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Abstract
Background  The occurrence of bile duct injury (BDI) during laparoscopic cholecystectomy (LC) is an important medical 
issue. Expert surgeons prevent intraoperative BDI by identifying four landmarks. The present study aimed to develop a 
system that outlines these landmarks on endoscopic images in real time.
Methods  An intraoperative landmark indication system was constructed using YOLOv3, which is an algorithm for object 
detection based on deep learning. The training datasets comprised approximately 2000 endoscopic images of the region 
of Calot’s triangle in the gallbladder neck obtained from 76 videos of LC. The YOLOv3 learning model with the training 
datasets was applied to 23 videos of LC that were not used in training, to evaluate the estimation accuracy of the system 
to identify four landmarks: the cystic duct, common bile duct, lower edge of the left medial liver segment, and Rouviere’s 
sulcus. Additionally, we constructed a prototype and used it in a verification experiment in an operation for a patient with 
cholelithiasis.
Results  The YOLOv3 learning model was quantitatively and subjectively evaluated in this study. The average precision values 
for each landmark were as follows: common bile duct: 0.320, cystic duct: 0.074, lower edge of the left medial liver segment: 
0.314, and Rouviere’s sulcus: 0.101. The two expert surgeons involved in the annotation confirmed consensus regarding 
valid indications for each landmark in 22 of the 23 LC videos. In the verification experiment, the use of the intraoperative 
landmark indication system made the surgical team more aware of the landmarks.
Conclusions  Intraoperative landmark indication successfully identified four landmarks during LC, which may help to reduce 
the incidence of BDI, and thus, increase the safety of LC. The novel system proposed in the present study may prevent BDI 
during LC in clinical practice.
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Laparoscopic cholecystectomy (LC) is widely accepted 
worldwide [1]. LC is frequently performed by doctors 
who specialize in endoscopic surgery, and is considered an 

introductory level endoscopic surgery [2]. Currently, LC is 
the standard procedure for cholelithiasis and/or cholecystitis. 
Previous studies have described the standard procedure of 
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LC [3], and the mechanism of bile duct injury (BDI) during 
LC [4]. The reported incidence of BDI during LC ranges 
from 0.2% to 1.1% [5–7], which is two to five times higher 
than during abdominal surgery.

The operative procedural steps involved in LC are 
described in Table 1 [2], and show the importance of iden‑
tifying the cystic duct and the common bile duct to safely 
retrieve the gallbladder. Misidentifying the common bile 
duct as the cystic duct results in BDI [4, 8, 9]. A survey of 
over 600 surgeons in Japan, Korea, Taiwan, and the USA 
reported that 72.3% of all respondents experienced BDI or 
near-misses [10]; furthermore, 40.5% of respondents stated 
that BDI occurred because of misidentification of an ana‑
tomical landmark [11, 12]. These results suggest that there 
is a risk of BDI during LC regardless of the surgeon’s level 
of experience, and that identifying landmarks may prevent 
the BDI.

Figure 1 shows Calot’s triangle in the gallbladder neck, 
with four landmarks exposed: the common bile duct, cystic 

duct, lower edge of the left medial liver segment, and Rou‑
viere’s sulcus. The use of these four landmarks to avoid 
BDI during LC has been introduced as the ‘critical view 
of safety’ method [13–16]. Considering the relatively high 
incidence of BDI in LC, it is doubtful whether the ‘critical 
view of safety’ technique is being effectively used in the 
operating room. The Society of American Gastrointestinal 
and Endoscopic Surgeons Safe Chole Task Force defines the 
critical view of safety as:

•	 The hepatocystic triangle is cleared of fat and fibrous 
tissue [17]. The hepatocystic triangle is defined as the 
triangle formed by the cystic duct, the common hepatic 
duct, and the inferior edge of the liver. The common bile 
duct and common hepatic duct do not have to be exposed.

•	 The lower one third of the gallbladder is separated from 
the liver to expose the cystic plate. The cystic plate is also 
known as the liver bed of the gallbladder and lies in the 
gallbladder fossa.

•	 Two and only two structures should be seen entering the 
gallbladder.

Intraoperatively, it is often difficult to accurately distin‑
guish the common bile duct from the cystic duct, as these 
ducts are covered with fatty tissue. In such cases, surgeons 
should identify the lower edge of the left medial liver seg‑
ment and Rouviere’s sulcus. Assuming a straight line con‑
necting Rouviere’s sulcus and the lower edge of the left 
medial liver segment, the liver bed is basically ventral to 
this straight line, so both are important landmarks to prevent 
BDI. In addition, Rouviere’s sulcus is a useful anatomical 
landmark for beginning dissection of Calot’s triangle [18, 
19]. For these reasons, in this study, we added Rouviere’s 
sulcus as the fourth landmark.

To consciously check each landmark, surgeons require 
a system that can accurately identify the landmarks. Thus, 

Table 1   Standard procedural 
steps followed during 
laparoscopic cholecystectomy

Step no Procedure

1 Obtain the field of view by retracting the gallbladder (GB)
2 Confirmation of Calot’s triangle
3 Effective retraction of the GB to develop a plane in the Calot’s triangle 

area and identify its boundaries
4 Careful dissection to reveal the cystic artery and right hepatic artery
5 Confirmation of the running direction of common bile duct
6 Dissection around the cystic duct, and performance of the clipping method
7 Height of the cut-line of the cystic duct
8 Retraction of the GB to enable dissection of the GB from the GB bed with 

an adequate layer
9 Control the bleeding from the GB bed
10 Retrieve the GB

Fig. 1   Photograph showing the anatomical landmarks in Calot’s 
triangle: the common bile duct, cystic duct, lower edge of the left 
medial liver segment (S4), and Rouviere’s sulcus
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we devised an artificial intelligence system that intraopera‑
tively indicates the location of the four landmarks to aid in 
preventing BDI.

The present article describes the technological compo‑
nents necessary to detect the four landmarks, and discusses 
the results of a verification experiment that implemented 
these technologies.

Materials and methods

Preparation of datasets

We used an algorithm of real-time object detection based 
on deep learning to realize intraoperative landmark indi‑
cation on endoscopic camera images. Two-hundred and 
thirty videos of LC performed in Oita University were 
obtained. As the degree of difficulty in LC increases in 
tandem with the extent of fibrosis and/or scarring inside 

the abdominal cavity, the technical platform of our system 
was established using videos with minimal fibrosis and/or 
scarring; videos with bleeding or less-visible landmarks 
were also excluded. From the remaining 99 videos, the 
scenes showing Calot’s triangle in the gallbladder neck 
were extracted and saved in MP4 data format; these short 
videos were assigned sequential numbers.

The following steps were repeatedly implemented to 
maximize the effectiveness of the creation and learning of 
the datasets: (i) a short video was divided into still image 
files, (ii) the first still image was selected for labeling, (iii) 
the similarity between the previously selected image and the 
subsequent image was calculated, and finally (iv) the images 
with a degree of similarity that exceeded a certain threshold 
were selected for landmark labeling. Using these processes 
made it possible to reduce the number of datasets and avoid 
overlapping the emerging pattern of the landmarks.

All short videos were used to create the datasets for the 
deep learning training and for the evaluation of estimation 

Fig. 2   Example of a dataset for 
deep learning. A endoscopic 
image, B common bile duct, C 
cystic duct, D lower edge of the 
left medial liver segment (S4), 
E Rouviere’s sulcus
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accuracy of the training model, in which expert surgeons 
labeled the areas containing each landmark on the endo‑
scopic images. One dataset constituted five images: the 
image of the endoscopic camera, the common bile duct, 
cystic duct, lower edge of the left medial liver segment, and 
Rouviere’s sulcus (Fig. 2); however, a landmark may not be 
visible depending on an organ’s location and/or the sever‑
ity of inflammation. These images were saved in PNG data 
format.

To maintain a high degree of accuracy of the datasets, 
labeling was performed only by the two expert surgeons who 
had experienced over 200 LC procedures. We confirmed 
subjectively that concordance between the expert surgeons 
was poor. Therefore, we re-evaluated the annotation datasets 
in which the two expert surgeons first shared the videos, to 
efficiently create the datasets, and performed a final check 
of the datasets that they labeled, to complete the annotation 
data. We assumed that using at least these methodologies 
for annotation can eliminate annotation data that are clearly 
wrong. Eventually, the expert surgeons labeled the evaluated 
structures against 2339 images of the endoscopic camera and 
labeled 2119 images of the common bile duct, 1895 images 
of the cystic duct, 2144 images of the lower edge of the left 
medial liver segment, and 2012 images of Rouviere’s sulcus. 
The number of datasets prepared in this study was 2339, and 
we augmented the datasets 26 times to train the YOLOv3 
learning model. Of the 99 videos, 76 videos were used to 
train the deep learning model, and 23 videos were used to 
evaluate the estimation accuracy of the deep learning model 
created with the training datasets.

Detection of landmarks

To intraoperatively detect and indicate the locations of the 
landmarks on an endoscopic image, both high-accuracy 
detection and high-speed computation were required. In the 
research field of image recognition algorithms based on deep 
learning, various methods have been proposed to identify the 
position and the class of an object [20, 21]. In the present 
study, we used YOLOv3 [22], as this algorithm is reportedly 
superior to other algorithms regarding computing speed and 
class discrimination accuracy.

The source code for YOLOv3 was downloaded from the 
developer’s website [22]. Figure 3 shows an example of an 
output result of YOLOv3, where the colored bounding boxes 
show the respective position and class of each landmark.

Prototype development

The prototype was composed of an endoscopic cam‑
era (OLYMPUS LTF-S190-10; Olympus Corp., Tokyo, 
Japan), a video processor (VISERA ELITE II; Olympus 
Corp.), and a desktop computer. The computer had one 

Graphics Processing Unit (Tesla V100; NVIDIA Corp., 
Santa Clara, CA) mounted for the calculation of the 
YOLOv3 learning model, and an image conversion board 
installed to load the output signal from the endoscopic 
camera. The YOLOv3 learning model was installed in 
the computer and used to calculate the coordinates of the 
bounding box for each landmark. The video processer dis‑
played the endoscopic image in which the bounding boxes 
were overlaid on the monitors in the operating room.

Evaluation of the learning model

The detection accuracy and computation time capabilities 
of YOLOv3 have already been quantitatively evaluated 
[22]. Thus, the estimation accuracy of the YOLOv3 learn‑
ing model depends on the ability to accurately describe 
the bounding boxes on the endoscopic image, and on the 
ability of the expert surgeons to create the datasets. The 
estimation accuracy was defined as the quantitative index 
of the ability to indicate the location of the landmark. 
We performed both quantitative and subjective evalua‑
tions using the annotation data, which was not used in 
constructing the YOLOv3 learning model. In this study, 
we applied the YOLOv3 learning model to the 23 short 
videos to evaluate the landmark estimation accuracy. Next, 
we created new video files in which we overlaid bounding 
boxes for each landmark on the endoscopic image. The 
average computation speed required to draw the bounding 
box on an endoscopic image was 37.2 frames per second.

Generally, the augmentation of training datasets is rec‑
ommended to improve the performance of deep learning 
[23]. As the appearance of the abdominal organs differs 
between patients, and there are individual differences 
in the skill of each endoscopic operator, we used the 

Fig. 3   Bounding boxes for each landmark as an output image of 
YOLOv3. CD: cystic duct; CBD: common bile duct; S4: lower edge 
of the left medial segment; RS: Rouviere’s sulcus
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"ImageDataGenerator class" in Keras [24], which is a net‑
work library used to augment training datasets; the number 
of augmentations was 26, with the following parameters: 
rotation range, 30.0; shear range, 0.4; and zoom range, 
0.4. Additionally, the contrast of the image of the endo‑
scopic camera was increased to 0.2–10.0 with respect to 
the original image.

Development of a prototype for the verification 
experiment

The prototype was connected to an integrative system 
(EndoALPHA; Olympus Corp.) that made it possible to 
draw a display that indicated the locations of the land‑
marks on the monitors in the operating room. As shown 
in Fig. 4, the displays for the landmark indications and the 
endoscopic images were shown on a 50-inch 8 K monitor 
(LMD-X550ST; Sony Corp., Tokyo, Japan).

Results

Landmark estimation accuracy

The YOLOv3 learning model was trained with the aug‑
mented datasets applied to the 23 short videos prepared 
for the performance evaluation. We applied the YOLOv3 
learning model to the 23 annotation datasets that were not 
used in training. The annotation datasets for the evaluation 
constituted 190 images of the common bile duct, 186 images 
of the cystic duct, 192 images of the lower edge of the left 

medial liver segment, and 190 images of Rouviere’s sulcus, 
and all images were labeled against 194 images of the endo‑
scopic camera. The objective evaluation using average pre‑
cision resulted in low values, with the average precision of 
the YOLOv3 learning model for each landmark computed as 
follows: common bile duct: 0.320, cystic duct: 0.074, lower 
edge of the left medial liver segment: 0.314, and Rouviere’s 
sulcus: 0.101.

We confirmed that the YOLOv3 learning model was able 
to outline the bounding boxes on each landmark against the 
video files. Consequently, the two expert surgeons who made 
the annotation datasets, subjectively judged whether the 
video file provided the information required to prevent the 
occurrence of BDI during LC, based on consensus. Table 2 
shows the estimation accuracy as assessed by the expert 
surgeons for the YOLOv3 learning model. Although some 
cystic ducts were not detected, 22 of the 23 videos were 
judged to have good landmark identification.

Verification experiment

To verify the clinical significance of our proposed system in 
an operating room, we used the prototype landmark indica‑
tion system in a verification experiment using images from 
LC performed in an 82-year-old woman with cholelithiasis. 
This portion of the study was approved by the ethics com‑
mittee of Oita University, and the patient provided informed 
consent. As shown in Fig. 4, the display frames for landmark 
indication and the endoscopic image were located separately 
on the main monitor screen, so we assumed that there was 
no effect on the progress of the operation. The impressions 
of the surgeons are described in the discussion.

Fig. 4   The layout of the main 
monitor screen during the verifi‑
cation experiment
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Discussion

In this study, we constructed a learning model based on 
YOLOv3 to detect four anatomical landmarks during LC. 
Although the average precision for each landmark was 
poor, the two surgeons involved in the annotation agreed 
that the YOLOv3 learning model successfully indicated 
the landmarks essential to avoid BDI in 22 of the 23 vid‑
eos. The results subjectively evaluated by the two surgeons 
indicated that the YOLOv3 learning model can flexibly 
deal with individual patient differences related to well-
known variations in biliary anatomy [25]. We actually 
excluded videos in which we confirmed bleeding, high 
fibrosis, and scarring in the endoscopic images, and did 
not consider variations in biliary anatomy. The reason that 
video number 11 failed was assumed to be because the 
areas showing the landmarks were in the lower part of 
the endoscopic image. In addition, the shift toward the 
vertical direction was not included in the data augmenta‑
tion parameters. Data augmentation contributes greatly to 

deep leaning, but we believe that data augmentation must 
be applied to medical images with great care because this 
method generates non-existent images. Although we aimed 
to improve the accuracy of the YOLOv3 learning model, 
in this study, we chose to use landmarks important in the 
actual surgery, and we made certain decisions; for exam‑
ple, rotation was allowed but inversion was not allowed.

Ideally, it is desirable that a landmark indication system 
accommodates all patients under consideration and can be 
used in daily clinical practice. However, we believe that the 
number of videos and the parameters for data augmentation 
necessary for the system to satisfy this requirement depend 
on the purpose of the system. In this study, we intention‑
ally excluded videos in which bleeding, high fibrosis, and 
scarring interfered with the visibility of the landmarks, and 
the YOLOv3 learning model then successfully indicated the 
landmarks with high accuracy. To use this system with more 
difficult cases, it is necessary to prepare a video with a cor‑
responding degree of difficulty.

The two expert surgeons in this study performed the 
annotation and confirmed that the YOLOv3 learning model 
performed well when rendering the bounding boxes for each 
landmark. However, the surgeons may have made mistakes 
secondary to errors in human visual perception. Way et al. 
demonstrated that 97% of the causes of BDI were second‑
ary to errors in human visual perception and stated that the 
most effective strategy for overcoming these types of errors 
is the evolution of technology [26]. Artificial intelligence is 
a technology that can improve its performance depending on 
the amount and quality of annotation data. Evaluating anno‑
tation data with multiple expert surgeons can eliminate data 
errors secondary to human visual perception; therefore, a 
complete AI system that helps surgeons avoid making incor‑
rect intraoperative decisions is expected in the near future.

We successfully used a prototype of the landmark indi‑
cation system during a verification experiment in a patient 
with cholelithiasis, in this study. A major improvement in 
detection accuracy was confirmed when the surgeon opti‑
mized the visibility of the landmarks. This suggests that 
experienced surgeons implicitly expand the operation field 
to make the landmarks more obvious, as the datasets used 
in the training of YOLOv3 were based on the images of LC 
performed by experienced surgeons. Through the verifica‑
tion experiment, we confirmed the clinical significance of 
the proposed system, and identified issues that require reso‑
lution to optimize the outcomes. The main issue was the 
flickering of the bounding boxes caused by the continuity 
of YOLOv3 in detecting the landmarks; this flickering can 
be reduced using a filtering technique for the coordinates of 
the bounding boxes.

The goal of the present study was to achieve favorable 
outcomes using an artificial intelligence system that detected 
four landmarks during LC. This system was developed to 

Table 2   Results of the estimation accuracy evaluation of the 
YOLOv3 learning model trained with our datasets

CBD common bile duct; CD cystic duct; S4 lower edge of the left 
medial segment; RS Rouviere’s sulcus; OS out of sight (i.e., not visu‑
alized)

Video no CBD CD S4 RS Overall 
Judg‑
ment

1 Ο Ο Ο Ο Ο
2 Ο Ο Ο OS Ο
3 Ο Ο Ο Ο Ο
4 Ο Ο Ο Ο Ο
5 Ο Ο Ο Ο Ο
6 Ο × Ο Ο Ο
7 Ο × Ο Ο Ο
8 Ο Ο Ο OS Ο
9 Ο Ο Ο Ο Ο
10 Ο × Ο Ο Ο
11 × × Ο × ×
12 Ο Ο Ο Ο Ο
13 Ο × Ο Ο Ο
14 Ο Ο Ο Ο Ο
15 Ο Ο Ο Ο Ο
16 Ο Ο Ο Ο Ο
17 Ο × Ο Ο Ο
18 Ο Ο Ο Ο Ο
19 Ο Ο Ο Ο Ο
20 Ο Ο Ο Ο Ο
21 Ο Ο Ο Ο Ο
22 Ο Ο Ο Ο Ο
23 Ο Ο Ο Ο Ο
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reduce the incidence of BDI during LC, as one of the major 
causes of BDI is misidentifying the cystic duct as the com‑
mon bile duct and/or hepatic duct; this is called “classic 
laparoscopic injury,” and many investigators have analyzed 
its mechanism [4, 9, 10, 27].

Currently, the most effective precautionary measure for 
preventing BDI or near-miss BDI secondary to misidentify‑
ing the cystic duct during LC is advice from a member of the 
surgical team other than the operator [10]. The risk of BDI 
is reportedly lower in hospitals with a surgical residency 
program, which highlights the importance of constantly rais‑
ing the awareness of potential BDI through surgical educa‑
tion [28]. In the future, landmark indication using artificial 
intelligence may become an important tool that increases 
the safety of LC.

As well as increasing the safety of LC, easy and accurate 
landmark detection streamlines the operation. In laparo‑
scopic surgery, surgeons generally rely on visual information 
because of the lack of tactile sensation. Thus, the surgeon 
needs to use knowledge based on their own surgical experi‑
ence and the anatomical position of the organ to recognize 
the landmarks.

The verification experiment in this study showed that the 
landmark indication system we described yielded a simi‑
lar benefit to having an expert surgeon in the surgical team 
(Fig. 4). The empirical value of expert surgeons is clearly 
related to the outcome of therapy, as high-volume centers 
achieve better outcomes regarding surgical time, bleeding 
volume, and postoperative complication rates compared with 
other institutions [29, 30].

The proposed intraoperative landmark indication system 
uses an artificial intelligence technique intraoperatively. The 
artificial intelligence technique has already been applied in 
preoperative diagnosis via the detection of abnormalities 
on computed tomography and radiographic images [31]. 
Artificial intelligence has also been used for automatic seg‑
mentation of the heart and measuring the aorta [32]. Fur‑
thermore, the capability of artificial intelligence to detect 
stomach cancer and polyps during endoscopic inspection 
is equal to that of skilled doctors [33, 34], and is beginning 
to be used in clinical practice. Thus, the use of artificial 
intelligence can effectively share the empirical value of 
expert surgeons, which improves the outcome of therapy. 
The landmark indication system proposed in the present 
study may aid in laparoscopic surgery in other fields, such 
as gastrointestinal and colorectal surgeries. However, there 
are no precedents for the use of a medical system based on 
artificial intelligence for intraoperative decision-making, and 
the advantages require clarification in the clinical setting.

Guidelines for the use of artificial intelligence in medi‑
cine have not yet been established, and it is difficult to clearly 
understand how deep learning is used to make judgments. 
It is a common misconception that all artificial intelligence 

systems automatically change their characteristics during 
use. In future, the utility of the landmark indication system 
will be improved by increasing the number of datasets. In 
addition, a clinical performance test will be scheduled in 
the near future.

Conclusions

We proposed an intraoperative landmark indication system 
to prevent BDI in LC. Although the average precisions for 
each landmark in the YOLOv3 learning model trained with 
our datasets were low, the two surgeons agreed that valid 
indications of the landmarks were confirmed in 22 of the 
23 LC videos and the prototype system was successfully 
used in a verification experiment. The use of intraoperative 
landmark indication systems will help reduce the incidence 
of BDI, and will increase the safety of LC.
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