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Abstract

EasyPBC is an ABAQUS CAE plugin developed to estimate the homogenised effective elastic properties of user created 

periodic representative volume element (RVE), all within ABAQUS without the need to use third-party software. The 

plugin automatically applies the concepts of the periodic RVE homogenisation method in the software’s user interface by 

categorising, creating, and linking sets necessary for achieving deformable periodic boundary surfaces, which can distort 

and no longer remain plane. Additionally, it allows the user to benefit from finite element analysis data within ABAQUS 

CAE interface after calculating homogenised properties. In this article, the algorithm of the plugin based on periodic RVE 

homogenisation method is explained, which could be developed for other commercial FE software packages. Furthermore, 

examples of its implementation and verification are illustrated.
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1 Introduction

For many materials, such as metals, design strength and 

stiffness characteristics are usually met by providing excess 

unnecessary strength in unloaded directions leading to 

weight and cost increase. The alternative is composite mate-

rials, which can be designed with customisable properties to 

support the applied loads, leading to a significant decrease 

in weight, and potentially creating parts with specific capa-

bilities. These properties are the result of using materials 

differing in composition, where the individual constituents 

retain their separate identities [1], and act together to give 

the necessary mechanical strength and stiffness to the com-

posite part [2]. However, engineering with composites is 

more challenging than metals, because their properties are 

inherited from constituent materials and depend on manu-

facturing process, material properties, geometrical configu-

rations, etc., which leads to uncertainties at different scales. 

Nevertheless, much research has been conducted to address 

these design issues [3]. A common approach to designing 

parts with composite materials is to homogenise the elastic 

stiffness properties between scales, which provides an esti-

mate for the effective elastic properties. Several theoreti-

cal homogenisation methods are available, such as Chamis’ 

micromechanical model equations [4], and the asymptotic 

mean-field homogenisation approach by Mori–Tanaka [5]. 

However, these methods are incapable of accommodating 

the effect of geometrical variations of constituent materi-

als at the microscale. Thus, using a finite element-based 

numerical approach such as the representative volume 

element (RVE) homogenisation method is more accurate, 

widely recommended to predict the effective elastic prop-

erties of composites [6], and it is becoming the standard 

approach for composite materials [7]. The same concept can 

be applied for other hybrid materials such as solids with 

voids inclusion.

The RVE term was first used by Hill [8] and it can be 

defined as the smallest material volume element for which 

the macroscopic constitutive representation is a sufficiently 

accurate model to represent mean constitutive response [9]. 

Therefore, the RVE shall be selected/modelled such that 

duplicating it provides sufficient accuracy of representing 

the material’s larger scales (see Fig. 1). When it comes to 

the RVE homogenisation method, it requires imposition of 

 * Sadik L. Omairey 

 s.omairey@abdn.ac.uk

1 School of Engineering, University of Aberdeen, 

Aberdeen AB24 3UE, UK

2 Lloyd’s Register Foundation (LRF) Centre for Safety 

and Reliability Engineering, University of Aberdeen, 

Aberdeen AB24 3UE, UK

http://orcid.org/0000-0001-9991-5291
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-018-0616-4&domain=pdf


568 Engineering with Computers (2019) 35:567–577

1 3

uniform strains on a microscale RVE to compute the effec-

tive elastic properties. Periodic boundary conditions (PBCs) 

are also required to simulate the deformation of the material 

surrounding the RVE. In other words, PBCs will ensure that 

the RVE-deformed external surfaces remain periodic (see 

Fig. 2).

The implementation of these PBCs is achievable using 

commercial finite element software, such as ABAQUS 

[10]. Some benefits of using commercial software are the 

complete control over the RVE geometry, and access to a 

wide range of analysis data, i.e., stresses, strains, reaction 

forces and energy values. Nevertheless, there are no built-

in tools that can automatically impose these PBCs. There-

fore, complex and time-consuming user inputs and/or using 

other software is required. EasyPBC (for easy generation of 

PBCs) is developed to automatically find and generate the 

required boundary node sets, constraint equations, displace-

ment boundary conditions, and post-processing calculations 

to find the effective elastic properties, all within a graphical 

user interface (GUI) running under the ABAQUS CAE, as 

shown in Fig. 3. This interface is presented in the simplest 

possible way, allowing the user to select the required homog-

enised elastic property(ies), and set the mesh mapping accu-

racy limit if required, making it less complicated and more 

user-friendly by eliminating viewport selection operations. 

At the same time, embedded step-by-step checks are run to 

ensure that the homogenisation computation is running with-

out errors, otherwise, it notifies the user of their occurrence.

This article briefly explains the periodic RVE homog-

enisation method, then thoroughly illustrates the two-stage 

methodology of EasyPBC. This is followed by applications 

of analysing RVEs with geometrical variations, and com-

parisons with other tools. Moreover, as part of explaining 

the plugin’s algorithm in this article, it addresses the lit-

eratures’ lack of information surrounding the implementa-

tion of periodic RVE homogenisation in commercial FE 

software.

2  Periodic RVE homogenisation

The concept of RVE homogenisation is to numerically 

impose uniform strains to compute the effective elastic 

properties of a composite model, as can be seen in Fig. 4. 

Generally, these strains are applied in several independ-

ent sets, with each set calculating specific elastic material 

properties, as detailed in Sect. 3.2. The RVE is assumed to 

be a part of a periodic material, therefore, it is important to 

Fig. 1  Representation of two-

phase composite component 

build-up from duplicated RVEs

Fig. 2  Illustration of periodical 

RVEs build-up before and after 

loading
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simulate the periodicity of the RVE with the surrounding 

material before and after being strained in FE software. 

Earlier homogenisation studies achieved periodicity by 

imposing boundary conditions that ensure RVE’s plane 

boundary surfaces remain plane after deformation [11, 12]. 

This is only correct for a transversely isotropic RVE under 

longitudinal and transverse strains. However, that is not 

the case for orthotropic representation and shear modulus 

estimation, since it will over-constrain the RVE, leading to 

overestimating the composite elastic properties [13]. Thus, 

it is necessary to apply node-to-node periodic conditions, 

at which deformed boundary surfaces can distort and no 

longer remain plane [14, 15]. Achieving these periodic-

ity conditions requires linking nodal degrees of freedom 

(DoF) in commercial FE software, based on concepts of 

unified periodic RVE homogenisation [13] as illustrated 

in Eq. 1–9.

Fig. 3  EasyPBC main window

Fig. 4  Schematic representa-

tion of displacement boundary 

conditions required to estimate 

the effective elastic properties
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For elastic modulus E11:

For shear modulus G12:

 where X, Y, and Z are displacement components along X, 

Y, and Z direction, respectively. Assigned value is the pre-

scribed displacement value. Refer to Fig. 6 to identify Front-

Back, Left-Right, and Top-Bottom surface alignment with 

X, Y, and Z direction.

3  Software methodology

EasyPBC is written in the Python programming language 

utilising ABAQUS commands. To make the plugin avail-

able in ABAQUS CAE interface, the code is simply placed 

in abaqus_plugin directory before start-up. The plugin runs 

two main phases to estimate the homogenised elastic prop-

erties by implementing concepts of unified periodic RVE 

homogenisation method, these are the pre-processing and 

post-processing phases. The first phase determines RVE’s 

geometrical dimensions, identifies boundary surfaces, cre-

ates nodal sets, creates node-to-node constraint equations, 

and applies the required displacement boundary conditions. 

Whereas the post-processing phase handles stress–strain 

calculations, and other operations related to estimating 

(1)XFront − XBack = Assigned value

(2)XTop,Left − XBottom,Right = 0

(3)YTop,Front,Left − YBottom,Back, Right = 0

(4)ZFront,Top,Left − YBack,Bottom,Right = 0

(5)XFront,Left − XBack,Right = 0

(6)YFront − YBack = Assigned value

(7)XTop − XBottom = Assigned value

(8)YTop,Left − YBottom,Right = 0

(9)ZFront,Top,Left − YBack,Bottom,Right = 0

the elastic properties. These main operations are shown in 

EasyPBC flowchart (Fig. 5), and explained thoroughly next.

3.1  Pre-processing phase

The input for EasyPBC to start the pre-processing phase is the 

user’s created RVE model, including definition of constituent 

materials’ properties and meshing. This allows the user to have 

full control of geometry creation and meshing options. Once 

done, the software imports the above information and work 

specifically on the selected model and instance (see Fig. 3), 

using nodal coordinates as input data to find maximum and 

minimum points in all three directions of the RVE (Max. and 

Min. of X, Y and Z directions). These values are the foundation 

for calculating the RVE’s boundary dimensions and finding its 

corners, edges, and surfaces, as shown in Fig. 6. To categorise 

nodes into these sets, each node must meet specific coordinate 

conditions, similar to the four examples illustrated in Fig. 7. 

Once a node meets the condition(s) of a specific node set (cor-

ner, edge or surface), it is inserted into an array that contains 

the label(s) of that set. To decrease processing time, the code 

avoids checking any node embedded within the RVE between 

boundary surfaces, which are nodes with none of its coordi-

nates equal to any maximum or minimum values.

Fig. 5  EasyPBC processing flowchart
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The generated node sets now require sorting to facilitate 

the linking of nodal degrees of freedom to implement PBCs. 

To achieve this, for each node in associated sets/pairs (as 

illustrated in Table 1), the code identifies its correspond-

ing node in the opposite set when the coordinate difference 

between the two nodes is smaller than a specified mapping 

Fig. 6  Sets required to perform 

EasyPBC homogenisation

Fig. 7  Examples of node set categorisation conditions
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Table 1  EasyPBC liner constraints equations and displacement boundary conditions

Young’s moduli (E11, E22, and E33) liner constraints equations and load boundary conditions*

Constraint equations: A × UDoF

set1
 + B × UDoF

set2
 + C × UDoF

RP(i)
 = 0

Set 1 Set 2 DoF A B C RP(i)

TopS BotS 1, 2, 3 1 − 1 − 1 N/A,5, N/A

FrontS BackS 1, 2, 3 1 − 1 − 1, 0, 0 4, N/A, N/A

LeftS RightS 1, 2, 3 1 − 1 0, 0, − 1 N/A, N/A, 6

F.T.edge B.T.edge 1, 2, 3 1 − 1 − 1, 0, 0 4, N/A, N/A

B.T.edge B.B.edge 1, 2, 3 1 − 1 0, − 1, 0 N/A, 5, N/A

B.B.edge F.B.edge 1, 2, 3 1 − 1 1, 0, 0 4, N/A, N/A

F.L.edge B.L.edge 1, 2, 3 1 − 1 − 1, 0, 0 4, N/A, N/A

B.L.edge B.R.edge 1, 2, 3 1 − 1 0, 0, − 1 N/A, N/A, 6

B.R.edge F.R.edge 1, 2, 3 1 − 1 1, 0, 0 4, N/A, N/A

L.T.edge L.B.edge 1, 2, 3 1 − 1 0, − 1, 0 N/A, 5, N/A

L.B.edge R.B.edge 1, 2, 3 1 − 1 0, 0, − 1 N/A, N/A, 6

R.B.edge R.T.edge 1, 2, 3 1 − 1 0, 1, 0 N/A, 5, N/A

C6 C2 1, 2, 3 1 − 1 0, 1, 0 5

C2 C3 1, 2, 3 1 − 1 0, 0, − 1 6

C3 C4 1, 2, 3 1 − 1 1, 0, 0 4

C4 C8 1, 2, 3 1 − 1 0, − 1, 0 5

C8 C5 1, 2, 3 1 − 1 0, 0, 1 6

C5 C1 1, 2, 3 1 − 1 0, 1, 0 5

C1 C7 1, 2, 3 1 − 1 − 1 4, 5, 6

Displacement boundary conditions

Elastic moduli Set Boundary condition value of

Displacement DoF1 Displacement DoF2 Displacement DoF3 Rotation DoF1 Rotation DoF2 Rotation DoF3

E11 RP4 Assigned value Unset Unset Unset Unset Unset

E22 RP5 Unset Assigned value Unset Unset Unset Unset

E33 RP6 Unset Unset Assigned value Unset Unset Unset

Shear moduli (G12, G13, and G23) liner constraint equations and boundary conditions *

Constraint equations: A × UDoF

set1
 + B × UDoF

set2
 + C × UDoF

RP(i)
 + D × UDoF

RP(j)
+ E × U

DoF
RP(k)

 = 0

Set 1 Set 2 DoF A B C RP(i) D RP(j) E RP(k)

TopB.C BotB.C 1, 2, 3 1 − 1 − 1 4, 1, 6 0 N/A 0 N/A

LeftB.C RightB.C 1, 2, 3 1 − 1 − 1 5, 6, 2 0 N/A 0 N/A

FrontB.C BackB.C 1, 2, 3 1 − 1 − 1 3, 4, 5 0 N/A 0 N/A

F.T.edge B.T.edge 1, 2, 3 1 − 1 − 1 3, 4, 5 0 N/A 0 N/A

B.T.edge B.B.edge 1, 2, 3 1 − 1 − 1 4, 1, 6 0 N/A 0 N/A

B.B.edge F.B.edge 1, 2, 3 1 − 1 1 3, 4, 5 0 N/A 0 N/A

F.L.edge B.L.edge 1, 2, 3 1 − 1 − 1 3, 4, 5 0 N/A 0 N/A

B.L.edge B.R.edge 1, 2, 3 1 − 1 − 1 5, 6, 2 0 N/A 0 N/A

B.R.edge F.R.edge 1, 2, 3 1 − 1 1 3, 4, 5 0 N/A 0 N/A

L.T.edge L.B.edge 1, 2, 3 1 − 1 − 1 3, 1, 6 0 N/A 0 N/A

L.B.edge R.B.edge 1, 2, 3 1 − 1 − 1 5, 6, 2 0 N/A 0 N/A

R.B.edge R.T.edge 1, 2, 3 1 − 1 1 4, 1, 6 0 N/A 0 N/A

C6 C2 1, 2, 3 1 − 1 1 4, 1, 6 0 N/A 0 N/A

C2 C3 1, 2, 3 1 − 1 − 1 5, 6, 2 0 N/A 0 N/A

C3 C4 1, 2, 3 1 − 1 1 3, 4, 5 0 N/A 0 N/A

C4 C8 1, 2, 3 1 − 1 − 1 4, 1, 6 0 N/A 0 N/A
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accuracy. The default value of mapping accuracy is 1E-7 as 

shown in Fig. 1, which assumes the mesh structure is nearly 

identical on opposite sides of the RVE, this value is adjust-

able based on users mapping accuracy. Once a pair of nodes 

is found, both are appended in the same order in their sets as 

illustrated in Fig. 8.

With the generation of the required 32 node sets, the 

code completes the set generation phase. The occurrence 

Fig. 8  Algorithm for appending 

nodes within associated sets

Table 1  (continued)

Shear moduli (G12, G13, and G23) liner constraint equations and boundary conditions *

Constraint equations: A × UDoF

set1
 + B × UDoF

set2
 + C × UDoF

RP(i)
 + D × UDoF

RP(j)
+ E × U

DoF
RP(k)

 = 0

Set 1 Set 2 DoF A B C RP(i) D RP(j) E RP(k)

C8 C5 1, 2, 3 1 − 1 1 5, 6, 2 0 N/A 0 N/A

C5 C1 1, 2, 3 1 − 1 1 4, 1, 6 0 N/A 0 N/A

C1 C7 1, 2, 3 1 − 1 − 1 3, 1, 2 -1 4, 4, 5 -1 5, 6, 6

Displacement boundary conditions

Shear moduli Set Boundary condition value of

Displacement 

DoF1

Displacement 

DoF2

Displacement 

DoF3

Rotation DoF 1 Rotation DoF 2 Rotation DoF 3

G12 RP4 Assigned value unset unset unset unset unset

RP5, RP6 0 0 0 unset unset unset

G13 RP5 unset Assigned value unset unset unset unset

RP4, RP6 0 0 0 unset unset unset

G23 RP6 unset unset Assigned value unset unset unset

RP4, RP5 0 0 0 unset unset unset

* For Elastic moduli,  RP4,5,6 are used to account for both rigid body motion and assign displacements. Whereas in Shear moduli,  RP4,5,6 are only 

used to assign displacements, while rigid body motion is considered using  RP1,2,3
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of any error stops further operations (beyond creating 

sets) and the user is provided with an error message. If 

the error is a result of mismatch mesh mapping, the code 

will create a set of the nodes that are causing that error, 

helping the user to rectify model meshing and/or adjust 

the EasyPBC mapping accuracy value. For example, ana-

lysing the Model shown in Fig. 9 using the default map-

ping accuracy value 1E-7 will trigger mapping mismatch 

error indicating mesh mapping differences. The solution 

is either improved re-meshing and/or increasing mapping 

accuracy value. In this example, the use of 1E-5 was suf-

ficient to avoid mesh mapping error. It is important to note 

that if the selected mapping accuracy value is large, there 

will be possibilities of linking more than two nodes in each 

constraints equation, yet, EasyPBC will detect that through 

size checks for opposite sets to ensure that each node in a 

set is linked to a single node in the opposite/associated set 

and inform the user. In case of no errors, the next step is to 

link nodal degrees of freedom for opposite/associated sets.

Estimating each elastic property requires a different com-

bination of PBCs and displacement boundary conditions, 

which involves different ABAQUS analysis jobs. Yet, Pois-

son’s ratios for the two transverse directions can be calcu-

lated using data from the Young’s moduli jobs (see Fig. 3). 

PBCs are implemented using linear constraint equations to 

link nodal degrees of freedom. The process starts by con-

verting boundary sets to single-node sets, because the linear 

constraint equation function in the ABAQUS CAE interface 

is operationally limited to sets containing a single node [10]. 

Hence, the sorting process explained earlier becomes useful, 

because these single-node sets can be created with matching 

node labels and locations for associated sets to ease linking 

every pair using a linear constraint equation. These con-

straint equations take coefficients, i.e., degrees of freedom 

and reference points. The use of reference points is neces-

sary to impose boundary displacements, and accommodate 

rigid body motion. These constraint equations associated 

with elastic and shear moduli are detailed in Table 1 and 

will be applied by the code as part of this phase.

PBC constraint equations are mainly divided into two 

sets: Young’s moduli (and Poisson’s ratios), and shear 

moduli. The code creates these two sets of constraint equa-

tions based on required homogenised properties, where the 

different moduli are implemented by changing applied dis-

placements on specific reference points through boundary 

conditions. For example, if the user requests E11, E22 and G12 

homogenised properties, the code will create a single set of 

PBC constraint equations that will be applied for both E11 

and E22, after completion, the code will delete the previous 

set, and create shear set of PBC constraint equations for G12. 

See Eq. 1–9 and Table 1.

3.2  Post-processing phase

During pre-processing, essential data are collected and stored 

such as RVE dimensions, corner coordinates, user input 

requests, etc., however, key data are established once job sub-

mission is completed, marking the start of the post-processing 

phase. Post-processing for estimating the Young’s moduli and 

Poisson’s ratios is different than shear moduli, therefore, each 

is explained individually in the following sections.

3.2.1  Post‑processing for Young’s modulus and Poisson’s 

ratio

Applied displacements on the RVE surface are resisted 

internally, creating boundary nodal forces at the displaced 

boundary surfaces. Default settings of ABAQUS does not 

output reaction force data. Therefore, as stated earlier, these 

are requested for the reference point assigned to apply the 

displacement on a specific surface based on required elastic 

modulus. The value of the reaction force at a reference point 

is the sum of relevant direction principle boundary nodal 

forces generated at the effected boundary nodes. This value 

Fig. 9  Illustration of mesh map-

ping error set
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is divided by the area of that effected surface to provide 

the stress value that corresponds to the prescribed strain 

(prescribed displacement divided by RVE length along the 

main effected axis). The stress value is then used to estimate 

Young’s modulus by dividing it by the known strain as illus-

trated in Eq. 10 and Fig. 10.

Aforementioned, the data output generated in the same job 

for calculating Young’s modulus is also used to estimate Pois-

son’s ratios (for two transverse directions) using transverse 

strain data. This is achieved by calculating the transverse 

strain and dividing it by the applied axial strain, as illustrated 

in Eq. 11 and Fig. 10.

3.2.2  Post‑processing for Shear modulus

Shear moduli are estimated by dividing the shear stress value 

by the shear strain of both corresponding direction, i.e., for 

G12. The shear stress value is calculated by extracting the sum 

of relevant direction principle boundary nodal forces from the 

assigned reference point reaction forces of either strained sur-

face (see Fig. 4; Table 1), divided by the effected surface area, 

as shown in Eq. 12 and Fig. 10.

(10)

E =
Stress

Axial strain
, E11 =

∑

Front surface nodal forces in 1-Direction

Front surface area(H×W)

ΔL

L

(11)v =
−Transvers strain

Axial strain
, v12 =

ΔH

H

ΔL

L

, v13 =

ΔW

W

ΔL

L

(12)

G =
Shear stress

Tensors of shear strain
, G12 =

∑

Top surface nodal forces in 1-Direction

Top surface area (L×W)

Δ1

H
+

Δ2

L

4  Application

Chamis micromechanical model equations [4] are being 

used widely to estimate matrix–fibre composite elastic 

properties, it assumes that both matrix and fibres are lin-

early elastic and fibres are spaced periodically in square-

packed or hexagonal-packed arrays [16]. Thus, this model 

only takes into consideration constituent material proper-

ties and their volume ratio. Consequently, it is not possi-

ble to account for other geometrical configurations. Such 

geometric variations exist in composites and their effect is 

explored in many studies [11, 17, 18]. Therefore, using the 

periodic RVE homogenisation approach is essential, as it 

can analyse general geometries [19]. Moreover, using FE 

allows collecting analysis data for further investigations. 

This is possible using EasyPBC as it allows the user to 

request additional outputs if needed, and allow access to 

ABAQUS job output data.

To demonstrate the use of EasyPBC and the capability 

of capturing geometric variations, the elastic properties 

are determined for an RVE with identical fibres, arranged 

hexagonally and spaced equally with properties given in 

Table 2. This is compared with the properties of three 

more RVEs modelled with: off-centre fibre shift, ellipti-

cal cross-sectional fibre and change in fibre diameter, as 

detailed in Fig. 11. It can be seen that EasyPBC is capable 

Fig. 10  Model subjected displacements to estimate Young’s modulus, Poisson’s ratios and shear modulus

Table 2  Material properties of boron–aluminium composite [14]

Constituents Elastic property

Elastic modulus E 

(GPa)

Poisson’s 

ratiov

Modelled 

volume 

ratio

Fibre 379.3 0.1 ≅0.56

Matrix 68.3 0.3 ≅0.44
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of capturing these variations even though all RVEs have 

the exact same fibre volume ratio V
f
 , see Table 3.

On the other hand, to verify the above result, good 

agreement is observed between the properties estimated 

using EasyPBC and the FE tool available in Digimat soft-

ware [20] as can be seen in Table 3 for both the deter-

ministic and the off-centre fibre shifting RVEs. The other 

two RVEs (cross-sectional shape, and change in fibre 

diameter) are not analysed with Digimat FE due to soft-

ware’s modelling options limitation. This highlights the 

modelling flexibility that EasyPBC provides within the 

ABAQUS software. Results obtained are for RVEs mod-

elled in ABAQUS, and analysed using approximately 

36,000 wedge elements. Whereas, approximately 74,000 

tetrahedral elements are used in the model generated and 

analysed by Digimat FE.

In addition to the above composite RVE applications, 

and because EasyPBC allows the user to create models 

within ABAQUS, it can analyse models constructed with 

multiple phase, phases with different shapes within the 

model, any material property orientations and inclusion of 

voids, etc. However, it is important to note that the current 

version of the plugin can only analyse cuboid models, with 

external faces parallel to the global ABAQUS coordinate 

system. The user supplied model must also contain at least 

eight nodes (i.e., the corners).

Fig. 11  Fibre–matrix composite 

RVEs modelled with geometri-

cal variations and constant Vf 

ratio

Table 3  Effective elastic 

properties estimated using 

EasyPBC and Digimat

Elastic 

property

Unit Homogenised by Digimat Homogenised by EasyPBC

Determin-

istic RVE

Off-centre 

fibre shifting

Determin-

istic RVE

Off-centre 

fibre shifting

Elliptical 

fibre shape

Fibre diam-

eter variation

E11 GPa 245.0 245.0 244.5 244.5 244.5 244.5

E22 143.2 146.4 143.5 146.7 143.4 145.1

E33 143.3 144.0 143.5 144.5 143.9 145.1

G12 GPa 64.8 66.3 64.8 66.3 64.3 64.5

G13 64.8 64.4 64.8 64.4 65.3 64.5

G23 69.6 68.9 69.8 69.1 69.7 68.6

v12 ratio 0.175 0.173 0.175 0.173 0.176 0.175

v21 0.103 0.104 0.103 0.104 0.103 0.104

v23 0.346 0.342 0.345 0.340 0.345 0.337
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5  Conclusions

Estimating the effective elastic properties is an important 

step in designing and analysing composite materials. There-

fore, several methods have been developed to estimate these 

properties such as the theoretical Chamis equations that are 

based on rule of mixture, and the more accurate numeri-

cal periodic RVE homogenisation. Nevertheless, in case of 

the latter method, there are no clear instructions and built-

in tools that allow the user to calculate elastic properties 

of a desired model within a commercial FE software in an 

efficient and accurate manner. As a solution, the EasyPBC 

plugin is created to work with ABAQUS CAE without the 

need to use a third-party software. The mechanical concept 

of the plugin is imposing uniform strains on the RVE to 

compute the effective elastic properties. Meanwhile, main-

taining RVE’s unified periodicity by automatically applying 

the required constraint equations and displacement boundary 

conditions. The plugin makes all of this possible within the 

user interface without the need for further calculations, cod-

ing, or using other software, which contributes to improv-

ing the efficiency by reducing error possibilities, saving the 

user’s effort and time. Moreover, EasyPBC is capable of 

analysing a user’s fully customised models, whereas other 

software are limited by specific geometry creation options. 

This make EasyPBC an effective open-source tool for stud-

ies of various backgrounds requiring periodic RVE homog-

enising, with the ability to use analysis data for further 

examinations. It is also thought that the approach detailed 

in this paper could be developed for other commercial FE 

software packages.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco 

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the 

Creative Commons license, and indicate if changes were made.
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