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STUDY QUESTION: Can an artificial intelligence (AI)-based model predict human embryo viability using images captured by optical light

microscopy?

SUMMARY ANSWER: We have combined computer vision image processing methods and deep learning techniques to create the non-

invasive LifeWhisperer AI model for robust prediction of embryo viability, as measured by clinical pregnancy outcome, using single static images

of Day 5 blastocysts obtained from standard optical light microscope systems.

WHAT IS KNOWN ALREADY: Embryo selection following IVF is a critical factor in determining the success of ensuing pregnancy.

Traditional morphokinetic grading by trained embryologists can be subjective and variable, and other complementary techniques, such as

time-lapse imaging, require costly equipment and have not reliably demonstrated predictive ability for the endpoint of clinical pregnancy. AI

methods are being investigated as a promising means for improving embryo selection and predicting implantation and pregnancy outcomes.

STUDY DESIGN, SIZE, DURATION: These studies involved analysis of retrospectively collected data including standard optical light

microscope images and clinical outcomes of 8886 embryos from 11 di�erent IVF clinics, across three di�erent countries, between 2011 and

2018.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The AI-based model was trained using static two-dimensional optical light

microscope images with known clinical pregnancy outcome as measured by fetal heartbeat to provide a confidence score for prediction of

pregnancy. Predictive accuracy was determined by evaluating sensitivity, specificity and overall weighted accuracy, and was visualized using

histograms of the distributions of predictions. Comparison to embryologists’ predictive accuracy was performed using a binary classification

approach and a 5-band ranking comparison.

MAIN RESULTS AND THE ROLE OF CHANCE: The Life Whisperer AI model showed a sensitivity of 70.1% for viable embryos while

maintaining a specificity of 60.5% for non-viable embryos across three independent blind test sets from di�erent clinics. The weighted overall

accuracy in each blind test set was>63%, with a combined accuracy of 64.3% across both viable and non-viable embryos, demonstrating model

robustness and generalizability beyond the result expected from chance. Distributions of predictions showed clear separation of correctly and

incorrectly classified embryos. Binary comparison of viable/non-viable embryo classification demonstrated an improvement of 24.7% over

embryologists’ accuracy (P= 0.047, n= 2, Student’s t test), and 5-band ranking comparison demonstrated an improvement of 42.0% over

embryologists (P= 0.028, n= 2, Student’s t test).
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LIMITATIONS, REASONS FOR CAUTION: The AI model developed here is limited to analysis of Day 5 embryos; therefore, further

evaluation or modification of the model is needed to incorporate information from di�erent time points. The endpoint described is clinical

pregnancy as measured by fetal heartbeat, and this does not indicate the probability of live birth. The current investigation was performed with

retrospectively collected data, and hence it will be of importance to collect data prospectively to assess real-world use of the AI model.

WIDER IMPLICATIONS OF THE FINDINGS: These studies demonstrated an improved predictive ability for evaluation of embryo

viability when compared with embryologists’ traditional morphokinetic grading methods. The superior accuracy of the Life Whisperer AI

model could lead to improved pregnancy success rates in IVF when used in a clinical setting. It could also potentially assist in standardization of

embryo selection methods across multiple clinical environments, while eliminating the need for complex time-lapse imaging equipment. Finally,

the cloud-based software application used to apply the Life Whisperer AI model in clinical practice makes it broadly applicable and globally

scalable to IVF clinics worldwide.

STUDY FUNDING/COMPETING INTEREST(S): Life Whisperer Diagnostics, Pty Ltd is a wholly owned subsidiary of the parent

company, Presagen Pty Ltd. Funding for the study was provided by Presagen with grant funding received from the South Australian Government:

Research, Commercialisation and Startup Fund (RCSF). ‘In kind’ support and embryology expertise to guide algorithm development were

provided by Ovation Fertility. J.M.M.H., D.P. and M.P. are co-owners of Life Whisperer and Presagen. Presagen has filed a provisional patent

for the technology described in this manuscript (52985P pending). A.P.M. owns stock in Life Whisperer, and S.M.D., A.J., T.N. and A.P.M. are

employees of Life Whisperer.
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Introduction

With global fertility generally declining (GBD, 2018), many couples and

individuals are turning to assisted reproduction procedures for help

with conception. Unfortunately, success rates for IVF are quite low at

∼20–30% (Wang and Sauer, 2006), placing significant emotional and

financial strain on those seeking to achieve a pregnancy. During the

IVF process, one of the critical determinants of a successful pregnancy

is embryo quality, and the embryo selection process is essential for

ensuring the shortest time to pregnancy for the patient. There is a

pressing motivation to improve the way in which embryos are selected

for transfer into the uterus during the IVF process.

Currently, embryo selection is amanual process involving assessment

of embryos by trained clinical embryologists, through visual inspection

of morphological features using an optical light microscope. The most

common scoring system used by embryologists is the Gardner Scale

(Gardner and Sakkas, 2003), in which morphological features such

as inner cell mass (ICM) quality, trophectoderm quality and embryo

developmental advancement are evaluated and graded according to

an alphanumeric scale. One of the key challenges in embryo grading

is the high level of subjectivity and intra- and inter-operator variability

that exists between embryologists of di�erent skill levels (Storr et al.,

2017). This means that standardization is di�cult even within a single

laboratory, and impossible across the industry as a whole. Other

complementary techniques are available for assisting with embryo

selection, such as time-lapse imaging, which continuously monitors the

growth of embryos in culture with simple algorithms that assess critical

growth milestones. Although this approach is useful in determining

whether an embryo at an early stage will develop through to a mature

blastocyst, it has not been demonstrated to reliably predict pregnancy

outcomes, and therefore is limited in its utility for embryo selection at

the Day 5 time point (Chen et al., 2017). Additionally, the requirement

for specialized time-lapse imaging hardware makes this approach cost

prohibitive for many laboratories and clinics, and limits widespread use

of the technique.

The objective of the current clinical investigation was to develop

and test a non-invasive artificial intelligence (AI)-based assessment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

approach to aid in embryo selection during IVF, using single static

two-dimensional images captured by optical light microscopy methods.

The aim was to combine computer vision image processing methods

and deep learning to create a robust model for analysis of Day 5

embryos (blastocysts) for prediction of clinical pregnancy outcomes.

This is the first report of an AI-based embryo selection method that

can be used for analysis of images taken using standard optical light

microscope systems, without requiring time-lapse imaging equipment

for operation, and which is predictive of pregnancy outcome. Using an

AI screening method to improve selection of embryos prior to transfer

has the potential to improve IVF success rates in a clinical setting.

A common challenge in evaluating AI and machine learning methods

in the medical industry is that each clinical domain is unique, and

requires a specialized approach to address the issue at hand. There

is a tendency for industry to compare the accuracy of AI in one

clinical domain to another, or to compare the accuracy of di�erent AI

approaches within a domain that assess di�erent endpoints. These are

not valid comparisons as they do not consider the clinical context, nor

the relevance of the ground-truth endpoint used for the assessment

of the AI. Caution needs to be taken to understand the context in

which the AI is operating and the benefit it provides in complement

with current clinical processes. One example presented by Sahlsten

et al. (2019) described an AI model that detected fundus for diabetic

retinopathy assessment with an accuracy of over 90%. In this domain,

the clinician baseline accuracy is∼90%, and therefore an AI accuracy of

>90% is reasonable and necessary to justify clinical relevance. Similarly,

in the field of embryology, AI models developed by Khosravi et al.

(2019) and Kragh et al. (2019) showed high levels of accuracy in

classification of blastocyst images according to the well-established

Gardner scale. This approach is expected to yield a high accuracy,

as the model simply mimics the Gardner scale to predict a known

outcome. While this method may be useful for standardization of

embryo classification according to the Gardner scale, it is not in fact

predictive of pregnancy success as it is based on a di�erent endpoint.

Of relevance to the current study, an AI model developed by Tran et al.

(2019) was in fact intended to classify embryo quality based on clinical

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
u
m

re
p
/a

rtic
le

/3
5
/4

/7
7
0
/5

8
1
5
1
4
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



772 VerMilyea et al.

Table I Results of pilot study demonstrate feasibility of creating an artificial intelligence-based image analysis model for

prediction of human embryo viability.

Validation dataset Blind Test Set 1 Blind Test Set 2 Total blind test dataset
.......................................................................................................................................................................................

Composition of dataset
.......................................................................................................................................................................................

Total image no. 390 368 632 1000

No. of positive clinical pregnancies 70 76 194 270

No. of negative clinical pregnancies 320 292 438 730
.......................................................................................................................................................................................

AI model accuracy
.......................................................................................................................................................................................

Accuracy viable embryos (sensitivity) 74.3% 63.2% 78.4% 74.1%

Accuracy non-viable embryos (specificity) 74.4% 77.1% 57.5% 65.3%

Overall accuracy 74.4% 74.2% 63.9% 67.7%
.......................................................................................................................................................................................

Comparison to embryologist grading – viable versus non-viable embryos
.......................................................................................................................................................................................

No. of images with embryologist grade ND 121 477 598

AI model accuracy ND 71.9% 65.4% 66.7%

Embryologist accuracy ND 47.1% 52.0% 51.0%

AI model improvement ND 52.7% 25.8% 30.8%

No. times AI model correcta ND 42 106 148

No. times embryologist correcta ND 12 42 54

AI model fold improvement ND 3.5 x 2.5 x 2.7 x

aImages where the AI model was correct and the embryologist was incorrect, and vice versa.

AI = artificial intelligence; ND = not done; No. = number.

pregnancy outcome. This study did not report percentage accuracy

of prediction, but instead reported a high level of accuracy for their

model IVY using a receiver operating characteristic (ROC) curve. The

AUC for IVY was 0.93 for true positive rate versus false positive rate;

negative predictions were not evaluated. However, the datasets used

for training and evaluation of this model were only partly based on

actual ground-truth clinical pregnancy outcome—a large proportion

of predicted non-viable embryos were never actually transferred, and

were only assumed to lead to an unsuccessful pregnancy outcome.

Thus, the reported performance is not entirely relevant in the context

of clinical applicability, as the actual predictive power for the presence

of a fetal heartbeat has not been evaluated to date.

The AI approach presented here is the first study of its kind to evaluate

the true ability of AI for predicting pregnancy outcome, by exclu-

sively using ground-truth pregnancy outcome data for AI development

and testing. It is important to note that while a pregnancy outcome

endpoint is more clinically relevant and informative; it is inherently

more complex in nature due to patient and laboratory variability that

impact pregnancy success rates beyond the quality of the embryo itself.

The theoretical maximum accuracy for prediction of this endpoint

based on evaluation of embryo quality is estimated to be ∼80%, with

the remaining 20% a�ected by patient-related clinical factors, such as

endometriosis, or laboratory process errors in embryo handling, etc.,

that could lead to a negative pregnancy outcome despite a morpho-

logically favorable embryo appearance (Annan et al., 2013). Given

the influence of confounding variables, and the low average accuracy

presently demonstrated by embryologists using traditional morpholog-

ical grading methods (∼50% in the current study, Tables I and II), an AI

model with an improvement of even 10–20% over that of embryolo-
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gists would be considered highly relevant in this clinical domain. In the

current study, we aimed to develop an AI model that demonstrated

superiority to embryologists’ predictive power for embryo viability, as

determined by ground-truth clinical pregnancy outcome.

Materials and Methods

Experimental design

These studies were designed to analyze retrospectively collected data

for development and testing of the AI-based model in prediction of

embryo viability. Data were collected for female subjects who had

undergone oocyte retrieval, IVF and embryo transfer. The investiga-

tion was non-interventional, and results were not used to influence

treatment decisions in any way. Data were obtained for consecutive

patients who had undergone IVF at 11 independent clinics in three

countries (the USA, Australia and New Zealand) from 2011 to 2018.

Data were limited to patients who received a single embryo transfer

with a Day 5 embryo, and where the endpoint was clinical pregnancy

outcome as measured by fetal heartbeat at first scan. The clinical preg-

nancy endpoint was deemed to be the most appropriate measure of

embryo viability as this limited any confounding patient-related factors

post-implantation. Criteria for inclusion/exclusion were established

prospectively, and images not matching the criteria were excluded from

analysis.

For inclusion in the study, images were required to be of embryos

on Day 5 of culture taken using a standard optical light microscope

mounted camera. Images were only accepted if they were taken prior

to PGS biopsy or freezing. All images were required to have a minimum
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Table II Results of the pivotal study demonstrate generalizability of the LifeWhisperer AImodel for prediction of human

embryo viability across multiple clinical environments.

Validation

dataset

Blind Test

Set 1

Blind Test

Set 2

Blind Test

Set 3

Combined

blind sets
.......................................................................................................................................................................................

Composition of dataset
.......................................................................................................................................................................................

No. of images 193 280 286 1101 1667

No. of positive clinical pregnancies 97 141 180 334 655

No. of negative clinical pregnancies 96 139 106 767 1012
.......................................................................................................................................................................................

AI model accuracy
.......................................................................................................................................................................................

Accuracy viable embryos (sensitivity) 76.3% 72.3% 73.9% 67.1% 70.1%

Accuracy non-viable embryos (specificity) 53.1% 54.7% 54.7% 62.3% 60.5%

Overall accuracy 64.8% 63.6% 66.8% 63.8% 64.3%
.......................................................................................................................................................................................

Comparison to embryologist grading – viable versus non-viable embryos
.......................................................................................................................................................................................

No. of images with embryologist grade ND 262 0a 539 801

AI model accuracy ND 63.7% ND 57.0% 59.2%

Embryologist accuracy ND 50.4% ND 46.0% 47.4%

AI model improvement ND 26.4% ND 23.8% 24.7%

No. times AI model correctb ND 71 ND 101 172

No. times embryologist correctb ND 36 ND 42 78

AI model fold improvement ND 2.0 x ND 2.4 x 2.2 x
.......................................................................................................................................................................................

Comparison to embryologist grading – embryo ranking
.......................................................................................................................................................................................

AI model ranking correctb ND 44.3% ND 38.8% 40.6%

Embryologist ranking correctb ND 30.5% ND 27.6% 28.6%

AI model improvement ND 45.2% ND 40.6% 42.0%

aEmbryologist scores were not available. bImages where the AI model was correct and the embryologist was incorrect, and vice versa.

ND =not done; No. = number.

resolution of 512 x 512 pixels with the complete embryo in the

field of view. Additionally, all images were required to have matched

clinical pregnancy outcome available (as detected by the presence of

a fetal heartbeat on first ultrasound scan). For a subset of patients,

the embryologist’s morphokinetic grade was available, and was used

to compare the accuracy of the AI with the standard visual grading

method for those patients.

Ethics and compliance

All patient data used in these studies were retrospective and pro-

vided in a de-identified format. In the USA, the studies described

were deemed exempt from Institutional Review Board (IRB) review

pursuant to the terms of the United States Department of Health and

Human Service’s Policy for Protection of Human Research Subjects

at 45 C.F.R. § 46.101(b) (IRB ID #6467, Sterling IRB). In Australia,

the studies described were deemed exempt from Human Research

Ethics Committee review pursuant to Section 5.1.2.2 of the National

Statement on Ethical Conduct in Human Research 2007 (updated

2018), in accordance with the National Health and Medical Research

Council Act 1992 (Monash IVF). In NewZealand, the studies described

were deemed exempt from Health and Disability Ethics Committee
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review pursuant to Section 3 of the StandardOperating Procedures for

Health and Disability Ethics Committees, Version 2.0 (August 2014).

These studies were not registered as a clinical trial as they did

not meet the definition of an applicable clinical trial as defined

by the ICMJE, that is, ‘a clinical trial is any research project that

prospectively assigns people or a group of people to an intervention,

with or without concurrent comparison or control groups, to study

the relationship between a health-related intervention and a health

outcome’.

Viability scoring methods

For the AI model, an embryo viability score of 50% and above was

considered viable, and below 50% non-viable. Embryologist’s scores

were provided for Day 5 blastocysts at the time when the image

was taken. These scores were placed into scoring bands, which

were roughly divided into ‘likely viable’ and ‘likely non-viable’ groups.

This generalization allowed comparison of binary predictions from

the embryologists with predictions from the AI model (viable/non-

viable). The scoring system used by embryologists was based on

the Gardner scale of morphokinetic grading (Gardner and Sakkas,

2003) for the quality of the ICM and the trophectoderm of the

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
u
m

re
p
/a

rtic
le

/3
5
/4

/7
7
0
/5

8
1
5
1
4
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2
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embryo, indicated by a single letter (A–E). Also included was either a

numerical score or a description of the embryo’s stage of development

toward hatching. Numbers were assigned in ascending order of

embryo development as follows: 1 = start of cavitation, 2 = early

blastocyst, 3 = full blastocyst, 4 = expanded blastocyst and 5= hatching

blastocyst. If no developmental stage was given, it was assumed that

the embryo was at least an early blastocyst (>2). The conversion

table for all clinics providing embryologists scores is provided in

Supplementary Table SI. For embryologist’s scores, embryos of 3BB

or higher grading were considered viable, and below 3BB considered

non-viable.

Comparisons of embryo viability ranking were made by equating

the embryologist’s assessment with a numerical score from 1 to

5 and, similarly, dividing the AI model inferences into five equal

bands labeled 1 to 5 (from the minimum inference to the maximum

inference). If a given embryo image was given the same rank by the

AI model and the embryologist, this was noted as a ‘concordance’. If,

however, the AI model provided a higher rank than the embryologist

and the ground-truth outcome was recorded as viable, or the AI

model provided a lower rank than the embryologist and the ground-

truth outcome was recorded as non-viable, then this outcome was

noted as ‘model correct’. Similarly, if the AI model provided a lower

rank than the embryologist and the ground-truth outcome was

recorded as viable, or the AI model provided a higher rank and the

outcome was recorded as non-viable, this outcome was noted as

‘embryologist correct’.

Computer vision image processing methods

All image data underwent a pre-processing stage, as outlined below.

These computer vision image processing methods were used in model

development, and incorporated into the final AI model.

– Each image was stripped of its alpha channel to ensure that it was

encoded in a 3-channel format (e.g. RGB). This step removed

additional information from the image relating to transparency

maps, while incurring no visual change to the image. These por-

tions of the image were not used.

– Each image was padded to square dimensions, with each side

equal to the longest side of the original image. This process

ensured that image dimensions were consistent, comparable and

compatible for deep learning methods, which explicitly require

square dimension images as input, while also ensuring that no key

components of the image were cropped.

– Each image was RGB color normalized, by taking the mean of

each RGB channel, and dividing each channel by its mean value.

Each channel was then multiplied by a fixed value of 100/255, in

order to ensure the mean value of each image in RGB space was

(100, 100, 100). This step ensured that color biases among the

images were suppressed, and that the brightness of each image

was normalized.

– Each image was then cropped so that the center of the embryo

was in the center of the image. This was carried out by extracting

the best ellipse fit from an elliptical Hough transform, calculated

on the binary threshold map of the image. This method acts by

selecting the hard boundary of the embryo in the image, and

by cropping the square boundary of the new image so that the

longest radius of the new ellipse is encompassed by the new image
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Figure 1 Sample image of human embryo with pre-

processing steps applied in order. The six main pre-processing

steps, prior to transforming the image into a tensor format, are

illustrated. (A) The input image is stripped of the alpha channel. (B)

The image is padded to square dimensions. (C) The color balance and

brightness levels are normalized. (D) The image is cropped to remove

excess background space such that the embryo is centered. (E) The

image is scaled in resolution for the appropriate neural network. (F–

G) Segmentation is applied to the image as a pre-processing step for

portion of the neural networks. An image with the inner cell mass

(ICM) and intra-zona cavity (IC) masked is shown in (F) and an image

with the ICM/IC exposed is shown in (G). Images were taken at 200x

magnification.

width and height, and so that the center of the ellipse is the center

of the new image.

– Each image was then scaled to a smaller resolution prior to

training.

– For training of selected models, images underwent an additional

pre-processing step called boundary-based segmentation. This

process acts by separating the region of interest (i.e. the embryo)

from the image background, and allows masking in order to

concentrate the model on classifying the gross morphological

shape of the embryo.

– Finally, each image was transformed to a tensor rather than a

visually displayable image, as this is the required data format for

deep learning models. Tensor normalization was obtained from

standard pre-trained ImageNet values, mean (0.485, 0.456, 0.406)

and standard deviation (0.299, 0.224, 0.225). Figure 1 shows an

example embryo image carried through the first six pre-processing

steps described above.

Embryo images obtained for this study were divided into training,

validation and blind dataset categories by randomizing available data

with the constraint that each dataset was to have an even distribution of

examples across each of the classifications (i.e. the same ratio of viable

to non-viable embryos). For model training, the images in the training

dataset were additionally manipulated using a set of augmentations.

Augmentations are required for training in order to anticipate changes

to lighting conditions, rotation of the embryo and focal length so that

the final model is robust to these conditions from new unseen datasets.

The augmentations used in model training are as follows:

– Rotations: Images were rotated a number of ways, including

90 degree rotations, and also other non-90 degree rotations
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where the diagonal whitespace in the square image due to these

rotations was filled in with background color using the OpenCV

(version 3.2.0; Willow Garage, Itseez, Inc. and Intel Corporation;

2200 Mission College Blvd. Santa Clara, CA 95052, USA) ‘Bor-

der_Replicate’ method, which uses the pixel values near the image

border to fill in whitespace after rotation.

– Reflections: Horizontal or vertical reflections of the image were

also included as training augmentations.

– Gaussian blur: Gaussian blurring was applied to some images using

a fixed kernel size (with a default value of 15).

– Contrast variation: Contrast variation was introduced to images

by modifying the standard deviation of the pixel variation of the

image from the mean, away from its default value.

– Random horizontal and vertical translations (jitter): Randomly

applied small horizontal and vertical translations (such that the

blastocyst did not deviate outside the field of view) were used

to assist the model in training invariance to translation or position

in the image.

– Random compression or jpeg noise:While uncompressed file for-

mats are preferred for analysis (e.g. ‘png’ format), many embryo

images are provided in the common compressed ‘jpeg’ format.

To control for compression artifacts from images of jpeg format,

jpeg compression noise was randomly applied to some images for

training.

Model architectures considered

A range of deep learning and computer vision/machine learning meth-

ods were evaluated in training the AI model as follows. The most

e�ect deep learning architectures for classifying embryo viability were

found to be residual networks, such as ResNet-18, ResNet-50 and

ResNet-101 (He et al., 2016), and densely connected networks, such as

DenseNet-121 and DenseNet-161 (Huang et al., 2017). These archi-

tectures were more robust than other types of models when assessed

individually. Other deep learning architectures including InceptionV4

and Inception-ResNetV2 (Szegedy et al., 2016) were also tested but

excluded from the final AI model due to poorer individual perfor-

mance. Computer vision/machine learning models including support

vector machines (Hearst, 1998) and random forest (Breiman, 2001)

with computer vision feature computation and extraction were also

evaluated. However, these methods yielded limited translatability and

poorer accuracy compared with deep learning methods when evalu-

ated individually, and were therefore excluded from the final AI model

ensemble. For more information see the Model selection process

section.

Loss functions considered

The following quantities were evaluated to select the best model types

and architectures:

– Model stabilization: How stable the accuracy value was on the

validation set over the training process.

– Model transferability: How well the accuracy on the training data

correlated with the accuracy on the validation set.

– Prediction accuracy: Which models provided the best validation

accuracy, for both viable and non-viable embryos, the total com-

bined accuracy and the balanced accuracy, defined as the weighted

average accuracy across both class types of embryos.
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In all cases, use of ImageNet pretrained weights demonstrated

improved performance of these quantities.

Loss functions that were evaluated as options for the model’s hyper-

parameters included cross entropy (CE), weighted CE and residual

CE loss function. The accuracy on the validation set was used as the

selection criterion to determine a loss function. Following evaluation,

only weighted CE and residual CE loss functions were chosen for use

in the final model, as these demonstrated improved performance. For

more information see the Model selection process section.

Deep learning optimization specifications

Multiple models with a wide range of parameter and hyper-parameter

settings were trained and evaluated. Optimization protocols that

were tested to specify how the value of the learning rate should

be used during training included stochastic gradient descent (SGD)

with momentum (and/or Nesterov accelerated gradients), adaptive

gradient with delta (Adadelta), adaptive moment estimation (Adam),

root-mean-square propagation (RMSProp) and limited-memory

Broyden–Fletcher–Goldfarb–Shanno (L-MBFGS). Of these, two well-

known training optimization strategies (optimizers) were selected for

use in the final model; these were SGD (Rumelhart et al., 1986) and

Adam (Kingma and Ba, 2014). Optimizers were selected for their ability

to drive the update mechanism for the network’s weight parameters

to minimize the objective/loss function.

Learning rates were evaluated within the range of 1e-5 to 1e-1.

Testing of learning rates was conducted with the use of step scheduler,

which reduces the learning rate during the training progress. Learning

rates were selected based on their ability to stably converge the model

toward a minimum loss function. The dropout rate, an important

technique for preventing over-training for deep learning models, was

tested within the range of 0.1 to 0.4. This involved probabilistically

dropping out nodes in the network with a large number of weight

parameters to prevent over-fitting while training. For more information

see the Model selection process section.

Each deep neural network used weight parameters obtained from

pre-training on ImageNet, with the final classifier layer replaced with a

binary classifier corresponding to non-viable and viable classification.

Training of AI models was conducting using PyTorch library (ver-

sion 0.4.0; Adam Paszke, Sam Gross, Soumith Chintala and Gregory

Chanan; 1601 Willow Rd, Menlo Park, CA 94025, USA), with CUDA

support (version 9; Nvidia Corporation; 2788 San Tomas Expy, Santa

Clara, CA 95051, USA), and OpenCV (version 3.2.0; Willow Garage,

Itseez, Inc. and Intel Corporation; 2200 Mission College Blvd. Santa

Clara, CA 95052, USA).

Individual models were trained and evaluated separately using a train-

validate cycle process as follows:

– Batches of images were randomly sampled from the training

dataset and a viability outcome predicted for each embryo

image.

– Results for each image were compared to known outcomes to

compute the di�erence between the prediction and the actual

outcome (loss).

– The loss value was then used to adjust the model’s weights to

improve its prediction (backpropagation), and the running total

accuracy was assessed.
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– This process was repeated thousands of times until the loss was

reduced as much as possible and the value plateaued.

– When all batches in the training dataset had been assessed (i.e.

1 epoch), so that the entire training set had been covered, the

training set was re-randomized, and training was repeated.

– After each epoch, the model was run on a fixed subset of images

reserved for informing the training process to prevent over-

training (the validation set).

– The train-validate cycle was carried out for 2–100 epochs until a

su�ciently stable model was developed with low loss function. At

the conclusion of the series of train-validate cycles, the highest

performing models were combined into a final ensemble model

as described below.

Model selection process

Evaluation of individual model performance was accomplished using

a model architecture selection process. Only the training and valida-

tion sets were used for evaluation. Each type of prediction model

was trained with various settings of model parameters and hyper-

parameters, including input image resolution, choice of optimizer,

learning rate value and scheduling, momentum value, dropout and

initialization of the weights (pre-training).

After shortlisting model types and loss functions using the criteria

established in the preceding sections, models were separated into two

groups: first, those that included additional image segmentation, and

second those that required the entire unsegmented image. Models

that were trained on images that masked the ICM, exposing the zona

region, were denoted as zona models. Models that were trained on

images that masked the zona (denoted ICM models), and models

that were trained on full-embryo images, were also considered in

training. A group of models encompassing contrasting architectures

and pre-processing methods was selected in order to maximize per-

formance on the validation set. Individual model selection relied on

two criteria, namely diversity and contrasting criteria, for the following

reasons:

– The diversity criterion drives model selection to include di�erent

model’s hyper-parameters and configurations. The reason is that,

in practice, similar model settings result in similar prediction out-

comes and hence may not be useful for the final ensemble model.

– The contrasting criterion drives model selection with diverse

prediction outcome distributions, due to di�erent input images

or segmentation. This approach was supported by evaluating

performance accuracies across individual clinics. This method

ensured translatability by avoiding selection of models that

performed well only on specific clinic datasets, thus preventing

over-fitting.

The final prediction model was an ensemble of the highest per-

forming individual models (Rokach, 2010). Well-performing individual

models that exhibited di�erent methodologies, or extracted di�erent

biases from the features obtained through machine learning, were

combined using a range of voting strategies based on the confidence

of each model. Voting strategies evaluated included mean, median,

max and majority mean voting. It was found that the majority mean

voting strategy outperformed other voting strategies for this par-

ticular ensemble model. This voting strategy gave the most stable
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model across all datasets and was therefore chosen as the preferred

model.

The final ensemble model includes eight deep learning models of

which four are zona models and four are full-embryo models. The final

model configuration used in this study is as follows:

– One full-embryo ResNet-152 model, trained using SGD with

momentum=0.9, CE loss, learning rate 5.0e-5, step-wise sched-

uler halving the learning rate every 3 epochs, batch size of 32,

input resolution of 224 x 224 and a dropout value of 0.1.

– One zona model ResNet-152 model, trained using SGD with

momentum=0.99, CE loss, learning rate 1.0e-5, step-wise sched-

uler dividing the learning rate by 10 every 3 epochs, batch size of

8, input resolution of 299 x 299 and a dropout value of 0.1.

– Three zona ResNet-152 models, trained using SGD with

momentum=0.99, CE loss, learning rate 1.0e-5, step-wise

scheduler dividing the learning rate by 10 every 6 epochs, batch

size of 8, input resolution of 299 x 299, and a dropout value of

0.1, one trained with random rotation of any angle.

– One full-embryo DenseNet-161 model, trained using SGD with

momentum=0.9, CE loss, learning rate 1.0e-4, step-wise sched-

uler halving the learning rate every 5 epochs, batch size of 32,

input resolution of 224 x 224, a dropout value of 0 and trained

with random rotation of any angle.

– One full-embryo DenseNet-161 model, trained using SGD with

momentum=0.9, CE loss, learning rate 1.0e-4, step-wise sched-

uler halving the learning rate every 5 epochs, batch size of 32,

input resolution of 299 x 299, a dropout value of 0.

– One full-embryo DenseNet-161 model, trained using SGD with

momentum=0.9, Residual CE loss, learning rate 1.0e-4, step-

wise scheduler halving the learning rate every 5 epochs, batch size

of 32, input resolution of 299 x 299, a dropout value of 0 and

trained with random rotation of any angle.

The architecture diagram corresponding to ResNet-152, which fea-

tures heavily in the final model configuration, is shown in Figure 2. A

flow chart describing the entire model creation and selection method-

ology is shown in Figure 3. The final ensemble model was subsequently

validated and tested on blind test datasets as described in the results

section.

Statistical analysis

Measures of accuracy used in the assessment of model behavior on

data included sensitivity, specificity, overall accuracy, distributions of

predictions and comparison to embryologists’ scoringmethods. For the

AI model, an embryo viability score of 50% and above was considered

viable, and below 50% non-viable. Accuracy in identification of viable

embryos (sensitivity) was defined as the number of embryos that the

AI model identified as viable divided by the total number of known

viable embryos that resulted in a positive clinical pregnancy. Accuracy

in identification of non-viable embryos (specificity) was defined as the

number of embryos that the AI model identified as non-viable divided

by the total number of known non-viable embryos that resulted in

a negative clinical pregnancy outcome. Overall accuracy of the AI

model was determined using a weighted average of sensitivity and

specificity, and percentage improvement in accuracy of the AI model

over the embryologist was defined as the di�erence in accuracy as a
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Figure 2 Example illustration of ResNet-152 neural network layers. The layer diagram from input to prediction for a neural network of

type ResNet-152, which features prominently in the final Life Whisperer artificial intelligence (AI) model, is shown. For the 152 layers, the number of

convolutional layers (‘conv’) are depicted, along with the filter size, which is the receptive region taken by each convolutional layer. Two-dimensional

maxpooling layers (‘pool’) are also shown, with a final fully connected (FC) layer, which represents the classifier, with a binary output for prediction

(non-viable and viable).

proportion of the original embryologist accuracy (i.e. (AI_accuracy—

embryologist_accuracy)/embryologist_accuracy).

For these analyses, embryologist scores corresponding to blastocyst

assessment at Day 5 were provided, that is, their assessment was

provided at the same point in time as when the image was taken. This

ensured that the time point for model assessment and the embryol-

ogist’s assessment were consistent. Note that the subset of data that

includes corresponding embryologist scores was sourced from a range

of clinics, and thus the measurement of the embryologist grading accu-

racy varied across each clinic, from 43.9% to 55.3%. This is due to the

variation in embryologist skill, and statistical fluctuation of embryologist

scoring methods across the dataset. In order to provide a comparison

that ensured the most representative distribution of embryologist skill

levels, all embryologist scores were considered across all clinics, and

combined in an unweighted manner, instead of considering accuracies

from individual clinics. This approach therefore captured the inherent

diversity in embryologist scoring e�cacy.

The distributions of prediction scores for both viable and non-

viable embryo images were used to determine the ability of the

AI model to separate true positives from false negatives, and true

negatives from false positives. AI model predictions were normalized

between 0 and 1, and interpreted as confidence scores. Distributions

were presented as histograms based on the frequency of confidence

scores. Bi-modal distributions of predictions indicated that true pos-

itives and false negatives, or true negatives and false positives, were

separated with a degree of confidence, meaning that the predictive

power of the model on a given dataset was less likely to have been

obtained by chance. Alternatively, slight asymmetry in a unimodal

Gaussian-like distribution falling on either side of a threshold indicated

that the model was not easily able to separate distinct classes of

embryo.
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A binary confusion matrix containing class accuracy measures, i.e.

sensitivity and specificity, was also used in model assessment. The con-

fusion matrix evaluated model classification and misclassification based

on true positives, false negatives, false positives and true negatives.

These numbers were depicted visually using tables or ROCplots where

applicable.

Final model accuracy was determined using results from blind

datasets only, as these consisted of completely independent ‘unseen’

datasets that were not used in model training or validation. In general,

the accuracy of any validation dataset will be higher than that of a blind

dataset, as the validation dataset is used to guide training and selection

of the AI model. For a true, unbiased measure of accuracy, only blind

datasets were used. The number of replicates used for determination

of accuracy was defined as the number of completely independent

blind test sets comprising images that were not used in training the AI

model. Double-blind test sets, consisting of images provided by clinics

that did not provide any data for model training, were used to evaluate

whether the model had been over-trained on data provided by the

original clinics.

Results

Datasets used in model development

Model development was divided into two distinct studies. The first

study consisted of a single-site pilot study to determine the feasibility

of creating an AI model for prediction of embryo viability, and refine

the training techniques and principles to be adopted for a second multi-

site study. The first study, or pilot study, was performed using a total of

5282 images provided by a single clinic in Australia, with 3892 images

used for the training process. The AI model techniques explored in
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778 VerMilyea et al.

Figure 3 Flow chart for model creation and selection methodology. The model creation methodology is depicted beginning from data

collection (top). Each step summarizes the component tasks that were used in the development of the final AI model. After image processing and

segmentation, the images were split into datasets and the training dataset prepared by image augmentation. The highest performing individual models

were considered candidates for inclusion in the final ensemble model, and the final ensemble model was selected based using majority mean voting

strategy.

the pilot study were then further developed in a second, pivotal study

to determine generalizability to di�erent clinical environments. The

pivotal study used a total of 3604 images provided by 11 clinics from

across the USA, Australia and New Zealand, with a total of 1744

images of Day 5 embryos used for training the LifeWhisperer AI model

presented in this article.

Images were split into defined datasets for model development in

each study, which included a training dataset, a validation dataset and

multiple blind test sets. Figure 4 depicts the number and origin of

images that were used in each dataset in both the pilot and pivotal

studies. A significant proportion of images in each study were used in

model training, with a total of 3892 images used in the pilot study, and a

further 1744 images used in the pivotal study. AI models were selected

and validated using validation datasets, which contained 390 images in

the pilot study and 193 in the pivotal study. Accuracy was determined

using blind datasets only, comprising a total of 1000 images in the pilot

study, and 1667 images in the pivotal study. Two independent blind test

sets were evaluated in the pilot study; these were both provided by

the same clinic that provided images for training. Three independent

blind test sets were evaluated in the pivotal study. Blind Test Set
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1 comprised images from the same clinics that provided images for

training. Blind Test Sets 2 and 3 were, however, provided by completely

independent clinics that did not provide any data for training. Thus,

Blind Test Sets 2 and 3 represented double-blinded datasets as relates

to AI computational methods.

In total, 52.5% of all images in the blind datasets had embryologist

grades available for comparison of outcome. Note that embryologist’s

grades were not available for Blind Test Set 2 in the pivotal study;

therefore, n=2 for both studies in comparison of AI model accuracy

to that of embryologists.

Pilot feasibility study

Table I shows a summary of results for the pilot study presented

according to dataset (validation dataset, individual blind test sets and

combined blind test dataset). In this study, negative pregnancies were

found to outweigh positive pregnancies by approximately 3-fold. Sen-

sitivity of the Life Whisperer AI model for viable embryos was 74.1%,

and specificity for non-viable embryos was 65.3%. The greater sen-

sitivity compared to specificity was to be expected, as it reflects the
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Figure 4 Image datasets used in AI model development and testing. A total of 8886 images of Day 5 embryos with matched clinical

pregnancy outcome data were obtained from 11 independent IVF clinics across the USA, Australia and New Zealand. The pilot (feasibility) study to

develop the initial AI model utilized 5282 images from a single clinic in Australia. This model was further developed in the pivotal study, which utilized

an additional 3604 images from all 11 clinics. Blind test sets were used to determine AI model accuracy.

intended bias to grade embryos as viable that was introduced during

model development. Overall accuracy for the AI model was 67.7%.

For the subset of images that had embryologist’s scores available, the

AI model provided an average accuracy improvement of 30.8% over

embryologist’s grading for viable/non-viable predictions (P=0.021,

n=2, Student’s t test). The AI model correctly predicted viability

over the embryologist 148 times, whereas the embryologist correctly

predicted viability over the model 54 times, representing a 2.7-fold

improvement for the AI model.

The AI model developed in this pilot study was used as a basis for

further development in the pivotal study described below.

Model accuracy and generalizability

The results of the pivotal study are presented in Table II. In this study,

the distribution of negative and positive pregnancies was more even

than in the pilot study, with negative pregnancies occurring∼50%more

often than positive pregnancies (1.5-fold increase compared to 3-fold

increase in the pilot study).

After further development using data from a range of clinics, the Life

Whisperer AI model showed a sensitivity of 70.1% for viable embryos,

and a specificity of 60.5% for non-viable embryos. This was relatively
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similar to the initial accuracy values obtained in the pilot study, although

values were marginally lower—this was not unexpected due to the

introduction of inter-clinic variation into the AI development. Note

that while the sensitivity in Blind Test Set 3 was ∼5–7% lower than

that of Blind Test Sets 1 and 2, the specificity was ∼8% higher than in

those datasets, making the overall accuracy comparable across all three

blind test sets. The overall accuracy in each blind test set was >63%,

with a combined overall accuracy of 64.3%.

Binary comparison of viable/non-viable embryo classification

demonstrated that the AI model provided an average accuracy

improvement of 24.7% over embryologist’s grading (P=0.047, n=2,

Student’s t test). The AI model correctly predicted viability over

the embryologist 172 times, whereas the embryologist correctly

predicted viability over the model 78 times, representing a 2.2-fold

improvement for the AI model. Comparison to embryologist’s scores

using the 5-band ranking system approach showed that the AI model

was correct over embryologists for 40.6% of images, and incorrect

compared to embryologist’s scoring for 28.6% of images, representing

an improvement of 42.0% (P=0.028, n=2, Student’s t test).

Confusion matrices showing the total number of true positives, false

positives, false negatives and true negatives obtained from embryol-

ogist grading methods and the AI model are shown in Figure 5. By
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780 VerMilyea et al.

Figure 5 Confusion matrix of the pivotal study for embry-

ologist and AI model grading.True positives (TP), false positives

(FP), false negatives (FN) and true negatives (TN) are shown. The

embryologists’ confusion matrix is depicted on the top panel, and

the AI model’s confusion matrix is depicted on the bottom panel.

The embryologists’ overall accuracy is significantly lower, despite a

relatively higher sensitivity, due to the enhanced specificity of the AI

model’s predictions. Clin. Preg. = clinical pregnancy; No Clin. Preg. =

no clinical pregnancy.

comparing the embryologist and AI model results, it is clear that the

embryologist accuracy overall is significantly lower, even though the

sensitivity is higher. This is most likely due to the fact that embry-

ologist scores are typically high for the sub-class of embryos that

have been implanted, and therefore there is a natural bias in the

dataset toward embryos that have a high embryologist score. While

alteration of the embryologist threshold score of ‘3BB’ above which

embryos are considered ‘likely viable’ does not result in greater embry-

ologist accuracy, a significant proportion of the embryos considered,

(114+ 121)/(134+ 128) = 89.7%, were graded equal to or higher

than 3BB. While the AI Model showed a reduction in true positives

compared to the embryologist, there was a significant improvement

in specificity. The AI model demonstrated an excess of 60% for

both sensitivity and specificity, while still retaining a bias toward high

sensitivity, in order to minimize the number of false negatives.

A visual representation of the distribution of rankings from embry-

ologists and from the AI model is shown in Figure 6. The histograms

di�er from each other in the shape of their distribution. There is a

clear dominance in the embryologist’s scores around a rank value of

3, dropping o� steeply for lower scores of 1 and 2, which reflects the

tendency of embryologists to grade in the average to above average

range. By comparison, the AI model demonstrated a smaller peak for

rank values of 3, and larger peaks for rank values of 2 and 4. This

reflects the AI model’s ability to distinctly separate predictions of viable

and non-viable embryos, suggesting that the model provides a more

granular scoring range across the di�erent quality bands.
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As a final measure of AI model performance, the distributions of

prediction scores for viable and non-viable embryos were graphed to

evaluate the ability of the model to separate correctly from incorrectly

identified embryo images. The histograms for distributions of predic-

tion scores are presented in Figure 7. The shapes of the histograms

demonstrate clear separation between correctly and incorrectly iden-

tified viable or non-viable embryo images.

Discussion

In these studies, Life Whisperer used ensemble modeling to combine

computer visionmethods and deep learning neural network techniques

to develop a robust image analysis model for the prediction of human

embryo viability. In the initial pilot study, an AI-based model was cre-

ated that not only matched the prediction accuracy of trained embry-

ologists, but in fact surpassed the original objective by demonstrating

an accuracy improvement of 30.8%. The AI-based model was further

developed in a pivotal study to extend generalizability and transferabil-

ity to multiple clinical environments in di�erent geographical locations.

Model accuracy was marginally lower on further development due

to the introduction of inter-clinic variability, which may have a�ected

e�cacy due to varying patient demographics (age, health, ethnicity,

etc.), and divergent standard operating procedures (equipment and

methods used for embryo culture and image capture). Variation was

also likely introduced due to embryologists being trained di�erently in

embryo-scoring methods. However, the final AI model is both robust

and accurate, demonstrating a significant improvement of 24.7% over

the predictive accuracy of embryologists for binary viable/non-viable

classification, despite variability of the clinical environments tested. The

overall accuracy for prediction of embryo viability was 64.3%, which

was considered relatively high given that research studies suggest a

theoretical maximum accuracy of 80%, with∼20%of IVF cases thought

to fail due to factors unrelated to embryo viability (e.g. operational

errors, patient-related health factors, etc.).

Confusion matrices and comparison of the distribution of viability

rankings highlighted the tendency for embryologists to classify embryos

as viable, as it is generally considered preferable to allow a non-

viable embryo to be transferred than to allow a viable embryo to

be discarded. During development, the AI model was intentionally

biased to similarly minimize the occurrence of false negatives; this

was reflected in the slightly higher accuracy for viable embryos than

non-viable embryos (70.1% and 60.5% for sensitivity and specificity,

respectively). By examining the distribution of viability rankings for the

AI model on the validation set, it was demonstrated that the model

was able to distinctly separate predictions of viable and non-viable

embryos on the blind test sets. Furthermore, graphical representa-

tion of the distribution of predictions for both viable and non-viable

embryos demonstrated a clear separation of correct and incorrect

predictions (for both viable and non-viable embryos, separately) by the

AI model.

Machine learning methods have recently come into the spotlight for

various medical imaging diagnostic applications. In particular, several

groups have published research describing the use of either con-

ventional machine learning or AI image analysis techniques to auto-

mate embryo classification. Two recent studies described conventional

algorithms for prediction of blastocyst formation rather than clinical
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Artificial intelligence for embryo viability assessment 781

Figure 6 Distribution of viability rankings demonstrates the ability of the AI model to distinctly separate viable from non-viable

human embryos.The left panel depicts the frequency of embryo viability rankings according to embryologist’s scores, and the right panel depicts the

frequency of viability rankings according to AI model predictions. Results are shown for Blind Test Set 1. Y-axis =% of images in rank; x-axis = ranking

band (1= lowest predicted viability, 5 = highest predicted viability).

pregnancy. These studies achieved 76.4% (Segal et al., 2018) and>93%

(Wong et al., 2010) accuracy, respectively, in their overall classification

objectives, which included prediction of blastocyst formation based on

Day 2 and/or Day 3 morphology and a number of other independent

data points. However, it is important to note that blastocyst formation

is not a reliable indicator of the probability of clinical pregnancy, and

therefore the utility of this approach for prediction of pregnancy

outcome is limited.

As discussed earlier, three recent studies described development of

AI-based systems for classification of embryo quality (Khosravi et al.,

2019; Kragh et al., 2019; Tran et al., 2019). All three studies utilized

images taken by time-lapse imaging systems, which likely standardized

the quality of images provided for analysis compared to those obtained

by standard optical light microscopy. Khosravi et al. (2019) reported

an accuracy of 97.5% for their model STORK in predicting embryo

grade. Their model was not, however, developed to predict clinical

pregnancy outcome. The high reported accuracy in this case may be

attributed to the fact that the analysis was limited to classification of

poor versus good quality embryos—fair quality embryos in between

were excluded from analysis. Similarly, Kragh et al. (2019) reported

accuracies of 71.9% and 76.4% for their model in grading embryonic

ICM and trophectoderm, respectively, according to standard morpho-

logical grading methods. This was shown to be at least as good as

the performance of trained embryologists. The authors also evaluated

predictive accuracy for implantation, for which data were available for

a small cohort of images. The AUC for prediction of implantation was

not significantly di�erent to that of embryologists (AUC of 0.66 and

0.64, respectively), and therefore, this model has limited ability for

prediction of pregnancy outcome.

The approach taken by Tran et al. (2019) for development of their

AI model IVY used deep learning to analyze time-lapse embryo images

to predict pregnancy success rates. This study used 10 683 embryo

images from 1648 individual patients throughout the course of the

training and development of IVY, with 8836 embryos coded as positive

or negative cases. Of note, although developed to predict pregnancy
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outcome, the IVY AI was trained on a heavily biased dataset of only

694 cases (8%) of positive pregnancy outcomes, with 8142 negative

outcome cases (92%). Additionally, 87% (7063 cases) of the negative

outcome cases were from embryos that were never transferred to a

patient, discarded based on abnormal morphology considerations or

aneuploidy, and therefore the ground-truth clinical pregnancy outcome

cannot be known. The approach used to train the IVY AI only used

ground-truth pregnancy outcome for a very small proportion of the

algorithm training and thus has a heavy inherent bias toward the embry-

ologist assessment for negative outcome cases. Although somewhat

predictive of pregnancy outcome, the accuracy of the AI has not truly

been measured on ground-truth outcomes of clinical pregnancy, and

gives a false representation of the true predictive accuracy of the AI,

which can only be truly assessed on an AI model that has been trained

exclusively on known fetal heartbeat outcome data.

The works discussed above are not experimentally comparable with

the current study, as they generally relate to di�erent endpoints; for

example, the prediction of blastocyst formation at Day 5 starting

from an image at Day 2 or Day 3 post-IVF. While there is some

benefit in these methods, they do not provide any power in pre-

dicting clinical pregnancy, in contrast to the present study evaluating

the Life Whisperer model. Other studies have shown that a high

level of accuracy can be achieved through the use of AI in repli-

cating embryologist scoring methods (Khosravi et al., 2019; Kragh

et al., 2019); however, the work presented here has shown that

the accuracy of embryologist grading methods in predicting clinical

pregnancy rates is in actuality fairly low. An AI model trained to

replicate traditional grading methods to a high degree of accuracy

may be useful for automation and standardization of grading, but it

can, at best, only be as accurate as the grading method itself. In

the current study, only ground-truth outcomes for fetal heartbeat

at first scan were used in the training, validation and testing of the

model. Given the nature of predicting implantation based on embryo

morphology, which will necessarily be confounded by patient factors

beyond the scope of morphological assessment, it would be expected
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782 VerMilyea et al.

Figure 7 Distributions of prediction scores show the separation of correct from incorrect predictions by theAImodel.Distributions

of prediction scores are presented for Blind Test Set 1 (A), Blind Test Set 2 (B) and Blind Test Set 3 (C). The left panel in each set depicts the frequency

of predictions presented as confidence intervals for viable embryos. True positives where the model was correct are marked in blue, and false negatives

where the model was incorrect are marked in red. The right panel in each set depicts the frequency of predictions presented as confidence intervals for

non-viable embryos. True negatives where the model was correct are marked in green, and false positives where the model was incorrect are marked

in orange.

that the overall accuracy of the Life Whisperer AI model would be

lower than alternative endpoints but more clinically relevant. For the

first time, this study presents a realistic measurement of AI accu-

racy for embryo assessment and a true representation of predictive

ability for the pregnancy outcome endpoint. Given the relatively low

accuracy for embryologists in predicting viability, as shown in this

.
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.

.

.

.

.

study (∼50%), and a theoretical maximum accuracy of 80%, Life

Whisperer’s AI model accuracy of ∼65% represents a significant and

clinically relevant improvement for predicting embryo viability in this

domain.

The present study demonstrated that the Life Whisperer AI model

provided suitably high sensitivity, specificity, and overall accuracy levels
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Artificial intelligence for embryo viability assessment 783

for prediction of embryo viability based directly on ground-truth clinical

pregnancy outcome by indication of positive fetal cardiac activity on

ultrasound. The model was able to predict embryo viability by analysis

of images obtained using standard optical light microscope systems,

which are utilized by the majority of IVF laboratories and clinics world-

wide. AUC/ROC was not used as a primary methodology for eval-

uation of accuracy due to inherent limitations of the approach when

applied to largely unbalanced datasets, such as those used in develop-

ment of IVY (which used a dataset with a ∼13:1 ratio of negative to

positive clinical pregnancies) (Tran et al., 2019). Nevertheless, the ROC

curve for the LifeWhisperer AI model is presented for completeness in

Supplementary Figure SI with results demonstrating an improved AUC

for the AI model when compared to embryologist’s scores.

The unique power of the Life Whisperer AI model developed here

lies in the use of ensemble modeling to combine computer vision image

processing methods and multiple deep learning AI techniques to iden-

tify morphological features of viability that are not readily discernible to

the human eye. The LifeWhisperer AI model was trained on images of

Day 5 blastocysts at all stages including early, expanded, hatching and

hatched blastocysts, and as such it can be used to analyze all stages of

blastocyst development. One potential limitation of the AI model as it

currently stands is that it does not incorporate additional information

from di�erent days of embryo development. Emerging data using time-

lapse imaging systems suggest that certain aspects of developmental

kinetics in culture may correlate with embryo quality (Gardner et al.,

2015). Therefore, it would be of interest to evaluate or modify the

ability of the Life Whisperer AI model to extend to additional time

points during embryo development. It would also be of interest to

evaluate alternative pregnancy endpoints, such as live birth outcome,

as fetal heartbeat is not an absolute indicator of live birth. However, it is

important to note that the endpoint of live birth is additionally a�ected

by patient-related confounding factors. The current investigation was

performed with retrospectively collected data, and hence it will be of

importance to collect data prospectively to assess real-world use of the

AI model. Additional data collection and analysis is expected to further

improve the accuracy of the AI.

The AI model developed here has been incorporated into a cloud-

based software application that is globally accessible via the web. The

Life Whisperer software application allows embryologists or similarly

qualified personnel to upload images of embryos using any computer

or mobile device, and the AI model will instantly return a viability

confidence score. The benefits of this approach lie in its simplicity and

ease of use; the Life Whisperer system will not require installation of

complex or expensive equipment, and does not require any specific

computational or analytical knowledge. Additionally, the use of this tool

will not require any substantial change in standard operating procedures

for IVF laboratories; embryo images are routinely taken as part of IVF

laboratory standard procedures, and analysis can be performed at

the time of image capture from within the laboratory to help decide

which embryos to transfer, freeze or discard. The studies described

herein support the use of the Life Whisperer AI model as a clinical

decision support tool for prediction of embryo viability during IVF

procedures.

Supplementary data
Supplementary data are available at Human Reproduction online.
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