
Development of an Autonomous Rescue Robot

Within the USARSim 3D Virtual Environment

Giuliano Polverari, Daniele Calisi, Alessando Farinelli, and Daniele Nardi

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

<lastname>@dis.uniroma1.it

Abstract. The increasing interest towards rescue robotics and the com-
plexity of typical rescue environments make it necessary to use high
fidelity 3D simulators during the application development phase. USAR-
Sim is an open source high fidelity simulator for rescue environments,
based on a commercial game engine. In this paper, we describe the devel-
opment of an autonomous rescue robot within the USARSim simulation
environment. We describe our rescue robotic system and present the ex-
tensions we made to USARSim in order to have a satisfying simulation
of our robot. Moreover, as a case study, we present an algorithm to avoid
obstacles invisible to our laser scanner based mapping process.

1 Introduction

Robotic systems have been proposed in recent years in a variety of settings and
frameworks, pursuing different research goals, and successfully applied in many
application domains. Technological improvements both in the hardware and in
the associated software of robotic platform push their application towards more
and more complex scenarios.

Search and Rescue robotics is one of the most challenging and interesting
application environments for AI and robotics. Such an application requires the
robots to be equipped with several complex sensors and to be able to perform
complex manoeuvres in cluttered and unstructured spaces.

When working with an expensive and complex hardware, the presence of a
simulator is of significant importance. On the one hand, it enables the evaluation
of different alternatives during the robot system design phase leading to better
decisions and cost savings. On the other hand, it supports the process of software
development by providing a replacement when robots are not available (e.g.
broken or used by another person) or unable to endure long running experiments.
Furthermore, the simulation offers the possibility to perform an easier and faster
debugging phase.

Several robotic simulators for 3D environments have recently been developed,
providing a valid alternative to the canonical 2D-oriented ones. A high fidelity
3D environment adds to the simulation the possibility to test extremely realistic
interactions, with a superior graphic rendering, extending the range of sensors
to be tested.

G. Lakemeyer et al. (Eds.): RoboCup 2006, LNAI 4434, pp. 491–498, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



492 G. Polverari et al.

USARSim is an open source 3D simulator for the urban search and rescue
(USAR) environment based on a commercial game engine, currently supported
by an international community.

This paper aims to describe the realization of an autonomous robotic system
for search and rescue missions using USARSim. The robotic system is based
on a Pioneer P3AT1 commercial platform equipped with a sonar ring. We cus-
tomized the platform adding a SICK Laser Range Finder, a Stereo Color Camera
mounted on a pan-tilt unit, an Infra Red Sensor and a wireless acces point to
communicate with a ground station. The purpose of the robotic system is the
autonomous exploration of a rescue scenario searching for victims and building
the map of the explored area. The autonomous navigation system, which is based
on a two level path-planner, is able to guarantee safe navigation in highly clut-
tered space [8]. The mapping system is based on Laser Range Finder readings
and uses a scan matcher based approach so to localize the robot and build the
map. Finally, Stereo Vision is used to detect victims.

The first task was to build an interface between USARSim and our robotic
development platform to simulate our real robot and its equipment. In particular
we both modeled our system with the available built-in features (e.g. Pioneer ro-
botic platform and SICK Laser Range Finder) and extended the simulator, so to
correctly represent all our equipment (e.g. the Stereo Color Camera). Moreover,
we improved the existing simulation environment, synchronizing sensor readings
and correcting the simulation of transparent objects. Interfacing our develop-
ment platform with USARSim we are able to test the same code on both the
real robot and the simulator: as a consequence, we are now able to use USARSim
as a powerful debugging environment in the development phase of our robotic
applications.

Furthermore, we present a case study concerning path-planning in unknown
and cluttered environments. We modeled in USARSim several test scenarios and
developed a speed tracking based stall recovery subsystem to deal with invisible
obstacles. We tested the algorithm in USARSim, saving time and preserving the
robot from dangerous impacts.

The paper is organized as follows: in the next Section we describe the USAR-
Sim simulator. Section 3 shows our work with the simulator, the interface we
built and the customization we made. In Section 4 we discuss the case study.
Section 5 discusses related works and Section 6 concludes the paper.

2 USARSim

USARSim (presented in [1]) is a 3D high fidelity simulator of USAR robots
and environments. USARSim can be a valid tool for the study of basic robotic
capabilities in 3D environment. USARSim provides a high quality rendering
interface and it is able to accurately represent the robotic system behavior.

USARSim development started in the University of Pittsburgh and is cur-
rently supported by an international community. It is released as open source

1 ActiveMedia: Pioneer. http://www.activrobots.com



Development of an Autonomous Rescue Robot 493

software2 and has been adopted as the standard simulation tool for the RoboCup3

Virtual Robots Competition in the upcoming 2006 edition.
The current version of USARSim consists of: i) standardized environmental

sample models; ii) robot models of several commercial and experimental robots;
iii) sensor models, like Laser Scanners, Sonars and Cameras; iv) drivers to inter-
face with external control frameworks, like MOAST, Pyro and Player.

USARSim uses Epic Games Unreal Engine 24 to provide a high fidelity simu-
lation at low cost. Unreal is one of the leading engines in the first-person shooter
genre and is widely used in both the game industry and in the academic com-
munity. The use of the Unreal Engine provides several interesting features to
USARSim: i) a high-quality, fast 3D scene rendering, supporting mesh, surface
(texture) and lighting simulation; ii) a high fidelity rigid body physical simulator,
Karma, supporting collision detection, joint, force and torque modeling; iii) a de-
sign tool, UnrealEd, that enables developers to build their own 3D robot models
and environments; iv) an object-oriented scripting language, UnrealScript, which
supports state machine, time based execution, and networking; v) an efficient
client-server architecture to support multiple players.

3 Modeling an Autonomous Rescue Robotic System in
USARSim

To fully integrate our robotic rescue system within the USARSim virtual envi-
ronment we performed the following steps: i) we modeled our robotic platform
in the USARSim framework and developed a low level interface to the simulator
environment; ii) we modified the simulator to improve sensors’ realism; iii) we
introduced in USARSim a Stereo Vision Camera sensor and a 3D Camera.

In the following, we discuss each phase of the development. Moreover, we
show some validation results concerning autonomous exploration in a USARSim
simulated environment.

3.1 Modeling Our Robot in USARSim and Building the Interface

The robot we currently use is a Pioneer P3AT. We equipped the virtual chassis
(already modeled in USARSim) with a full Sonar ring made of 16 sensors, a
SICK Laser Range Finder and Camera mounted on a Pan-Tilt unit. Figure 1
shows a comparison between our real robot and its model in USARSim.

Our development framework, is based on a set of independent modules that
interact and communicate among each other using a centralized blackboard-type
repository [4]. To interact with the USARSim environment we built specific mod-
ules that directly communicate with the USARSim server. Since these modules
use the standardized framework interface, they can be directly replaced with
those that communicate with real hardware or different simulator environments.

2 USARSim project page: http://sourceforge.net/projects/usarsim
3 RoboCup 2006: http://www.robocup2006.org
4 Epic Games: Unreal Engine. www.epicgames.com



494 G. Polverari et al.

Fig. 1. Our robot and its model in USARSim

This way, we can use all the other modules (e.g. navigation module, mapping
module, etc.) without the need of any modification.

In particular, we developed four basic modules: i) the robot module, which
manages the communication socket, receives and stores odometry and current
speed data and sends motion commands to the server; ii) the laser module, which
stores data gained from the simulated Laser Scanner Sensor, and views/changes
its configuration; iii) the sonar module, which manages a set of simulated Sonar
Sensors; iv) the camera module. Camera Sensor simulation is obtained in US-
ARSim using the video feedback of Unreal Client, the Unreal Engine application
for 3D scene rendering; in particular, an ImageServer is provided to capture the
Unreal Client data and to serve it through TCP/IP. Our camera module holds
a dedicated socket to connect the ImageServer and get the virtual Camera data;
moreover, the camera module is used to view the Camera configuration and to
move the simulated Pan-Tilt unit.

3.2 Improving Sensors’ Simulation

USARSim does not provide timestamp information for sensor readings. However,
when processing data coming from different sensors, synchronization can be a
critical issue. For example, several of our platform subsystems (e.g. the SLAM
subsystem) need timestamps for Odometry, Laser and Sonar readings, in order
to calculate data confidence and perform coherent state estimation. We added a
timestamp information to the Sonar, Laser and Odometry data.

We experienced that the simulated Laser Scanner sensor detected transparent
objects as if they were opaque. Every object in USARSim holds a “material”
property: we modified the Laser Scanner erroneous behaviour, spreading the laser
beam over the transparent objects until it hits another material or it reaches
the sensor max range. Thanks to such a modification we have been able to
test in USARSim our scanmatcher-based SLAM (simultaneous localization and
mapping) and the glass detection subsystem for the identification of transparent
materials (which are undetectable by the Laser Scanner) based on the Sonar
data.

3.3 Stereo Vision in USARSim

Naturally enough, within a Rescue environment the victim recognition sub-
system carries a major weight. Our current approach uses a human detection



Development of an Autonomous Rescue Robot 495

algorithm driven by a Stereo Vision unit, which is composed of a couple of syn-
chronized cameras with the same orientation.

As seen before, camera sensor simulation is obtained in USARSim through
the capture of the video feedback of Unreal Client. Currently, only one running
copy of Unreal Client at a time is allowed for each operating system. This limit
comes from the single-user nature of the simulation: consequently Unreal-based
Stereo Vision seems to be impossible until future versions of the Unreal Engine
are released.

Since it is impossible to have multiple camera simulation on the same screen,
we extended the robot definition code. Each virtual robot is described in the
simulation by an Unreal Script definition code, storing information about its
model and instructions to handle input data, to make movements and to draw
the camera data.

We modified the function usually used to draw double-exposure images on
the screen. Every time a frame is being drawn on the screen, we split vertically
the output window overriding the first half with the left camera data and the
second with the right camera data, maintaining data synchronization. With this
new self-developed Stereo Vision sensor we are now able to have a complete high
fidelity simulation of our rescue robot.

3.4 3D Camera Sensor

The Swiss Ranger Camera5 is a sensor able to add a distance information to
every pixel of the image data captured by its internal camera. Such sensor can
be extremely useful in the USAR environment, both for navigation and for victim
detection.

We added a Swiss Ranger Camera simulation in USARSim introducing a new
IRC (Infra-Red Range Camera) sensor providing, for each pixel, the distance
from the objects in the scene. By using the IRC sensor together with an ordinary
Camera with the same position, orientation and resolution, we add the distance
information to every pixel of the camera image, obtaining a simulation of the
Swiss Range Camera.

Figure 2 shows, side by side, the Camera feedback (on the left) and the IRC
sensor output (on the right, the brightness is proportional to the distance).

Fig. 2. A Camera image and the corresponding IRC sensor feedback

5 CSEM: Swiss Ranger Camera. http://www.swissranger.ch/products.php



496 G. Polverari et al.

3.5 Validation Results

We performed several tests to validate the whole system configuration. We
placed our robot into different USARSim virtual environments, to perform an
autonomous exploration. The system behaviours consistently matched the real
robotic system. In particular, we verified that the data gained from the sensors
and the motion commands execution were as expected.

Figure 3 shows our rescue robot while autonomously exploring an unknown
virtual 3D environment generated by USARSim. In the map on the right the
unknown parts are drawn in blue (grey), while walls and obstacles are drawn
in black and free space in white. The small table in front of the robot is not
drawn by the SLAM module (i.e. in black), because it is invisible to the Laser
Range Finder. However, our stall recovery subsystem, described in the following
paragraph, identifies the impact surface and draws it on the map.

Fig. 3. Our rescue robot exploring an unknown virtual environment

4 Case Study: Exploration with Invisible Obstacles

During autonomous exploration missions in rescue environments, stall problems
ofter arise. Our frontier based autonomous exploration subsystem, presented in
[8], uses a two-level approach for navigation. It is based on a global topologi-
cal path-planner and on a local motion planner, which is an extension of the
well-known Randomized Kinodynamic Tree [9]. This kind of algorithms works
by building a tree of safe, randomly-generated robot configurations. This local
motion planner may be stuck by obstacles that are undetectable by the Laser
Scanner, because they do not lie on its scanning plane.

We built a stall recovery subsystem, whose development was highly sim-
plified because of the use of USARSim: the simulated environment helped us to
save testing time and to preserve the real robot from dangerous impacts with
unknown obstacles. We modeled small obstacles such as a tube, a ramp and a
small table and observed the reactions of the virtual robot towards these objects.

The main cycle of the subsystem is composed of the following steps:

1. The subsystem first calculates the actual value of linear and angular speed,
given the actual and previous robot poses (from the SLAM subsystem).

2. The differences between desired and actual speeds are monitored for several
positions around the robot surface, using different stall conditions.



Development of an Autonomous Rescue Robot 497

3. To avoid false positives we integrate over time the stall conditions.
4. If a stall condition is verified for several cycles, an obstacle is drawn on the

map and an alarm is sent to the navigation subsystem to allow for a fast
re-planning.

We tested the stall recovery subsystem in USARSim obtaining valuable re-
sults. Figure 3 shows on the left, the robot hitting a small table invisible to the
laser; on the right, the obstacle representation in the robot map. Subsequent
tests were performed on the real robot, using different obstacles such as chairs
and bricks: the subsystem correctly identified stall situations tracking all the
objects and allowing complete explorations of the environment.

5 Related Works

Moast6, is a development framework providing a multi-agent simulation envi-
ronment, a baseline control system, and a mechanism to migrate algorithms
from the virtual world to the real implementation. Moast is intended to provide
USARSim users with a customizable control system allowing for a high level in-
teraction with the simulator. Compared to Moast, our system does not need to
migrate the developed algorithms to the real implementation; in fact, our system
runs indifferently on the real robot and on virtual environments.

Several works related to USARSim focus on validation of sensors such as
Laser Scanner [2] or robot mobility [3]. In comparison to these works, we focused
more on improving sensor data coherence (e.g. synchronizing sensor readings and
testing sensorial fusion tasks) than on validating single sensor simulation.

As for obstacles which are not detectable by Laser Scanner sensors or cameras,
different solutions are proposed in literature. Several approaches are based on
touch sensors: for example in [5] the authors describe a cylindrical robot with
a total coverage bumper, while in [6] an actuated whisker is used to identify
objects. Such approaches however require additional sensors. Another way to
address the problem is proposed in [7]. In this work the authors describe a mobile
robot used as a tour guide, which is able to deal with invisible objects given the
known map of the environment, lowering the speed when the localization error
is higher. Unfortunately such, a technique is useless in a USAR environment,
where the environment map is not known in advance.

To the best of our knowledge, the rescue system presented in this paper is one
of the first complete autonomous rescue systems both working on real robots
and integrated in the USARSim simulator.

6 Conclusions

Our experience in simulation before USARSim was limited to two dimensions.
Several features of our robotic system such as the glass detection subsystem
or the victim recognition subsystem were impossible to test during a simulated
mission. Using USARSim, we had the widely acknowledged advantages of a high

6 MOAST Project page. http://moast.sourceforge.net



498 G. Polverari et al.

fidelity 3D simulation, such as an accurate model of robot mechanics, different
materials available on 3D surfaces etc.

In this paper we presented the development of an autonomous working sys-
tem within USARSim. We modeled our robotic system within USARSim, sig-
nificantly extending the simulation environment. In particular, we added the
possibility to use Stereo Vision for our victim recognition subsystem, and syn-
chronized all sensor readings in order to have a coherent map building process.
Moreover, we addressed the problem of safe navigation in presence of obstacles
which are invisible to the 2D Laser based mapping process. We proposed a solu-
tion to this problem and tested our system in the USARSim virtual environment.

The performed tests within the USARSim virtual environment of our robotic
system confirm that such a framework is suitable for preliminary validation dur-
ing the robotic application development phase. In fact, using our virtual robotic
system we have been able to conduct experiments involving invisible obstacles
preserving the real robot’s integrity. Moreover, we can now perform a high fi-
delity experimental analysis of different rescue system configurations without
the need to modify the actual robotic platform.

As a future work we plan to deeply investigate the interactions between the
invisible obstacle detection process and the navigation and mapping process. In
particular, it would be interesting to represent invisible obstacles as dangerous
or forbidden configurations inside the navigation world model, and to study how
this different obstacle representation would impact on the system performance.

References

1. Wang, J., Lewis, M., Gennari, J.: USAR: A Game-Based Simulation for Teleopera-
tion. In: Proc. 47th Ann. Meeting Human Factors and Ergonomics Soc. (2003)

2. Carpin, S., Birk, A., Lewis, M., Jacoff, A.: High fidelity tools for rescue robotics:
results and perspectives. In: RoboCup International Symposium 2005 (2005)

3. Wang, J., Lewis, M., Koes, M., Carpin, S.: Validating USARsim for use in HRI
Research. In: Proc. of the Human Factors And Ergonomics Society 49th Annual
Meeting, pp. 457–461 (2005)

4. Farinelli, A., Grisetti, G., Iocchi, L.: SPQR-RDK: a modular framework for pro-
gramming mobile robots. In: Proc. of Int. RoboCup Symposium (2004) pp. 653–660
(2004)

5. Jones, J.L., Flynn, A.M.: Mobile Robots - Inspiration to Implementation, A K Peters
Ltd. Wellesley, Massachusetts (1993)

6. Scholz, G.R., Rahn, C.D.: Profile Sensing with an Actuated Whisker. IEEE Trans-
actions on Robotics and Automation 20(1), 124–127 (2004)

7. Fox, D., Burgard, W., Thrun, S., Cremers, A.: A hybrid collision avoidance method
for mobile robots. In: Proc. IEEE Int’l Conf. on Robotics and Automation (1998)

8. Calisi, D., Farinelli, A., Iocchi, L., Nardi, D.: Autonomous Navigation and Explo-
ration in a Rescue Environment. In: RoboCup International Symposium 2004 (2004)

9. LaValle, S.M., Kuffner, J.J.: Randomized Kinodynamic Planning. In: Proc. of IEEE
Int’l Conf. on Robotics and Automation (1999)


	Development of an Autonomous Rescue Robot Within the USARSim 3D Virtual Environment
	Introduction
	USARSim
	Modeling an Autonomous Rescue Robotic System in USARSim
	Modeling Our Robot in USARSim and Building the Interface
	Improving Sensors' Simulation
	Stereo Vision in USARSim
	3D Camera Sensor
	Validation Results

	Case Study: Exploration with Invisible Obstacles
	Related Works
	Conclusions


