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Abstract The Neutrino Mass Ordering (NMO) remains

one of the outstanding questions in the field of neutrino

physics. One strategy to measure the NMO is to observe mat-

ter effects in the oscillation pattern of atmospheric neutrinos

above ∼ 1 GeV, as proposed for several next-generation neu-

trino experiments. Moreover, the existing IceCube DeepCore

detector can already explore this type of measurement. We

present the development and application of two independent

analyses to search for the signature of the NMO with three

years of DeepCore data. These analyses include a full treat-

ment of systematic uncertainties and a statistically-rigorous

method to determine the significance for the NMO from a

fit to the data. Both analyses show that the dataset is fully

compatible with both mass orderings. For the more sensi-

tive analysis, we observe a preference for normal ordering

with a p-value of pIO = 15.3% and CLs = 53.3% for the

inverted ordering hypothesis, while the experimental results

from both analyses are consistent within their uncertain-

ties. Since the result is independent of the value of δCP and

obtained from energies Eν � 5 GeV, it is complementary to

recent results from long-baseline experiments. These anal-

yses set the groundwork for the future of this measurement

with more capable detectors, such as the IceCube Upgrade

and the proposed PINGU detector.

1 Introduction

The question of the Neutrino Mass Ordering (NMO) is one

of the main drivers of the field of neutrino oscillation physics.

The NMO describes the ordering of the three neutrino mass

eigenstates m1, m2, and m3. The two possible scenarios

depend on the sign of �m2
31 = m2

3 − m2
1, often referred

to as the atmospheric mass splitting, where negative values

are known as Inverted Ordering (IO) and positive values as

Normal Ordering (NO).

The three neutrino mass states do not correspond directly

to the three neutrino flavor states νe, νμ, and ντ . Instead,

each mass state is a superposition of the flavour states, with

the mixing described by the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix U [1–3], such that

να =

3∑

i=1

Uα,iνi , (1)

where α ∈ {e, μ, τ } labels the flavor states and i ∈ {1, 2, 3}

labels the mass states. By convention, ν1 is the state contain-

∗ e-mail: analysis@icecube.wisc.edu
a e-mail: justin.evans@manchester.ac.uk
b Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo

113-0032, Japan

ing the most electron flavor, and ν3 is the state containing the

least.

The mixing matrix U can be parameterized by a CP-

violating phase δCP and three mixing angles θ12, θ13, and

θ23. In the case of Majorana neutrinos, two additional phases

are included, which are of no relevance for this work. Since

U is non-diagonal, flavor changes are observed depending on

the energy and propagation distance of a neutrino, which are

commonly known as neutrino oscillations. The oscillations

are described by the mass splittings, mixing angles, and the

CP-violating phase [4].

For propagation through dense matter, the neutrino oscil-

lations are modulated by interactions with electrons, which

give rise to matter effects [5] such as the so-called MSW

effect and parametric enhancement [6–10]. Depending on

the NMO, these modulations arise mainly in the neutrino

(NO) or anti-neutrino channel (IO) [11]. In measurements

of solar neutrino oscillations, they were used to determine

the ordering of the neutrino states ν1 and ν2 by finding

m2 > m1. Moreover, these modulations can be observed

for atmospheric neutrinos that undergo matter effects dur-

ing their propagation through the Earth. In contrast to long-

baseline accelerator experiments, the signature observed in

IceCube is largely independent of the value of δCP, which

allows for a complementary measurement of the NMO at

higher energies, using atmospheric neutrinos [12].

Atmospheric neutrinos are produced in the Earth’s atmo-

sphere by interactions of cosmic rays with the nucleons of

the air, generating mesons. These mesons decay generating

electron and muon (anti-)neutrinos, which propagate through

the Earth and can eventually be detected by an underground

neutrino detector, such as IceCube [13]. The baseline of

propagation through Earth can be inferred by measuring the

incoming zenith angle of the neutrino. The highest-energy

oscillation maximum arises at Eν ∼ 25 GeV for vertically

up-going neutrinos, moving to lower energy at shorter base-

lines towards the horizon. For energies above a few GeV,

the oscillations are mostly driven by the parameters θ23 and

�m2
31, which are therefore referred to as atmospheric oscil-

lation parameters [4], while for vacuum only oscillations

the value of θ13 is too small for any detectable effect. Con-

sidering matter effects, however, the effective value of θ13

under the right conditions can become sizeable, resulting in

oscillation with electron flavors as shown in Fig. 2.

In atmospheric oscillations, the impact of the presence of

matter arises mainly below Eν ∼ 15 GeV. The strength of

these matter effects depends on the Earth’s matter profile,

which we take as given by the Preliminary Reference Earth

Model (PREM), shown in Fig. 1 [14].

The oscillation probabilities for muon-flavored atmo-

spheric neutrinos and anti-neutrinos to be found in the flavor

state α ∈ {e, μ, τ } for a given zenith angle θν , and neu-

trino energy Eν , are shown in Fig. 2. They are calculated
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Fig. 1 Earth density profile, according to the Preliminary Reference

Earth Model (PREM) and its approximation by 4- and 12-layers of

constant density (commonly called PREM4 and PREM12, respec-

tively) [14]

with the PROB3++ [15] package and the PREM12 approx-

imation (cf. Fig. 1), which are consistently used throughout

this work. Due to the Earth’s geometry and its core-mantle

structure, the visible modulations of atmospheric neutrino

oscillations feature a clear zenith-dependence.

Note that the oscillation patterns for neutrinos and anti-

neutrinos flip between the two orderings. Thus, the NMO can

be determined by finding the enhancement in transition prob-

abilities from matter effects either in the neutrino channel

(NO) or anti-neutrino channel (IO). For detectors insensitive

to distinguishing neutrinos from anti-neutrinos on an event-

by-event level, the NMO still leads to a visible net-effect

in the amplitude of the observed matter effects, because the

atmospheric fluxes and the cross sections for neutrinos and

anti-neutrinos differ [16,17]. These differences mean that

atmospheric neutrinos are measured at higher rates than the

corresponding anti-neutrinos. Due to this rate difference, the

strength of observed matter effects in a combined sample of

neutrinos and anti-neutrinos is increased in case of NO and

decreased in case of IO, which is the main signature targeted

in this work.

The determination of the NMO has important implications

for searches for neutrinoless double-β decay, where the entire

mass region allowed in the case of IO is in reach of the next

generation of experiments [18,19]. The NMO must also be

determined as part of the search for CP-violation in the lepton

sector, where the sensitivity to δCP depends strongly on the

ordering [20,21]. Therefore, a measurement of the NMO is

targeted by several future long-baseline, reactor, and atmo-

spheric neutrino experiments, such as DUNE [22], JUNO

[23], PINGU [16,24], ORCA [25], and Hyper-Kamiokande

[26]. Moreover, current neutrino experiments such as T2K

[27], NOvA [28], and Super-Kamiokande [29] provide first

indications of the NMO. Combining the results from several

Fig. 2 Oscillation probabilities for an atmospheric νμ or νμ upon

reaching the IceCube detector, as a function of the cosine of the zenith

angle, θν , and the energy, Eν , of the neutrino, for the NO (a) and the IO

(b) hypotheses. The probabilities are shown for the neutrino appearing

as each of the three possible flavors, with the neutrino and anti-neutrino

cases shown as the top and bottom rows in each panel. The dominant

mixing of νμ and ντ is clearly visible, while the νe flavor is mostly

decoupled, except for a small contribution from matter effects below

Eν ∼ 15 GeV

experiments, recent global fits prefer Normal over Inverted

Ordering at ∼2 −3.5 σ with a small preference for the upper

octant (i.e. sin2(θ23) > 0.5) [30–33].

2 The IceCube neutrino observatory

The IceCube Neutrino Observatory [13] is a ∼1 km3 neu-

trino detector at the Geographic South Pole, optimized for

detecting atmospheric and astrophysical neutrinos above

Eν ∼ 100 GeV. It consists of 86 strings running through the

ice vertically from the surface almost to the bedrock, carrying

a total of 5160 Digital Optical Modules (DOMs) at depths

between 1450 and 2450 m [34]. Each DOM houses a 10”

photomultiplier tube and digitizing electronics, surrounded

by a glass sphere [13,35,36].

In the center of the detector, some of these strings form

a more densely instrumented volume called DeepCore [37].

It consists of 8 strings with an increased vertical density of

DOMs with higher quantum-efficiency, surrounding one Ice-
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Table 1 Overview of the main differences between the two NMO anal-

yses in terms of the total number of observed events, the selection strat-

egy, the reconstruction likelihood, the reconstructed energy range, the

number of analysis bins (given as number of E reco
ν , ϑ reco

ν , PID bins), the

background (atmospheric muon) description, the template generation,

and the estimated fractions of the data sample from each contribution

Data events Selection

strategy

Recon. likeli-

hood

Energy range Analysis bin-

ning

Background

description

Template gen-

eration

Estimated contributions [%]

CCνe/CCνμ/CCντ /NC/μ/

noise

A 43 214 High statistics Hit-based 4–90 GeV 10, 10, 3 Simulation KDEs 21.7 / 58.4 / 6.2 / 8.8 / 4.8 /

0.1

B 23 053 Quality

events

Charge-based 5–80 GeV 10, 5, 2 Data Histograms 29.4 / 58.0 / 2.0 / 10.4 / 0.2 /

–

Cube string. Due to the denser instrumentation and the higher

quantum-efficiency DOMs, the DeepCore infill has a lower

energy threshold than the surrounding IceCube array. The

corresponding detection efficiency of DeepCore increases

steeply between ∼ 3 GeV and ∼ 10 GeV and flattens for

higher energies [13,37].

Neutrinos are detected by the Cherenkov emissions of

their charged secondary particles, which are generated by

Charged Current (CC) and Neutral Current (NC) interac-

tions with the nucleons of the ice. In the case of CC muon-

neutrino interactions, a hadronic cascade is initiated at the

primary vertex, combined with an outgoing muon. The muon

can propagate large distances through the detector, leading to

an elongated shape of the energy deposition and thus of the

Cherenkov light emission. Such events are called track-like

signatures. In contrast, CC electron-neutrino, NC, and the

majority of CC tau-neutrino interactions, do not produce a

muon that can travel large distances. Instead, they initiate an

electromagnetic and/or hadronic cascade that develops over

a distance of a few meters. The light emission of this cascade

is considerably smeared around the Cherenkov angle of the

shower direction. Such events are called cascade-like. At low

energies below a few tens of GeV, the separation of track-

and cascade-like events becomes increasingly difficult, due

to the short muon track and the coarse detector granularity.

For oscillation measurements with DeepCore, this separa-

tion of track-like and cascade-like events is used to partially

distinguish neutrino flavors [37].

For the analyses presented here, we use the Honda 3D

atmospheric neutrino simulation [38], and the GENIE neu-

trino interaction generator [39] with KNO [40] and PYTHIA

[41]. For quasielastic and resonance events, the axial masses

are set to M
qe
A = 0.99 GeV and M res

A = 1.12 GeV, respec-

tively. Simulation of the atmospheric muon background uses

CORSIKA [42], with the Polygonato-Hörandel model of the

muon energy spectrum [43]. Muons are propagated through

the ice using PROPOSAL [44]; the propagation of all other

particles is based on GEANT4 [45,46]. Cherenkov photons

are propagated throught the ice using a GPU-based code [47].

More details of the simulation can be found in [48].

3 Data samples and reconstruction

In this work, two independent likelihood analyses are used

to extract information about the NMO from DeepCore data.

They are henceforth labelled Analysis A and B, and the

main differences between the two analyses are summarized

in Table 1. Analysis A is designed to optimize the sensitivity

to the NMO with DeepCore and considered the main result

of this work, while Analysis B is designed to resemble the

proposed PINGU analysis from [24], using only events that

are fully-contained in the DeepCore detector, and is used as

a confirmatory result here. Further details about Analyses A

and B can be found in [49] and [50], respectively. The use of

two independent analyses with partially complementary data

sets gives great confidence in the quantitative conclusions of

the analysis presented here and the treatment and impact of

the systematic uncertainties.

The analyses are based on DeepCore data taken between

May 2012 and April 2014, comprising a total livetime of

1006 (1022) days for Analysis A (B). The difference in live-

time arises from slightly different criteria on the stability of

data acquisition. The data is run through two largely inde-

pendent processing chains, where both samples are acquired

by filtering the data in several successive steps of selection.

These steps include the application of selection criteria on

well-understood variables, as well as machine-learning meth-

ods, namely Boosted Decision Trees [51]. The selections

are aiming for a reduction of the background of atmospheric

muons and triggered noise, while maintaining a large frac-

tion of well-reconstructed, low-energy neutrino events below

Eν ∼ 100 GeV. Both samples are described in more detail in

[48]. Compared to [48], the samples used in this work differ

by the following modifications:

First, events with a reconstructed vertex outside the detec-

tor that enter from below are not vetoed in Analysis A using

the lower part of the DeepCore detector, as it is done for

downgoing and horizontal events using the surrounding Ice-

Cube detector. This increases the statistics at the expense of

a reduced energy resolution for these uncontained events,

especially at high energies. The loss in energy resolution is

due to the unobserved fraction of deposited energy outside the
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Fig. 3 The distribution of the particle identification variable for Anal-

ysis A. The blue band on the data/MC ratio is the statistical uncertainty

detector volume. Second, the range of reconstructed energies

considered is extended for both analyses compared to [48],

from 56 to 90 GeV (80 GeV) for Analysis A (B), allowing us

to constrain nuisance parameters outside the strongest oscil-

lation region. Third, both analyses use exclusively upgoing

events (i.e. cos(θ reco
ν ) < 0) to reduce the background from

atmospheric muons.

The final samples are reconstructed with the same algo-

rithm for Analyses A and B [48,49]. It is based on a likeli-

hood function that links the number and the arrival times of

the observed Cherenkov photons in all DOMs to a physics

hypothesis. The physics hypothesis is given by the posi-

tion and time of the interaction vertex, the neutrino direc-

tion, and the neutrino energy, which are the parameters of

the likelihood optimization. The reconstruction is run sep-

arately for a starting track and a cascade-only hypothesis,

where the starting track hypothesis features a cascade at

the primary vertex with an additional parameter L for the

length of an outgoing muon track. Since the track hypoth-

esis allows for fitting the track length to L = 0, the 7-

dimensional cascade-only-hypothesis is nested within the

8-dimensional track-hypothesis. The log-likelihood differ-

ence between track and cascade-only hypothesis is used as

the flavor-separating variable, called Particle Identification

(PID). Besides the reconstructed neutrino zenith angle θ reco
ν

and neutrino energy E reco
ν , the PID is used as a third observ-

able entering the likelihood analyses described in Sect. 4.

The distribution of the PID variable for Analysis A is shown

in Fig. 3.

In the reconstruction, the optimized likelihood function

differs between the two analyses: For Analysis B, the recon-

struction likelihood is defined using the observed charge

binned in time for each DOM as a proxy for the observed

number of Cherenkov photons. Since some deviations were

found between data and Monte Carlo in charge-related

quantities, the likelihood was reformulated in a charge-

independent way for Analysis A, such that the charge ampli-

tude information was removed and the only information used

is whether a DOM is hit or not hit in multiple bins of time. In

terms of the resolutions in reconstructed zenith angle θ reco
ν

and neutrino energy Eν , the impact of the likelihood refor-

mulation was found to be small. Moreover for Analysis B,

the impact of the charge mismatch is estimated to be small

in comparison to the statistical uncertainty on the observed

NMO.

After the data selection, the number of events in Sample A

exceed the number of events in Sample B by a factor of

1.87, while providing similar resolutions in energy and zenith

angle.

Note that for Analysis B, the atmospheric muon back-

ground is estimated from data in an off-signal region, while

for Analysis A, it is obtained from Monte Carlo simulations

(cf. Table 1). As a result, there is no a priori Monte Carlo

prediction for the atmospheric muon contamination in Sam-

ple B. However, the fraction of atmospheric muons is fitted

in the analysis as discussed in Sect. 6. The contamination

of triggered noise was found to be only � 0.1% for both

samples. It is included into the likelihood fit for Analysis A,

while it is neglected for Analysis B.

The final samples consist of CC muon neutrino, CC elec-

tron neutrino, CC tau neutrino, NC, and atmospheric muon

events. These different components are called contributions

in the following and are simulated separately in Monte Carlo

except for the atmospheric muon contribution used in Anal-

ysis B that is parametrized from an off-signal data region.

The estimated fraction of the data samples from each con-

tribution is shown in Table 1. These fractions are calculated

using the best-fit values for all systematic parameters, dis-

cussed in Sect. 4.

4 Analyses

Both Analyses A and B use a binned likelihood method to

determine the NMO by observing the signature from Fig. 2

in reconstructed variables. Since a separation of all flavors

cannot be done with DeepCore, the PID is used to distinguish

track- and cascade-like events, while neutrino energy and

zenith angle are obtained from the reconstruction described

in Sect. 3.

For both analyses, the binning is summarized in Table 1.

For Analysis B only two PID bins are used to separate track-

and cascade-like events, analogously to [16], while Anal-

ysis A uses three PID bins. This is motivated by the weak

separation power at low energies, where the confidence in the

separation can be taken into account by including an addi-

tional, intermediate PID bin. The binning in neutrino energy
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Fig. 4 Comparison of Monte Carlo template for atmospheric muons in

Analysis A, generated as histogram (top) and KDE (bottom): the latter

one is used in the analysis, due to the reduced impact of limited Monte

Carlo statistics

and zenith angle is chosen to be uniform in log10(E reco
ν ) and

cos(θ reco
ν ) for Analysis B. For Analysis A, it is also uniform

in cos(θ reco
ν ), while it is optimized in log10(E reco

ν ) to roughly

follow the available statistics and maintain a large number of

bins in the most interesting region at Eν ∼ 10 GeV.

In Analysis B, the binning is used to generate Monte

Carlo distributions, called templates, in E reco
ν , θ reco

ν , and PID

for each contribution to the data sample, using histograms.

In contrast, Analysis A applies an adaptive Kernel Density

Estimation (KDE) method to produce these templates, which

smooths the fluctuations from limited Monte Carlo statistics.

These uncertainties arise mainly from the atmospheric muon

template, where the available Monte Carlo statistics are simi-

lar to those from experimental data, due to the time-intensive

simulation of atmospheric muons.

The KDE method is analogous to the one used in [52] and

based on [53]. However, the method from [53] is extended

by reflecting the KDE at the boundaries of the binned param-

eter space and integrating the resulting distribution to obtain

a prediction for the bin content [54]. For the atmospheric

muons, this is illustrated in Fig. 4, where the Monte Carlo

template for atmospheric muons is generated with histograms

(top) and the above mentioned KDE method (bottom). In the

case of histograms, the fluctuations in the bin content, arising

from limited Monte Carlo statistics, are clearly visible.

The uncertainties on the KDE prediction are estimated

using bootstrapping for every contribution from Sect. 3 sep-

arately [55]. For each contribution, which consists of N MC

Fig. 5 Top: the distribution in PID, zenith angle, and neutrino energy

for Analysis A that enters the likelihood calculation; bottom: corre-

sponding signature of the NMO, given as expected pull on the bin con-

tent in case IO is observed but NO is tested, using Poissonian statistics

events, events are drawn randomly from this sample, replac-

ing the event each time so that it can be drawn again, until

N events have been drawn. This new sample of N events is

called a bootstrapped sub-sample, and from this a new KDE

template is generated. This process is repeated several times

and the uncertainty on each bin content in the original KDE

template is estimated from the resulting distribution of bin

contents in the bootstrapped samples.

For Analysis A, the three-dimensional template obtained

from the combination of all Monte Carlo contributions is

shown in Fig. 5. Additionally, the expected pulls on each bin

are shown in the case that the true ordering is inverted but the

NO hypothesis is tested. This is used as a metric to visualize

the signature of the NMO [16]. As can be seen in Fig. 5, the

expected pulls between NO and IO are small, which already

indicates the low sensitivity due to the limited resolution and

statistics of DeepCore at energies Eν � 15 GeV.

Using these distributions, likelihoods are defined for both

analyses. For Analysis A, the negative log-likelihood LLH

is given by

LLH =

⎡
⎣−

∑

i∈{bins}

ln

(
ptot

i (NA
i , μA

i , σA
μi

)

ptot
i (NA

i , NA
i , σA

μi
)

)⎤
⎦ +

1

2
S, (2)

where the term S is common to the likelihood of both analyses

and will be defined after discussing the other terms. The term

ptot
i (NA

i , μA

i , σA
μi

) gives the probability of observing NA

i

events in bin i , if μA
i events are expected. It is obtained by
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a convolution of a Poissonian distribution and a narrow log-

normal probability density function that describes the uncer-

tainty σA
μi

on the Monte Carlo prediction μi . The uncertainty

σA
μi

is obtained from a quadratic combination of the individ-

ual template uncertainties for every contribution, obtained

from bootstraping.

Due to the KDE method used in Analysis A, the domi-

nant template uncertainties in the description of atmospheric

muons are strongly reduced, such that the uncertainties on

the total template are typically ∼ 10% of the Poissonian

error expected from data fluctuations. Thus, for Analysis A

these template uncertainties contribute only marginally to the

following results.

For Analysis B, the likelihood is adapted from [56], where

a χ2-value is calculated by quadratically combining the Pois-

sonian error on the predicted bin content μB

i with the uncer-

tainty σB
μi

on the combined template of all contributions. It

is given by

χ2 = 2LLH =
∑

i∈{bins}

(
NB

i − μB

i

)2

μB
i + (σB

μi
)2

+ S, (3)

where the labels are analogous to Eq. (2). Here, the uncer-

tainties σB
μi

on the templates are estimated from the statistical

error due to limited Monte Carlo and an uncertainty on the

atmospheric muon template, estimated from off-signal data.

The dominant systematic uncertainties are included in

both likelihood fits using nuisance parameters. These nui-

sance parameters comprise uncertainties in the atmospheric

neutrino flux, the atmospheric oscillation parameters, the

neutrino-nucleon cross sections, and the detector response.

All systematic parameters are allowed to vary simultaneously

and independently in the fit; we assume there are no cor-

relations between the pulls on the various parameters. The

parameters are listed in Table 2. To account for external con-

straints on these systematic parameters, Gaussian priors are

included into the likelihood by the term S,

S =
∑

s∈{sys}

(
s − s0

σs

)2

, (4)

where the sum runs over all systematic parameters. For each

parameter, the tested value s is compared to the expected

baseline value s0 with respect to its estimated uncertainty σs .

The baseline value s0 and width σs of each prior are identi-

cal for both analyses, and are stated in Table 2; the central

value and the width are motivated by the provided references

where possible. As indicated in Table 2, the prior for some

parameters was removed in Analysis B. Due to the small sen-

sitivity to the NMO, the prior assumption was found to imply

a preference on the NMO in case the true parameter value

differs from the baseline value, which is avoided by removing

the corresponding priors from the likelihood. Thus, no exter-

nal knowledge is included on these parameters, allowing for

larger deviations from the baseline value.

The parameters Nν , Nνe , NNC, and Nμ are used to vary the

normalizations of the different contributions from Table 1.

Thus, they account for uncertainties in interaction cross sec-

tions, the total neutrino and muon fluxes, the νe/νμ produc-

tion ratio, and detection efficiencies.

Additional uncertainties on the neutrino fluxes predicted

in [38] are modelled by the parameters γν , σ zenith
ν , and

�(ν/ν̄). Here, γν incorporates uncertainties in the neutrino

energy spectrum, arising from flux, and cross section uncer-

tainties, according to a reweighting of Monte Carlo events

∝ (Eν/GeV)γν , while σ zenith
ν and �(ν/ν̄) incorporate the

dominant uncertainties from [58] in an ad hoc parametriza-

tion. The uncertainties on the production of atmospheric

muons arising from the spectrum and compositions of the

cosmic ray primary flux are represented by the parameter

γμ. Note that γμ is only included as an uncertainty for Anal-

ysis A, since the atmospheric muon template in Analysis B

is estimated from data.

Uncertainties in neutrino-nucleon interactions are repre-

sented by the parameters M res
A and M

qe
A , which model the

axial mass of resonant and quasi-elastic interactions. Note

that uncertainties on the cross section for deep inelastic scat-

tering were also parametrized, but found to be negligible and

therefore not included into the likelihood fit.

Detector uncertainties are modelled by the parameters

ǫopt, ǫlateral, and ǫhead−on, which describe the optical detec-

tion efficiency of the DOMs. The value of ǫopt gives the

total detection efficiency per photon, relative to the base-

line scenario. In contrast, the parameters ǫlateral and ǫhead−on

describe the dependence of the photon detection efficiency

on the inclination angle of the incoming photon. Here, ǫlateral

changes the slope of the acceptance curve, while ǫhead−on

controls the acceptance of very vertically upgoing photons

independently. Besides actual uncertainties in the DOMs’

detection efficiency, these parameters incorporate uncertain-

ties with respect to the optical properties of the ice in the

refrozen drill holes that surround the DOMs.

All of the systematic parameters mentioned above are

described in more detail in [48]. Besides the parameters

included in the fit, additional uncertainties have been inves-

tigated and tested for their possible effect on the anal-

ysis [49,50]. These parameters are the normalizations of

sub-dominant experimental backgrounds (detector noise and

event pile-up from coincident atmospheric muons), addi-

tional uncertainties on the optical properties of the ice,

the oscillation parameters (θ12, θ13, �m2
21, and δCP), and

Bjorken-x dependent uncertainties in the cross section for

deep-inelastic neutrino-nucleon scattering. Two types of tests

were performed to determine the impact of these parame-

ters. In the first test, a parameter is injected into a MC fake

dataset, shifted from its nominal value by ± 1σ in the case of
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a detector systematic and by ± 3σ in the case of an oscillation

parameter. This MC fake data is fit using the same MC set,

but with the parameter in question fixed to its unshifted nom-

inal value to assess whether the uncertainty in the systematic

parameter can bias the measured ordering hypothesis. This

test is repeated for MC fake datasets generated with both

mass orderings. For none of these systematic or oscillation

parameters is a bias observed in the measured preference for

the mass ordering of more than 0.05σ . For the case of δCP, the

value of δCP = 180◦ is being used as the ‘nominal’ value for

the MC fake dataset, with the value of δCP = 270◦ injected

into the MC used in the fit; a negligible (less than 0.01σ )

bias in the ordering preference is observed. In the second

test, the same shifted values as above are injected into the

MC fake dataset, but now the parameter under test is allowed

to vary in the fit. This allows us to determine if the inclusion

of these parameters into the fit causes any loss of sensitiv-

ity to the mass ordering. None of the parameters in question

cause a loss of sensitivity of more than 0.05σ ; the inclusion

of δCP reduces the sensitivity by less than 0.03σ . Since all

the parameters described in this paragraph are shown to have

no impact on the mass ordering sensitivity, or the potential

to cause a bias, they have been set to their nominal values (in

the case of oscillation parameters, to the NuFit [32] best-fit

values), and are not included in the final fit in order to min-

imise the computing time required for the multi-parameter

minimisation.

For Analysis A (B), the negative log-likelihood from

Eqs. (2) (3) is optimized. To do this, LLH ≡ −0.5χ2 is

used as the negative log-likelihood for Analysis B. During

this optimization, the first and the second octant in θ23 are

fitted separately for both orderings, allowing all the parame-

ters listed in Table 2 to vary, and the fit optimizing the LLH

is taken as the best-fit for this ordering. The resulting differ-

ence, 2�LLHNO−IO ≡ �χ2
NO−IO, between the NO and IO

hypotheses is then calculated for both analyses.

Finally, 2�LLHNO−IO (χ2
NO−IO) is used as a test-statistic

(TS) in Sect. 6 for Analyses A (B) to derive the experimental

result from the fit to the data.

5 Sensitivity to the neutrino mass ordering

The determination of the Neutrino Mass Ordering is a binary

hypothesis test, which requires the test of two non-nested

hypotheses. This is different from most other applications in

particle physics, where a general hypothesis HG is tested

against a specific one, HS , in the sense that the specific

hypothesis is obtained for a certain realization of the param-

eters of HG . For such nested hypotheses, Wilks’ Theorem is

commonly used to derive sensitivities and to estimate limits

on fitted parameters [59]. In contrast, Wilks’ Theorem does

not apply to the determination of the Neutrino Mass Order-

ing, since the discrete choice of Normal or Inverted Ordering

is not related to the fixing of degrees of freedom [60].

Due to the subtleties involved in the statistical treatment

and since a determination of the NMO is expected within the

next decade, the correct method to quantify the preference is

object of many discussions [60–62]. Here, two methods are

used to estimate the sensitivity, which are described in the

following.

The first method is a statistically rigorous analysis of

the resulting likelihood values, using the obtained value of

2�LLHNO−IO as a TS. It derives the resulting sensitivity,

given by the expected confidence in the determination of the

NMO, from a frequentist coverage test. To do this, the data

is fit with both ordering hypotheses giving a value for the TS

and two sets of best-fit systematic parameters, ηNO and ηIO.

These fits are called fiducial fits (FD) in the following.

From these parameters, the resulting best-fit templates

are generated for NO and IO. Then, these templates are

used to generate Pseudo-Experiments or Pseudo-Trials (PT)s

by adding Poissonian fluctuations on the bin-contents, as

expected in a real-world experiment; in this analysis, which

has a sensitivity dominated by the statistical uncertainty, it

is unnecessary to fluctuate each PT according to the sys-

tematic uncertainties. Afterwards, each PT is fitted with

both ordering hypotheses, resulting in a new value for the

TS = �χ2
NO−IO = 2�LLHNO−IO. From these PTs, two dis-

tributions of the TS are obtained for the two sets of injected

parameters ηNO and ηIO.

This process of creating PTs for ηNO and ηIO and fitting

them with both hypotheses is repeated several times to esti-

mate a TS distribution for each of the ordering hypotheses.

The TS distributions for NO and IO are then used to esti-

mate the analysis sensitivity, i.e. the expected p-values for

the exclusion of each hypothesis. To do this, the fraction of

PTs for NO (IO) that is to the right (left) of the median of

the IO (NO) distribution is taken as the expected p-value

for the exclusion of the NO (IO) hypothesis, if IO (NO) is

the true ordering. This is sketched in Fig. 6 for two generic

distributions.

The frequentist method is summarized as a flow-chart in

Fig. 7. Note that this procedure is similar to the treatment

of data, described in Sect. 6, where the experimental fit is

used as fiducial fit to produce PTs. Unfortunately, the fre-

quentist method is computationally very expensive. Thus,

for performing more detailed parameter studies, a second,

faster method is used.

The second method for deriving sensitivities is an Asimov

approach adapted from [60]. Instead of generating PTs, the

total MC template, with no Poissonian fluctuations, is fit-

ted directly for both hypotheses. In the following, we refer to

this MC template as the generated-ordering (GO) hypothesis,

HGO, where the GO can be either NO or IO. This is then fitted

under assumptions of both hypotheses, NO and IO, where the
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Fig. 6 Sketch of the frequentist method, using idealized distributions

to illustrate the concepts. The red (blue) distribution will be derived

from from PTs assuming the HNO (HIO) hypothesis. The black vertical

line represents a hypothetically observed value of �LLHNO−IO. The

resulting p-values (right, vertical axis) for the hypotheses are derived

from the cumulative density distributions, marked as red (blue) solid

lines for NO (IO)

Fig. 7 Flow-chart representing the procedure of the frequentist method

used to derive p-values for the NO and IO hypotheses. Abbreviations,

as defined in the text, are FD (fiducial fits), PD (pseudo-dataset), H

(hypothesis), and TS (test statistic)

hypothesis used in the fit is called the fitted-ordering (FO)

hypothesis, HFO. The negative log-likelihood value obtained

from the fit is LLHFO(HGO) = 0 if HFO = HGO and

LLHFO(HGO) > 0 otherwise, where the bars indicate that

the values were obtained by injecting the template of the GO

directly.

The resulting value of 2�LLHNO−IO is assumed to be

representative for the behavior obtained using PTs. The sen-

sitivity to the generated ordering, nGO
σ , in terms of one-sided

Gaussian standard deviations is

nGO
σ =

�LLHNO−IO(HGO) − �LLHNO−IO(HG̃O)√
2�LLHNO−IO(HG̃O)

, (5)

where G̃ O ∈ {IO, NO} is the opposite hypothesis to

GO, generated with the best-fit set of systematic param-

eters ηG̃O ∈ {ηIO, ηNO} corresponding to the set ηGO ∈

Fig. 8 Sensitivities of Analyses A and B to the NMO in terms of one-

sided Gaussian sigmas (left vertical axis) and p-values (right vertical

axis) derived by the Asimov-method (lines), and validated at certain val-

ues of sin2(θ23) using the frequentist method (markers). The statistical

errors on the frequentist points arise from the finite number of PTs used

due to the computationally intensive nature of the frequentist method

{ηNO, ηIO} used for HGO. Note that the sensitivity nGO
σ

describes the expected p-value for the exclusion of the G̃O

hypothesis in the case that the true ordering is the GO [60].

The choice of one- instead of two-sided Gaussian standard

deviations is motivated by the fact that an experiment with

no sensitivity to the NMO, i.e. if the two distributions for NO

and IO in Fig. 6 were identical, would lead to a 50% chance

of obtaining the correct ordering by random chance. This

should not be misinterpreted as sensitivity and thus should

give nNO, IO
σ = 0, which is the case for one-sided but not

two-sided Gaussians.

The resulting sensitivities for both methods are shown in

Fig. 8, as a function of the true value of sin2(θ23). The blue

and red lines indicate the result from the Asimov method

for Analysis A (solid lines) and Analysis B (dashed lines).

The sensitivities are validated at certain values of sin2(θ23)

using the frequentist method, as indicated by the circle (A)

and star (B) markers, where the uncertainties arise from the

finite number of PTs.

As visible in Fig. 8, the resulting sensitivity is < 1σ for

both orderings and analyses. Moreover, Analysis A is more

sensitive to the NMO than Analysis B, which is due to the

increased statistics, the additional bins in PID, energy and

zenith, and the reduced impact from limited Monte Carlo

statistics, due to the usage of KDEs in the generation of Monte

Carlo templates.

Note that a characteristic shape is found for the sin2(θ23)-

dependence of nNO, IO
σ , which is different for the NO and

IO hypotheses. The observed features are similar to those

found for the PINGU sensitivity in [16]. They arise from the

interplay of the two independent octant fits for LLHGO and
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LLHG̃O, used to calculate the values of �LLHNO−IO(HGO)

and �LLHNO−IO(HG̃O) in Eq. (5), where the preferred

octant is not necessarily the true one in the case that G̃O is

fitted. As a result, the behavior of nNO, IO
σ changes each time

the octant is flipped for one of the two negative log-likelihood

differences (�LLH) in Eq. (5).

The observed sensitivities for the Asimov method agree

roughly with the PTs, while perfect agreement is not expected

due to several approximations used in the Asimov-method

[60]. However, the Asimov method is used as an estimator

for the true sensitivity.

Note that for some observed values in Fig. 6 the p-

values for both hypotheses can be small, in case the observed

data agrees with neither the NO nor IO hypotheses. For

example, this could be the case for �LLHNO−IO > 2 or

�LLHNO−IO < −2, which is in the tail of both distributions

in Fig. 6. In this case, the small p-value might lead to the

wrong impression that the data clearly favors the alternative

over the null hypothesis. To properly account for this, the

p-values are combined into a CLS-value,

CL
A/B

S (HTO) =
pA/B(HTO)

1 − pA/B(HT̃O)
, (6)

where TO is the tested ordering and T̃O is the opposite order-

ing hypotheses. This equation is taken from [63] where a

more detailed discussion of its derivation can be found. Its

value is limited to CLS ∈ [0, 1], where CLS ≈ 1 indicates

no preference for one hypothesis over the other and CLS ≈ 0

indicates a strong disfavoring of the given hypothesis. The

CLS value can be interpreted as confidence in the result with

a confidence level of 1 − CLS . More illustratively, the CLS

value describes how much less likely the observed value

would occur under the disfavored hypothesis, compared to

the favored one.

Finally, potential improvements of the sensitivity are

tested for Analysis A. By fixing individual and combina-

tions of systematic parameters in the Asimov fit, the abso-

lute gain in sensitivity from an improved understanding of

systematic uncertainties is found to be small, except for the

oscillation parameters. This is due to the weak NMO signa-

ture, which barely pulls the systematic parameters and thus is

only weakly affected by fixing them. Instead, it is found that

the sensitivity could be improved in the future by additional

data statistics and improvements on the event reconstruction,

which reduce the smearing-out of the NMO signature due to

the low resolution in energy, zenith, and PID at the lowest

energies [49].

6 Results

For both analyses, the experimental data is fitted with the

likelihood method, described in Sect. 4. The data, along with

the best-fit predictions, are shown for Analysis B in Fig. 9.

The resulting best-fit values for all systematic parameters are

shown in Table 2. The observed pulls are within the expected

ranges for all parameters, taking statistical fluctuations and

the uncertainties of the true value of each parameter into

account. The corresponding values of the metric for the NO

(IO) hypothesis are 2LLH = 293.38 (294.12) for Analysis A

and χ2 = 107.82 (107.50) for Analysis B. The metric is used

as a goodness-of-fit estimator for the agreement of data and

Monte Carlo by comparing these values to the expectation

from PTs. The resulting p-values for Analyses A and B are

pA
gof = 43.5% and pB

gof = 11.0%, indicating the data to be

well-described by the MC templates.

For Analyses A and B, the observed values of the test-

statistic are 2�LLHNO−IO = −0.738 and �χ2
NO−IO =

0.3196. Thus, the fits for the main result (A) and the con-

firmatory result (B) prefer NO and IO, respectively, while

both results are compatible within their statistical uncertain-

ties, i.e. both results have a test statistic within one unit of

zero.

To estimate the corresponding p-values, PTs are generated

with the best-fit parameters ηNO and ηIO from Table 2; for

each PT, both ordering hypotheses are fitted. The resulting

distributions of TS = 2�LLHNO−IO and TS = χ2
NO−IO

are shown in Fig. 10. The experimentally observed value

is indicated by the solid, vertical black line, indicating the

preference for Normal over Inverted Ordering in Analysis A

and Inverted over Normal Ordering in Analysis B.

The resulting p- and CLS-values for the main result are

pA(HNO) = 71.1% (CLA

S (HNO) = 83.0%), (7)

pA(HIO) = 15.7% (CLA
S (HIO) = 53.3%), (8)

while for the confirmatory result we find

pB(HNO) = 11.4% (CLB
S (HNO) = 73.5%), (9)

pB(HIO) = 84.5% (CLB
S (HIO) = 95.4%). (10)

In addition to testing the NMO with PTs, the likelihood is

scanned across sin2(θ23) for the more sensitive Analysis A

and both ordering hypotheses. The resulting scan is shown

in Fig. 11, where the LLH is shown with respect to its global

minimum. The vertical offset between the NO and IO curves

indicates the preference for NO over IO, which is visible

at all values of sin2(θ23). The observed minimum is in the

lower octant, near sin2(θ23) = 0.455, for both orderings,

while maximal mixing is separated from the best-fit point

by only 2�LLHNO−IO = 0.128 (0.681) for NO (IO). As a

result, the preference for the lower octant is small, such that

a substantial range of sin2(θ23) > 0.5 is still compatible with

the observed data for NO and IO.
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Fig. 9 The energy and zenith-angle distributions of the data from Anal-

ysis B. Also shown are the best-fit simulations for both orderings, where

the red and blue lines fall almost on top of each other

Note that the preference for NO over IO in Analysis A

already indicates an observed preference for matter effects

in data (cf. Sect. 1), i.e. a preference for matter effects over

vacuum oscillations. To quantify this preference, the fit is

repeated assuming vacuum oscillations. The resulting log-

likelihood difference between matter effects (MA) and vac-

uum oscillations (VA) is �LLHMA−VA = −0.869 (−0.500)

in case NO (IO) is assumed. Thus, matter effects are preferred

over vacuum oscillations, independent of the assumption on

the NMO. The p-values and CLS-values that quantify the

Fig. 10 Distribution of the TS from PTs, generated with the best-fit

systematic parameters ηNO and ηIO from Table 2 for Analysis A (top)

and Analysis B (bottom). The red and blue distributions are obtained for

the NO and IO hypotheses, respectively, while the black, solid vertical

line shows the observed value in data, giving the p-values for the NO

and IO hypotheses stated in the legends

Fig. 11 The negative log-likelihood (LLH) as a function of sin2(θ23)

for Analysis A, relative to the global minimum LLHmin. The preference

for NO over IO is visible over all the range of sin2(θ23) with the best-fit

for both orderings being in the lower octant (sin2(θ23) < 0.5)

123



9 Page 14 of 16 Eur. Phys. J. C (2020) 80 :9

preference for matter effects (Mat) and vacuum oscillations

(Vac) are

p(HMat|HNO) = 62.3%, CLS(HMat|HNO) = 71.0%,

(11)

p(HVac|HNO) = 12.3%, CLS(HVac|HNO) = 32.6%,

(12)

p(HMat|HIO) = 53.2%, CLS(HMat|HIO) = 68.4%,

(13)

p(HVac|HIO) = 22.2%, CLS(HVac|HIO) = 47.4%.

(14)

7 Conclusion

We have developed two independent likelihood analyses to

demonstrate the extraction of the neutrino mass ordering

from atmospheric neutrino data. We have applied these anal-

yses to three years of IceCube DeepCore data. The first anal-

ysis aims for an optimized sensitivity with DeepCore, the

second for an analysis chain as similar as possible to the

proposed NMO analysis with PINGU [16]. The sensitivi-

ties were estimated with two independent methods. For the

more sensitive, main analysis, the sensitivity was found to

be ∼ 0.45 − 0.65 σ (one-sided Gaussian), within the most

interesting region close to maximum mixing (sin2(θ23) ∈

[0.45, 0.55]) for both orderings, while for the confirmatory

analysis, the sensitivity was found to be ∼ 50% smaller.

Due to the weak signature of the NMO in DeepCore, the

sensitivity is found to be mostly unaffected by improvements

in the understanding of systematic uncertainties. Instead, a

future gain in sensitivity might come from additional statis-

tics or potential improvements in the resolution of the event

reconstruction.

The analyses presented here find the data to be fully com-

patible with both mass orderings. The main analysis observes

a preference for NO over IO at 2�LLHNO−IO = −0.738,

which corresponds to a p-value of 15.3% (CLs = 53.3%) for

the IO hypothesis, based on the presented frequentist method.

This result is in line with recently reported preferences for

the NO by Super-Kamiokande [29], T2K [27], NOνA [28],

MINOS [64], and recent global best fits [31,32]. However,

it complements these results due to the higher energy range

used for determining the NMO (Eν � 5 GeV) and the fact

that it is independent of the value of δCP. Finally, the data

indicates a preference for matter effects over vacuum oscil-

lations, independent of the assumption on the NMO.

The study presented here allows us to consider what future

steps will allow a determination of the NMO with atmo-

spheric neutrino data. Given the statistically-limited nature of

this result, it is clear that a reduction of systematic uncertain-

ties is not a priority, and we have performed studies to show

that even the most optimistic reduction of systematic uncer-

tainties can achieve at most a 10% improvement in the NMO

sensitivity of this dataset [49]. The same study also showed

that a removal of backgrounds (atmospheric muons and trig-

gered noise) delivers at most a 5% improvement in sensitiv-

ity. In the coming years, a factor of four more statistics is

expected from DeepCore (including both additional data and

expected data-selection improvements), and this can result

in a factor of two improvement in sensitivity. A more signif-

icant improvement that can be made is in the measurement

resolutions: our studies [49] show that a 50% improvement

in resolution on both neutrino direction and log10(Eν) would

produce a factor of two improvement in the sensitivity of this

dataset. To achieve an NMO determination in a reasonable

timescale, a final necessary improvement is a lowering of

the neutrino energy threshold; this, along with the improved

resolutions, can be achieved by the PINGU concept [16,24]

that reduces the energy threshold to below 10 GeV to enable

a 3σ determination of the NMO for even the least optimistic

values of the oscillation parameters.

Besides the experimental result, the presented analyses

provide a proof-of-concept for determining the NMO from

matter effects in atmospheric neutrino oscillations with the

IceCube Upgrade [65] or PINGU [16]. They test the full

analysis chain by means of real DeepCore data and validate

the understanding and treatment of systematic uncertainties,

which are largely consistent with those that will be encoun-

tered by future IceCube extensions.
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