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Abstract: A formal framework for the development of algebraic specifications is presented.
Ther main issues concerning the approach are the following: We allow to deal with
incomplete specifications during the design process. This is handled by means of loose
semantics and initial constraints. The design process is considered bi-dimensional.
Horizontal refinements express, as usual, extensions. Vertical refinements consists in adding
more detail or completing the refined specifications. The usual composition properties for
refinements hold in our framework. In addition, the horizontal composition theorem defines

a generalization of parameter passing as it is usually understood.
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Program design may be considered as a mixture of two activities. On one hand, programming
consists on determining precisely the problem to be solved and, on the other, in describing a
(hopefully) efficient solution on a given programming language.

Traditionally, these two activities have been more or less mixed. In classical waterfall models
of software design, coding was the phase in which the problem to be solved was stated without
ambiguity for the first time. In previous phases (design or requirements analysis), the problem
was studied and more or less clarified but, in general, never formally stated. Then, the final code
was, at the same time, the problem statement and its very solution. This is, obviously, one of the
main issues of the software correctness problem.

The so-called formal methods for software development aim at clearly separating these two
activities. A specification phase must provide a precise description of the problem to be solved and
an implementation phase must yield a coded program fulfilling the given specification. In addition,
it is assumed that this task may be carried out semi-automatically with the help of transformation
tools.

Most work on formal methods concentrates on the implementation phase studying the
transformation process and characterizing its correctness. However, specification building is not
an easy activity. The specifier must depart, usually, from an incomplete and often inconsistent set
of informal requirements and arrive to a formal specification fulfilling the badly expressed user
needs. Therefore, the specifier, during this process, must clarify all the aspects of the problem to
be solved by interacting with the user.

There is not much work done on specification development. The most common approach is
the usual top-down refinement method: the problem to be specified is decomposed into
subproblems, then, when all these subproblems have been completely specified an adequate
combination of all the subspecifications, possibly together with some additional definitions,
provides the specification for the whole problem. All specification languages provide support to
this approach to specification design through the usual operations of enrichment and combination.
The possibility of defining parameterized specifications, as in programming languages the
possibility of defining procedures, may be seen as an abstraction facility to ease the refinement
process.

This approach has a main drawback: at every moment it is assumed that the specifications we
are dealing with are complete descriptions of the (sub)problems we are specifying, or, at least,



complete descriptions with respect to some “unknown" parameter part. This is not realistic since
every backtracking in the specification process, for instance due to user interaction or due to some
inconsistency detection, may force to redo large parts of the specification under design.
Modularity of the specification would not suffice to solve this problem for the very modular
decomposition may be the result of some decisions taken to complete a given specification.

As for program design [GB80], specification design must be seen as a bidimensional
refinement process. Horizontal refinements express the construction of a (not necessarily
complete) specification of a given problem over the (also, possibly incomplete) specifications of
the subproblems defined within the refinement process. That is, horizontal refinements can be
formally seen as enrichments and extensions. Vertical refinements, as in program design, are the
result of adding detail to, in this case completing, a given specification. Also as in program design
it must be possible to compose or commute correct refinements to obtain, again, correct
refinements [GB80).

In this paper we will present a category of specifications, together with their associated class
of models, that has served as a basis for the definition of a specification language [CO88] built
over these ideas. The key points of our approach are the following:

- Incompleteness is handled at the semantic level by means of looseness, i.e. an incomplete
specification is a specification that has non-isomorphic models. Conversely, when a specification
is complete then all its models are isomorphic.

- An incomplete specification may contain "parts" which are completely defined. This is
handled by means of the concept of data, initial or free constraint [BG80, EWTS83, Rei80]. That
is, in our framework a specification SP is seen as a presentation P together with a set of
constraints { which determine the unique (up to isomorphy) interpretation of the completely
defined parts. The set of models of a specification is, as it can be expected, all P-algebras
satisfying all constraints in €. In particular, when the constraints "define completely" all the sorts
and operations of the given presentation then the semantics of SP is the initial P-algebra (Theorem
L7). As it can be scen, though our approach is based on the loose semantics ideas [SW83], it is
also strongly inspired by the initial semantics philosophy. We believe that an approach bascd on
behavioural semuntics would have been more adequate from a methodological standpoint. In
particular, a notion of behaviour constraint based on the constructions introduced in [NO88] could
have been uscd us a basis for such an approach. However, we have preferred to stick to the initial
philosophy until some technjcal problems concerning the existence of amalgamations and
extensions for certain classes of behaviour specification morphisms are solved [ONESS].

- Horizontal refinements are defined by means of loose extensions, that is extensions that
preserve the class of modcls of the extended specification. On the other hand, vertical refinements
are defined by mcans of refinement morphisms, a restriction of the specification morphisms used
when dealing with constraints [Ehg88]. The usual results about composition of horizontal and
vertical refincments are shown., Moreover, it is shown the compatibility of the specification level

and the modc! lcvel semantics of the specification building operations based on this kind of
refinements.



A key notion of our approach, presented in this paper, is the concept of relative persistency of
a constraint with respect to a given specification. Relative persistency is a generalization of the
usual persistency notion. In this paper, we obtain results that generalize, with respect to this new
notion, classical results concerning parameterized specifications and parameter passing [EM85].
In fact, in our approach there is no need for the concept of parameterized specification, since every
incomplete specification may be seen as a specification implicitly parameterized by its non
completely defined parts. Then, parameter passing would just consist in, applying the horizontal
composition theorem (cf. theorem 2.7), defining explicitely the application of an induced vertical
refinement on a loose extension. In particular, a parameterized specification in the usual sense
[EM85] may be seen just as a special case of an incomplete specification with a constraint.

The main difference with other work on algebraic specifications with loose semantics [SW83,
ST87a,ST87b] is our concern with respect to the proof-theoretical level of semantics. A
consequence of this concern are the compatibility results shown in the paper. Also, we have tried
to obtain proof-theoretical conditions for checking relative persistency, since this property is the
basis for guaranteeing internal correctness of our specifications. It was clear from the very
beginning that working with constraints would make almost impossible [BBTWS81, MS85]
getting a proof theoretical characterization of relative persistency, but we wanted to get reasonable
sufficient conditions for guaranteeing it. We must admit that, concerning this aspect, the final
results obtained were not as good as initially expected. We hope that the counter-examples that
disclaimed our original hypothesis will give more insight on the problems of working with
specifications with constraints. Anyhow, this does not mean that the conditions cannot be
improved. On the contrary, at present we are working to provide some better results.

The paper is organized as follows: in the first section we present the basic concepts, including
some results that will be used throughout the paper; the second section studies the notions of
horizontal and vertical refinements together with their associated specification building operations;
section three presents some proof-theoretical conditions for checking relative persistency; finally,
in section four we establish some conclusions and we analyze related work.
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1. Basic concepts

As we have said above, we foresee the process of specification development as a process of
bidimensional refinement over incomplete specifications. To us a specification is incomplete if
some parts of it have not been "completely defined", although some other parts may be. For
instance, given the following specifications:



Val eq = enrich Bool with sorts val
opns eq: val x val = bool
eqns eq(X,X) = true
eq(X,Y) = eq(Y,X)
(€q(X,Y) and eq(Y,Z)) > eq(X,Z) = true

Set = enrich val eq defining sorts set

opns J: set
add: set x val — set
_€_:val x set = bool

eqns add(add(S,X),Y) = add(add(S,Y),X)
add(add(S,X),X) = add(S,X)
Xe D = false
Xe add(S,Y) = (XeS) or eq(X,Y)

Choose =enrich Set with opns choose: set — val
eqns choose(S)e S

the specification Choose may be considered incomplete since it is not "defined" what the values
"are" or how the operation choose really works. However, the specification contains some parts
which are "completely defined", namely the booleans and the sets, in this case depending on what
the values are.

The main idea for dealing with this specification is to consider that its "complete parts" are
constraints that impose how these parts should be in every admissible model. Then, to us, a
specification will be a presentation together with a set of constraints.

1.1 Definitions

A presentation P is a tuple <X, E>, where X is a signature i.e. a pair <S, Op> where S is a se
of sorts, Op a family of S-sorted operators and E a set of Z-equations.

A constraint C is a pair of presentations (P1,P1") such that P1 ¢ P1'. Given a presentation
P, a constraint C = (P1,P1") is defined on P if P1' < P. An algebra A € Alg(P) satisfies a
constraint (P1,P1') on P, denoted A |= (P1,P1") iff

(AlpD PV = Apy

Notation : _ |p : Alg(P) = Alg(P)and — | P, Alg(P) — Alg(P') denote, respectively,
the forgetful functor and the free functor associated to the inclusion P cP.

This means that a P-algebra satisfies the constraint (P1,P1') if the P1' part of the algebra is



freely generated from the P1 part. For this reason, this is called a free generating, initial or data
constraint [BG80, EWTS3, Rei80]. In fact, our notion of constraint is a slight restriction of the

notions defined in these papers, since they allow an arbitrary presentation morphism between P1'
and P while we just allow inclusion.

1.2 Definition

A specification SP is a pair <P, > where P is a presentation and € is a set of constraints on
P. The semantics of a specification SP is defined by the following class of models

Mod(SP) = {A € Alg(P)/ A =L}

In the example above the specification we consider that the specification Choose consists of a
presentation P containing all sorts, operations and equations shown in the example and two
constraints (J,bool) and (val_eq, set) that impose that the models of this specification are algebras
whose Boolean part is the boolean algebra of two elements and whose Set part are the finite sets
of the elements of sort val, whatever they are. '

A specification may be considered correct when it describes adequately the user needs,
Obviously, it is impossible to formalize this kind of correctness notion. However, there are certain
properties, like consistency, that we may want to be fulfilled by any specification. Often, it is said
that a specification is (internally) correct if it satisfies some of these properties. In our case, we
have taken the simplest correctness criteria, namely consistency of the given specification. In a
previous paper [CO88] correctness was defined by a much more complicated notion. We tried to
put in the definition not only the fact that a specification had models but also the fact that the
specification had been "properly" built. We now think that this was, both, a methodological and a
technical mistake since, on one hand, a specification can be correct even if its building process has
not been what we would consider adequate, and, on the other, the complication of the concept
also complicated all the technical apparatus.

1.3 Definition
A specification SP = <P, §> is correct iff it is consistent i.e. Mod(<P, £>) is not empty.

The following notion, relative persistency of a constraint with respect to a specification, is one
of the key concepts of our approach. In [CO88] we asked all constraints to be persistent. This was
far too restrictive since constraints (P1,P2) such that S2-S1 = @ can hardly be persistent. For
instance, the specification of the addition over natural numbers, defined by the constraint (Nat,
Add), where Nat is the usual specification of the naturals and Add is the usual enrichment defining
the addition, would not be persistent. On the other hand, it seems reasonable to be able to ask for
some form of conservativeness when defining an extension over a given specification. With our



notion the problem is solved since (Nat,Add) is persistent relative to any specification containing
the constraint (& Nat). In fact, relative persistency is a generalization of the usual notions of
conservative extension to be found in the literature.

1.4 Definition

Given a specification SP = <P, >, a constraint C = (P1,P1'), with P1 C P, is persistent
relative to SP iff for any A in Mod(SP):

(Alp IP1y]p, = Alp;

A very important technical result that will be used throughout this paper is the following
version of the Extension Lemma, which, as usual, provides some kind of compatibility between
some form of extensions at the specification level and at the model level. In our case, the
Extension Lemma states that if we extend a specification SP by means of a new constraint
persistent relative to SP, then the semantics of the new specification is obtained as a construction

of the semantics of SP and the semantics of the constraint. This will be stated more precisely in
theorem 2.3.

L5 Extension Lemma

Given a specification SP = <P, {> and a constraint C = (P1,P2) such that P1 C P, let P+P2
denote the result specification of the pushout diagram:

P1 & P2

)

—» pP.P2

then if (P1,P2) is persistent relative to SP we have that (P, P+P2) is persistent relative to SP and
the associated free functor _ | P+P2, Alg(P) - Alg(P+P2) is an extension of _ | P2. Alg(P1) -
Alg(P2) for SP-models, that is for every A in Mod(SP):

A IPI |P2_ A |P+P2 |p2

Moreover, Mod(SP) | P*P2 ¢ Mod(<P+P2, Lu{(P1,P2)}>)

Proof
To prove the Lemma it is enough to show that for every A in Mod(SP):



AIPF2- Ao, p A |p; P2

since, if this is true, clearly, the free functor _ | P+P2; p1g(p) o Alg(P+P2) would be an
extension of _ | P2, Alg(P1) —» Alg(P2) for SP-models and (P, P+P2) would be persistent
relative to SP. In addition, by the amalgamation lemma for specifications with constraints
[Eng88], we would have (Mod(SP) | P+P2) C Mod(<P+P2, L+{(P1,P2)}>)

Therefore, we have to show that for each A in Mod(SP), each P+P2-algebra A' and each
homomorphism h: A A’ | p> there is a unique homomorphism h' from A"= A & Alp1 APl | P2
into A' such that the following diagram commutes:

A - A"

where id is the identity. Let AQ be A |P1’ AOQ' be A’ |P2 and hO be h |P1' That is, hQ: AQ —»

A0' | p1. Now, since (P1,P2) is persistent relative to SP, there is a unique homomorphism hQ";
A0|P2 A0, such that the following diagram commutes:

id
A0 » A0 [F2 by
ho'
1
ho
AOT,

Then, we have that h |P1 =h0 = h0Q' |P1’ therefore we may define h':
h'=h &, ho'
by definition, we have that h' | p = h, hence we only have to show that h' is the unique

homomorphism such that h' | p = h. Suppose h" also satisfies that h" | p = h, this would mean
that h" | P2 is such that the following diagram commutes:



but, since h" |P2 |P1 =h" |P |P1 =h |P1’ by freeness of |P2, this means that
h" |[p2 =h0'=H' | P2
which, by unicity of the amalgamated sum, implies:

h'=h @y h0' = h"

Up to now, we have presented the basic semantic definitions of an approach for dealing with

incomplete specifications. It seems reasonable to ask for compatibility of this semantics with the

standard one for the case SP is "complete”. In particular, in our case, this means that if SP is

"complete” then Mod(SP) should coincide with the usual initial algebra semantics. This is indeed

true, as we will see in theorem 1.7, but first let us define what does i

t mean for a specification to
be complete.

1.6 Definition
A specification SP = <P, > is complete iff the followin g two conditions hold:

a. Complete definition; VseS 3!(P1,P2)e { such that se S2-S1 and Vope Op 3!(P1,P2)e(
such that ope Op2-Opl1.

b. Nocircularity: The transitive closure of the relation <:

(P1,P2) < (P3,P4) < 3se S3 such that se $2-S1 or 30pe Op3 such that ope Op2-Opl
is a strict partial order on (.

Condition a. states that every sort and operation must be "completely defined" by a unique
constraint. The uniqueness restriction is not really important but, without it, condition b. would
have to be much more complicated and so would have to be the proof of the following theorem.
Condition b. states that there is no circularity among the constraints. Absence of circularity is
needed to consider a specification “complete”. An example can show what can happen in the
presence of circularity. Let PO, PO', P1, P1' and P be:



PO = Sorts s1 P1 = Sorts s2
PO' = Sorts s1,s2 P1'= Sorts s1,s2

Ops f:s1 > 52 Ops g: 52 > s1

P = Sorts 51,52
Ops f:s1 552
g:s2 sl

and let SP be (P, { (PO,P0'),(P1,P1")}. It should be obvious that, although SP satisfies condition
a., it should not be considered complete because there is no precise description of what sorts sl

and s2 should be like (apart of being a copy one of the other).
1.7 Theorem

Let SP = <P, {> be a consistent specification, then if SP is complete we have:

Mod(SP) = {Ae Alg(P)/ A = Tp}

Proof
Let Co Cisoor C,bea topological sort of
condition b. that is C; < C; implies i<j. Note th
<P0,C0>, ceey SPn =

§ with respect to the partial order defined by

at Cy must have the form (D,P(). Let SPp =
<Pn’§n_> be the following sequence of specifications:

SPO = <P0, (@,P0)>

SPis1 = <P n.Gol @y P ) 1>

where Ci +1= @ +1.P +1) and P, +1 denotes the result of the pushout:

Pi+1 Pi+1
P. —{ P.
i 1+1

We will prove by induction that for every i:

1. Ci is persistent relative to SPi-l- In the case i =

0 we consider C; to be persistent
(persistent relative to the empty specification), which trivially

is since Co= (@,PO).

2. Tp;e Mod(SP;)
3.1f A, BeMod(SP;) then A = B,

It should be clear that, if 1., 2. and 3. hold for every i, then the theorem is true since, by



construction, SP, < SP and in addition, by condition a., Zp=Zand {, = {. Then, Mod(SP) ¢
Mod(SPn). But, if Mod(SPn) only contains algebras which are isomorphic to Tp, and Mod(SP)
cannot be empty, since it is assumed to be consistent, then Mod(SP) = Mod(SPn) and TPn =Tp.

If i = O then, as it was said above, condition 1. trivially holds. Also, conditions 2. and 3. are

obviously satisfied since the only P-algebras that satisfy the constraint (D,P) are exactly the
algebras which are isomorphic to Tpy.

Assume i = j+1. To prove that Cj +1 18 persistent relative to SPj we have to prove that:

Pll' -
Tpj | pjs1 | i+ | Pj+1 =Tpj | pjys

Now, if SP is consistent there should be an A such that Ae Mod(SP), but since ij is the
only Pj—algebra satisfying the constraints in Cj, this means that A | Pj = ij. On the other hand, A

must also satisfy the constraint Cj +1» therefore:

Alpjr [Tin=A | py,,
but this implies that:
Tpj | Py | Fist=A |pj [Py [P i1 =A | P41

and therefore:

Tp; | pje1 | ¥ iet |Pje1 =A [P [P = A |Pis1 = Tpj | Py

Now, to prove 2. it is enough to notice that, since (P‘j +1’P"j +1) 1s persistent relative to SPj,

according to the Extension Lemma Tp; | Pi1is in Mod(SPj +1)- But, Tp; | Pii= Tpj,1-

Finally, 3 is also a consequence of the Extension Lemma. On one hand we have that all
algebras in Mod(SPj) are isomorphic which implies that all algebras in Mod(SPj) |P'j +1 are also
isomorphic and, therefore, so it happens with algebras in Mod(SPj) |P'j 1 | P’ j+1. On the other,
from the Extension Lemma we have that:

Mod(<Pj, 1.8§{Cj41}>) = Mod(SP) @ Alg(Pj+1) (Alg®;, ) [Py

then, from the Amalgamation Lemma [EM85], we have that all algebras in
Mod(<Pj +1,§ju{Cj +11>) are also isomorphic. ¢



2. Specification building operations

In this section, we will present our notions of horizontal and vertical refinement for
specification development. Together with this notions we will introduce the basic operations for
defining this refinements.

Horizontal refinements are defined by the notion of loose extension, which is a generalization
of the notion of conservative extension.

2.1 Definition
Given specifications SP1 and SP2, SP2 is a Joose extension of SP1 iff

a. SP1 ¢ SP2
b. Mod(SP1) = Mod(SP2) | p,

We consider three basic operations for defining loose extensions: enrich defining, enrich
with and combine,

The operation enrich defining adds to a given specification new sorts and operations
together with a constraint defining them. That is, given a specification SP = <P, €> and a
constraint C = (P1,P2) such that Pl C P, enrich defining creates a new specification <P+P2,
CuU{C}>, where P+P2 denotes, as in the Extension Lemma (cf. 1.5) the pushout of P and P2
over P1.

The operation enrich with adds new sorts and operaticns without any new constraint. That
is, given a specification SP = <P, {>, where P = ((S,0p),E), and a triple (S1,0p1,E1), such that
P1 = ((S+S1,0p+Op1), E+E1) is a presentation and where + denotes disjoint union, enrich
with creates the new specification <P1,C>.

Finally, the operation combine puts together two specifications whithout duplicating their
common part. That is, given specifications SP1, SP2 and SP3, such that SP2 and SP3 are loose

extensions of SP1, the combination of SP2 and SP3 over SP1 is defined as the result of the
pushout:

SP1 & SP2

SP3 —& SP4

The semantics of these three operations could also be defined at the model level by means of
amalgamated sums. This model level definitions would be compatible with the previous ones,

since, by the Amalgamation Lemma for specifications with constraints [Ehg88], under the
conditions stated above for the three operations, we know that:



Mod(<P+P2, EU{(P1,P2)}>) = Mod(<P, {>) ®Mod(<Pl, D>) Mod(<P2, {(P1,P2)}>)
Mod(<P1, {>) = Mod(<P, £>) ®M0d(<P, @) Mod(<P1, @>)
Mod(SP4) = Mod(SP2) @Mod(spl) Mod(SP3)

In what follows, we will study the correctness of these three operations, i.e. under which
conditions these operations define loose extensions. The simplest case is the combine operation,
since the result SP4 of the combination of two specifications, SP2 and SP3, that are loose
extensions of SP1 is always a loose extension of SP?2 and SP3:

2.2 Theorem

Let SP1, SP2 and SP3 be three consistent specifications such that SP2 and SP3 are loose
extensions of SP1 and let SP4 be the result of the pushout:

SP1 —& SP2

SP3 —& SP4

then SP4 is a loose extension of SP? and SP3.

Proof

The proof is almost trivial: wolog, let us prove that SP4 is a loose extension of SP2. Let A2
be in Mod(SP2), then we know that A1 = A2] P1 is in Mod(SP1) and, since SP3 is an extension
of SP1, there should be an A3 in Mod(SP3) such that A1 = A3 |p1. Then, by the Amalgamation

Lemma for specifications with constraints [Ehg88], we have that A4 = A2 @ A1A3 is in
Mod(SP4).

The case of enrich defining is also quite simple. It depends on the relative persistency of
the new constraint with respect to the enriched specification:

2.3 Theorem

Given a specification SP = <P, €> and a constraint C = (P1,P2) such that P1 < P and let
P+P2 be the result of the pushout:

Pl & P2

o

& PiP2

12



then SP' = <P+P2, {U{C}> is a loose extension of SP iff C is persistent relative to SP.

Proof

If SP' is a loose extension of SP this means that for every P-algebra A such that A |= { there
is a P+P2-algebra B such that B |={U{C} and B | P = A. Now, if B satisfies C this means that:

B|p1|P2 = B|p2

but this implies that:

B|P1|P2|P1 =B|P2|P1=B|P1
and therefore:
Alp IP2p - Blpi1P21p; = Blp; = Alp,

Conversely, if (P1 ,P2) is persistent relative to SP, by the Extension Lemma proved above,
we know that for every Ae Mod(SP) it holds that A | P+P2¢ Mod(SP') and A | P+P2 Ip =A. ¢

Finally, the correctness of the enrich with operation is the most complicated case. Here we
will just give a sufficient condition which we think can handle many situations. Essentially, it says
that an enrichment of this kind over a specification SP is a loose extension if we can provide a
constraint persistent relatively to SP, "defining completely” the enrichment. We think that this is a
reasonable condition for many situations since, often, the reason of adding some sorts or

operations without defining them completely is that we do not want to take a decision of choosing
among several possible alternatives,

2.4 Corollary

Given a specification SP=<P,{>, and a presentation P1, such that P P1, then SP1=<P1,{>
is a loose extension of SP if there exists a constraint C=(P2,P3), such that P2 c P, P1 < P3 and
(P2,P3) is persistent relative to SP.

Proof

If there is a constraint (P2,P3) such that P2 c P, P1 < P3 and (P2,P3) is persistent relative to
SP, then using the previous theorem we know that SP' = <P+P3, {U{C}> is a loose extension of
SP. But, Mod(SP") IPI < Mod(SP1) thus SP1 is a loose extension of SP. ¢

The second kind of refinements we consider are vertical refinements. A vertical refinement
consists on "adding detail” to a specification, in our case completing the given specification or,
similarly, restricting its class of models. In this sense, it seems reasonable to consider vertical
refinements as some class of specification morphism. We have considered a definition which is

13



more restrictive than it, perhaps, could be. In particular, vre have restricted refinement morphisms
to translate constraints injectively. The reason for this is, mainly, methodological. According to
our approach a constraint represents a part of a specification completely defined. In this sense, it
seems reasonable to think that when we are completing a specification the already completed parts

should remain "untouched". A similar restriction is taken in [ETLZ82] but, apparently, just for
technical reasons.

2.5 Definition

A refinement morphism f: <PLE1> - <P2,{2> is a presentation mophism f: P1 — P2,
satisfying:

a. f is injective on constrained sorts and operations, that is for every constraint (P,P") in €1,
if s1,52€ S'-S (resp. opl,0p2e Op'-Op) then f(s1) = f(s2) implies s1 = §2 (resp. f(opl) = f(op2)
implies op1 = op2).

b. f(§1) < ¢2.

2.6 Facts

1. Loose extensions may be seen as special cases of refinement morphisms.

2. Obviously, the composition of vertical refinements is a vertical refinement. Therefore,
vertical composition trivially holds.

3. If f: <P1,{1> <P2,82> is a refinement morphism then Mod(<P2,{2>) | P1 S
Mod(<P1,{1>). This is a consequence of the restriction imposing f to be injective on {1.

4. There are pushouts (amalgamations) associated to categories of specifications (models)
with refinement morphisms (the associated forgetful functors). That is, given specifications SP1 =
<PL,{1>, SP2 = <P2,{2> and SP3 - <P3,03> and refinement morphisms f0: <P1,{1> —
<P2,02> and f1: <P1,{1> — <P3,03> we may define the pushout:

0
SP1 - SP2
f1 f2
SP3 —» SP4
f3

and in addition, Mod(SP4) = Mod(SP3) @yyoqspy, Mod(SP2).

The main operation for defining vertical refinements is presented in the following theorem. In
particular, it shows how we can substitute, within a specification, an incomplete part for a more
complete one. Specifically, it states how a vertical refinement of a given specification SP1 induces
a vertical refinement on any loose extension of SP1. This fact has several interpretations. On one
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hand, the theorem states, in our framework, the horizontal composition property [GB80], namely,
that the order in which we perform vertical and horizontal refinements is not important, On the
other, it shows that in our framework there is no need for parameterization, since any specification
SP2 may be seen as having as implicit parameters all specifications SP1 loosely extended by SP2.
Then, this induced vertical refinement may be seen as a generalized form of parameter passing,
The relation of our construction to parameter passing is very similar to the one found by B. Meyer
[Mey86], at the programming language level, between genericity and inheritance, showing that
inheritance may be seen as a generalization of genericity. Indeed, as it is shown in [CO88], our
notion of vertical refinement may be seen, from a methodological standpoint, as an inheritance
relation defined at the specification level. Obviously, this kind of inheritance relation has nothing
to do with the subtyping (or subsorting) relation also studied in the literature [GM83].

2.7 Theorem

Let SP1, SP2 and SP3 be consistent specifications such that SP2 is a loose extension of SP1
and f: SP1 — SP3 is a refinement morphism. The result of substituting SP1 by SP3 in SP2 is the
specification SP4 = <P4,84> defined by the pushout:

SP1 —& SP2
f f'
SP3 —& SP4

then we have:
1. SP4 is a consistent specification.
2. SP4 is a loose extension of SP3

Proof
1. is an immediate consequence of 2., since if SP4 is a loose extension of SP3 and Mod(SP3)
is not empty then Mod(SP4) is not empty.
2. We know that
Mod(SP4) = Mod(SP3) $Mod(SPl) Mod(SP2)

Now, given an Ae Mod(SP3), we have that A IPIE Mod(SP1). But, if SP?2 is a loose extension
of SP1, there is a Be Mod(SP2) such that B | p; = A | p1. Then, defining:

B'=A®,|p B
we have that B'eMod(SP4) and B' | p3 = A. ¢

In the previous theorem, the fact that SP? is a loos extension of SP1, i.e. Mod(SP2) |p1 =
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Mod(SP1), is absolutely needed to guarantee the consistency of SP4. The situation is similar to
the need of persistency to assure the correctness of parameter passing:

2.8 Theorem

Let SP1 and SP2 be specifications such that SP1 ¢ SP2, then if SP2 is not a loose extension

of SP1 there is a specification SP3 and a refinement morphism f: SP1 — SP3 such that the result,
SP4, of the associated pushout diagram:

SP1 & SP2
f f'
SP3 # SP4

is not consistent.

Proof

If SP2 is not a loose extension of SP1 this means that there is an Ale Mod(SP1) such that for
every A2e Mod(SP2) A2 lPl is not isomorphic to Al. Let SP3 = <P3, {3>, where P3 is the
presentation obtained by adding to P1 all the values from A1l as constants of the appropriate sorts
and all the equations satisfied by A1, and €3 is obtained by adding to €1 the constraint ( &, P3).
Obviously, Mod(SP3) = {Be Alg(P3) / B |py = A1}

Suppose SP4 is consistent, this would mean that there is an A4 in Mod(SP4). But then
A4|p3eMod(SP3), ic. A4 | py | p; = Al. However, this would mean that Ad | p, | p; = A1,
hence A4 | P2 would be a model in Mod(SP2) extending Al.

3. Relative persistency: proof-theoretical results

As we have seen, most of our correctness results depend on the property of relative
persistency. Therefore, if we are interested in the practical use of our ideas we should provide
ways of checking this property. The main problem is that a complete proof system cannot exist for
speciﬁcations with constraints [BBTW81,MS85]. Hence we cannot expect to obtain conditions,
based on equational deduction, equivalent to relative persistency. However, we thought that it was
possible to obtain such a characterization in terms of the theories defined by the specifications.
The idea was that, once a necessary and sufficient condition (in terms of these theories) was
obtained, a relaxation of the condition substituting the theories by the equational theories
associated to the presentations would provide reasonable sufficient conditions that could be
checked using the usual deductive tools associated to equational specifications. In this sense, we
defined hierarchical consistency and sufficient completeness conditions that seemed adequate to
characterize (as for the usual persistency) relative persistency. Our conjecture proved to be
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wrong as we will see, but first let us introduce some notation.

Notation

Given a specification SP = <P, {> and an algebra Ae Mod(SP) we define:
CS(<P, >) = {se S/ 3(P1,P2)e { such that se S2-S1}

NCS(<P, §>) = S - CS(<P, &>)

CZ(<P, £>) = {ope X/ 3(P1,P2)e { such that ope X2-X1}

NCZ (<P, {>) =% - CZ(<P, §>)

Th(SP) = {t1 =12/ t1,2e Ty(X) such that VAe Mod(SP) A |= t1=t2}
Eqns(A) = {t1 = t2/t1,12¢ Tx(A) such that A |= t1=t2}.

In what follows, we will assume that the specifications we are dealing with satisfy the no
circularity condition of definition 1.6, This assumption is technically needed to obtain the results
of this section. Anyhow we could lifted it just defining CS(SP) as the set of sorts that are defined

by "not circular” constraints, i.e. constraints for which the order relation defined in 1.6 is not
reflexive.

3.1 Definition

Given a specification SP = <P, £> and a constraint C = (P1,P2) such that P1c P and
(P2-P1)NP =@ then:

a.Cis ientl m lativ iff Vtle TCZ(SP)+£2(XNCS(SP)) of sort in S1
M2e TZ(XNCS(SP)) such that Th(P, {)+E2 |- t1=¢2,

b. C is hierarchy consistent relative to SP iff Vt1 t2¢ Tcx(sp)+z1(XNCs(sp)) we have

that Th(P, {)+E2 |- t1=t2 iff Th(P, §) |- t1=t2.

These conditions generalize the usual conditions that characterize persistency in the standard
case [Gan83]. Relative sufficient completeness tries to characterize the "no junk” condition, i.e.
that the free functor associated to (P1,P2) does not introduce "junk" on sorts from S1 in algebras
from Mod(SP). The idea of this condition is that the possible junk may be represented by terms of
sort in S1 that contain operations from X2, hence we should ask that these junk candidates should
be equivalent to non-junk terms. However, in the standard case, these terms are over variables of
sort in S1, because we assume that we can have any sets of values as carriers for these sorts. This
is not true anymore, for us the "unknown" sorts are the unconstrained sorts, i.e. these belonging
to NCS(SP). The values of constrained sorts, i.e. these belonging to CS(SP), are generated by
terms in TCZ(SP)(XNCS(SP))' For this reason, we consider as candidates for generating junk
the terms in Tey p), 32 (XNCs(sPY-

Relative hierarchy consistency tries to characterize the usual "no confusion" condition, i.e.
that the free functor associated to (P1,P2) does not identify values from sorts from S1 in algebras
from Mod(SP). The idea is to state that the added equations cannot make deducibly equal two
terms, representing values of the possible models, that were not already equivalent. For the same
reasons as for sufficient completeness, the class of terms that we consider that represent those

values is Ty (sp)+ 1XNCS(SP)-
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Unfortunately, as we said above, these conditions do not really characterize relative
persistency. In what follows we will see that relative sufficient completeness is just a sufficient

condition for the no-junk property, and relative hierarchy consistency is just a necessary condition
for the no-confusion property.

3.2 Lemma
Given a specification SP=<P,{> and an algebra A in Mod(SP) then Vae A, with se CS(SP),
3te TCZ(SP)(ANCS(SP)) suchthat A |=a=t.

Proof

We will prove the lemma by noetherian induction on the order defined among constraints in
the non-circularity condition. Let ae Ag, with se CS(SP) and let C = (P1,P2) be the constraint
such that se §2-S1, then, since A|= C, there should exist a term tle TEZ(MPI)"‘TCE(SP)(MPI)
such that A |= a = t1. Now, all constrained sorts in S1 are "defined" in constraints smaller than C,
then using noetherian induction Vbe Ag, with se CS(SP)nS1, 3teTCE(SP)(ANCS(SP)) such
that A |=b = t. Let us select one of such terms for every b and call it ty. Let o be the substitution
o: ACS(SP)F\SI_" TCZ(SP)(ANCS(SP))’ defined for every b, o(b) = tp. Then, we have that A
|= o(tl) = a and o(tl)e TCZ{SP)(ANCS(SP))' ¢

3.3 Proposition

IfC = (P1,P2) is sufficiently complete relative to SP then for every AOe Mod(SP) it holds
that, for A = AO | py, the unit es: A — A |P2| b is surjective.

Proof

We have to see that for every A in Mod(SP) and for every tle Tyy(Ag1) with sort in S1 there
is 2 12€ Ty (Agy) such that A [P2 | b= t1 = €2 or, equivalently, Eqns(A)+E2 |- t1 = 2.

By the previous lemma we know that there is a t3e TCE(SP) +22(ANCS(SP)) such that
Eqns(A) |- t1 = t3. On the other hand, if C is sufficiently complete relative to SP then there exists a
t2e TZ(ANCS(SP)) such that E2 |- t3 = t2. Therefore, Eqns(A)+E2 |- t1 =t2. ¢

The converse is not true:
3.4 Counter-example:

Let Nat be the usual presentation of the naturals (with 0 and suc) and let PO, P1 and P2 be the
following presentations:

PO=Nat+ opnsa:nat Pl1-=PO+ opns f: nat — nat P2 = PO + opns g: nat — nat
eqns eqns
f(0)=0 g0 =0
f(suc(0)) =0 g(suc(0)) = suc(0)
f(suc(suc(x)) = suc(0) g(suc(suc(x)) = g(a)
fa)=0
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Now, let SP be the specification <P1,{(®,Nat),(P0,P1)}>, we have that the constraint (PO,P2) is
not sufficiently complete relative to SP but it is persistent relative to SP. Being specific, (P0,P2) is
not sufficiently complete relative to SP since from the equations and the theory of SP we cannot
deduce that the term g(suc(suc(0)) is equivalent to any Pl-term. On the other hand, (PO,P2) is
persistent relative to SP since the SP-models are algebras whose values are the natural numbers,
and the value of the constant a is either O or 1 (the possible interpretation of the other operations
are not of interest here) and, on the other hand, the constraint (PO,P2) defines a new function g
on these models, such that either g(n) = if n = 1 then 1 else O or either gn) =ifn =0 then 0

else 1, depending on the value of a in that model. ¢

3.5 Proposition

If for every AOc Mod(SP) it holds that, for A = AQ | p1. the unitey: A - A [P2]p, i
injective then C is hierarchy consistent relative to SP.

Proof

Let t1 and t2 be two terms in TCE(SP)+ZI(XNCS(SP)) such that Th(SP) |t t1=t2. This
means that there is an A0 in Mod(SP) and a substitution o: XNCS(SP) — AQ, such that AQ |
o(t1)=0(t2) and, thus, AQ lpllat G(t1)=0(t2). Now, if Th(SP)+E2 |- t1=t2 this means that
Eqns(A0)+E2 |- o(t1)=0(t2), but then this implies that AQ | p11P2= o(t1)=0(12). @

The converse is not true, even assuming that C is sufficiently complete relative to SP,

3.6 Counter-example:
Let PO, P1 and P2 be the following presentations:

PO= sortss Pl=PO+opnsa:s P2=Pl +opnsf:s s
opns O:s eqns
1:s f0)=0
f(1)=0
fa)=1

Now, let SP be the specification <P1 {(D,P0)}>, we have that the constraint (P1,P2) is, trivially,
hierarchy consistent and sufficiently complete relative to SP but it is not persistent relative to SP,
in fact, the specification <P2,{(@,P0)}> is inconsistent. ¢

Now, if we use a stronger notion of relative sufficient completeness we can prove that
consistency is equivalent to no confusion. The problem is that this kind of sufficient completeness
is too strong if the constraint C is such that S? - S1=0.

3.7 Definition

C = (PL,P2) is strongly sufficiently complete relative to SP iff Vtle Tyy(Xg1) of sort in S1

3t2€ Ty (Xg1) such that Th(SP)+E2 |- t1-2.

19



3.8 Theorem

IfC=(P1,P2)is strongly sufficiently complete relative to SP then C is persistent relative to
SPiff C is hierarchy consistent relative to SP.

Proof

We have to prove that for any A€ Mod(SP) and for any tt' € Ty1(A) if AO |P1 |P2|= t =t'
then A | P1/=t =t". This is equivalent to see that if there exist terms t0, ..., tn € Ty (A) such that t
=10, t'=tn and for any i (0 <i < n) ti &p) +Eqns( A)ti+1 (i.e. we can obtain ti+1 from ti by
Tewriting using an equation from E2 or from Eqns(A)) then Eqns(A)|- t =t'. We will prove, by
induction, that there are terms t0',..., tn'e Ty(A) such that t = t0', t'=tn’ and for anyi(0<i<n)
it holds

a) Eqns(A) |- ti' =ti+1'
and b) E2 |- ti =ti".

By Lemma 3.2, we know that for any ae Ag, such that s is constrained, there is a
te TCZ(SP)(ANCS(SP)) such that Eqns(A) |- t = a. Let us select for any a€ Ag one such t and let
us denote it t; and let 6 be the substitution from ACS(SP) to TC):(SP)(ANC S(SP)) defined o(a)
=t,

Now, we proceed to the definition of the terms ti'. According to the above statement, t0' is
already defined. To define ti+1' we consider two cases:

1) ti &>poti+1. Using that C is strongly sufficiently complete relative to SP we define ti+1'
as the term in Ty 1(A) such that E2 |- ti+1 =ti+1' (in case ti+1 is already in Ty 1(A) we define ti+1'
as ti+1; this is enough to guarantee that tn'=t"). Hence, b) is already proved by construction. To
prove a) it is enough to note that if E2 - ti =ti', E2 |- ti =ti+1 and E2 |- ti+1 =ti+1', then E2 |- ti'
=ti+1". But this means that E2 |- o(ti') = o(ti+1"), with o(ti'),o(ti+1")e TCE(SP)(ANCS(SP))-
Then, using the fact that C is hierarchy consistent relative to SP, we have that E1+Th(SP) |- o(ti)
= o(ti+1"), i.e. Eqns(A)|- o(ti") = o(ti+1"). But this implies Eqns(A) |- ti' =ti+1', for Eqns(A) |- ti'
=o(ti’) and Eqns(A) |- ti+1' = o(ti+1").

Dt “Eqns( A)ti+1. This means that there is a position u in ti and an equation l=r in Eqns(A)
such that til, =1and tifue—r] = ti+1. Let x be a variabie, let t0” be the term tilu¢—x] and let 61 and
G2 be two substitutions associating to x the terms 1 and r, respectively, i.e. 1(t0") = 1 and o2(t0")
= 1. Using the fact that C is strongly sufficiently complete relative to SP, there is a t1" in
Ty 1(AU{x}) such that E2 |- t0"=t1" (in case tO" is already in Ty1(AU{x}) we define t1" as t0").
Now, we define ti+1' as 02(t1"). By construction we have that E2 |-ti+1=ti+1". In addition, also
by construction, if ti+1 is in Ty 1(A) then ti+1'=ti+1 and, therefore, this guarantees tn'= t'. Thus,
we have to prove that Eqns(A)l- ti'= ti+1". Now, we know that E2[- ti'= 01 (t0"), since E2)- ti'=ti
and E2|-ti=61(t0"), and this means that E2[- o(ti) = o(c1(10")), with o(ti), o(c1(t0"))e
TCZ(SP)(ANCS(SP)) and, therefore, using the fact that C is hierarchy consistent relative to SP,
we have that E1+Th(SP) |- o(ti") = o(c1(t0"), i.e. Eqns(A)|- o(ti") = 6(o1 (t0")), but this implies
Eqgns(A) |- ti' =o1(t0"), for Eqns(A) |- ti' = o(ti") and Eqns(A) |- 61(t0") = 6(c1(t0")). Finally,
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we have that Eqns(A) |- o1 (t0") = 62(t0") and, thus, Eqns(A) |- ti'=ti+1'. ¢

From the previous definitions and results we may provide "provable” conditions, namely

conditions that, instead of being stated in terms of the theory associated to SP, are stated in terms
of equational deduction from P,

3.9 Definition

Given a specification SP = <P, {> and a constraint C = (P1,P2) such that P1¢c P and
(P2-P1)NP =@ then:

Cis provably sufficiently complete relative to SP iff Vile TCE(SP)_,_zz(XNCS(SP)) of sort
in S1 3t2e TE(XNCS(SP)) such that E+E2 |- t1=t2.

Cis sufficiently complete iff V“ETEZ(XSI) of sort in S1 M2e Ty (Xg ) such that E2 |-
t1=t2.

Cis iff Vt1,t2e Tcx(sp) +ZI(XNCS(SP)) we
have that E+E2 |- t1=t2 iff E [- t1=t2,

The relation between provably sufficient completeness and no junk is just a direct
consequence of 3.3, since if C is provably sufficiently complete relative to SP then C is
sufficiently complete relative to SP. The case for consistency is not quite the same. It is not clear
whether if C is provably hierarchy consistent relative to SP then C is hierarchy consistent relative

to SP. However, proposition 3.11 can be proved without problems by means of a proof identical
to the one of theorem 3.8.

3.10 Corollary

IfC=(P1,P2)is provably sufficiently complete relative to SP then for every AQe Mod(SP) it
holds that, for A = AQ |p1, theunitez: A — A | P2 IPl is surjective.

3.11 Proposition

If C=(P1,P2) is sufficiently complete then C is persistent relative to SP iff C is hierarchy
consistent relative to SP,

4. Conclusions and related work

We have presented a formal framework for the development of specifications. The main
issues concerning the approach are the following:

- We allow to deal with incomplete specifications during the design process. Technically, this
is handled by the use of initial constraints and loose semantics.

- As for programs, the design process is presented as a two-dimensional refinement process.
Here, vertical refinements consist on completing the refined specification.

- The usual composition properties for refinements hold in our framework. In addition, the
horizontal composition theorem defines a generalization of parameter passing as it is usually
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horizontal composition theorem defines a generalization of parameter passing as it is usually
presented.

- Specification building operations have been defined according to both kinds of refinements,
Moreover, there is compatibility between the specification level and the model level semantics of
these operations.

- Proof-theoretic conditions for assuring that the specification building operations are
correctness-preserving, in the sense that when applied under adequate conditions to correct
(consistent) specifications they yield correct (consistent) specifications, have been established.
These conditions are, in some cases, not sufficiently good. However, we expect that some better
results could be obtained by imposing some restrictions on specifications.

Many of the methodological ideas of this paper have been heavily influenced by the work on
loose semantics and program (specification) design done by Sannella, Wirsing and Tarlecki (e.g.
[ST87a, ST87b, SW83]). However, the main difference between both approaches is our concern
with proof-theory. In their framework, all the specification building operations are defined only at
the model level, without any reference to the specification level. This simplification makes almost
impossible checking the correctness of a given specification. On the contrary, we have all the time
worked with full compatibility between the specification and the model levels so that internal or
external correctness of a given specification can be tested. In particular, internal correctness can be
checked by proving the conditions that assure the consistency of a specification. External
correctness can be tested by prototyping, for instance by term rewriting.

To end, it must be said that, technically, this paper may be seen as a continuation of
[ETLZ82]. In that paper the language Look was introduced based on specifications as ours, Also,
parameter passing was generalized to a substitution operation as ours. However they were unable
to obtain the kind of compatibility we do. In fact, this was posed as an open problem at the
conclusions of that paper. Also, no attempt was made to provide persistency-like correctness
conditions or to characterize them proof-theoretically.
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