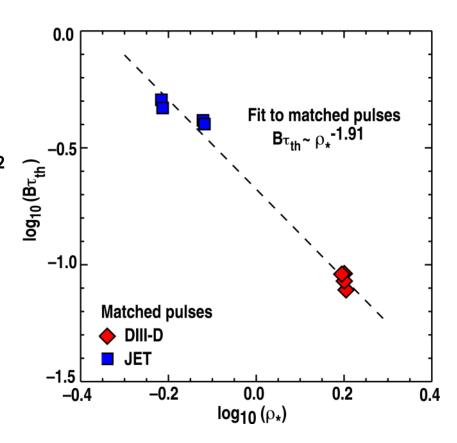
H-Mode Scaling Does Not Describe Energy Confinement of Advanced Inductive Plasmas Well


- Large variations in H_{98y2} indicate either a missing parameter in the scaling or a different regime
- Strongest trends in variables farthest from ITER values
- Magnetic shear, rotation, T_e/T_i not in H_{98v2}

Specialized experiments are needed to clarify these issues

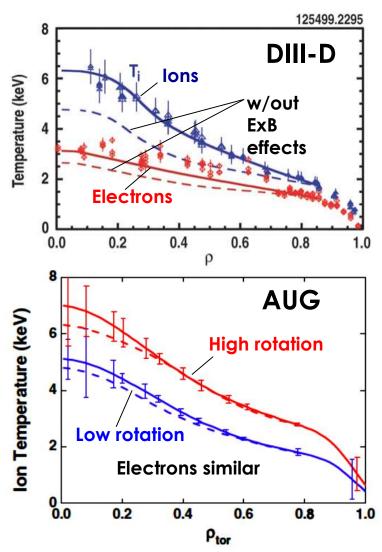
Fusion Gain Metric Shows Q=10 Equivalent Operation Is Observed Over a Broad Range of Parameters

- G improves with increasing pressure and decreasing safety factor as expected
- Strong trend in H_{98y2} with collisionality is not reflected in G
- Strong trend in H_{98y2} with gyroradius remains in G



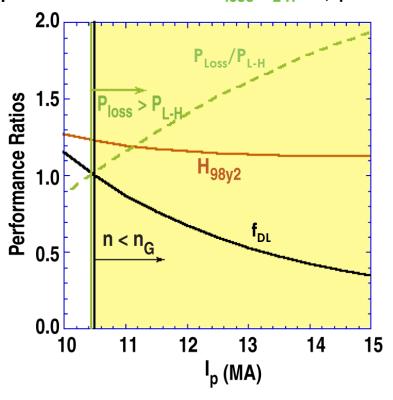
Accurate Projection to ITER Will Require Both Empirical Scaling and Validated Models

- Scalings from multi-tokamak databases will not be feasible for advanced inductive scenarios
 - Too little variation in engineering parameters obtained in the tokamaks where the scenario is demonstrated
- Dimensionless parameter scaling isolates the physics variables for which the extrapolation is the largest
 - Normalized pressure and safety factor can chosen at the ITER values
 - Gyroradius, collision frequency, rotation (Mach number), and $T_{\rm e}/T_{\rm i}$ can be varied sufficiently to gain an empirical scaling
- Data along critical directions are obtained for model validation, even if the resulting empirical scalings are not sufficiently accurate


Dimensionless Parameter Scaling Experiments Show Gyroradius Scaling Consistent With Database Trends

- Matched "identity" plasmas on DIII-D and JET indicate scenario is the same in both tokamaks
- Correlated gyroradius (ρ_*) scan shows weaker ρ_* scaling than H_{98y2}
 - Measured scaling (B $au_{th} \propto
 ho_*^{-1.9}$) is close to Bohm scaling (B $au_{th} \propto
 ho_*^{-2}$)
 - Less favorable than ρ_* scaling implicit in H_{98v2} (B $\tau_{th} \propto \rho_*^{-2.7}$)
- Simple extrapolation in ρ_{*} would give plasmas above the density limit in ITER
 - Must account for collisionality scaling seen in database

Comparison of Theory-Based Models With Experiments Shows No Clear Favorite


- GLF23 model reproduces DIII-D rotation scan data
 - Improved performance at high rotation is consistent with ExB shear stabilization of turbulence
- Weiland model reproduces
 AUG data
 - Effect of rotation is weak in this model
- Modeling of data from all 4 tokamaks could not validate definitively any model

Extrapolation Backward From ITER Shows Required **Conditions Exist in Present Experiments**

- Desired pulse length, auxiliary power, and gain are specified
- Operational limits define the parameters consistent with the specifications
 - Density limit and necessity for H-mode require operation with I > 10.5 MA
 - Required H_{98y2} lies between
 1.1 and 1.3
 - Divertor power load and required β_N are reasonable
- **Conditions needed for ITER** operation at Q=5 for almost 1 hour are consistent with present experience

Hybrid $\Delta t = 3000s$: $P_{NB} = 33$ MW, $P_{EC} = 17$ MW Operational limits at Q = 5: $P_{loss}/P_{L-H} > 1$, $I_P < 15$ MA

Several Other Critical Issues Have Been Addressed

- Pedestal behavior is similar to conventional H mode
 - Joint experiments showed pedestal height continues to increase as power flow through the edge increases
- Confinement change with electron heating is dominantly due to the change in rotation due to reduced applied torque
 - Change due to variation in $T_{\rm e}/T_{\rm i}$ is smaller than the correction for rotation
- ELM suppression with resonant magnetic perturbations has been observed in advanced inductive scenarios
- Reduction in average heat flux by radiative divertor operation has been successfully extended to advanced inductive scenarios

Open Questions

Is advanced inductive operation a "new regime"?

- Necessary and sufficient conditions for access in ITER remain to be defined
- No threshold behavior is observed; however, the initial conditions can be important for stable access

Is the current profile evolution anomalous?

 New experiments run to resistive equilibration with accurate measurements of the current profile are essential to answer this

Are the transport scalings different from standard H mode?

- Preliminary experiments indicate that the ρ_* scaling is different
- Theory-based models used for standard H mode plasmas work equally well on advanced inductive plasmas
- Perhaps the current profile that allows stable operation at higher pressure also allows good confinement

Conclusions

- Advanced inductive operation is routine in present experiments across a broad range of operational parameters relevant to fusion energy
- Coordinated experimental and modeling efforts facilitate more rapid progress toward characterizing these scenarios
- Advanced inductive plasmas should play a key role in ITER reaching its physics and technology goals
 - Parameters consistent with 1 hour operation with present experience
 - Q=10 at lower current and higher gain operation at 15 MA possible with favorable confinement scaling

Acknowledgements

The data providers from the 4 tokamaks are gratefully acknowledged:

AUG: J. Schweinzer, G. Sips, J. Stober

DIII-D: P. Politzer

JET: E. Joffrin, C. Challis, G. Sips

JT-60U: S. Ide, Y. Kamada

