
www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

ORIGINAL RESEARCH

Development of agent-based system for monitoring

software resources in a network environment

Akinyokun O. C∗1, Ekuewa J. B.2, Arekete S. A.3

1Department of Physical Sciences, Landmark University, Omuaran, Nigeria
2Department of Computer Science, Federal Polytechnic Ede, Nigeria
3Department of Mathematical Sciences, Redeemer’s University, Redemption City, Nigeria

Received: July 21, 2014 Accepted: August 13, 2014 Online Published: September 11, 2014
DOI: 10.5430/air.v3n3p62 URL: http://dx.doi.org/10.5430/air.v3n3p62

Abstract

Mobile agent is becoming an emerging tool for monitoring and managing computer networks. Its usefulness in this regard

emanates from its ability to communicate with other agents and devices, and navigate a computer network to collect data and

take actions autonomously. In this research, an investigation of the use of an agent-based system to monitor the software tools

on the nodes of a computer network is carried out. The proposed framework adopts a multi-agent system approach combining a

static server agent with a mobile monitor agent which move around and extract data from each node via the server agent. The

system was tested in a computer network environment which is characterized by a Windows NT. The programming and mobility

infrastructure is the C#, an object-oriented and multifunctional programming scheme. The performance of the proposed agent-

based system and Remote MONitoring (RMON) system are simulated and the results obtained show the cost of service, query

time and delay overhead is lower in the agent-based system than that of RMON.

Key Words: Agent-based system, Mobile agent, Network monitoring, Software resources

1 Introduction

The term “agent” originated from the Greek word “agein”

which means to drive or to lead. Agent is used to describe

something that can produce an effect, for instance, a “dry-

ing agent” or a “shipping agent”. In Computer Science, an

agent denotes a computer system that is situated in some en-

vironment and is capable of autonomous actions, for exam-

ple, a software agent that can search and buy air tickets over

the Internet. Though, there can be several agents, in this

research, the term “agent” is restricted to a software agent.

Agents have become topical since the 1990s, in particular,

in discussions relating to distributed and autonomous de-

centralized systems.[1] Most of the technologies support-

ing agent-based systems emanated from distributed Artifi-

cial Intelligence research.[2, 3] The growing interest gener-

ated in the area of agent research is attributed to the sig-

nificant advantages inherent in such systems, which include

their ability to solve problems that may be too large for a

centralized single agent, provide enhanced speed and relia-

bility, and tolerate uncertain data and knowledge.

A computer network is a collection of physically separated

computers which are connected together primarily to search

for, share and exchange computer resources. The process

of monitoring software tools on servers and workstations in

a network is one of such tedious tasks of the network sys-

tem administrator. Monitoring and searching for resources

on the network often involved physical movement of the net-

work administrator from one computer to another.[4, 5] When

the human administrators are used for this function, their

work may involve monitoring, evaluating and analysis of

the various nodes attached to the network with a view to

resolving problems and ensuring optimal performance and

efficiency. This function can be tiring, stressful and cum-

bersome, especially in a large network. One significant lim-

itation of this manual approach is that human being cannot

monitor events on the network in real time, that is, as the

∗Correspondence: Akinyokun O. C; Email: akinwole2003@yahoo.co.uk; Address: Department of Physical Sciences, Landmark University,

Omuaran, Nigeria

62 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

events occur in nodes distant from where the administrator

is currently located. Being human, the network administra-

tor can also be bored and/or confused about which node to

monitor next. It is, therefore, apparent that manual network

management cannot satisfy the requirements of the modern

complex network systems. The limitations of the manual

approach necessitate the need to have intelligent software

that would autonomously search, detect and monitor net-

work resources on behalf of the network administrator.

Several agents have been described in literature. Certain

agents, such as, static agents are stationary and would not

need to migrate from place to place.[6] On the other hand,

some agents called mobile agents can migrate from one

node to another in a network to perform tasks on behalf

of the network administrator or a user.[4, 7–10] The Dis-

tributed Artificial Intelligence (DAI) community includes

the intelligent and multi-agent systems with their main fo-

cus on agents (stationary) placed at nodes or workstations

distributed over the network and cooperating to pursue a

common goal. Multi-agent systems consist of a number of

autonomous agents that cooperates or compete to achieve

some defined goal.[11, 12] Mobile agent can be intelligent

as well as being part of a multi-agent system, and as such,

the DAI community considers mobility an orthogonal or op-

tional property of an agent.[13–15]

The theories, concepts, frameworks, platforms, standards

and interoperability of mobile agents and their application

in network management, wireless sensor networks, mobile

devices, e-commerce, emergency response and other areas

have been discussed in details in.[12, 16–18] In a network, a

software agent can be dispatched from a server to any work-

stations to monitor software tools available without the sys-

tem administrator physically moving from one system to an-

other. In this research, an agent application is developed to

autonomously monitor and evaluate software tools in a com-

puter network.

2 Development of agent-based system
The mathematical model for agent-based system is pre-

sented in Section 2.1. Section 2.2 presents the architecture

and design of the agent-based system.

2.1 Mathematical model of agent-based system

A mathematical model[19] using push migration strategy has

been adopted in this research. In that model, when an agent

migrates to a new location or node, it carries all its code,

data and all state information along. The migration process

is divided into the following three parts.

1) Mobile Agent (MA) starts off from the server (home)

platform, Sh and migrates to the first target node in a given

hierarchy.

2) Mobile agent migrate from target node Nk to Nk+1,

where k=1,2,. . . ,m-1.

3) Mobile agent migrates back to its home platform.

Accordingly, the total network load of MA is segmented into

the following three parts:

1) The load of MA denoted by Bh while migrating from Sh

to N1.

2) The load accumulated of MA denoted by Bm while it

moves through the target nodes

3) The load of MA denoted by Bf while it moves from the

last target node to home node.

The total network load denoted by L is therefore given as:

L = Bh + Bm + Bf (1)

Let a set of target nodes to be visited defined as:

N = {N1, N2, N3, · · · Nm} (2)

A mobile agent is composed of the code, data and state in-

formation, which are donated by c, d and s respectively.

Let the code be composed of n-classes, therefore, the total

length of the code in bytes is:

Bc = c1 + c2 + c3 + · · · + cm−1 + cm (3)

Bc remains constant throughout its life time. Assume the

length of data in bytes of MA at take-off is dh and at

each node visited, accumulates additional data denoted by

dk,k=1,2,3,. . . ,m. Again, assume the length of the state in-

formation in bytes is Bs and this is constant throughout the

agent life-time. Then, the load Bh of MA from home to the

first target node is calculated as:

Bh = Bc + dh + Bs (4)

When MA migrates from Nk to Nk+1 with k=1,2,. . . ,m-1,

it has a network load of

BM = Bc + dh + Bs (5)

When the agent migrates to its home, the load is given by:

Bf = dh + Bs (6)

The agent-based system comprises a server which connects

to a number of workstations. The server is composed of

typical computer hardware devices such as main memory,

secondary memory, printer, scanner, switches, modems, net-

work ports and so on. There are also some categories of soft-

ware such as network operating system, frontend software,

backend software and utility software. The workstation en-

vironment on the other hand comprised of some hardware

devices and software systems of, perhaps, lesser capacity

than that of the server.

Published by Sciedu Press 63



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

2.2 Architecture of agent-based system

The agent-based system adopts a multi-agent approach: the

static agent, otherwise referred to as Server Agent (SA) and

the mobile agent referred to as Monitor Agent (MA) to-

gether with their underlying software and hardware infras-

tructure. The architecture of the system is composed of a

backend and frontend engine. The backend engine is made

up of the server and workstations. The frontend engine

provides the framework for launching and migration of the

monitor agent. The architecture of the agent-based system

for monitoring software tools is conceptualized in Figure 1.

The platform for the take-off of the monitor agent at the

source and the platform for its landing at the target worksta-

tions are their respective operating systems. In monitoring

of software tools, the model conceives to main issues. One,

a system has to monitor the software tools on workstations

in the network, and secondly, a system has to report back to

the server where the request is made. A static agent (server

agent) is responsible for monitoring at its locality while a

mobile agent (monitor agent) is responsible for visiting each

node, activating the server agent, getting the information on

the software tools and reporting back to the server. The two

agents are integrated to make the proposed system as de-

picted in Figure 2.

Figure 1: Architecture of the Agent-Based System

2.2.1 Server agent

The server agent is a backend static agent. It executes only

on the system where it is installed. It must be installed on

both the server and all the workstations in the network. The

server agent must be running on all the computers in the net-

work to enable the monitor agent to go into any workstation

to do its job and report back to the server which is making

such request. The server agent is responsible for performing

the following functions:

1) Provide an interface for the user or system administrator

to specify requests to the monitor agent.

2) Create monitor agent on behalf of the user or system ad-

ministrator.

3) Provide avenue for the user to specify travel plan.

4) Launch the monitor agent and migrate it to the next work-

station in the itinerary.

5) Keep track of the monitor agent in order to service any

special request from other agent servers.

6) Process information results from the workstations visited

before presenting it to the user or system administrator in a

Graphical User Interface (GUI).

7) Provide computer resources at both the server and at the

workstations for the monitor agent.

8) Provide an enabling execution environment for the mon-

itor agent.

9) Provide an environment for the mobile Agent Communi-

cation Language (ACL) necessary for the incoming monitor

agent to be able to run its code to monitor the software tools.

64 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Figure 2: Agent Mobility Model

2.2.2 Monitor agent

The monitor agent is a mobile agent dispatched from the

server to other workstations in the network. It goes into the

network to identify the software tools on the workstations

or servers whose identities are known. At each workstation,

the monitor agent interacts with server agent at each node

to collect information about the available software tools.

The information collected at each node with its identities

is placed in the database container of the monitor agent for

onward movement to the next workstation. This process is

repeated until the last node is visited, at which point, the

monitor agent migrates back with all software information

in its database container to the server that launched it. At

the target workstation, the operating system provides a plat-

form for interaction between the server agent and the moni-

tor agent. The server agent gets into the files of the operating

system to collect the information about the software tools

on it and places it in the database container of the monitor

agent. The database container of the monitor agent is used

to update the source server agent from where the collected

information is displayed on the screen or printed out for the

system administrator.

2.2.3 Mobility facility

Mobility is the core property in a mobile agent concept

whereby the agent has the ability to migrate or transport

itself from one node to another within the same environ-

ment or from node to another node in a different environ-

ment autonomously. The model envisages a mobility frame-

work which supports transporting the mobile agent from

the server to the workstation, between the workstations and

back to the server. Theoretically, migration between the

workstation should be unidirectional, that is, if the moni-

tor agent leaves the workstation W1 for workstation W2, it

should not return to W1, on the other hand, it should move

to the next workstation W3 in the itinerary or return to the

server if the last workstation has been visited. The move-

ment of the mobile agent in the network is depicted in the

model in Figure 3.

After the service is started and the server agent is initiated,

the mobile agent is launched and initialized. When authen-

tication is successful, the mobile agent is migrated to the

workstation where it interacts with the server agent at that

node and obtains software tools data. Mobile agent then mi-

grates to the next node and the same process is repeated till

Published by Sciedu Press 65



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

the last node is visited. Mobile agent returns to the server,

display result and archive it. Finally, the server agent deac-

tivates the returned monitor agent.

Figure 3: Mobile Agent Migration Flowchart

3 System implementation of agent moni-

tor

The agent-based system requires a network which supports

both server and workstations of suitable configurations in

a local area network. The Windows NT operating system

was used for availability and efficiency. However, the sys-

tem will operate well in Linux, UNIX and Solaris operating

system environment.

The agent-based system adopted the Microsoft Access re-

lational database as the tool for storing system information

because it is readily available and cheap to obtain. More-

over, it works seamlessly with other window based tools

which were used to implement the system. MS-Access can

also exchange data with other relational database systems

such as Oracle, SQL Server and Sybase. MS-Access em-

ploys a facility called the Microsoft Distributed Transac-

tions Coordinator (MSDTC) which enables clients to make

changes to multiple databases at the same time, supports

a wide variety of clients that enables users to insert, up-

date, delete and query data stored in databases and works

perfectly with Non-Microsoft Access programs, thereby en-

abling programmers the greater flexibility in creating inter-

faces that meet their specific network needs.

The frontend provides the interface for the agent to monitor

the software tools on the network. The interface software

is necessary to assist in Human-Agent-Interaction (HAI).

Though in theory, any language can be used to implement

mobile agents, a number of languages are known to offer

support for agent programming. These include Java, Tele-

script and Agent TCL. In this research, the C# program-

ming language was used. C# is a simple, modern, general

purpose, multi-paradigm and object-oriented programming

language which can be used to develop software compo-

nents suitable for deployment in distributed environments.

It is suitable for writing applications for hosted and embed-

ded systems, ranging from the very large programs that use

sophisticated operating system, down to the very small ones

having dedicated functions. C# can be easily harnessed with

Microsoft Access and Windows NT operating platform of

the mobile agent as well as with the mobility software. It

incorporates features such as menus, forms and command

buttons for interactive programming, and these features out-

66 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

perform the interactive facilities provided by Java or C++.

For the mobility software needed for mobile agent, several

choices are available, which include Java, Telescript, Obliq,

AgentTcl, and C#. C# has been adopted as the mobility

software in this research. Though C# was not specifically

designed for writing mobile agents, but it has most of the

necessary capabilities for mobile agent implementation. It

has built-in language thread and synchronization functions

that are very secured which make programs to run on dif-

ferent platforms in the network. C# programs are compiled

to byte-codes (binary instructions) that run on any platform

under the Microsoft Common Language Runtime (CLR)

which makes C# programs highly portable. It has built-in

services which facilitate the mobility of codes such as ob-

ject remote and serialization. It has security mechanisms

built into the Microsoft Common Language Routine (CLR)

instruction set to prevent programs from being accessed out-

side their environment. Sending an object over the wire is

therefore a snap with C#.

Access is granted to the mobile agent monitor by typing

ADMIN as username and 4190 as password. The login

screen shot is presented in Figure 4. The system allows the

user three trials in the login procedure, after which it termi-

nates the access process if the login fails. When the login is

correct, the welcome screen is activated. After the correct

Administrator’s name and Password or PIN have been en-

tered, the login option is clicked to move to the next stage

which is the welcome screen module shown in Figure 5.

Figure 4: Login Module

Figure 5: Welcome Screen

For the Agent Monitor to identify and connect the comput-

ers on the network, all the computers must be configured by

IP (Internet Protocol) address to each computer. The IP ad-

dress can be assigned manually (static) or dynamically by

the use of Dynamic Host Configuration Protocol (DHCP).

This is used in a wireless Ad hoc network. The nodes on the

network request configuration settings using the DHCP such

as IP address, a default route and DNS server addresses.

Once the client implements these setting, the host is able to

communicate on that network. DHCP provides IP addresses

automatically so there is no need for manual configuration

of IP addresses in the nodes. In this research work, DHCP

for dynamic assignment of IP addresses to computers on the

network was used because:

1) Dynamic configuration reduces the stress of configuring

each and every connected computer on the network.

2) It eliminates the problem of IP conflict that sometimes

arises while using static/manual IP address configuration.

3) It reduces the expenses incurred in terms of cables and

other accessories needed in wired network.

4) It is portable and can be easily used on mobile equip-

ments.

5) Most of today’s computers have built-in DHCP and ad-

hoc settings that facilitates for dynamic configuration of IP

addresses.

The conceptual diagram for illustrating dynamic configura-

tion of IP address using DHCP is presented in Figure 6.

Figure 6: Welcome Screen

The Figure 7 shows the Agent server interface and how it

acquires the IP address of the target computer to start listen-

ing for an incoming connection from client agents on nodes.

DHCP configuration approach was used to make it possible

Published by Sciedu Press 67



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

for the server connection to get client agent IP address im-

mediately they attempt to establish a connection to it. It is

mandatory for all monitor agents on the network to know

the server IP address. The server does not need to know the

monitor agent IP before it connects, but the monitor agent

needs to, since it is possible for the server agent to easily

retrieve monitor agent IP address and the port from its con-

nection information. The Figure 8 shows how the IP address

assigned to the server can be located in the network. Both

server agent and monitor agents allow entry of IP address for

their communication because, the IP address can change as

the computer devices use change. The agent program adopts

the IP address entry approach to make the program flexible,

dynamic, and easy to implement to prevent hard-coding IP

addresses in the program.

Figure 7: Configure IP Address for the Server Agent

Figure 8: Server Agent Configured and Ready to Communicate with Agents

68 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Figure 9 shows the mobile agent helper program on the tar-

get computers. The program helps the agent to gather the

required system information, installed programs and task

manager running applications for the agent to collect be-

fore moving to the next target computer if there is a need for

that, depending on the Code/Data Instruction specified for

the mobile agent from the server.

Figure 9: System Information Gathering Agent on Client

Computer

The Figure 10 shows a notification popup on the taskbar to

notify the user that the server agent has been started listening

and waiting for connections from the agent nodes. Figure

11 shows the server agent before listening to node agents.

The “Start Listening” button triggers the server agent to ac-

cept incoming connections and also respond to them. Before

the connection starts, the user on the server-side must pre-

configure the listening IP address on which the node agents

are to connect. Only agents that are able to connect to the

server through the IP address are those the server agent will

mount while working on the network to gather information.

Figure 10: Diagnostic System Server Initialization

The Figure 12 depicts a server agent after setting up con-

nections for the nodes to connect. The server agent has

Agents List box that contains all the node agents that are

able to connect to the server successfully. With the list box,

the agent on the server-side can easily communicate with

all nodes or a specific agent on a selected node. The “Re-

quest from ALL NODES” button initiates a mobile agent

walk-through among all the agents on the network and in-

structs them to gather and prepare their system information

for the server agent. The “Request from Selected Node”

button makes it possible for server agent to interact and get

system information from a particular node without interfer-

ing with the rest. The user on the server can select a node on

the Agents List box and then command the agent to connect

to the node, gather needed information and return back to

the server.

Figure 11: Server Agent before listening to Nodes

Figure 13 displays a notification message dialog box on the

server to notify user on the server-side of new incoming sys-

tem diagnostic reports from the node agents. After clicking

“Ok” button, the server collates and processes the incom-

ing data, and it generates a report for each node agent in

PDF format. The PDF format is chosen to preserve the pro-

cessed system information from alteration and to make it

portable and organized. PDF file is generated and it con-

tains information about the system such as; Machine Name,

Operating System, OS Build Version, Network, Monitor

Size, CPU Summary and the Drive information. It also an-

alyzes the running application in each computer memory,

their PID (Process Identity), the Maximum Memory to con-

sume (Working Allotted) and the Memory consumed.

The following are the benefits of the system to the adminis-

trator:

1) Assessment of system based on software availability on

each system from a remote location without visit to the sys-

tem itself. This will enable the system administrator to know

the performance in terms of software of each system.

2) Know the list of software application installed on each

node.

3) List of applications that are currently running on each

node and the memory space occupied.

4) Get a comprehensive diagnostic information of each node

in the network which include: machine name, operating sys-

tem and its build version, the boot mode, the monitor size,

the processor name and its speed, the hard drive capacity

and its format (File Allocation Table (FAT) or New Technol-

ogy File System (NTFS)) which enable the operating system

to control how data is stored and retrieved.

Published by Sciedu Press 69



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Figure 12: Server Accepts Connection from Node Agent

Figure 13: Server Accepts Connection from Node Agent

4 Performane evaluation of mobile agent

and rmon

In this section, an attempt is made to justify the perfor-

mance of the proposed mobile agent with Remote MONitor-

ing (RMON), which is a form of remote procedure calls. In

justifying the advantage of the development of agent-based

monitor of software tools, three parameters were tested by

comparing the gains of mobile agent system with the ex-

isting RMON system that uses Remote Procedure Calls

70 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

(RPCs). The three parameters that were evaluated are:

1) Cost of service against number of requests per service:

the total time it takes in executing series of predefined task

such as requests and responses to services from source and

destination computers respectively.

2) Query time against number of requests per service: the

average number of requests that can be deployed in a ser-

vice. The optimization of such requests that can be deployed

in a service depends on the technique employed in the mod-

eling.

3) Service delay overhead against number of requests per

service: the total amount of time it takes a service before it

is being attended to during execution.

The following are defined as they apply to the simulation

analysis:

1) Service: This is the series of activities involved in exe-

cution of a defined task. It involves one or more requests

from a source computer to a destination computer and one

or more responses in the reverse direction.

2) Request: This is a particular activity within a service, for

example, searching a database during information retrieval.

3) Data size: This represents the size (in bytes) of the data

to be transmitted on the network.

4.1 Costs of service

In measuring the cost of service, an attempt was made to

evaluate what it costs to execute a service given different

number of requests per service. In generating a cost model,

two resources that are incured in the process of running a

service are bandwidth and time. Bandwidth, measured in

bits per second (bps), refers to the amount of data transmit-

ted or received per unit of time over the network. Hence, the

more the size of data that is transmitted over the network in

unit of time, the more the bandwidth requirement. Also the

time durations of completing a service would affect the cost

of service. Thus, cost of service, C is defined as a function

of the total bandwidth required in bits per second (B) and

service time (T ) in seconds.

A mobile agent executes a service by moving the mobile

agent code and all the requests in the service to the desti-

nation computer, executes all the requests and then returns

to the source with a single response to all the requests. As-

suming the size of the mobile agent code is x bytes, then for

request and response operations, the total size of the mobile

agent code that is transmitted over the network will be 2x
bytes. The size of the individual requests in the service is

assumed to be the same and equal to y bytes. Therefore, for

n requests in the service, the total size required is ny bytes.

The size of response is assumed to be z bytes. Therefore,

the total size of data transmitted for the MA denoted by Dm

is given by Equation 7.

Dm = 2x + ny + z (7)

To calculate the time it takes to transmit the data, it is as-

sumed that the bandwidth of the network is p bps, and that

p bits are transmitted per second. Thus, to transmit the total

size of data denoted by Dm in Equation (7), it would take

time Tm given by Equation 8.

Tm =
2x + ny + z

p
(8)

Assuming that the cost of transmitting p bps in 1 second is

q units, then for a continuous transmission over a period of

time Tm, the cost of transmission, Cm is given by Equation

9.

Cm =
q(2x + ny + z)

q
(9)

In RMON, executing a service consists of carrying individ-

ual requests in a service and a corresponding response. For

requests in a service, the size of the requests is ny, and since

n responses would be sent back, the size of the responses

will be nz. Thus, the total size of data transmitted over the

network for RMON is:

Dr = 2x + ny + nz = 2x + n(y + z) (10)

Let us assume a network with a bandwidth p bps, the time

Tr required to transmit Dr as in 10, then becomes:

Tr =
(2x + n(y + z))

p
(11)

Furthermore, assuming that the cost of p bps transmission in

1 second is q units, then for a continuous transmission over

a period of time Tr, the cost of transmission, Cr is derived

in equation 12.

Cr =
q(2x + n(y + z))

p
(12)

From equations 9 and 12, we can see that Cm < Cr, that is,

mobile agent is more cost effective than RMON.

4.2 Query processing

In this research work, the investigation of how the MA and

the RMON schemes execute queries is carried out. For

ease of analysis, assume that the resources which the two

schemes evaluate from the server of a network has a cen-

tral storage. Hence, during a service, there are one or more

queries at the node. For the RMON scheme, a unique query

is carried per unit time for execution. Thus, in a service with

n requests, there would be n queries. For the MA scheme,

since all the requests are carried out in batches and executed

at the node, then repeated requests are not going to be ex-

ecuted twice. It is only the number of unique requests that

would be executed. For example, one may have some of

Published by Sciedu Press 71



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

the requests that are the same; hence they would only be

executed once. Thus, for MA scheme, we expect that for

n requests, there would be m number of queries where m

is less than n(m < n).For the RMON architecture, how-

ever, if there were n requests per service, then the number

of queries would also be n.

4.3 Service delay overhead

Service delay overhead is the overall delay that is associated

with a service. The delay associated with the execution of

a request for service is classified into three namely: trans-

fer delay, waiting time and service time. It is assumed that

no other job is running, therefore, competition for processor

time does not occur, and hence, some delays such as inter-

rupts due to other jobs were not present.

The Transfer Delay is the time interval from the generation

of the last bit of packet at the information source and when

the last bit is recieved at the destination. The main delay

components are:

1) Queuing delay.

2) Time at the source interface buffer before the packet is

processed for transmission.

3) Processing delay involved as the protocol interpreter is

managing the transmission of the packet.

4) Propagation time required to transmit a packet through

the network.

5) Waiting time at the buffer associated with the destination

station and,

6) Processing delay at the destination station.

The Waiting Time is the time interval between the arrival of

a request at the destination and the beginning of its execu-

tion. The waiting time in this case is not due to other jobs

but due to the execution of the previous request in the ser-

vice. The Service Time is the time between the start and the

end of execution of a particular request in a service. For the

MA scheme, the transfer delay is only suffered once during

the request operation. However, each of the unique requests

would have to be processed one at a time and thus each re-

quest suffers some waiting and service time.

Given n requests per service with m unique requests gener-

ated, the transfer delay for the request operation is denoted

by T . For the first request, there is no waiting time since

the request is the first one, hence, waiting time for the first

request denoted by w1 is zero. For the second request, the

waiting time is equivalent to the service time of the first re-

quest denoted by s1. Similarly, for the third request, the

waiting time is equivalent to the service time of both the first

and second requests that s1 + s2. Assuming that the service

time for each request is the same, therefore, the sum of the

waiting times follows an arithmetic progression with a com-

mon difference s1 or s2. The total waiting time denoted by

W is then found to be:

W = (m(2w1 + s1(m − 1)))/2 (13)

It should be recalled that w1 = 0, the expression becomes

W = (m(s1(m − 1)))/2 (14)

Since s1 = s2 = · · · = sm, then the total service time

denoted by P is given by:

P = ms1 (15)

Also, during response operation, the MA also suffers a

transfer delay denoted by R. Therefore, the total service de-

lay overhead for MA scheme is: MA(delay) = P +W +S

Since P = T + R

MA(delay) = T + W + S + R (16)

If we assume equal delay is suffered during request and re-

sponse operation then T = R

P = 2T = 2R (17)

Therefore, combining equations 14, 15 and 17, MA(delay)

is give by:

MA(delay) = 2T +(m(si(m˘1)))/2+msi, (i = 1, 2, 3, · · · , m) = 2T +(m2si +msi)/2, (i = 1, 2, 3, · · · , m) (18)

For the RMON scheme, requests are transferred and exe-

cuted one at a time hence, creating an overhead in transmis-

sion delay. However, total waiting time here is zero since a

request completes execution before the next is transferred.

Therefore, the following applies for the RMON scheme.

The total transfer delay denoted by P is given by:

P = n(T + R) (19)

Since each request consists of a request-response pair where

T = R, then,

P = 2nT = 2nR (20)

The total waiting Time (W) is zero. Also since s1 = s2 =

72 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

· · · + sn, then the total service time P is given by:

P = nsi, (i = 1, 2, 3 · · · , n) (21)

Therefore, the total service delay overhead for the RMON

scheme is given by:

RMON(delay) = 2nT +nsi, (i = 1, 2, 3 · · · , n) (22)

4.4 Cost of service versus number of request per

service

The mathematical basis for the number of requests per ser-

vice developed in Equations 9 and 12 that represent the

cost of services for the mobile agent monitor and existing

RMON schemes respectively is being applied here. The

variation of cost with number of requests per service is be-

ing simulated. The size of agent codes is assumed to be

5 bytes, size of request y and response z is fixed at 1 byte

each. The bandwidth size p is assumed to be 5Kbps and cost

of transmitting at 5Kbps for 1sec q is assumed 1 unit. The

result of the simulation is as shown in Figure 7. It is clear

that when the number of requests increased, the advantage

of MA over RMON is more pronounced.

Figure 14: Service Cost of MA against RMON

4.5 Query time versus number of requests per ser-

vice

From the analysis done in the query optimization, a query

time is assigned to each of the unique queries involved in ex-

ecuting a service in the two schemes. For simplicity, assume

a uniform query time of 1 second for each of the requests.

The result obtained is as shown in Figure 15. The mobile

agent scheme optimizes querying time as the number of re-

quests per service increases because it is able to eliminate

repeated requests and thereby reduce the number of queries

to be executed at remote locations.

4.6 Service delay overhead versus number of re-

quest per service

The service delay overhead against the number of request

per service for the two schemes was measured. Equations

19 and 22 were adopted for mobile agent and RMON re-

spectively. In the simulation, it was assumed that time delay

=10secs, service time = 2secs. The result of the simulation

depicted in Figure 16 shows that the MA scheme generates

a lower service delay overhead than the RMON scheme. At

18 out of the 20 samples simulation runs, the mobile agent

perform better resulting in 90% efficiency.

Figure 15: Query Time Versus Number of Requests

Figure 16: Service Delay Versus Number of Requests per

Service

5 Conclusions
In this paper, an agent-based system has been developed

to monitor software tools available on the nodes of a com-

puter network. The agent system employs the multi-agent

paradigm in which agents interact and cooperate with each

other to achieve a common goal. The static server agent

seats on each node and collects the data on software tools.

The mobile monitor agent then moves into the workstation

and interacts with the server agent, receives the data and

moves to the next node or the server where the reports are

displayed and achieved. The advantage of the agent-based

system is that it can monitor each node and identify the soft-

ware tools installed on them on real-time basis. Information

Published by Sciedu Press 73



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

obtained can be used by the system administrator to take

critical decisions. In a large network environment, the work

of monitoring software tools can be a tasking one. The pro-

posed system would assist the system administrator to func-

tion more efficiently. In future this work can be expended to

involve configuration management, fault detection and se-

curity.

An attempt is made to justify the performance of the pro-

posed mobile agent with Remote MONitoring (RMON),

which is a form of remote procedure calls. In justifying

the advantage of the development of agent-based monitor

of software tools, three parameters were tested by compar-

ing the gains of mobile agent system with the existing Re-

mote Monitoring (RMON) system that uses Remote Proce-

dure Calls (RPCs). The three parameters that were evaluated

are:

1) Cost of service against number of requests per service

of the agent system were shown to be lower than that of

RMON.

2) Query time against number of requests per service of the

agent system were shown to be lower than that of RMON.

3) Service delay overhead against number of requests per

service of the agent system were shown to be lower than

that of RMON.

References

[1] Arai T and Ota J. “Motion Planning of Multiple Mobile Robots us-

ing Virtual Impedance”. Journal of Robotics Mechatronics. 1966;

8(1): 67-74.

[2] Guttman, R.H and Maes P. “Agent-Mediated Integrative Negotiation

for Retail Electronic Commerce”, Proceedings of AMET’98. 1998:

77-90. Available from: http://ecommerce.media.mit.edu/

[3] Feridum, M and Krause, J. “A Framework for Distributed Manage-

ment with Mobile Components”, Computer Network. 2001; 35: 25-

38. http://dx.doi.org/10.1016/S1389-1286(00)00147-X

[4] Imianvan A.A. "Development of Mobile Agent for Evaluating the

Use of Bandwidth in a Computer Network", PhD Thesis in the De-

partment of Computer Science, Federal University of Technology,

Akure, Nigeria. 2009.

[5] Arekete, S.A. “Development of a Mobile Agent for Monitoring and

Evaluation of Activities of Users in a Network Environment”. PhD

Thesis, Department of Computer Science, Federal University of

Technology, Akure. 2013.

[6] Akinyokun, O. C. “Catching and Using the Virus”. The journal of

the Institute of the Management of Information Systems (IMIS),

London, United Kingdom. 1997; 7(6): 12-17.

[7] Akinyokun O. C. and Imianvan A. A. “Experimental Study of Band-

width Management in a Computer Network Environment”. Proceed-

ings of Allied Academies International Conference, Orland, USA.

2010. PMid:20543357

[8] Imianvan A. A, Akinyokun O. C, Obasohan E. E. and Obi J. C. “Pro-

totype of an Intelligent Trade Agent”. World Journal of Applied Sci-

ence and Technology. 2011; 3(2): 40-47.

[9] Arekete S. A, Akinyokun O.C, Olabode O. and Alese B.K. “De-

sign of a Mobile Agent for Monitoring Users Activities”. Computer

Engineering and Intelligent Systems. 2013; 4(2): 33-48. Available

from: www.iiste.org

[10] Arekete S.A. and Akinyokun O.C. “Implementation Techniques of

Mobile Agent for Monitoring Activities of Users”. WebPub. 2013;

1(3): 38-54, Available from: http://www.researchwebpub.org/wjsr

[11] Wooldridge M. “An Introduction to Multi-Agent Systems”, John

Wiley & Sons Limited England. 2002..

[12] Manvi, S. S and Venkataram, P. “Application of Agent Technology

in Communication: a Review”, Computer Communication Journal,

Elsevier. 2004; 27: 1493-1508. http://dx.doi.org/10.1016/

j.comcom.2004.05.011

[13] Wooldridge M and Jennings N.R. “Intelligent Agent: Theory and

Practice”. In Knowledge Engineering Review. 1995; 10(2): 115-

152. http://dx.doi.org/10.1017/S0269888900008122

[14] Lange, D and Oshima, M. “Seven Good Reasons for Mo-

bile Agents”, Communications of the ACM. 1999; 42(3).

http://dx.doi.org/10.1145/295685.298136

[15] Tveit. “A Survey of Agent-Oriented Software Engineering”.

2001. Available from: http//www.abiody.com/jfpa/

publications/AgentOrientedSoftwareEngineering

[16] Silva L.M., Soares G. Martins P, Batista V and Santos V. “Com-

paring the Performance of Mobile Agent Systems: a Study of

Benchmarking”, Computer Communications. 2000; 23(8):769-778.

http://dx.doi.org/10.1016/S0140-3664(99)00237-6

[17] Cucurull J, Martí R., Navarro-Arribas G, Robles S, Overeinder

B, Borrell J. “Agent Mobility Architecture Based on IEEE-FIPA

Standards”, Computer Communications. 2009; 32(4): 712-729.

http://dx.doi.org/10.1016/j.comcom.2008.11.038

[18] Manzoor U. and Nefti, S. “QUIET: A Methodology for Au-

tonomous Software Deployment using Mobile Agents”, Journal

of Network and Computer Applications. 2010; 33(6): 696-706.

http://dx.doi.org/10.1016/j.jnca.2010.03.015

[19] El-Gamal Y Khalid E and Magdy S. “A Comparative Performance

Evaluation Model of Mobile Agent Versus Remote Method Invoca-

tion for Information Retrieval”. World Academy of Science, Engi-

neering and Technology. 2007: 286-291.

74 ISSN 1927-6974 E-ISSN 1927-6982

http://dx.doi.org/10.1016/j.comcom.2004.05.011
http://dx.doi.org/10.1016/j.comcom.2004.05.011
http//www.abiody.com/jfpa/publications/AgentOriented Software Engineering
http//www.abiody.com/jfpa/publications/AgentOriented Software Engineering

	Introduction
	Development of agent-based system
	Mathematical model of agent-based system
	Architecture of agent-based system
	Server agent
	Monitor agent
	Mobility facility


	System implementation of agent monitor
	Performane evaluation of mobile agent and rmon
	Costs of service
	Query processing
	Service delay overhead
	Cost of service versus number of request per service
	Query time versus number of requests per service
	Service delay overhead versus number of request per service

	Conclusions

