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Abstract: The demand for categorising technology that requires minimum manpower and equipment
is increasing because a large amount of waste is produced during the demolition and remodelling of
a structure. Considering the latest trend, applying an artificial intelligence (AI) model for automatic
categorisation is the most efficient method. However, it is difficult to apply this technology because
research has only focused on general domestic waste. Thus, in this study, we delineate the process for
developing an AI model that differentiates between various types of construction waste. Particularly,
solutions for solving difficulties in collecting learning data, which is common in AI research in special
fields, were also considered. To quantitatively increase the amount of learning data, the Fréchet
Inception Distance method was used to increase the amount of learning data by two to three times
through augmentation to an appropriate level, thus checking the improvement in the performance of
the AI model.

Keywords: deep learning; convolutional neural network; recycling; YOLACT; Fréchet inception
distance; construction waste; data augmentation; transfer learning

1. Introduction

The construction industry is a pivotal player in the national economy in terms of gross
domestic production and employment. According to the World Bank statistics [1], the
construction industry is responsible for approximately 24.7% of the gross domestic product
on average globally. Similarly, the construction industry in the South Korean economy
plays a key role, accounting for approximately 26.8% of the gross domestic production in
2019 [2]. Additionally, it is indicated that the construction industry provided approximately
two million jobs, accounting for approximately 7.5% of the overall employment in all
manufacturing sectors in South Korea [2].

Behind the positive role of this industrial sector in the national economy, it has been
pointed out that this industry not only consumes a large amount of natural resources and
energy, but also emits a large amount of greenhouse gases (GHGs) for the production
of various building materials and operation of a building or facility during the entire
life cycle. According to the Intergovernmental Panel on the Climate Change report, the
construction industry consumes approximately 40% of the total global energy and accounts
for approximately 30% of the overall GHG emissions per annum [3]. Additionally, the
construction industry generates a vast amount of construction and demolition waste,
thereby contributing a significant portion to the overall waste generated globally [4–6].
In South Korea, construction and demolition waste represent approximately 50% of the
total waste, including municipal solid waste and commercial and industrial waste from
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all industrial sectors [4,7,8]. Similarly, the Australian National Waste Report suggests that
approximately 37% of the core waste in 2016–2017 was generated by the construction
industry. In Europe, various construction and demolition activities produce approximately
8.2 million tons of waste, accounting for approximately 46% of the total waste [9]. As
discussed above, the generation of construction and demolition waste would not only
cause several environmental problems (e.g., GHG emissions, rainwater leaching, and
infiltration of surface water caused by landfilling), but also financial problems, such as
disposal costs, including the demolition, classification, and transportation of construction
waste.

Various countries, including South Korea, have implemented various measures to
mitigate the adverse impacts of construction and demolition waste. The 3R approach
which stands for Reduction, Reuse, and Recycling is one of the most popular approaches to
mitigate the potential impact of the waste [10]. Recycling is one of the effective strategies
to minimise waste as well as to achieve sustainable construction waste management.
Although there are several advantages of recycling waste, it would be arduous as time
and human resources are required to segregate the waste into predetermined categories.
Moreover, it has been found that manual involvement and the sorting of waste is error-
prone, inconsistent, related to health and safety issues, and expensive [11]. In order to deal
with such difficulties to recycle construction waste, artificial intelligence-based technologies
have emerged for alternatives. In particular, vision-based methods would make it possible
to minimise human errors and reduce the time consuming methods [12,13]. The purpose
of this research is to develop an automated waste segmentation and classification system
for recycling construction and demolition waste on real construction sites. As the practical
application to real-world construction sites is a significant factor, high accuracy and speed of
detecting and classifying objects in an image are essential factors in selecting an appropriate
architecture among various Convolutional Neural Network (CNN) algorithms. Based on
this consideration, a You Only Look At CoefficienTs (YOLACT) algorithm, which is one of
the fastest fully convoluted models for real-time instance segmentation and classification,
was chosen for the experiment [14]. It is expected that the proposed system would make
it possible to enhance the productivity and cost efficiency by reducing the manpower for
construction and demolition waste management at the site. The remainder of this paper
is organised as follows: first, relevant works on waste management and classification are
described in Section 2. The research methods for the segmentation and classification of
construction and demolition waste using deep neural networks are described in Section 3.
Finally, the experimental results and discussion of this study are presented in Section 4,
and the conclusions and further research directions are provided in Section 5.

2. Related Works
2.1. Waste Management

According to Tam and Tam [15], an intensive policy with a gradual increase in benefits
would be an effective approach to encourage employees to participate in waste reduction
activities. On the other hand, Lu and Yuan [11] suggested that detailed regulations on waste
management at construction sites are essential for successfully reducing construction waste.
While waste management through incentive policies and regulations would be an effective
method from a short-term perspective, the reduction of waste through recycling would
make it possible to decrease waste generation and achieve a circular economy [16–18].
According to Edwards [16], recycling, which would be an effective strategy for waste
minimisation, would reduce the demand for new resources, reduce transportation and
production energy costs, and prevent land loss for landfills. Previous studies claimed that
automation systems for recycling would be a potential solution for sorting and classifying
waste [19–21]. For example, Picon et al. [19] adopted hyperspectral images for sorting
non-ferrous metal waste from electric and electronic equipment. Their proposed system
achieved approximately 98% accuracy in classifying waste, thereby making it possible
to replace the existing manual sorting procedures. Similarly, Aleena et al. [22] proposed
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an automatic waste segregator using inductive proximity sensors and robotic arms for
classifying solid waste into three main categories: metallic, organic, and plastic.

Likewise, on-site automated waste separation and classification is an essential function
for recycling construction and demolition waste in the construction industry. For example,
Xiao et al. [23] proposed an online construction waste classification system, which used
industrial cameras to capture the region of the objects and hyperspectral cameras to ob-
tain spectral information to discern the waste materials into concrete, rubber, black brick
wood, plastic, and brick. Similarly, Hollstein et al. [6] developed a new compact hyper-
spectral camera, which could overcome the existing problems of hyperspectral imagers,
for automatic construction waste sorting. Although there are several advantages of using
hyperspectral images for automated construction and demolition waste classification, it
has several problems, such as a high initial investment cost and insufficient robustness
of optical sensors. Recently, the advances in computer vision-based object detection and
classification techniques have provided potential solutions for automatic construction and
demolition waste classification [5,20,21,24–27].

2.2. Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) are widely adopted models for classifying
objects in images in various fields, such as medical diagnosis, autonomous driving, facial
recognition, and so forth [25–28]. CNNs are applied to various fields in the construction
industry, such as structural health monitoring and prediction, health and safety monitoring
on a construction site, workplace assessment, and activity recognition of construction
workers for predicting hazards [29–32]. Zhang et al. [30] proposed a posture recognition
method that used deep CNN-based 3D ergonomic posture recognition to enhance the
health and safety of construction workers. Additionally, several studies attempted to
adopt this model to predict structural safety. Deng et al. [33] developed a CNN-based
model for predicting the compressive strength of recycled concrete by learning deep
features of the water–cement ratio, recycled coarse aggregate replacement ratio, recycled
fine aggregate replacement ratio, fly ash replacement ratio, and their combinations. Cha
et al. used CNN in a vision-based approach for detecting cracks in concrete images [25].
In this research, the test results of crack detection using the CNN model showed better
performance compared to the conventional edge detection methods. Gopalakrishnan
et al. [34] used a deep CNN model to detect the pavement distress from digitised pavement
surface images. In this research, the authors applied the VGG-16 deep CNN model, which
yielded the best performance compared to other machine learning classifiers. Similarly,
Dung [35] proposed a fully convolutional network-based concrete crack detection and
density evaluation method, which showed an accuracy rate of more than 90% for concrete
surface crack detection. Although CNN has established itself as the core of machine
learning technology and is expanding the scope of applications in the construction industry,
studies on the classification of construction and demolition waste using the CNN method
are relatively scarce.

Since a deep learning model called AlexNet won the ImageNet Large Scale Visual
Recognition Challenge championship in 2012, CNNs have become the mainstream image
recognition model among different computer vision algorithms. Vision-based object de-
tection is a technology that recognises certain objects directly from image data without
any programs or commands [36–38]. Object recognition and detection technology have
progressed from just determining the existence of an object to distinguishing the location
and category of an object. The application of CNN models for waste management is divided
into two major approaches in the research domain: (1) creating and validating the viability
of the dataset, and (2) applying CNN algorithms to classify waste into various categories
and verifying and comparing the performance of different algorithms to explore the best
approaches.

The TrshNet dataset, which was released by Yang and Thung [39] in 2016, is one
of the most frequently used datasets for training waste images. They applied a support
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vector machine (SVM) and CNN to classify the trash images into six categories: glass,
paper, cardboard, plastic, metal, and trash. The test results showed that the SVM and
CNN models achieved accuracies of 63% and 22%, respectively. In this study, the authors
found that it would be possible to classify various types of trash into predefined categories
using machine learning and computer vision algorithms. Furthermore, they pointed out
that although the accuracy rate of this study was relatively low, continuously growing
the dataset would improve the accuracy of trash classification using machine learning
and computer vision algorithms. Similarly, Proença and Simões [40] introduced an open
image dataset containing photos of litter taken from various environments. In this dataset,
the pictures were manually labelled and segmented in accordance with a hierarchical
taxonomy to train and evaluate object detection algorithms. All the images were labelled
with objects and backgrounds to easily detect images in various contexts, such as grass,
road, and underwater. According to Liang and Gu [26], existing artificial intelligence-based
waste classification methods only deal with single-label waste classification rather than
multiple stacked wastes, as in real-world situations. To overcome such problems and
to enhance the applicability of waste classification systems, they suggested a multi-label
waste classification model that would detect and localise several types of waste in images.
Furthermore, they established a new dataset, which contained more than 56,000 images in
four categories, and improved the efficiency of learning. The results of their study showed
that the F1 score for assessing multi-label waste classification was approximately 96% and
the average precision score was approximately 82%.

2.3. Comparison of Artificial Intelligence Models

Along with building a new dataset for waste classification, several studies have dealt
with the performance comparison of different CNN algorithms. With the development of
computer technology, there is a growing interest in developing optimised AI models to
yield a better performance. For example, Ahmad et al. [41] tried to improve the reliability
and accuracy of waste classification by combining state-of-the-art deep learning algorithms.
The authors proposed a method that combined multiple deep learning models using a
feature and score-level fusion method named double fusion. In previous studies, one
of the most common difficulty in training images for recognising objects was to identify
them at various positions. Wang et al. [42] classified plastic bottles with different positions
and colours during the recycling process on a conveyor belt. The ReliefF algorithm was
applied to select the colour features of recycled bottles, and the colour was identified
using SVM. The accuracy of the colour recognition of the recycled bottles was 94.7%.
Additionally, research areas related to waste classification attempted to apply various
newly proposed image detection and classification algorithms to enhance its capability for
practical implementation. Adedeji and Wang [24] suggested a waste classification system
that could classify different components of waste. The purpose of this system was to
minimise human intervention to separate the waste in sorting facilities, thereby reducing
the harmful influence on humans. The system was developed using a 50-layer residual net
(ResNet), which is a CNN algorithm used to classify waste materials. The accuracy of the
proposed model was 87% for the dataset.

The speed of object detection and classification is an essential factor in general applica-
tions in real-time waste classification. De Carolis et al. [43] proposed YOLO TrashNet by
applying YOLOv3 for real-time waste detection in video streams. The suggested method
would not only help alleviate waste reporting in a city requiring labour-intensive tasks, but
also achieve the goal of a smart city. YOLOv3 is a CNN composed of 106 layers. The first 53
layers refer to the Darknet-53 network used as a feature extractor, and it was pre-trained on
ImageNet, allowing deep transfer learning. The successive 53 layers allow object detection
on 3 scales of size (small, medium, and large objects). Moreover, an important feature
of YOLOv3 is the use of the anchor box, which is predetermined by using the k-means
clustering algorithm on the training set. This improvement allows for faster and more
stable network training. In this research, the authors trained the last 53 layers of YOLOv3
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using their dataset. They called the proposed neural network YOLO TrashNET. According
to Liang and Gu [26], the existing AI-based waste classification methods only deal with
single-label waste classification rather than multiple stacked wastes in real-world situations.
To overcome such problems and enhance the applicability of waste classification systems,
they suggested a multi-label waste classification model that would detect and localise
several types of waste in images. Furthermore, they established a new dataset, which
contained more than 56,000 images in 4 categories, and improved the efficiency of learning.
The results of their study showed that the F1 score for assessing the multi-label waste
classification reached approximately 96%, and the average precision score was marked
over 82%.

Previous studies suggest that many studies regarding waste classification are related
to municipal solid waste segregation, rather than construction and demolition waste
classification. Although research on the classification of construction and demolition waste
using deep neural networks has been increasing, it is relatively rare compared to municipal
solid waste classification.

3. Development of Recognition Model for Five Types of Construction Waste
3.1. Development Procedure

Developers generally follow the process shown in Figure 1, to prepare an AI model that
recognises objects. This process is in line with the guidebook on establishing a dataset for AI
learning published by the National Information Society Agency, an affiliated organisation
of Ministry of Science and ICT (Information and Communication Technology) of South
Korea, and made quality evaluation on datasets mandatory, unlike the existing research
methods [44,45]. There are several reasons for publishing the guidebook at the government
level. First, as the amount of learning data increases, inappropriate learning data are
included in the dataset, leading to an increase in cases when the models are not learned
properly. Furthermore, there have been frequent cases of development failure, where the
model outputted inaccurate results owing to the lack of development of human resources
or unskillfulness. Thus, the model was unable to verify the dataset properly or randomly
deformed the dataset without a specific standard with augmentation, such that even the
developer could not identify the created data, which were included in the dataset without
additional verification. The first two issues can be solved when skilled manpower is
acquired, but the last one needs an adequate program to solve it.
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3.2. Constructing the Dataset and Selecting the Learning Model

According to the “Enforcement decree of the wastes control act” in South Korea,
construction waste is divided into 18 categories to enhance the recycling rate. Among these
categories, the research team collected image data on five typical types of construction
waste, which constitute a major proportion of the total construction waste [46]. The five
types of waste, which include concrete, brick, lumber, board, and mixed waste, as shown
in Table 1, were sequentially selected from the most emitted waste at the construction site.
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Data were labelled during segmentation through the processing process, and the prepared
three were designated to transfer learning to the YOLACT model. The backbone of the
YOLACT model was ResNet-50, which was assumed to be capable of processing real-time
segmentation with small computation to enable operation on on-site computers or edge
computers. The standard for real time is Closed-Circuit Television (CCTV) under 30 fps,
which is usually used in real life and on construction sites. The YOLACT model is expected
to operate at 30 fps if there are no network problems [14].

Table 1. Type of work performed in each category and work index in accordance with the time and
manpower consumed for processing.

Super
Category

Labelling
Method

Amount of
Time Step Manpower/Hour Working

Time
Metrics per

Data Average

Brick

Segmentation

112
Acquisition-cleansing 2 6 9.3

7.89

Labelling 1 31 3.6

Concrete 113
Acquisition-cleansing 2 6 9.4

Labelling 1 32 3.5

Wood 139
Acquisition-cleansing 2 6 3.5

Labelling 2 11 6.3

Board 129
Acquisition-cleansing 2 6 10.7

Labelling 1 23 5.6

Mixed bag 158
Acquisition-cleansing 2 6 13.2

Labelling 1 22 7.1

In this study, we established two hypotheses. The first hypothesis is that the research
team performed research focusing on processing and labelling the learning data, which are
unlike images of objects with clean backgrounds, as used in the existing research. When
there are various objects mixed in the background, the model capacity is expected to have
no difference if the designated object is accurately segmented. Another hypothesis is that
the function of the AI network changes according to the quantity and quality of the learning
data. The remaining sections of this chapter deal with our hypotheses regarding labelling
and the performance of the AI model.

3.3. Constructing the Learning Dataset

The images used for learning included 500 images directly taken at the waste dump
site located at a semiconductor manufacturing facility construction site and 288 images
acquired by web crawling. The collected source data were cropped into 512 × 512 pixels
with the size of approximately 100 kB considering the Graphics Processing Unit (GPU)
memory (Nvidia GTX3080, NVIDIA, Santa Clara, CA, USA). Since the YOLACT model
is based on instance segmentation, each image was segmented in polygonal shape using
“LableMe” programme, as shown in Figure 2 [47].
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and the result of learning.

The time consumed for labelling tasks for the images of construction waste in each
category is shown in Table 1. The labelling tasks required 22–32 h with at least 2 men
every hour to complete the composition of learning data sets. When these were calculated
using Equation (1), which shows the level of difficulty, data collection and processing
showed 9–11 and labelling showed 4–6, with an efficiency rate of 60% compared to the
previous research [48]. Since similar objects, such as the concrete and brick, are difficult
to differentiate based on colour and shape, it took additional time to sort. Therefore, the
work index of brick and concrete were low compared to other categories as the labelling
difficulty was high.

Work index =
Total amount of data

Degree of input manpower × Work hours
(1)

3.4. Optimal Data Labelling Method

As a result of transfer learning to the YOLACT model through labelling, it was verified
that transfer learning to the dataset was performed normally, as discussed in Section 3.3.
Based on the results of the transfer learning, we describe the results of variable research
conducted to find the optimal labelling method in this section.

When collecting learning data, if the images with a clean background and a single
object would be collected, it is possible for the workers to mitigate the confusion during
labelling and create a robust AI learning model for the purposes. However, the images
for the learning data with such conditions would be difficult to obtain. On the other hand,
the images or video clips that would be easily able to collect might contain variety of
unnecessary objects for learning. In addition, in order to construct a data set for learning,
it would take a lot of time and cost to remove unnecessary objects on one image and to
label objects necessary for learning. Thus, it is required to explore an appropriate method
to reduce time and manpower for creating a suitable learning data set.

By considering the cases that utilised learning data that were collected by only consid-
ering classification as there are numerous studies that have a significant amount of data,
it is possible to decrease the learning data collection time by using them appropriately.
Although the possibility of applying it to the latest AI method has not been verified, re-
searchers tend to avoid its usage. Therefore, the previous learning dataset is simply stored



Buildings 2022, 12, 175 8 of 18

and eventually treated as digital waste. Thus, it is necessary to verify the data usage level,
and a variable study was conducted by categorising four cases.

Table 2 summarises the results of the labelling and optimal instance segementaion
method for the construction waste. In Case A, a pixel labelling method was used by taking
pictures on a clean background with the designated waste, whereas in Case B, individually
labelled designated waste on a picture taken at the dumpsite were used (see Figure 3).
Therefore, both cases differentiated the designated wastes well, but in Case B, the algorithm
tended to not recognise some wastes when several types of waste were mixed in the image.
The parts that could not be recognised were hidden behind other wastes or had different
colours and shapes to previously learned data. This was considered as a lack of learning
data. Case C comprised the dataset by simultaneously labelling two to five classes from
the pictures taken at the dumpsite, whereas Case D classified one class per image, thereby
increasing the overall dataset quantity. Consequently, even if several images were mixed,
class classification was possible by forming learning data with accurate labelling. For
Case C, it was unable to recognise the pixel boundary of the classified class. However,
when the amount of data increased in Case D, this phenomenon seemed to disappear.
Thus, the amount of learning data was important in terms of AI recognition. Moreover,
the work index was 2.39 for Case D and 1.73 for Case C, which showed a lower level of
difficulty. Case A was similar to the data collected to develop the existing classification
model. Considering the model learning results, the existing data could be used by the latest
AI model.

Table 2. Method and result to find the optimal instance segmentation labelling method.

Case Category Quantity Labelling Method Work Hour
(Work Index) mAP Result

A
Class 1

100 Labelling of one object with one
category using a clean background 1 man/40 h (2.5) 34

Masking was formed generally
in a good shape with a waste

boundary

B 100 Labelling of one category in an
image with various objects 1 man/4 h (2.5) 24 Able to classify but unable to

recognise some complex images

C

Class 5

153
Labelling by classifying all five

categories in an image with various
objects

4 men/22 h (1.73) 33

Well recognised, but
experienced confusion in most

classes and could not follow the
boundary

D 153 Labelling by classifying one category
in an image with various objects 4 men/16 h (2.39) 39

Generally, well recognised and
experienced confusion with a
type of class, but followed the

boundary well
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3.5. Result of Learning

The research team finally concluded that Case D, which indicates the high value of
the mean Average Precision (mAP) amongst all cases, was suitable for waste classification
model development, and performed transfer learning by adding learning image quantity.
In Case D, the total number of images was 788 as shown in Table 3. The results are shown
in Figure 4 and there are some parts to discuss the ultimately re-classified networks. Unlike
ordinary objects, wastes have a very atypical shape, and in the case of concrete waste, the
colour, texture, and shape are similar to those of a brick. Moreover, as discovered in a
previous research problem, concrete shape is somewhat similar to sand and broken brick.
Hence, the learning model categorised the cement brick crumbs as concrete waste.

Table 3. YOLACT-based training mAP learned with data labelled in the method of Case D.

Iteration
10k Images

mAP

All 0.55 0.65 0.75. 0.85 0.95

1000
Box

788

17.88 30.5 28.1 16.3 111.1 3.4
Mask 10.24 29.1 2.4 14.6 7.1 0.5

5000
Box 27.40 50.2 37.4 27.1 17.2 5.1

Mask 24.64 52.3 35.2 25.1 9.9 0.7

10,000
Box 33.90 58.4 40.5 31.1 18.4 5.6

Mask 32.50 59.3 42.4 28.4 11.3 0.8
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Timber wastes are in the shape of rectangular lumber, plywood, and palette, but are
irregularly fragmented at the waste level. Moreover, the shape of plywood is the same as
that of board waste. Therefore, the collection and refinement levels had to consider various
situations, as shown in Table 4. This evidence shows the importance of the refinement step,
and it can be observed that developing an AI model is difficult by simply increasing the
data quantity without quantitative evaluation. This is a limitation of transfer learning as
the problem occurs owing to the difference in category and labelling used for previous
model development. However, this problem can be solved by re-planning the AI model for
the characteristics of the desired object.

Table 4. Factors considered for acquiring AI model characteristics based on the category/labelling,
step, and parts solved.

Category Considered Factors Step Predicted Problems Solutions

Concrete Crushed concrete was
labelled in one mass Refinement

Recognised sand/object chunk of
the floor that are not concrete

waste

Differentiates
floor/crushed concrete

Brick Cement bricks were not
photographed Collection

Unable to differentiate the cement
bricks, which had the same colour

as that of concrete

Differentiates red brick
and concrete

Wood Broken cross section was
photographed Collection Only recognized objects in length Able to differentiate short

or side wood

Board Broken board was not
labelled Refinement Broken board was misrecognised

as concrete or brick waste
Differentiates relatively

shaped boards

Mixed bag Contents inside a waste
bag were not labelled Refinement Recognition error as other waste Exactly differentiates only

the waste bags

4. Quantitative Evaluation Method for Learning Data Using the Fréchet Inception
Distance (FID) Technique

As a result of re-classifying the YOLACT model, it was verified that the accuracy and
recognition rate were affected depending on the quantity and quality of the learning data.
Thus, for improving the efficiency of research and development, increasing the amount of
learning through automatised augmentation is the most appropriate solution. This section
describes the quantitative evaluation of the augmentation level using the FID technique
and the result of learning by increasing the learning data using this technique.

4.1. Fréchet Inception Distance (FID) Technique

AI is a concept designed to mimic human intelligence. Therefore, the objects that are
difficult for people to differentiate in the image would also be difficult for AI to recognise.
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Particularly, construction wastes are not only similar in colour but also in shape, e.g.,
concrete and cement brick. However, objects that are completely different in shape, such
as palette and rectangular lumber, also exist. The colour of the photographed image may
change owing to the amount of light on site, and the resolution may drop depending on
the performance of the camera.

As a result of these variables, it is necessary to check whether the data were learned
properly and the model was made well. This is called the quality evaluation of the model.
The model performance was checked manually by human beings before a quantitative
method was developed for qualitative assessment. When applying this method, the
subjectivity of a human affects the model evaluation, and when the amount of data is
increased to exceed the human recognition range, there are cases when the standard is
ambiguous in the middle of the evaluation. To solve this issue, a program using the FID
score, which quantitatively assesses the model, was developed. This technique uses a
pre-trained inception model, which is classified using 1000 labels on ImageNet. Here, the
inception model is supposed to differentiate the characteristics of ordinary objects properly,
and only used parts that extract 2048 output attributes without using the model as it is [6].
The evaluation equation of FID is shown in Equation (2).

d2((m, C), (mω, Cω) =‖ m−mω ‖2
2 +Tr

(
C + Cω − 2(CCω)

1
2
)

, (2)

where m indicates the average attributes of the real data, C refers to the attribute covariance
of the real data, mw is the average attribute of the fake data, and Cw is the attribute
covariance of the fake data.

The input and output images through FID following Gaussian distribution as a pre-
requisite are shown in Figure 5; the smaller the difference between the two distributions,
better the performance shown in the result. Although there is an inception score, an index
to evaluate the AI model performance, it is not currently in use. This is because real data
are not used in performance evaluation, and marks are presented on fake images. Even for
a fake image, the image used for the evaluation should have meaning to assess the model
performance properly. However, as FID evaluates only real images, all images possess
meanings and all data are assessed individually, not on conditional probability.
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Figure 5. Matrix of the FID used for measuring the features of real and created images.

Thus, after calculating the output result using the real image model and the gap of the
input value from the probability distribution, it can be said that the model performance is
good when the value is small. Although the exact accordance of the probability distribution
is ideal, it is impossible in reality. Additionally, if these are analysed with respect to mAP,



Buildings 2022, 12, 175 12 of 18

the level of performance change per learning entity can be assessed quantitatively. The
advantage of this technique is that it can customise the algorithm by using the inception
model if there is a better AI model to extract the output features. However, this technique
is noise sensitive and thus has clear limits for evaluation. This issue occurs chronically in
image research and is related to the colour temperature and radiation intensity. This issue
can be addressed if multiple images can be evaluated using sufficient pictures and videos.

4.2. Susceptibility Level of Re-Classified Model Due to Noise, Colour Change, and Others

To enhance the AI model described in Section 3, additional learning is required.
Thus, the amount of learning data was planned to be increased three times through the
augmentation of each image. The augmentation technique added noise, a blur effect, and
hue and saturation, and augmented 50 learning data from 5 super-categories to select a
proper level of change. The result of the image FID is shown in Figure 6. The Python library
applied was Python imgaug.
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4.2.1. Noise Change

The addition of noise is expected to influence the image resolution and size. Although
the level of AI learning equipment enhanced, it is becoming a trend to learn a large amount
of data. Therefore, it is necessary to decrease the size of the learning data, and noise is
inevitable in this case. However, excessive noise distorts the target object, and unintended
errors, such as spots or marks on the image, may be labelled, thereby ruining the learning
data.

Furthermore, because it is a part being affected by the performance of the collected
device, in case of old devices, images may not be collected in abundance or may result in
noise resulting from a deteriorated image sensor.

Therefore, a verification of this is necessary, and the research has examined the proper
level by categorising noise into five steps. Noise was used by adding a noise technique
according to the Gauss function, which involves loading the image, adding noise in ac-
cordance with the function, and combining it with the original image. Each noise step is
the number of times overlapping Gaussian noise is sampled once per pixel in a normal
distribution.

Table 5 shows the results of the data being learned above the appropriate level. It
shows a decrease in the model performance when the noise is more than 100 times the FID.
The 100 times noise, as shown in Figure 7, is considerable when looking with the naked
eye, but seems to not have a significant impact on the accuracy of the learning data.

Table 5. mAP of model according to the noise augmentation level.

Number of Times Image Quality Iteration 10,000 All 0.55 0.65 0.75 0.85 0.95

0 788
Box 33.9 58.4 40.5 31.1 18.4 5.6

Mask 32.5 59.3 42.4 28.4 11.3 0.8

100 1576
Box 36.2 63.2 44.2 39.2 26.1 8.3

Mask 32.4 62.1 46.3 33.2 18.4 2.2

150 1576
Box 30.9 54.3 39.2 33.1 17.2 6.6

Mask 28.2 57.6 44.2 26.3 11.7 1.4

200 1576
Box 27.6 52.1 38.2 28.9 16.3 2.4

Mask 24.7 48.2 42.5 24.3 8.2 1.4

250 1576
Box 15.3 34.2 22.4 12.2 6.5 1.2

Mask 14.8 33.7 23.2 10.4 6.3 0.5
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Figure 7. Gaussian noise for the wood category per step.

4.2.2. Adding Blur Effect

The blur effect appears to be correlated with the focus of the collected image. When
collecting the data, out-of-focus data may exist owing to manpower or equipment problems,
and if this evaluation is applied, the data could be utilised. Gaussian blur was used for
the blur effect, and the steps were classified using sigma values. As shown in Table 6, the
blur effect lowered the model capacity when over sigma 2. However, human eyesight
could differentiate objects until sigma 6, as shown in Figure 8. However, if these data were
labelled and used, there are concerns regarding a decrease in the model performance.

Table 6. Model mAP per noise augmentation level.

Sigma Image Quantity Iteration 10,000 All 0.55 0.65 0.75 0.85 0.95

0 788
Box 33.9 58.4 40.5 31.1 18.4 5.6

Mask 32.5 59.3 42.4 28.4 11.3 0.8

2 1576
Box 32.5 59.2 39.3 33.1 20.3 10.4

Mask 31.5 58.4 45.2 34.1 16.2 3.4

4 1576
Box 15.8 33.5 23.1 11.5 8.8 2.1

Mask 12.7 29.3 21.1 9.7 3.2 0.2

6 1576
Box 16.0 32.9 20.9 12.3 10.2 3.9

Mask 13.7 29.9 23.5 10.8 4.2 0.3

8 1576
Box 13.4 32.3 18.8 12.1 7.2 2.1

Mask 11.0 23.0 20.1 8.3 3.3 0.2
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Figure 8. Gaussian noise for the board category in each step.

4.2.3. Hue and Saturation

It is expected that the circumstances of the data collected through variable research
on hue and saturation changes could be investigated. Especially in outside circumstances,
the overall colour of the obtained image changes depending on the amount of sunshine
and time taken to capture the picture, and the effects can be verified through FID. For the
changes, the image was brought from the source colour space and converted to HSV, H
(hue) and S (saturation) channels were extracted, colour channel on the set colour code
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angle was applied, and finally converted to the original colour space again. In Figure 9,
as observed by human vision, the image is to be observed in black and white when the
hue reaches −60, and the image loses the original colour at saturation 20. As a result of the
performance evaluation of the model, it was verified that the accuracy drastically dropped
when the hue was below −20 and saturation was over 20, as shown in Table 7. Thus, the
characteristics of the AI model primarily depend on the colour data and evaluate.
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Figure 9. Hue and saturation for the mixed bag category in each step.

Table 7. Model mAP for different hue/saturation augmentation levels.

Colour Code Angle Image Quantity Iteration 10,000 All 0.55 0.65 0.75 0.85 0.95

Standard 788
Box 33.9 58.4 40.5 31.1 18.4 5.6

Mask 32.5 59.3 42.4 28.4 11.3 0.8

Hue −20 1576
Box 32.4 59.9 41.2 33.7 20.1 7.1

Mask 27.7 59.2 40.3 28.1 10.0 0.7

Hue −40 1576
Box 14.1 23.1 24.3 16.3 5.2 1.4

Mask 11.9 16.2 21.5 15.3 6.2 0.5

Hue −60
(almost black and white) 1576

Box 11.3 17.7 15.4 10.3 8.8 4.2
Mask 10.2 20.3 17.3 8.3 4.5 0.4

Saturation +20 1576
Box 21.8 40.3 32.4 21.8 11.4 3.2

Mask 19.0 39.4 29.4 20.5 5.2 0.3

Saturation +60 1576
Box 14.0 23.1 18.4 14.1 10.2 4.1

Mask 8.9 19.3 10.4 8.2 6.1 0.3

4.3. Final Learning Results

The results of learning by quantitatively adding the learning data according to the
abovementioned results are shown in Figure 10. By doubling the amount of learning data, a
maximum increase of 16% in the mAP was verified. This is a result of learning that amassed
the noise filter 100 times, and tripled the learning data (2364) through augmentation in
Sigma 2. On the other hand, the dataset with changed saturation data showed a decline in
performance. Moreover, the proposed model seems insusceptible to changes in brightness,
but is affected by noise or blur; thus, the results can be utilised in data acquisition for
developing the model to recognise construction waste.
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5. Conclusions

Transfer learning was applied to an AI model to differentiate between five types
of construction waste. Finally, differentiation was successful through transfer learning
of the AI model using segmentation. However, there were some situations in which
some categories could not be recognised, but could be solved by developing data quality
assessment methods and refinement techniques.

1. Advancement in refinement techniques to list the situation on the model function
from the data collection step is needed, and not just labelling objects.

2. Labelling was impossible without professional knowledge owing to the characteristics
of construction waste. Additionally, supervisors were required to manage refined
data because there were many objects that could not be differentiated while labelling.

3. When the existing classification techniques are mainstream, it is possible to re-use the
collected data for an instance segmentation model.

4. Regarding the image data with complicated backgrounds, the precise classification
of one category seems to enhance the model performance and decrease resource
consumption rather than classifying several categories in one image.

5. It was verified that increasing the amount of data indiscriminately worsened the qual-
ity of the model. Furthermore, it was necessary to apply quantitative augmentation to
the learning data in each category.

6. To develop an AI model that recognises construction waste, less data with minimum
focus and noise, better the collected data performance. Although it does not have
much impact on brightness, such as sunlight, to collect data avoiding time, such as
sunrise/sunset, which affects image colour, seems better.

7. By increasing the amount of data through augmentation using transfer learning, it was
verified that mAP increased by 16%. However, the AI model needs to be redesigned
by reflecting the characteristics of construction waste if the performance of the model
cannot be acquired.

This study highlights the importance of data augmentation and transfer learning for
efficient utilisation of artificial intelligence data set. In particular, it is considered that it
would be possible to train artificial intelligence models using a small number of image data,
since the data augmentation method presented in this study is a useful technique through
the change of image values without taking additional pictures in various environments.
Furthermore, the data augmentation methods suggested in this study would be applicable
not only to construction waste, but also to other image-based artificial intelligence models.
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