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Naturally fractured reservoirs (NFRs) hold a significant amount of the world’s 

hydrocarbon reserves. Compared to conventional reservoirs, NFRs exhibit a higher 

degree of heterogeneity and complexity created by fractures. The importance of fractures 

in production of oil and gas is not limited to naturally fractured reservoirs. The economic 

exploitation of unconventional reservoirs, which is increasingly a major source of short- 

and long-term energy in the United States, hinges in part on effective stimulation of low-

permeability rock through multi-stage hydraulic fracturing of horizontal wells. Accurate 

modeling and simulation of fractured media is still challenging owing to permeability 

anisotropies and contrasts. Non-physical abstractions inherent in conventional dual 

porosity and dual permeability models make these methods inadequate for solving 

different fluid-flow problems in fractured reservoirs. Also, recent approaches for discrete 

fracture modeling may require large computational times and hence the oil industry has 

not widely used such approaches, even though they give more accurate representations of 

fractured reservoirs than dual continuum models.  
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We developed an embedded discrete fracture model (EDFM) for an in-house 

fully-implicit compositional reservoir simulator. EDFM borrows the dual-medium 

concept from conventional dual continuum models and also incorporates the effect of 

each fracture explicitly. In contrast to dual continuum models, fractures have arbitrary 

orientations and can be oblique or vertical, honoring the complexity and heterogeneity of 

a typical fractured reservoir. EDFM employs a structured grid to remediate challenges 

associated with unstructured gridding required for other discrete fracture models. Also, 

the EDFM approach can be easily incorporated in existing finite difference reservoir 

simulators. The accuracy of the EDFM approach was confirmed by comparing the results 

with analytical solutions and fine-grid, explicit-fracture simulations. Comparison of our 

results using the EDFM approach with fine-grid simulations showed that accurate results 

can be achieved using moderate grid refinements. This was further verified in a mesh 

sensitivity study that the EDFM approach with moderate grid refinement can obtain a 

converged solution. Hence, EDFM offers a computationally-efficient approach for 

simulating fluid flow in NFRs. Furthermore, several case studies presented in this study 

demonstrate the applicability, robustness, and efficiency of the EDFM approach for 

modeling fluid flow in fractured porous media. 

Another advantage of EDFM is its extensibility for various applications by 

incorporating different physics in the model. In order to examine the effect of pressure-

dependent fracture properties on production, we incorporated the dynamic behavior of 

fractures into EDFM by employing empirical fracture deformation models. Our 

simulations showed that fracture deformation, caused by effective stress changes, 

substantially affects pressure depletion and hydrocarbon recovery. Based on the examples 

presented in this study, implementation of fracture geomechanical effects in EDFM did 

not degrade the computational performance of EDFM. 



 ix 

Many unconventional reservoirs comprise well-developed natural fracture 

networks with multiple orientations and complex hydraulic fracture patterns suggested by 

microseismic data. We developed a coupled dual continuum and discrete fracture model 

to efficiently simulate production from these reservoirs. Large-scale hydraulic fractures 

were modeled explicitly using the EDFM approach and numerous small-scale natural 

fractures were modeled using a dual continuum approach. The transport parameters for 

dual continuum modeling of numerous natural fractures were derived by upscaling the 

EDFM equations. Comparison of the results using the coupled model with that of using 

the EDFM approach to represent all natural and hydraulic fractures explicitly showed that 

reasonably accurate results can be obtained at much lower computational cost by using 

the coupled approach with moderate grid refinements. 
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Chapter 1:  Introduction 

 

1.1 MODELING FLUID FLOW IN FRACTURED RESERVOIRS 

Naturally fractured reservoirs (NFRs) hold a significant amount of the world’s 

hydrocarbon reserves. Compared to conventional reservoirs, NFRs exhibit a higher 

degree of heterogeneity and complexity created by fractures. From the standpoint of flow 

behavior, NFRs comprise two mediums, rock matrix and fractures, with drastically 

different properties. Generally the rock matrix provides the primary storage of 

hydrocarbons while the fractures serve as highly conductive flow paths. Fracture 

apertures are very small compared to matrix dimensions. Hence, fractures hold very little 

fluid, yet their permeability can be very high (e.g., hundreds of darcies). 

Many naturally fractured reservoirs have depleted significantly and improved oil 

recovery (IOR) processes are necessary for their further development. It is well 

established that when IOR strategies are pursued for NFRs, injected fluids mostly flow 

through high-permeability fracture networks, bypassing oil in the rock matrix. Thus, 

extensive laboratory experiments have been conducted to investigate the efficiency and 

applicability of different IOR processes in fractured media (Horie et al., 1990; Pooladi-

Darvish and Firoozabadi, 2000; Babadagli, 2001; Hirasaki and Zhang, 2004; Darvish et 

al., 2006). Although some experiments have yielded promising results, predictive 

simulations of such complex processes are required to reliably scale up the process from 

laboratory to field conditions. 

 The importance of fractures in production of oil and gas is not limited to 

naturally fractured reservoirs. The exploitation of unconventional reservoirs is 
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increasingly a major source of short- and long-term energy in the United States. The 

economic development of unconventional oil and gas hinges in part on effective 

stimulation of low-permeability rock through multi-stage hydraulic fracturing of 

horizontal wells. To achieve this goal, accurate characterization and simulation of 

production is necessary for selecting the best stimulation strategy.   

Presence of highly conductive fracture pathways at various length scales, coupled 

with small fracture volumes, makes numerical simulation of fluid flow in fractured 

reservoirs very challenging. Several approaches have been proposed to model NFRs, 

which can be categorized into two classes of models, dual continuum and discrete 

fracture models.  

Presently, dual porosity and dual permeability models are the most commonly 

used modeling approaches for NFRs in the petroleum industry. The dual continuum 

model, although very efficient, is a very simplistic representation of complex NFRs. Non-

physical abstractions inherent in conventional dual porosity and dual permeability models 

make them inadequate for solving different fluid-flow problems in fractured reservoirs. 

Dual continuum models are especially appropriate for reservoirs with a large number of 

highly connected, small-scale fractures. 

Discrete fracture models (DFMs), however, are a new class of models for 

simulating NFRs and have received considerable attention in the last decade. To the best 

of our knowledge, DFMs have not been widely used in the industry for field-scale 

reservoir simulation studies, even though they give more accurate representations of flow 

in fractured reservoirs than conventional methods. In general, when using DFMs, a large 

number of small gridblocks is required near the fractures, which results in increased 

computational time. Also, most DFM approaches require generating an unstructured grid 
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to conform to the complexity of the fractures assigned to the domain of interest. 

Generation of such a grid for an arbitrary fracture network can be a substantial challenge. 

To take advantage of both dual continuum and discrete fracture models, Lee et al. 

(2000, 2001) and Li and Lee (2008) presented an approach for simulating fluid flow in 

NFRs called the embedded discrete fracture model (EDFM). The model borrows the 

dual-medium concept from dual continuum models and also incorporates the effect of 

each fracture explicitly. EDFM uses a structured grid to represent the matrix and 

introduces additional fracture control volumes by computing the intersection of fractures 

with the matrix grid. Therefore, challenges associated with unstructured gridding are 

bypassed entirely. For simplicity of geometric design, Lee et al. (2000, 2001) and Li and 

Lee (2008) implemented the mentioned approach only for vertical fractures. However, 

field characterization studies have shown that the occurrence of obliquely dipping 

fractures is quite common in NFRs (Walsh and Watterson, 1988; Angerer et al., 2002; 

Grechka and Tsuankin, 2004). Therefore, an extended EDFM approach that considers 

realistic 3D discrete fractured media, including slanted fractures, is needed for modeling 

NFRs in a robust and efficient manner.   

Pore pressure changes caused by production from a reservoir or injection into a 

reservoir can induce rock deformations. Fluid-flow characteristics of reservoir rocks, 

such as permeability and pore compressibility, can be very sensitive to effective stress 

changes caused by changes in pore pressure. The effect of geomechanics on fluid flow is 

more crucial in fractured reservoirs due to presence of fissures, which might be more 

stress-sensitive than the rock matrix. The flow characteristics of fractures are 

significantly affected by effective normal stress exerted on the fractures. In spite of 

extensive experimental and field studies demonstrating the dynamic behavior of fractures 

(Bandis et al., 1983; Barton et al., 1985; Lorenz, 1999), fracture properties have often 
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been treated as static parameters in the simulations of naturally fractured reservoirs. 

Hence, more realistic modeling of production in fractured systems requires inclusion of 

the dynamic behavior of fractures in a fracture model. 

Challenges for the simulation of unconventional reservoirs are not limited to the 

large contrast between permeability of hydraulic fractures and their neighboring tight 

rock matrix. Many unconventional reservoirs comprise well-developed natural fracture 

networks with multiple orientations and complex hydraulic fracture patterns, suggested 

by microseismic data.  Although recent advances in seismic technology have improved 

mapping of fracture orientations and densities in unconventional reservoirs, detailed 

characterization of pre-existing natural fractures is often unavailable.  Another substantial 

challenge for unconventional reservoir simulations is the presence of complex hydraulic 

fracture geometry. Conventional dual porosity and dual permeability models are not 

adequate for modeling these complex networks of natural and hydraulic fractures. Also, it 

is neither practical nor advantageous to model a large number of pre-existing fractures 

with a discrete fracture model. Therefore, an appropriate approach to model production 

from these reservoirs is to couple a DFM, accounting for the large-scale hydraulic 

fractures, with a dual continuum model that accounts for flow in the naturally fractured 

networks. 

 

1.2 RESEARCH OBJECTIVES 

Based on the problems described above, the main objectives of this research are 

as follows: 

1. Implement the EDFM approach to an in-house, fully implicit, compositional 

reservoir simulator, called the General Purpose Adaptive Simulator (GPAS). 
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The developed approach allows for compositional simulations of complex 

displacement processes (such as miscible gas injection) in fractured reservoirs 

in a robust and efficient manner. 

2. Extend the EDFM method for modeling slanted fractures. Hence, the 

developed model could allow for multiple sets of fractures with any arbitrary 

orientations. 

3. Incorporate the dynamic behavior of fractures into EDFM. 

4. Develop a coupled dual continuum and discrete fracture model for the 

simulation of unconventional reservoirs that feature complex hydraulic 

fracture networks and numerous small-scale natural fractures.  

 

1.3 BRIEF DESCRIPTION OF CHAPTERS 

In Chapter 2, we present a literature review of several approaches proposed to 

model fluid flow in fractured reservoirs. Chapter 3 reviews the general features and 

formulation of GPAS. In Chapter 4, we describe the methodology used for modeling 

vertical and slanted fractures using the EDFM approach. The accuracy of the EDFM 

approach is confirmed in Chapter 5 by comparing the EDFM results with analytical 

solutions and fine-grid explicit-fracture simulations. We present several examples in 

Chapter 6 to demonstrate the applicability and performance of the EDFM approach for 

simulating NFRs.  In Chapter 7, we present the methodology used to incorporate dynamic 

behavior of fractures into EDFM, followed by several example simulations. Chapter 8 

presents a coupled dual continuum and discrete fracture model for application in 

unconventional reservoirs. Finally, Chapter 9 presents the conclusions of this research 

and recommendations for future research.  
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Chapter 2:  Literature Review 

 

Presence of highly conductive fracture pathways at various length scales, coupled 

with small fracture volumes, makes numerical simulation of fluid flow in naturally 

fractured reservoirs (NFRs) very challenging. Several approaches have been proposed to 

model NFRs, which can be categorized into two classes of models, dual continuum and 

discrete fracture models. Presently, dual continuum models are the most commonly used 

modeling approach for NFRs in the petroleum industry. However, discrete fracture 

modeling approaches are gaining considerable interest. 

 

2.1   DUAL CONTINUUM MODELS 

Dual continuum models, widely used in the industry, are the conventional method 

for simulating NFRs. The method is based on a concept originally proposed by Barenblat 

et al. (1960).  Subsequently, Warren and Root (1963) introduced the dual porosity model 

to the petroleum literature.  The dual porosity model, which is also known as a sugar cube 

model, was first used for modeling single-phase flow in NFRs. In this model, rectilinear 

prisms of rock matrix are separated by an orthorhombic continuum of fractures. Dual 

porosity simulation involves discretization of the reservoir into two domains, matrix and 

fracture. Hence, every point in the reservoir contains fracture and matrix pressures and 

saturations. A dual porosity model presumes that the flow occurs from the matrix to the 

fractures, and then to the production wells. The rock matrix is where the majority of oil is 

stored. In the dual porosity model, matrix and fracture domains are linked to each other 

through an exchange term that connects each fracture cell to its corresponding matrix cell 
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in a gridblock. The matrix-fracture exchange rate is controlled by a shape factor. Also, 

the matrix blocks in the dual porosity approach are assumed to be isotropic and 

homogeneous. Figure 2.1 shows an idealized sugar cube representation of a fractured 

reservoir, wherein highly interconnected orthogonal fractures are fed by numerous matrix 

blocks.  

Considering single-phase fluid flow, the mass conservation equations for the 

fracture and matrix domains in the dual porosity approach can be expressed for the 

fracture domain as  ݇௙௫ߤ ߲ଶ ௙߲ܲݔଶ + 	݇௙௬ߤ ߲ଶ ௙߲ܲݕଶ +
݇௙௭ߤ ߲ଶ ௙߲ܲݖଶ − ௠௙ݍ	 = 	 ߶௙ܥ௙ ߲ ௙߲ܲݐ 		,																																							(2.1) 

and for the matrix domain as 

߶௠ܥ௠ ߲ ௠߲ܲݐ = 	 ௠௙ݍ 		.																																																																																																							(2.2) 

The matrix-fracture transfer is represented by the pseudo-steady state relation: 

௠௙ݍ = 	 ߤ௠݇ߪ ൫ ௠ܲ − ௙ܲ൯			,																																																																																														(2.3) 

where k, P, µ, C, ɸ, σ, and ݍ௠௙ denote permeability, pressure, fluid viscosity, total 

compressibility, porosity, shape factor, and matrix-fracture flow rate per unit bulk 

volume, respectively. The subscripts m and f refer to the properties in the matrix and 

fracture domains. The shape factor, which has the dimension of reciprocal area, reflects 

the geometry of matrix blocks and controls the interporosity flow between matrix and 

fracture domains.  

Warren and Root showed that the pressure transient response of a well producing 

from a fractured reservoir can be characterized by two parallel semi-log straight lines, 

which form the early- and the late-time portions of this semi-log plot. The first straight 
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line period corresponds to transient flow in the fracture system alone, while the second 

one is a response to transient flow in the total reservoir (matrix and fractures). A 

transitional curve connects the parallel segments in the pressure transient plot.  

Odeh (1965) reported that often, the first straight line period on the semi-log plot 

and the transition zone occur rapidly and therefore, the pressure behavior of a fractured 

reservoir cannot always be distinguished from that of non-fractured reservoirs. Wellbore 

storage may also obscure this early time period associated with the fracture response. 

Kazemi (1969) developed a single-phase dual porosity numerical model for a 2D radial 

system and presented results similar to those obtained by Warren and Root (1963). 

Furthermore, he included a direct flux from matrix to well in the dual porosity model and 

showed that the direct flow from matrix to the well does not remarkably affect the 

pressure transient behavior of NFRs. Kazemi (1969), De Swaan (1976), and Najurieta 

(1980) implemented dual porosity models considering transient fluid transfer between 

matrix and fracture. Using these models, the pressure transient plot exhibits three semi-

log straight lines. The first and the third lines are parallel and correspond to the fracture-

only and total reservoir responses, respectively. The slope of the second semi-log straight 

line, which appears in the transition zone, is one half of the slope of the first and third 

lines. De Swaan (1976) also provided solutions for reservoirs in which the matrix blocks 

are either slabs or spheres. Mavor and Cinco-Ley (1979) and Moench (1984) extended 

the dual porosity approach to include the effect of skin between the matrix and the 

fracture system. They showed that the pseudo-steady state assumption used in the transfer 

function of the Warren and Root’s approach can be justified when the effect of skin is 

pronounced.   

For single-phase flow the matrix block size controls the transition from early 

production from fractures to late production from the total reservoir. The original dual 
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porosity model assumes that fracture intensity is uniform throughout the reservoir and 

hence the matrix block size is constant. However, geological studies of naturally 

fractured reservoirs in conjunction with outcrop observations indicate occurrences of 

non-uniform fracture patterns owing to varying lithology, bed thickness, and stress 

environment. Hence, some research extended dual porosity models to include variable 

matrix block sizes in order to make these models more realistic. Cinco-Ley et al. (1985) 

developed a model to investigate pressure transient response for a naturally fractured 

reservoir containing different matrix block sizes. They showed that the transition zone is 

significantly affected by matrix block size, while the early- and the late-time responses 

are not. Later, Belani and Jalali-Yazdi (1988), Johns and Jalali-Yazdi (1991), and Spivey 

and Lee (2000) examined continuous probability density functions for matrix block size 

to improve well-test analysis of dual porosity systems. 

 

 

Figure 2.1: An idealized sugar cube representation of a fractured reservoir (from 

Warren and Root, 1963). 
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Kazemi et al. (1976) and Rossen (1977) extended the Warren and Root approach 

to multiphase flow and developed dual porosity simulators for modeling multiphase flow 

in NFRs. Since then, the dual porosity approach has been implemented in many reservoir 

simulators for field-scale NFR simulations. 

 

2.1.1   Shape Factor 

The matrix-fracture exchange is a critical component of any model used for the 

simulation of NFRs. In the Warren and Root approach, the matrix-fracture fluid transfer 

is assumed to take place under pseudo-steady state conditions. As described in Equation 

2.3, the matrix-fracture transfer function is proportional to a geometrical shape factor (σ), 

and the driving force is the pressure difference between a matrix block and its 

surrounding fracture. Determination of shape factor is not a simple task because of the 

potential for complex interaction between fractures and matrix rock of various shapes.  

Originally, Warren and Root (1963) defined the shape factor as a parameter that 

depends on the geometry of matrix blocks as given below: 

	ߪ = 	 4݊(݊ + ଶܮ(2 			,																																																																																																										(2.4) 

where n is the number of normal sets of fractures (n = 1, 2, 3) and L is the characteristic 

length of matrix blocks given by ܮ	 = 	ܽ			,																					for n = 1  ܮ	 = 	 2௔௕௔ା௕			,																	for n = 2                                                                             (2.5) 

	ܮ = 	 3௔௕௖௔௕ା௔௖ା௕௖			,							for n = 3  

where a, b, and c are the lengths of the block faces. 
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Kazemi et al. (1976) used a finite-difference formulation for the flow between 

matrix and fractures and showed that for a three-dimensional case 

ߪ = 4 ቆ	 ௫ଶܮ1 +
௬ଶܮ1 + 	 ௭ଶܮ1 	ቇ 		,																																																																																													(2.6) 

where Lx, Ly, and Lz are the distances between fractures in the x, y, and z directions, 

respectively. The shape factor proposed by Kazemi et al. (1976) has been used in a 

number of reservoir simulators. Coats (1989) included pseudo-steady state matrix-

fracture diffusion in the derivation of the matrix-fracture transfer function and obtained a 

shape factor exactly twice that of Kazemi et al. (1976).  

These shape factors assume that the pseudo-steady state assumption is valid. Lim 

and Aziz (1995) considered the physics of pressure diffusion from the matrix to the 

fracture and presented a new shape factor as follows: 

ߪ = ଶߨ ቆ	 ௫ଶܮ1 +
௬ଶܮ1 + 	 ௭ଶܮ1 	ቇ 		.																																																																																										(2.7) 

They performed simulations to investigate the accuracy of various shape factors using 

fine-grid simulations.  The results showed that their shape factor in Equation 2.7 matches 

with the results of fine-grid single porosity better, indicating that the pseudo-steady state 

assumption is not a suitable one and the pressure gradients in the matrix should be taken 

into account for the calculation of shape factors. They also showed that the dual porosity 

simulation using the Warren and Root’s shape factor overestimates the recovery, while 

the simulation using the Kazemi’s shape factor underestimates the recovery. 
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2.1.2   Improvements in Dual Porosity Simulation 

After Warren and Root who introduced the concept of dual porosity for modeling 

NFRs, many studies challenged the adequacy of this approach for simulating gravity 

segregation, capillary imbibition, and other transient phenomena that matter in individual 

matrix blocks. Hence, considerable effort was devoted to make the original dual porosity 

model more realistic. Some important improvements include: the subdomain method 

(Saidi, 1983; Gilman, 1986), the MINC (multiple interacting continua) method (Pruess 

and Narasimhan, 1985), and pseudo capillary pressure and relative permeability 

techniques (Thomas et al., 1983; Dean and Lo, 1988; Rossen and Shen, 1989).   

A drawback of the original dual porosity model was the consideration of gravity 

effects. In this model, the same depth was assumed for a matrix block and its surrounding 

fracture. Reiss (1980) was among the first who discussed the effect of gravity on fluid 

transfer between matrix and fracture. Gilman and Kazemi (1983) added a gravity term to 

the dual porosity transfer function. The gravity term was a function of fluid contact 

heights in the matrix block and its surrounding fracture. Litvak et al. (1985) and Sonier et 

al. (1988) used similar approaches, but improved the calculation of the fluid contact 

heights by including irreducible saturations.  

Thomas et al. (1983) developed a 3D, three-phase, finite difference dual porosity 

model for simulating NFRs. In order to account for the gravity effects, they introduced 

pseudo capillary pressure for the matrix. Dean and Lo (1988) showed that the effect of 

gravity segregation could be included in pseudo capillary pressure terms for both matrix 

and fracture. They used fine-grid simulations to determine these pseudo capillary 

pressure curves. Likewise, Rossen and Shen (1989) proposed a model to calculate the 

matrix-fracture exchange term using pseudo capillary pressure curves for both matrix and 

fracture. The matrix pseudo capillary pressure curve was obtained from fine-grid 
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simulation of a single matrix block surrounded by fractures. Beckner et al. (1988) also 

used a similar approach to reproduce the experimental data of Kleppe and Morse (1974). 

Furthermore, Beckner et al. (1988) and Gilman and Kazemi (1988) argued that the time-

dependent nature of gravity segregation should be included in NFR simulations. 

However, one drawback of pseudo capillary pressure techniques is the time and effort 

required to history match the results of fine-grid simulations to generate pseudo capillary 

pressure curves. Rossen and Shen (1989) described a procedure for generating the pseudo 

curves from a single fine-grid simulation without history matching.  

In the Warren and Root dual porosity approach, all matrix blocks in each 

computational gridblock are lumped into one source/sink term connected to a fracture. 

Therefore, average properties, such as average pressure and saturation, are used for the 

entire matrix block, resulting in an inaccurate pressure gradient between fracture and 

matrix. Subgridding the matrix block, which was first introduced by Saidi (1983), was a 

significant improvement to model the transient flow in the matrix blocks. In order to 

represent pressure and saturation variations more accurately, he suggested dividing a 

matrix block into subdomains. Saidi (1983) discretized the matrix blocks in the vertical 

and radial directions in a three-phase dual porosity simulator. Gilman (1986), Chen et al. 

(1987), Lee and Tan (1987), and Beckner et al. (1991) used similar approaches to 

improve the matrix representation in dual porosity simulations. Matrix block subdivision 

gave better resolution of pressure and saturation gradients, but significantly increased the 

computational cost of dual porosity simulations. 

Pruess and Narasimhan (1985) introduced another dual porosity approach called 

the multiple interacting continua (MINC) method. Since the variations of 

thermodynamics conditions are much smaller in the fracture direction than perpendicular 

to it, they assumed that surfaces with equal distances from the fracture have the same 
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flow potential. Hence, they discretized the matrix blocks into a sequence of nested 

volume elements such that all interfaces between volume elements are parallel to the 

nearest fracture, as schematically shown in Figure 2.2.  Gilman (1986) developed a dual 

porosity simulator based on the MINC method. He divided each matrix block into 

rectangular rings and vertical subdomains. Hence, his model also had the same 

advantages as Saidi’s model in modeling gravity segregation. Wu and Pruess (1988) 

compared the MINC method with fine-grid simulations for modeling water-oil capillary 

imbibition in NFRs. They showed that the MINC method predicts the water imbibition 

from a fracture to a matrix block more accurately than the standard dual porosity 

approach.  

In the dual porosity approach, fluid transfer between computational matrix blocks 

is assumed to be negligible. This assumption is not appropriate when the matrix blocks 

are larger than the computational gridblocks. Thus, Blaskovich et al. (1983), Hill and 

Thomas (1985), and Dean and Lo (1988) developed dual permeability models that used 

the same approach as dual porosity models, but were augmented by matrix-to-matrix 

flow. Figure 2.3 schematically describes their connections in a dual permeability model. 

The matrix-to-matrix flow depicted by dashed double-headed arrows in Figure 2.3 is 

neglected for dual porosity simulations. Similar to the dual porosity model, the dual 

permeability model has been implemented in many reservoir simulators for field-scale 

simulations of NFRs. The mass conservation equation for the matrix in a dual 

permeability model is different from that of a dual porosity model (Equation 2.2) and is 

given by  

߶௠ܥ௠ ߲ ௠߲ܲݐ = 	 ௠௙ݍ + ߤ௠௫ܭ	 ߲ଶ ௠߲ܲݔଶ + 	 ߤ௠௬ܭ ߲ଶ ௠߲ܲݕଶ + 	 ߤ௠௭ܭ ߲ଶ ௠߲ܲݖଶ 			.																										(2.8) 
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The dual porosity approach has been implemented in various reservoir simulators 

at The University of Texas at Austin. Chen (1993) developed a dual porosity simulator, 

UTDUAL, for modeling water-flooding in fractured reservoirs. He decoupled the matrix 

pressure equation from the fracture pressure equation to reduce computational time. Chen 

(1993) studied countercurrent imbibition processes in naturally fractured reservoirs. 

Aldejain (1999) implemented a dual porosity model in a chemical flooding simulator 

(UTCHEM). Naimi-Tajdar et al. (2007) implemented the MINC method into a 

compositional General Purpose Adaptive Simulator (GPAS). Later, Tarahhom (2008) 

incorporated the fracture full-tensor permeability into GPAS.   

Balogun et al. (2007), Ramirez et al. (2009), and Al-Kobaisi et al. (2009) 

compared dual porosity simulations to fine-grid simulations for a variety of oil recovery 

mechanisms in NFRs. This research provided the proper use of matrix-fracture transfer 

functions for different oil recovery mechanisms.  

 

 

 

 Figure 2.2: Discretization of a matrix block into a sequence of nested volume elements 

for the MINC method (from Wu and Pruess, 1988). 
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Figure 2.3: Schematic of connections in a dual permeability model. The matrix-to-

matrix flow depicted by dashed double-headed arrows is neglected for dual 

porosity simulations. 
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2.1.3   Warren and Root Dual Porosity Solution 

The dual porosity approach for modeling NFRs was first introduced by Warren 

and Root (1963). They formulated the single-phase, one-dimensional flow from an 

infinite reservoir in a cylindrical coordinate system. In this section, we present detailed 

derivation of the analytical solution presented in Warren and Root (1963) and reproduce 

their results.  

Equations 2.1, 2.2, and 2.3 can be combined and rewritten in a cylindrical 

coordinate system as follows for the fracture domain:    ݇௙ߤ 	൭1ݎ ݎ߲߲ 	ቆݎ ߲ ௙߲ܲݎ ቇ൱	 − 	 ߤ௠݇ߪ ൫ ௠ܲ − ௙ܲ൯ = 	 ߶௙ܥ௙ ߲ ௙߲ܲݐ 		,																																									(2.9) 

and for the matrix domain: 

߶௠ܥ௠ ߲ ௠߲ܲݐ = 		 ߤ௠݇ߪ ൫ ௠ܲ − ௙ܲ൯			.																																																																														(2.10) 

The initial conditions for fracture and matrix pressures are given by 

௙ܲ(,ݎ	0) = ௠ܲ(,ݎ	0) = 	 ௜ܲ			,																																																																																								(2.11) 

where Pi is the initial reservoir pressure. Likewise, the boundary conditions for the above 

partial differential equations can be expressed as 

௙ܲ(∞,ݐ) = ௠ܲ(∞,ݐ) = 	 ௜ܲ			,																																																																																						(2.12) 

௪ݍ = 	 ݇௙(2ݎߨ௪ℎ)ߤ 	ቆ߲ ௙߲ܲݎ ቇ௥ୀ௥ೢ 	,																																																																																	(2.13) 

where ݍ௪, ݎ௪, and h denote production rate, wellbore radius, and reservoir thickness, 

respectively. The equations for the fracture and matrix domains imply that at any given 

point fracture and matrix pressures co-exist.  
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We define the following dimensionless parameters to simplify the mass conservation 

equation in conjunction with initial and boundary conditions: 

஽ܲ = 	 ቆ2݇ߨ௙ℎߤݍ ቇ	൫ ௜ܲ −  (2.14)																																																																												,			൯(ݐ,ݎ)	ܲ	

஽ݎ = 	 ௪ݎݎ 			,																																																																																																																						(2.15) 

஽ݐ = 	 ቆ ݇௙
௠߶௠ܥ) + 	 ቇ	௪ଶݎ	ߤ(௙߶௙ܥ  (2.16)																																																																											.			ݐ

Then, we calculate the partial derivatives in terms of the dimensionless variables using 

the chain rule, as given below: ߲߲ܲݐ = 	 −	 ݍ
௠߶௠ܥ)ℎߨ2 + 	 (௙߶௙ܥ ௪ଶݎ	 		߲ ஽߲ܲݐ஽ 		,																																																														(2.17) 

ݎ߲߲ = 	 ௪ݎ1 		 ஽ݎ߲߲ ݎ߲߲ܲ (2.18)																																																																																																													,		 = 	 −	 ߤݍ
௪ݎ௙ℎ݇ߨ2 		߲ ஽߲ܲݎ஽ 			.																																																																																									(2.19) 

By substitution of Equations 2.17, 2.18, and 2.19 into Equations 2.9 and 2.10, the mass 

conservation equation for the fracture domain becomes:  ݇௙ߤ 	ቌ ௪ݎ஽ݎ1 	 ௪ݎ1 ஽ݎ߲߲ 	൭ݎ஽ݎ௪ ቆ−	 ߤݍ
௪ݎ௙ℎ݇ߨ2 		߲ ௙ܲ஽߲ݎ஽ ቇ൱ቍ 	

− ߤ௠݇ߪ		 ൭−	 ߤݍ
൫	௙ℎ݇ߨ2 ௠ܲ஽ − 	 ௙ܲ஽൯൱

= 	 ߶௙ܥ௙ ቆ−	 ݍ
௠߶௠ܥ)ℎߨ2 + 	 (௙߶௙ܥ ௪ଶݎ	 		߲ ௙ܲ஽߲ݐ஽ ቇ 					,																																																	(2.20) 
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and for the matrix domain is given by the following: 

߶௠ܥ௠ ቆ−	 ݍ
௠߶௠ܥ)ℎߨ2 + 	 (௙߶௙ܥ ௪ଶݎ	 		߲ ௠ܲ஽߲ݐ஽ ቇ

= 		 ߤ௠݇ߪ ൭−	 ߤݍ
൫	௙ℎ݇ߨ2 ௠ܲ஽ି ௙ܲ஽൯൱ 				.																																																																							(2.21) 

Also, the initial and boundary conditions in terms of dimensionless terms can be rewritten 

as 

௙ܲ஽(ݎ஽,	0) = ௠ܲ஽(ݎ஽,	0) = 	0				,																																																																															(2.22) 

௙ܲ஽(∞,ݐ஽) = ௠ܲ஽(∞,ݐ஽) = 	0			,																																																																													(2.23) 

ቆ߲ ௙ܲ஽߲ݎ஽ ቇ௥ವୀଵ 	 = 	-1			.																																																																																																		(2.24) 

Two additional dimensionless parameters that result from the scaling are: 

߱ = 	 ௠߶௠ܥ௙߶௙ܥ + ௙߶௙ܥ	 				,																																																																																															(2.25) 

ߣ = 	 ௪ଶ݇௙ݎ௠݇ߪ 				,																																																																																																														(2.26) 

where ω is a dimensionless parameter that represents the ratio of fluid capacitance or 

storage of the fracture to the total fluid capacitance of the combined system of matrix and 

fracture. The dimensionless parameter λ govern matrix-fracture interporosity flow, which 

depends on the shape factor and the ratio of fracture to matrix permeability. Using 

dimensionless parameters ω and λ, the mass conservation equations (Equations 2.20 and 

2.21) are simplified in the fracture domain to:   
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஽ݎ1 	 ஽ݎ߲߲ 	ቆݎ஽ ߲ ௙ܲ஽߲ݎ஽ ቇ − 	߱ ߲ ௙ܲ஽߲ݐ஽ − 	 (1 − ߱)
߲ ௠ܲ஽߲ݐ஽ = 	0			,																																							(2.27) 

and in the matrix domain to: 

(1 − ߱)
߲ ௠ܲ஽߲ݐ஽ + ൫ߣ	 ௠ܲ஽ − 	 ௙ܲ஽൯ = 0			.																																																																		(2.28) 

To solve the above system of partial differential equations (PDE), the Laplace 

transformation is used to change the system of PDEs to a system of ordinary differential 

equations (ODE). Hence, the mass conservation equations can be rewritten in the Laplace 

domain for the fractures as  

஽ݎ1 	 ஽ݎ݀݀ 	ቆݎ஽ ݀ ௙ܲ஽݀ݎ஽ ቇ − 	߱൫ݏ ௙ܲ஽൯ − 	 (1 − ߱) ݏ) ௠ܲ஽) = 	0				,																																(2.29) 

and for the matrix by 

(1 − ߱) ݏ) ௠ܲ஽) + ൫ߣ	 ௠ܲ஽ − 	 ௙ܲ஽൯ = 0				.																																																															(2.30) 

The dimensionless pressure drop in the matrix ( ௠ܲ஽) can be obtained from Equation 2.30 

as 

௠ܲ஽ = 	 ߣߣ + (1 − 	ݏ(߱ ௙ܲ஽		.																																																																																							(2.31) 

By substitution of Equation 2.31 into Equation 2.29, the mass conservation equation for 

the fracture domain is simplified to: ݀ଶ ௙ܲ஽݀௥ವଶ + 	 ஽ݎ1 	݀ ௙ܲ஽݀ݎ஽ − ݏ߱	 ௙ܲ஽ − 	 (1 − ݏ(߱ ߣߣ + (1 − ߱) 	ݏ ௙ܲ஽ = 0				,																(2.32) 

݀ଶ ௙ܲ஽݀௥ವଶ + 	 ஽ݎ1 	݀ ௙ܲ஽݀ݎ஽ − 	 ቆߣ)ݏ + 	߱(1 − ߱) ߣ(ݏ + 	 (1 − ݏ(߱ ቇ	 ௙ܲ஽ = 0			.																																						(2.33) 
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Thus, the ordinary differential equation and the boundary conditions become: ݀ଶ ௙ܲ஽݀௥ವଶ + 	 ஽ݎ1 	݀ ௙ܲ஽݀ݎ஽ − (ݏ)݂ݏ	 	 ௙ܲ஽ = 0					,																																																																		(2.34) 

(ݏ)݂ = 	 ቆߣ + 	߱(1 − ߱) ߣݏ + 	 (1 − ݏ(߱ ቇ 			,																																																																																				(2.35) 

௙ܲ஽(ݎ஽ = ∞) = 	0				,																																																																																																				(2.36) 

ቆ߲ ௙ܲ஽߲ݎ஽ ቇ௥ವୀଵ 	 = 	 − ݏ1 				.																																																																																																(2.37) 

The ODE of Equation 2.34 subject to the boundary conditions has the following 

analytical solution in the Laplace domain:  

௙ܲ஽(ݎ஽) = 	 (ݏ)݂ݏඥݏ൯(ݏ)݂ݏ஽ඥݎ଴൫ܭ ൯(ݏ)݂ݏଵ൫ඥܭ	 				,																																																																							(2.38) 

where K0 and K1 are the modified Bessel functions of the second kind of order zero and 

one, respectively. Subsequently, the dimensionless pressure drop at the wellbore (rD = 1) 

becomes  

௪ܲ஽ = 	 (ݏ)݂ݏඥݏ൯(ݏ)݂ݏ଴൫ඥܭ ൯(ݏ)݂ݏଵ൫ඥܭ	 				.																																																																														(2.39) 

Warren and Root (1963) presented an approximate solution in the time domain given by 

௪ܲ஽(ݐ஽) = 0.5 ൜ln ஽ݐ + 0.80908 + ௜ܧ ൤ ஽߱(1ݐߣ− − ߱)
൨ − ௜ܧ ൤ ஽ݐߣ−

(1 − ߱)
൨ൠ 			,													(2.40) 

where Ei is the exponential integral. An alternative to this approximate solution is the 

Stehfest method, which can be used to calculate the inverse Laplace transform of 
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Equation 2.39 (Stehfest, 1970). Figure 2.4 shows the dimensionless pressure drop versus 

the dimensionless time calculated by both methods for different values of λ and ω.  

 

 

Figure 2.4: Dimensionless pressure response as a function of dimensionless time 

calculated by the approximate solution (Equation 2.40) and using the 

Stehfest method, corresponding to Figure 5 in Warren and Root (1963). 
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2.2   DISCRETE FRACTURE MODELS 

Outcrop characterization studies have shown that natural fractures vary 

substantially in height, length, and aperture, as well as spacing and network connectivity 

(Gillespie et al., 1993; Odling, 1997; Odling et al., 1999), thus highlighting a large 

discrepancy between reality and the uniformity inherent in dual porosity model 

assumptions. Hence, discrete fracture models (DFMs) were developed to reduce the 

number of non-physical abstractions inherent in dual continuum models. Most DFMs rely 

on unstructured grids to conform to the geometry and location of fracture networks. 

Compared to dual porosity models, DFMs offer several advantages. They account 

explicitly for the effect of individual fractures on fluid flow. Also, they are not overly 

constrained by grid-defined fracture geometries; hence the fracture model is easily 

adaptable and updatable. Moreover, the specification of the fluid exchange between 

matrix and fracture is more straightforward since it depends directly on the fracture 

geometry and any assigned relative permeability and capillary pressure functions. 

However, one disadvantage is that, in general, DFMs are numerically difficult to 

implement and computationally expensive. Further, one must be able to identify the 

locations and orientations of the discrete fractures for the model to be realistic.  

Noorishad and Mehran (1982) presented a finite-element method for the transient 

solution of solute by dispersion and convection in 2D fractured porous media. Baca et al. 

(1984) proposed a 2D finite-element model for single-phase flow with heat and solute 

transport. Later, Juanes et al. (2002) presented a general finite-element model for 3D 

single-phase flow in fractured reservoirs. Kim and Deo (2000) and Karimi-Fard and 

Firoozabadi (2003) extended the finite-element method for two-phase fluid flow in 

fractured reservoirs including gravity and capillary effects. However, the DFMs based on 

finite-element procedures are not adequate for multiphase flow in highly heterogeneous 
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reservoirs, since they do not ensure local mass conservation. Hoteit and Firoozabadi 

(2006) developed a compositional DFM using mixed finite-element and discontinuous 

Galerkin methods to resolve the mass conservation error for multiphase flows in NFRs.  

Fu et al. (2005) developed a 3D, three-phase, black-oil, discrete fracture reservoir 

simulator based on the control-volume finite-element (CVFE) formulation. The CVFE 

method uses the same types of interpolation functions for dependent variables as those 

used in the finite element method. In contrast to the finite-element method in which the 

fluid potentials are approximated without the knowledge of fluxes between nodes, in the 

CVFE method fluid flux between nodes is calculated explicitly to ensure local mass 

conservation. Balasubramanian (2007) developed a compositional DFM using the 

control-volume finite-element method. Furthermore, Monteagudo and Firoozabadi (2004, 

2007), Reichenberger et al. (2006), Matthai et al. (2007), Geiger et al. (2009), and 

Marcondes et al. (2010) applied control-volume finite-element methods to develop 

numerical simulators for multiphase flow in discrete fractured media.  

Karimi-Fard et al. (2004) and Hui and Mallison (2009) developed DFMs based on 

an unstructured control-volume finite-difference formulation. This implementation is 

compatible with any reservoir simulator that represents grid connections by a 

connectivity list. The model employs the so-called lower dimensional approach to DFM 

gridding, where the rock matrix is modeled by 3D polyhedral cells and the fracture 

network is represented by a subset of the 2D interfaces separating grid cells. Figure 2.5 

depicts a 2D example of fracture network defined in a physical domain. The physical 

domain is discretized using unstructured objects, representing the grid domain. For this 

2D example, the matrix is represented by 2D control volumes and the fractures by 1D 

control volumes. As shown in Figure 2.5, each control volume is associated with a node. 
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Although the fracture thickness is not represented in the grid domain, it is included in the 

computational domain for flow-rate evaluation. 

To accurately capture the complexity of a fractured reservoir, it is usually 

necessary to use an unstructured discretization scheme. The above-mentioned DFM 

approaches require generating an unstructured grid to conform to the complexity of the 

fractures assigned to the domain of interest. Generation of such grid for an arbitrary 

fracture network can be a substantial challenge. Lee et al. (2000, 2001) and Li and Lee 

(2008) described a distinctly different DFM for simulating fluid flow in NFRs. Their 

model uses a conventional structured grid to represent the matrix and introduces 

additional fracture control volumes that are connected to the matrix through non-

neighboring connections. Thus, the challenges associated with gridding fractures were 

circumvented entirely using Li and Lee’s approach. Using non-neighboring connections 

to model fractures in a traditional finite-difference simulator is also discussed by Hearn et 

al. (1997) and Philip (2003). 

 

Physical domain             Grid domain  

    

Figure 2.5: A 2D example of a fractured porous medium to be modeled using an 

unstructured control-volume finite-difference formulation. The thick line 

segments in the grid domain represent the fractures. One node is associated 

with each control volume (from Karimi-Fard et al., 2004). 
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2.3   ANALYTICAL SOLUTIONS FOR HYDRAULICALLY FRACTURED WELLS 

Great effort has been made to model pressure transient behavior of hydraulically 

fractured vertical or horizontal wells. Many studies presented several analytical solutions 

for transient flow in fractured wells. Gringarten et al. (1974) developed transient flow 

solutions to predict the behavior of infinite-conductivity vertical fractures in homogenous 

formations. Cinco-Ley et al. (1978) and Cinco-Ley and Samaniego (1981) presented a 

semi-analytical model to analyze the pressure transient response of wells intercepted by a 

finite-conductivity vertical fracture. Rodriguez et al. (1984a and 1984b) derived semi-

analytical solutions for partially penetrating, infinite-conductivity and finite-conductivity 

fractures. Likewise, Tiab and Puthigai (1988) presented pressure-derivative type curves 

for a vertically fractured well located in an infinite reservoir.   

Unlike vertical wells, horizontal wells are often hydraulically fractured at more 

than one point along the lateral section. Hegre and Larsen (1994) used the concept of 

effective wellbore radius to predict the performance of a horizontal well intercepted by 

multiple fractures.  Also, Guo et al. (1994) developed methods for the performance 

prediction of horizontal wells with multiple fractures, but their work neglected the effect 

of interference between fractures. Later, Raghavan et al. (1997) developed a 

mathematical method based on finite-conductivity vertical-well-fracture models and 

improved the performance prediction of multiply-fractured horizontal wells. Moreover, 

Chen and Raghavn (1997) used the Ozkan and Raghavan’s (1991) solution for a point 

source in a rectangular parallelepiped and derived expressions for the pressure transient 

behavior of a multiply-fractured horizontal well in a rectangular drainage region. Wan 

and Aziz (2002) described a new analytical solution for multiply-fractured horizontal 

wells where fractures partially penetrate the formation in the vertical direction.   
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2.4   LABORATORY EXPERIMENTS IN FRACTURED POROUS MEDIA 

A number of laboratory experiments have been conducted to investigate the 

behavior of various physical processes in fractured porous media. Mattax and Kyte 

(1962) performed water imbibition experiments in fractured cores and presented data that 

relate recovery behavior to matrix block size, fluid viscosity, and matrix permeability. 

Kyte (1970) conducted centrifuge tests on reservoir core samples to show that gravity 

segregation can sometimes be more important than capillary imbibition as a mechanism 

for oil recovery from matrix blocks. Kleppe and Morse (1974) and Kazemi and Merrill 

(1979) conducted water displacement experiments in fractured systems.  

Horie et al. (1990) performed gas-oil gravity drainage experiments to investigate 

the importance of capillary continuity across a stack of matrix blocks. They showed that 

an important aspect of gas-oil gravity drainage in fractured reservoirs is the process of 

reinfiltration. That is, oil draining from an upper matrix block is not generally flowing 

through the fractures, but is rather entering a matrix block underneath. Barkve and 

Firoozabadi (1992) showed that oil reinfiltration is a function of both capillary and 

gravity forces. Firoozabadi and Markeset (1994) presented experimental data to 

demonstrate that the rate of oil drainage across a stack of matrix blocks is very sensitive 

to fracture aperture size. Dindoruk and Firoozabadi (1994) investigated flow through a 

liquid bridge between two matrix blocks and concluded that the fracture capillary 

pressure is the most critical parameter that affects the gas-oil gravity drainage process. 

They also pointed out that fracture liquid transmissibility has a small effect on gas-oil 

gravity drainage in fractured porous media. Firoozabadi et al. (1997) conducted several 

tests on viscous displacement in fractured cores, leading to the conclusion that viscous 

displacement can result in remarkable additional recovery in some fractured reservoirs 

beyond capillary-gravity equilibrium. Dindoruk and Firoozabadi (1997) developed an 
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analytical 1D model based on the method of characteristics to study the effect of cross-

flow between matrix blocks and fractures on recovery.  

Following the laboratory experiments conducted in fractured porous media, 

fracture models should be improved to incorporate more realistic physics into 

simulations. For instance, in order to include the effect of oil reinfiltration in gas-oil 

gravity drainage simulations, Por et al. (1989) developed a reservoir simulator based on 

dual porosity models with block-to-block interaction. They examined the effect of block-

to-block interaction on oil recovery from a stack of matrix blocks and found that block-

to-block interaction lowers the production rate and consequently delays oil recovery. 

Also, Fung (1991) and Uleberg and Kleppe (1996) studied gas-oil gravity drainage in 

dual porosity simulations by including the effect of oil reinfiltration. Likewise, Rubin 

(2007) developed a hybrid of subdomain and dual permeability models to simulate gas-

oil gravity drainage in the presence of reinfiltration and partial capillary continuity 

between matrix blocks. Wit et al. (2002) presented a procedure to calculate pseudo 

relative permeability curves for a stack of interacting blocks in gas-oil gravity drainage 

simulations.  

Firoozabadi and Markeset (1994) carried out miscible displacement experiments 

in a number of matrix-fracture configurations. In their experiments, although the injected 

fluid had an early breakthrough, the injected solvent effluent concentration increased very 

slowly. This study revealed that miscible displacement in fractured porous media can be a 

very efficient process. Tan and Firoozabadi (1995) indicated that the solvent effluent 

concentration remains small in densely fractured systems even at high rates of injection. 

They concluded that fracture density has an important effect on miscible displacement 

efficiency. Beliveau et al. (1993) presented a CO2-flood pilot indicating that, contrary to 

conventional screening criteria, substantial tertiary oil recovery is attainable in a naturally 
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fractured reservoir. Schechter and Guo (1998) conducted extensive experiments for CO2 

gravity drainage in the naturally fractured Spraberry reservoir, leading to the conclusion 

that the matrix vertical permeability is a dominating factor affecting recovery efficiency 

during CO2 injection. Li et al. (2000) performed water imbibition followed by CO2 

gravity drainage experiments on artificially fractured cores at reservoir conditions. The 

results of experiments showed that CO2 gravity drainage can substantially increase oil 

recovery after a water flood. Li et al. (2000) also found that the efficiency of CO2 gravity 

drainage decreases as the rock permeability decreases and the initial water saturation 

increases. Also, Darvish et al. (2006) experimentally showed that tertiary CO2 injection 

can be considered an effective enhanced oil recovery method in fractured reservoirs for 

targeting the residual oil after water injection. Trivedi and Babadagli (2006) 

experimentally investigated the efficiency of miscible displacement in fractured porous 

media and showed the dominance of phase diffusion into the matrix through fractures 

over viscous flow in the fracture. Moreover, Hoteit and Firoozabadi (2006) numerically 

studied diffusion in a fractured system for gas injection and concluded that diffusion can 

improve oil recovery in miscible displacements. In a recent study, Yanze and Clemens 

(2012) showed that non-equilibrium gas injection into a naturally fractured reservoir can 

improve oil production by gas-oil gravity drainage and diffusion of gas components from 

the fractures into the matrix. Based on their study, the effect of diffusion is pronounced 

when a large decrease in oil viscosity occurs as a result of gas components moving into 

the oil.  
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Chapter 3:  General Purpose Adaptive Simulator (GPAS) 

 

The economic development of oil and gas reservoirs hinges in part on performing 

predictive simulations that enable reservoir engineers to select the best production 

strategies during all phases of field development. Reservoir simulation with geological 

and physical models has become an increasingly important tool for optimizing 

hydrocarbon recovery and reducing risk in development decisions. General Purpose 

Adaptive Simulator, GPAS, was developed at The University of Texas at Austin to 

provide an efficient and reliable environment to simulate a variety of oil recovery 

mechanisms. Moreover, the computational framework of GPAS allows for parallel 

processing, making it a good candidate for full-field simulations.  The embedded discrete 

fracture model developed in this research for simulating fractured reservoirs is 

implemented into GPAS. Hence, we describe the framework, features, and different 

modules of GPAS in this chapter.  

 

3.1   OVERVIEW AND FRAMEWORK OF GPAS 

GPAS is a fully‐implicit parallel-processing reservoir simulator comprising two 

main modules, the equation-of-state (EOS) compositional module and the chemical 

compositional module. Depending on the application, each module performs the related 

physical model calculations. The EOS compositional module of GPAS was first 

developed for miscible gas flooding simulations and the chemical compositional module 

of GPAS was later added to simulate polymer and surfactant enhanced oil recovery 

methods. The EOS compositional module solves phase behavior and mass balance 
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equations for compositional gas flooding, while the chemical compositional module 

solves mass balance equations for aqueous phase components, which are present in 

polymer- and surfactant-flooding simulations.  

The Integrated Parallel Accurate Reservoir Simulation (IPARS) was developed as 

a framework for parallel reservoir simulation research (Gropp et al., 1996; Parashar et al., 

1997; Wheeler et al., 1999). The EOS and chemical compositional modules of GPAS are 

developed under this framework and thus, multi-processor simulations are feasible using 

GPAS. When using multiple processors, the simulation grid is evenly distributed among 

all processors. In order to maintain communication between different processors, a 

subgrid assigned to each processor is surrounded by a layer of grid elements that is 

shared with neighboring processors. This layer is also known as a ghost layer in parallel 

processing. It should be also noted that parallel processing calculations are separated 

from the physical model calculations. 

The main features of the IPARS framework in conjunction with the compositional 

modules are memory allocation and management, domain decomposition, message 

passing between processors, and input/output processing.  Here, we briefly describe these 

features: 

 Memory Allocation and Management: The framework allocates memory 

for grid‐element arrays. Such arrays store the grid‐related properties such as 

porosity, permeability, and phase compositions. In order to implement a new 

physical model in a reservoir simulator under IPARS, we can define as many 

grid-element arrays as needed.  

 Domain Decomposition: The reservoir domain is divided into several 

subdomains equal to the number of processors. Then, each subdomain is 
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assigned to one processor that solves the physical model equations for that 

subdomain.  The domain splitting in IPARS is along the y direction.  

 Message Passing Between Processors: Communication (sending and 

receiving messages) between processors in the framework is done by message 

passing interface (MPI). The framework includes several routines that collect 

and distribute data between processors. 

 Input/output Processing: The framework allows each processor to collect 

the input data for the portion of the reservoir that is assigned to it. 

Furthermore, at the output times, data from all processors are collected by a 

master processor. Hence, the framework includes several routines that read the 

input data from input files and write formatted data to output files. 

In addition to the above-mentioned features, the framework performs several 

other calculations that are needed for various physical models. These calculations 

include: 

 Calculation of the constant part of transmissibility between neighboring 

gridblocks 

 Table look-up for relative permeability and capillary pressure calculations 

 Identification of well locations with respect to grid and calculation of the 

corresponding well indices  

 Identification of the ghost layers between processors 

 

In the following sections, we describe the EOS and chemical compositional 

modules. However, since the embedded discrete fracture model (EDFM) is developed 

under the EOS compositional module, we present the formulation of this module in more 

details. 
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3.2   EOS COMPOSITIONAL MODULE 

Wang et al. (1997, 1999) developed a fully-implicit equation-of-state (EOS) 

compositional module in GPAS. This module employs the Peng-Robinson equation-of-

state (PR-EOS) for the hydrocarbon phase behavior calculations. Also, Darcy’s law 

describes the multiphase flow in porous media. The number of stable hydrocarbon phases 

and their composition are determined using the EOS phase equilibrium calculations. 

Physical properties such as phase viscosity, density, and compressibility are calculated 

based on phase compositions. Hydrocarbon phases can possess many hydrocarbon 

components and mass transfer is allowed between oil and gas phases. However, there is 

no mass transfer between the aqueous and hydrocarbon phases. The aqueous phase 

contains water as a single component. Furthermore, the rock is slightly compressible and 

immobile.  

All the developments in this research, which will be presented in the forthcoming 

chapters, are implemented in the EOS compositional module of GPAS. Hence, in the 

following sections, we describe the governing equations, phase behavior equations, and 

solution procedure of the EOS compositional module in GPAS. 

 

3.2.1   Governing Equations 

The number of hydrocarbon phases is denoted by Np and the aqueous phase 

consists of only the water component.  Water is assumed to be slightly compressible with 

a constant viscosity. Each hydrocarbon phase is composed of Nc hydrocarbon 

components. In the EOS compositional module of GPAS, multi-component and 

multiphase flow in a porous medium is entirely described using three types of equations 

when temperature is constant (isothermal reservoir). The governing equations of the EOS 

compositional model include: 
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 Nc material balance equations for hydrocarbon components,  

 water material balance equation, 

 Nc phase equilibrium equations (equality of component fugacities), and 

 pore volume constraint equation. 

Hence, the total number of governing equations is 2Nc+2. Here, only two 

hydrocarbon phases are in equilibrium, resulting in Nc phase equilibrium equations. 

Varavei (2009) developed an isothermal four-phase compositional model wherein three 

hydrocarbon phases (oil, gas, and second hydrocarbon liquid) are in equilibrium. The 

composition of the second hydrocarbon liquid phase is close to that of the gas phase, but 

its density is higher than the gas density. Four-phase physics can be relevant during CO2 

injection at low temperatures. For the four-phase model, two sets of phase equilibrium 

equations (2Nc) are needed to describe mass transfer between phases, resulting in a total 

number of 3Nc+2 equations for each gridblock.   

 

3.2.1.1   Material Balance Equations 

In the EOS compositional module of GPAS, material balance equations for Nc+1 

components (including water), in which Darcy’s law represents phase transport from one 

gridblock to another, are given by 

௕ܸ ݐ߲߲ (߶ ௜ܰ) − 	 ௕ܸ∇ ∙ ෍ ݇	ന 	݇௥௝ߤ௝
ே೛

௝ୀଵ ∇൫	௜௝ݔ	௝ߦ	 ௝ܲ	 − ൯ܦ∇௝ߛ	 − ௜ݍ	 = 0			,																						(3.1) 

where ௕ܸ , ߶, ௜ܰ, ݇	ന , ݇௥௝, ߤ௝, ߦ௝	, ݔ௜௝, ௝ܲ	, ߛ௝, ܦ, and ݍ௜ denote bulk volume, porosity, moles 

of component i per unit pore volume, absolute permeability tensor, relative permeability 

of phase j, viscosity of phase j, molar density of phase j, mole fraction of component i in 

phase j, pressure of phase j, specific gravity of phase j, depth, and molar rate of 
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component i injected or produced, respectively. We note here that the EOS compositional 

module of GPAS does not include a dispersion term in the material balance equations. 

Haghshenas (2011) implemented a diffusion/dispersion model in the chemical 

compositional module of GPAS. 

 

3.2.1.2   Phase Equilibrium Equations 

Phase equilibrium equations for Nc hydrocarbon components equate component 

fugacities between oil and gas phases. Phase equilibrium equation for component i can be 

expressed as  

ln൫ ௜݂௚൯ − ln( ௜݂௢) = 0					,																																																																																																(3.2) 

ln ௜ܭ − ln ߮௜௢ + 	 ln ߮௜௚ = 0				,																																																																																							(3.3) 

where ௜݂௝
 :௜, and ߮௜௝ represent the fugacity of component i in phase j (o: oleic, gܭ ,

gaseous), equilibrium ratio of component i, and fugacity coefficient of component i in 

phase j, respectively. For the four-phase model in which three hydrocarbon phases are in 

equilibrium, another set of equations equate component fugacities between oil and the 

second liquid phases. 

 

3.2.1.3   Pore Volume Constraint Equation 

The volumetric constraint equation, also known as the phase saturation constraint, 

implies that the pore volume in each cell must be filled completely by the total fluid 

volume, and is given by 
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෍ ௝ܰߦ௝
ே೛

௝ୀଵ 	 = 1				,																																																																																																																			(3.4) 

෍ ௜ܰ 	෍ ௝ே೛ݒ̅	௝ܮ
௝ୀଵ 	ே೎ାଵ

௜ୀଵ – 	1 = 0				,																																																																																									(3.5) 

where ௜ܰ, ௝ܰ, ܮ௝, ̅ݒ௝, and ߦ௝ 	denote moles of component i per pore volume, moles of phase 

j per pore volume, mole fraction of phase j, molar volume of phase j, and molar density 

of phase j, respectively.  

 

3.2.2   Phase Behavior Calculations 

At each time-step in an EOS compositional simulation, the number of 

hydrocarbon phases, phase mole ratios, and phase compositions are calculated. The 

algorithm used in GPAS for phase equilibrium calculations was developed by Perschke et 

al. (1989).  The procedure of this algorithm is a sequential application of stability test and 

flash calculation.  From the overall mole fraction, the stability test determines the number 

of phases that can exist at the prevailing condition. There are two methods for the 

stability test in GPAS: the stationary point location method (Michelsen, 1982) and Gibbs 

free energy minimization method (Trangenstein, 1987). Likewise, flash calculation 

computes the phase mole ratios and phase compositions. There are two methods for the 

flash calculation in GPAS: the accelerated successive substitution (ACSS) method 

(Mehra et al., 1983) and Gibbs free energy minimization (Trangenstein, 1987). The phase 

fugacity equations are then solved along with other governing equations to update 

primary variables.  
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In order to perform phase equilibrium calculations, various equation-of-states 

(EOS) are used in different reservoir simulators. As previously mentioned, the Peng-

Robinson (Peng and Robinson, 1976) equation-of-state (PR-EOS) is used in the GPAS 

compositional model, which is expressed as  

ܲ = 	 ݒܴܶ − ܾ − 	 ݒ)ݒ(ܶ)ܽ + ܾ) + ݒ)ܾ − ܾ)
					,																																																																				(3.6) 

where P, ݒ, T, and R are the pressure, volume, temperature, and gas constant, 

respectively.  Also, the parameters a(T) and b for a pure component are calculated from 

ܽ(ܶ) = 0.45724	 ܴ)ߙ ௖ܶ) ଶ
௖ܲ 				,																																																																																								(3.7) 

ܾ = 0.0778	 ܴ ௖ܶ௖ܲ 			,																																																																																																										(3.8) 

ߙ = 	 ቎1 + ݉ ቌ1 − ඨ ܶܶ௖ቍ቏ଶ 				,																																																																																						(3.9) 

݉ = ቐ 0.37464 + 1.54226߱ − 0.26992߱ଶ							( if	߱ < 0.49)

0.37964 + 1.48503߱ − 0.164423߱ଶ + 0.016666߱ଷ	( if	߱ > 0.49)

						(3.10) 

where ௖ܲ , ௖ܶ , and ߱ are the critical pressure, critical temperature, and acentric factor, 

respectively.  In order to use PR-EOS for multi-component mixtures, a and b for phase j 

should be computed from the mixing rules: 

ܽ௠,௝ = ෍ ෍ ௜௝ே೎ݔ
௞ୀଵ (1	௞௝ඥܽ௜ܽ௞ݔ − (௜௞ߜ

ே೎
௜ୀଵ 			,																																																																(3.11) 

ܾ௠,௝ = 	 ෍ ௜௝ே೎ݔ
௝ୀଵ ௜ܾ 			,																																																																																																							(3.12) 
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where ai and bi are computed for each component from Equations 3.7 and 3.8 and xij is 

the mole fraction of component i in phase j. Likewise, ߜ௜௞ is called the binary interaction 

coefficient between components i and k. The Peng-Robinson EOS for phase j can be 

rewritten in terms of the phase compressibility factor (Z) as follows: 

௝ܼଷ + ൫ܤ௝ − 1൯ ௝ܼଶ + ൫ܣ௝ − ௝ଶܤ3 − ௝൯ܤ2 ௝ܼ + ൫−ܣ௝ܤ௝ + ௝ଶܤ + ௝ଷ൯ܤ = 0	,												(3.13) 

௝ܼ =
௝ܴܶݒܲ 				,																																																																																																																				(3.14) 

௝ܣ =
ܽ௠,௝ܲ
(ܴܶ) ଶ 					,																																																																																																														(3.15) 

௝ܤ =
ܾ௠,௝ܴܲܶ 				.																																																																																																																(3.16) 

Using the PR-EOS, the fugacity coefficient of component i in phase j (which is needed in 

Equation 3.3) is calculated by 

ln ߮௜௝ =
௜ܾܾ
( ௝ܼ − 1) − ln( ௝ܼ − (௝ܤ

− ௝ܣ
௝ܤ2√2 ቌ 2௝ܽ ෍ ௠௝ܽ௜௠ݔ − ௜ܾܾ௠

ே೎
௠ୀଵ ቍ ln ቆ ௝ܼ + (1 + ௝௝ܼܤ(2√ + (1 − ௝ቇܤ(2√ 		.																			(3.17) 

Also, the equilibrium ratio of component i (also known as the K-value) is the ratio of 

component mole fraction in the gaseous phase to the component mole fraction in the oleic 

phase.   
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3.2.3   Primary Variables and Solution Procedure 

The 2Nc+2 primary (independent) variables used in the EOS compositional 

module of GPAS are Pw, N1, …, Nnc , Nw, ln K1 , …, ln Knc. Therefore, the number of 

nonlinear equations and unknowns for a reservoir represented by NB gridblocks is 

(2Nc+2) × NB. The partial differential equations for the component mass balances are 

discretized on a Cartesian grid using the one-point upstream weighting scheme for the 

transmissibility terms. The discretized component mass balance equations along with the 

phase equilibrium equations and pore volume constraint equation are then linearized in 

terms of the primary variables.  

The Newton’s method is used to linearize the non‐linear system of equations as 

given below: 

Δܺܬ = 	 −ܴ			,																																																																																																																		(3.18) 

where, R is the residual vector for all governing equations of all gridblocks. Also, vector 

X contains all unknowns (primary variables) for all gridblocks. Furthermore, J is the 

Jacobian matrix that includes the derivatives of all equations (residuals) with respect to 

all primary variables. Therefore, Equation 3.18 can be rewritten as 

 

⎝⎜
⎜⎛

	ଵ,ଵܬ 	ଶ,ଵܬ	ଵ,ଶܬ 			ଶ,ଶܬ …

…

ଵ,ே஻ܬ ଶ,ே஻ܬ	 	
⋮ ⋮ ே஻,ଵܬ⋮ ே஻,ଶܬ ⋯ ⎟⎠ே஻,ே஻ܬ

⎟⎞	
⎝⎜
⎜⎛

Δ ଵܺΔܺଶ⋮Δܺே஻⎠⎟
⎟⎞ = 	 −

⎝⎜
⎜⎛

ܴଵܴଶ⋮ܴே஻⎠⎟
⎟⎞ 				,																																		(3.19)  

where Ji,j represents the derivatives of the governing equations (residuals) of the 

gridblock i with respect to the primary variables in gridblock j. That is, 
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௜,௝ܬ =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎛

߲ܴଵ,௜௙߲ ln ଵ,௝ܭ ⋯ ߲ܴଵ,௜௙߲ ln ⋮௡೎,௝ܭ ⋮߲ܴ௡೎,௜௙߲ ln ଵ,௝ܭ ⋯ ߲ܴ௡೎,௜௙߲ ln ௡೎,௝߲ܴ௜௩߲ܭ ln ଵ,௝ܭ ⋯ ߲ܴ௜௩߲ ln ௡೎,௝ܭ

߲ܴଵ,௜௙߲ ଵܰ,௝ ⋯ ߲ܴଵ,௜௙߲ ௡ܰ೎,௝⋮ ⋮߲ܴ௡೎,௜௙߲ ଵܰ,௝ ⋯ ߲ܴ௡೎,௜௙߲ ௡ܰ೎,௝߲ܴ௜௩߲ ଵܰ,௝ ⋯ ߲ܴ௜௩߲ ௡ܰ೎,௝

߲ܴଵ,௜௙߲ ௝ܲ⋮߲ܴ௡೎,௜௙߲ ௝ܲ

߲ܴଵ,௜௙߲ܰ௪,௝⋮߲ܴ௡೎,௜௙߲ܰ௪,௝߲ܴ௜௩߲ ௝ܲ ߲ܴ௜௩߲ܰ௪,௝߲ܴଵ,௜௠߲ ln ଵ,௝ܭ ⋯ ߲ܴଵ,௜௠߲ ln ⋮௡೎,௝ܭ ⋮߲ܴ௡೎,௜௠߲ ln ଵ,௝ܭ ⋯ ߲ܴ௡೎,௜௠߲ ln ௡೎,௝ܭ

߲ܴଵ,௜௠߲ ଵܰ,௝ ⋯ ߲ܴଵ,௜௠߲ ௡ܰ೎,௝⋮ ⋮߲ܴ௡೎,௜௠߲ ଵܰ,௝ ⋯ ߲ܴ௡೎,௜௠߲ ௡ܰ೎,௝

߲ܴଵ,௜௠߲ ௝ܲ ߲ܴଵ,௜௠߲ܰ௪,௝⋮ ⋮߲ܴ௡೎,௜௠߲ ௝ܲ ߲ܴ௡೎,௜௠߲ܰ௪,௝߲ܴ௜௪߲ ln ଵ,௝ܭ ⋯ ߲ܴ௜௪߲ ln ௡೎,௝ܭ ߲ܴ௜௪߲ ଵܰ,௝ ⋯ ߲ܴ௜௪߲ ௡ܰ೎,௝ ߲ܴ௜௪߲ ௝ܲ ߲ܴ௜௪߲ܰ௪,௝ ⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎞

	,	(3.20) 

∆ ௝ܺ = ൫∆ ln ଵܭ ,…	 , ∆ ln ∆,௡೎ܭ ଵܰ,…	 ,∆ ௡ܰ೎,∆ܲ, ∆ܰ௪൯௝ 			,																																		(3.21) 

ܴ௜ = 	 ൫ܴଵ௙ ,…,ܴ௡೎௙
, ܴ௩, ܴଵ௠,…,ܴ௡೎௠ , ܴ௪൯	௜				.																																																												(3.22) 

The superscripts f, v, m, and w refer to fugacity (phase equilibrium) equations, volume 

constraint equation, mass balance equations for hydrocarbon components, and water mass 

balance equation, respectively.   

The linear system is then solved for the independent variables of all gridblocks. 

The linear solvers from the PETSc package (Portable Extensible Toolkit for Scientific 

Computation) are used to solve the underlying linear system of equations (Balay et al., 

1998). Once ΔX is calculated from Equation 3.18, the vector of unknowns (X) can be 

updated using the following equation: 
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ܺ௡௘௪ = 	 ܺ௢௟ௗ + 	 ∆ܺ		.																																																																																																		(3.23) 

Applying the Newton’s method, the above procedure is repeated until the convergence 

criteria based on the residual tolerances are met.   

 

 3.3   CHEMICAL COMPOSITIONAL MODULE 

In the EOS compositional module of GPAS, the aqueous phase contains water as 

a single component and therefore, this module cannot model chemical enhanced oil 

recovery (EOR) processes.  In order to perform chemical EOR simulations, the chemical 

module of GPAS was first developed by Nalla (2002), who implemented a chemical 

model for conservative tracers and polymers. John et al. (2005) extended Nalla’s work to 

model partitioning tracer, chemical species adsorption, and surfactant phase behavior.  In 

these models, the material balance equations for hydrocarbon were solved implicitly, 

while the material balance equations for the aqueous phase components were solved 

explicitly after updating the saturations, densities, and phase fluxes.   

Later, Han et al. (2007) and Fathi-Najafabadi et al. (2009) developed fully‐
implicit chemical models in GPAS. In the new formulation, the material balance 

equations for both aqueous phase components and hydrocarbon components were solved 

implicitly. The governing equations in the chemical module are material balance 

equations and the volume constraint equation. Three phases (water, oil, and 

microemulsion) can be present in the simulations depending on the composition and the 

phase behavior of water/oil/surfactant. The microemulsion phase is defined as a 

thermodynamically stable phase that contains oil, water, and surfactant. 
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3.4   PARALLEL PROCESSING 

Large-scale simulation of petroleum reservoirs with complex recovery processes 

is challenging owing to the problem size and extensive calculations involved. Parallel 

processing with high performance computing clusters can alleviate these challenges to a 

good extent.  Wang et al. (1997), Zhang et al. (2001), Dogru et al. (2002), Gai et al. 

(2003), and DeBaun et al. (2005) demonstrated the necessity, advantages, and 

applicability of using parallel processing for large-scale reservoir simulations.  

In order to perform parallel reservoir simulation, the reservoir domain is divided 

into several subdomains equal to the number of processors. Each processor collects the 

properties of the cells that belong to it from input files. Likewise, at the output times, a 

master processor collects the data from all processors. As previously described, IPARS 

provides the parallel processing framework for GPAS. Under this framework, the 

reservoir domain is divided in the y direction into several subdomains equal to the 

number of processors.  

When using parallel processors, each processor should communicate with other 

processors at every time-step.  Hence, a surrounding layer of cells (ghost layer) is added 

to each subdomain as a communication layer. Communication between ghost layers is 

established by a message passing interface (MPI) in the framework. The ideal speed-up 

for a parallel reservoir simulation with n processors is equal to n. However, in reality, the 

speed-up is less than n owing to the communications between processors and memory 

contention. In general, as the number of processors increases, the communication cost 

between processors increases.  
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Chapter 4:  Embedded Discrete Fracture Model (EDFM) 

 

Accurate modeling and simulation of naturally fractured reservoirs is still 

challenging owing to permeability anisotropies and contrasts. Non-physical abstractions 

inherent in conventional dual porosity and dual permeability models make them 

inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent 

technologies for discrete fracture modeling may suffer from large computational times 

and the industry has not used such approaches widely, even though they give more 

accurate representations of fractured reservoirs than dual continuum models.  

In this chapter, we describe a methodology for modeling vertical and slanted 

fractures using an embedded discrete fracture model (EDFM), which is developed for the 

EOS compositional module of GPAS. In contrast to dual continuum models, fractures 

have arbitrary orientations and can be oblique or vertical, honoring the complexity of a 

typical naturally fractured reservoir.  Furthermore, unlike other discrete fracture models, 

the EDFM approach uses a structured grid for the simulation of complex fracture 

networks. This approach is based on non-neighboring connections that will be explained 

in this chapter. The implementation of EDFM includes two parts: 

 Pre-processing of a fracture network with any geometry over an arbitrary grid 

to provide the required data for reservoir simulation. 

 Implementation of non-neighboring connections, transmissibility modifiers, 

and other necessary changes into the reservoir simulator, which is GPAS in 

this research. 
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4.1   OVERVIEW OF EDFM 

As described in Chapter 2, discrete fracture models (DFMs) are a new class of 

models for simulating fluid flow in NFRs and provide more realistic representation of 

NFRs than conventional dual porosity and dual permeability models. However, to the 

best of our knowledge, DFMs have not been widely used in the industry for field-scale 

reservoir simulation studies. In general, when using DFMs, a large number of small cells 

must be used near the fractures, which may result in increased computational times. Also, 

most DFMs require generating an unstructured grid to conform to the complexity of the 

fractures presented in the domain of interest. Generation of such grid for an arbitrary 

fracture network can be a substantial challenge and creates more complexity for real field 

simulations. 

Considering the possible disadvantages of DFMs, Li and Lee (2008) proposed a 

discrete fracture model for simulating flow in NFRs, called the embedded discrete 

fracture model (EDFM). The model uses a structured grid to represent the matrix, and 

introduces additional fracture control volumes by computing the intersection of fractures 

with the matrix grid. Therefore, challenges associated with unstructured gridding are 

bypassed entirely.  Moreover, this approach can be easily incorporated in existing finite 

difference reservoir simulators.  

Li and Lee (2008) extended the approach described by Lee et al. (2000, 2001), 

who modeled large-scale fractures explicitly as a two-dimensional plane crossing 

multiple cells and presented a systematic way to calculate transport parameters between 

fractures and the discretized homogenized matrix medium. Lee et al. (2000, 2001) 

formulated the fluid transport between a matrix cell and a segment of a fracture 

embedded in that cell as 
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௠௙ݍ = ܶ௠௙	൫߰௠ − ߰௙൯		,																																																																																															(4.1) 

where ݍ௠௙ is the volumetric rate between the matrix gridblock and the fracture segment, ܶ௠௙ is the transmissibility between them, ߰௠ is the matrix gridblock potential, and ߰௙  is 

the fracture potential. They applied the similar concept of wellbore productivity index 

introduced by Peaceman (1978, 1983) and Lee and Milliken (1993) to derive the 

transport index between matrix and fractures in a grid cell.  In doing so, they formulated 

fluid flow as a well-like equation inside the fracture and a source/sink term between 

fracture and matrix. The source/sink term allows for coupling multiphase flow equations 

in fractures and matrix. The pressure is assumed to vary linearly in the normal direction 

to each fracture. Furthermore, flow in the fracture blocks is governed by Darcy’s 

equation, the same as flow in the matrix medium. For simplicity of geometric design, Lee 

et al. (2000, 2001) and Li and Lee (2008) implemented the EDFM approach only for 

vertical fractures. That is, fractures are approximated by vertical planar rectangles, but 

have arbitrary orientations in the horizontal plane.  

In the studies conducted by Lee et al. (2001) and Li and Lee (2008), the EDFM 

approach models long fractures in a hierarchical fracture modeling framework. Most 

NFRs comprise numerous small-scale fractures (micro-fractures) and sporadic large-scale 

fractures (macro-fractures).  Micro-fractures are typically shorter than computational grid 

dimensions while macro-fractures are field-scale features extending through multiple 

gridblocks.  Considered from the standpoint of flow behavior, macro-fractures have a 

first order effect on fluid flow whereas micro-fractures are less important. In the 

hierarchical fracture modeling framework, micro-fractures are homogenized by changing 

effective properties of matrix gridblocks and large-scale fractures are explicitly modeled 

by a discrete fracture model (Clemo and Smith, 1997; Lee et al., 2001). In order to 
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homogenize small-scale fractures, Oda (1985) derived a simple analytical expression for 

enhanced matrix permeability for gridblocks that contain very short fractures. Likewise, 

Lough et al. (1997, 1998) developed a boundary element method (with uniform pressure 

and periodic boundary conditions) to calculate effective conductivity for gridblocks 

containing multiple fractures.  

We have implemented the EDFM approach presented by Li and Lee (2008) in 

GPAS. More importantly, we have extended this method for modeling inclined fractures. 

The developed model allows for multiple sets of fractures with any dip and strike angle. 

Field characterization studies have shown that the occurrence of obliquely dipping 

fractures is quite common in naturally fractured reservoirs (Walsh and Watterson, 1988; 

Angerer et al., 2002; Grechka and Tsuankin, 2004). In the next sections, we describe the 

methodology used for implementing the EDFM approach in GPAS.  

  

4.2   METHODOLOGY 

The EDFM approach borrows the dual-medium concept from conventional dual 

continuum models, but also incorporates the effect of each fracture explicitly. In this 

approach, computational fracture control volumes are not present in the vicinity of matrix 

gridblocks, but are defined in a separate computational domain. In general, the same 

gridblock sizes are used for both matrix and fracture domains; however, there is no 

constraint for both gridblock sizes to be the same in this approach. In order to define 

fracture control volumes in the fracture domain, the intersection of all fractures with the 

matrix grid should be computed first. 
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4.2.1   Fracture Discretization 

Vertical and inclined fractures are discretized vertically and horizontally by the 

cell boundaries of the matrix grid. The intersection of a vertical fracture and a matrix 

gridblock is always a rectangle, as shown in Figure 4.1. However, when an arbitrarily-

oriented fracture plane passes through a gridblock, regular intersections are polygons 

with 3, 4, 5, or 6 corners.  Figure 4.2 shows possible intersections of an inclined fracture 

plane and a matrix gridblock, which can be a triangle, quadrilateral, pentagon, or 

hexagon. An exact specification of these intersections is important for calculating the 

connection between matrix and fracture. 

 

 

Figure 4.1: Intersection of a vertical fracture plane and a matrix gridblock, which is 

always a rectangle.  
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Figure 4.2: Possible intersections of an inclined fracture plane and a matrix gridblock, 

which can be a triangle, quadrilateral, pentagon, or hexagon.  
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A fracture cell should be defined in the fracture domain corresponding to each 

gridblock containing a segment of a fracture plane.  Figure 4.3 shows a simple two-layer 

model comprising two tilted fractures, inclined 60 and 75 degrees from the horizontal 

plane. Both fractures penetrate the entire height of the reservoir. The structured grid for 

the matrix is 10×10×2 cells in the x, y, and z directions, respectively, with cell 

dimensions of 20×20×20 feet in all directions.   

 

 

 
 

Figure 4.3: Geometrical representation of a fractured model (200 ft × 200 ft × 40 ft) 

used to illustrate the methodology applied in EDFM. The model comprises 

two tilted fractures, black and red fractures, which are inclined 60 and 75 

degrees from the horizontal plane, respectively. The matrix grid is 10×10×2 

cells in the x, y, and z directions, respectively, with cell dimensions of 

20×20×20 ft in all directions. 
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Figure 4.4 specifies all gridblocks containing a segment of a fracture for both 

layers. Cells containing a segment of the black fracture are marked with black circles and 

those containing a segment of the red fracture are marked with red squares.  In contrast to 

vertical fractures that cross similar gridblocks in different computational layers, inclined 

fractures may cross a different number of gridblocks in each layer, as shown in Figure 

4.4.  For the example under consideration, the black fracture penetrates 14 cells in the top 

computational layer while penetrating only 9 cells in the bottom one.  Unlike the black 

fracture, the red fracture crosses more gridblocks in the bottom computational layer than 

in the top one.  

 

  

(a)        (b) 

Figure 4.4: Specification of gridblocks containing a segment of a fracture for (a) layer 1, 

and (b) layer 2 in the z direction of the model shown in Figure 4.3. Cells 

containing a segment of the black fracture are marked with black circles and 

those containing a segment of the red fracture are marked with red squares.    
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Figure 4.5 illustrates the arrangement of fracture cells in the fracture domain for 

the model shown in Figure 4.3. Fracture cells are marked and numbered in Figure 4.5, 

which correspond to those in Figure 4.4. A large number of unmarked cells in the fracture 

domain are treated as dead blocks in flow simulations to avoid increased computational 

time. The blue and green dashed lines in Figure 4.5 are described in a subsequent section.  

A gridblock may contain more than one fracture segment, all of which should be 

considered separately in the fracture domain. For instance, the gridblock (5,5) in the top 

layer contains segments of both fractures and thus, two fracture control volumes are 

correspondingly defined in gridblocks (5,2) and (6,3) of the top layer of fracture domain. 

  

   

(a)        (b) 

Figure 4.5: Arrangement of fracture cells in the fracture domain for (a) layer 1, and (b) 

layer 2 of the model shown in Figure 4.3. Fracture cells are marked and 

numbered in this figure, which correspond to those in Figure 4.4. The blue 

dashed lines represent non-neighboring connections (NNC) for the 

intersection of two fractures. Also, the green dashed line represents only one 

example of NNC between two cells of an individual fracture.    
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4.2.2   Non-Neighboring Connection (NNC) 

Because the fractures and the matrix are modeled on different computational 

domains, there is no fluid communication between them in the mass balance equations. 

Consequently, we define non-neighboring connections (NNC) for EDFM. That is, each 

gridblock in the numerical model can communicate with any other gridblock through a 

non-neighboring connection. The concept of NNC has been used in previous reservoir 

simulation studies, such as Fung and Dogru (2008).  Also, Karimi-Fard et al. (2004) and 

Hui and Mallison (2009) used NNCs in their DFM approaches. Three types of NNCs are 

required in our fracture modeling: 

 Non-neighboring connection between a fracture cell and its neighboring matrix 

gridblock. Matrix-fracture NNCs are marked and numbered correspondingly in 

Figures 4.4 and 4.5 as previously mentioned.  

 Non-neighboring connection between two intersecting fractures. As shown in 

Figure 4.4, six gridblocks in the model contain segments of both fractures, but the 

intersection line of two fractures is located in four gridblocks. Thus, 

corresponding fracture cells should communicate with each other through a non-

neighboring connection. This type of NNC is depicted in Figure 4.5 using blue 

dashed lines. 

 Non-neighboring connection between two cells of an individual fracture if 

needed. This type of non-neighboring connection is a result of our fracture 

arrangement. For instance, fracture segments located in gridblocks (3,4) and (3,5) 

of Figure 4.4a should communicate with each other but they are not 

computational neighbors in the fracture domain; thereby, a non-neighboring 

connection is needed between them. The green dashed line in Figure 4.5a 

represents such a NNC. 
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For the purpose of illustration, we consider a fracture cell marked with a black 

circle, numbered 7 in Figure 4.5a. This fracture cell, which is embedded in the 

corresponding matrix cell in Figure 4.4a, entails all three types of NNCs as shown in 

Figure 4.6. 

 
 

  

(a)                           (b)               (c) 

Figure 4.6: Three types of non-neighboring connections are required in the 

computational domain. (a) When a fracture segment is embedded in a 

gridblock, there is a NNC between the fracture control volume and the 

matrix cell. (b) When two fracture planes intersect in a gridblock, there is a 

NNC between corresponding fracture control volumes. The black solid line 

shows the intersection line bounded in the gridblock. In a later section, this 

length will be used to calculate the transmissibility between two intersecting 

fractures. (c) When two fracture segments embedded in neighboring cells 

are not neighbors in the computational domain, there is a NNC between 

corresponding fracture control volumes. The black solid line is the 

intersection line of the fracture plane and the common face of two 

neighboring gridblocks. 
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4.2.3   NNC Formulation  

Owing to the necessity of using NNCs for the EDFM approach, NNCs are added 

to GPAS in the component mass balance equation (Eq. 3.1) as follows: 

௕ܸ ݐ߲߲ (߶ ௜ܰ) − 	 ௕ܸ∇ ∙ ෍ ݇	ന 	݇௥௝ߤ௝
ே೛

௝ୀଵ ൫∇ሬሬ⃗	௜௝ݔ	௝ߝ	 ௝ܲ	 − 	 ௝∇ሬሬ⃗ߛ ൯ܦ −	 ௜ݍ + ௜௡௡௖ݍ	 = 0		,									(4.2) 

where ݍ௜௡௡௖ is the molar rate of component i exchanged through NNCs. This term is 

mathematically similar to the convection term and is given by 

௜௡௡௖ݍ = 	 ෍ ௠௡௡௖ܣ 	෍ ݇௠௡௡௖ 	݇௥௝ߤ௝
௡೛

௝ୀଵ
ே೙೙೎
௠ୀଵ ௜௝ݔ	௝ߝ	 	൥൫ ௝ܲ − ൯ܦ௝ߛ − 	 ൫ ௝ܲ − ൯௠௡௡௖݀௠௡௡௖ܦ௝ߛ ൩ 		,										(4.3) 

where Nnnc is the number of non-neighboring connections for a gridblock and (Pj – ߛ௝D)
nnc

 represents the flow potential at the non-neighboring cell. For the fracture control 

volumes in the fracture domain Nnnc is always greater than or equal to one, since each 

fracture cell has at least one non-neighboring connection with the matrix gridblock in 

which the fracture segment is embedded. Likewise, in the matrix domain, Nnnc is simply 

equal to the number of fractures passing through a matrix gridblock. Hence, Nnnc is zero 

for a matrix cell that does not contain any segment of a fracture.   

The parameters A
nnc

, k
nnc

, and d
nnc

 in Equation 4.2 are the area, permeability, and 

distance, respectively, used to determine the transmissibility factor between a NNC pair. 

More precisely, A
nnc

, k
nnc

, and d
nnc

 are the area open to flow, the harmonic average of 

permeability, and the characteristic distance, respectively, between two control volumes 

associated with a NNC. For the mobility term in Equation 4.2, the classical single-point 

upstream weighting is used. 
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The transmissibility factor (A
nnc

 × k
nnc

) / d
nnc

 for the three types of NNCs 

previously described must be calculated and saved for each NNC. The next sections 

describe how the transmissibilities are calculated.  

 

 4.2.3.1   NNC Type I 

For a NNC between matrix and fracture cells (Figure 4.6a), A
nnc

 is the fracture 

surface area in the gridblock. Fluid transfer between the fracture and matrix gridblock 

takes place through this surface and an exact specification of the fracture-gridblock 

intersection is necessary to accurately calculate the area of this surface. The parameter 

k
nnc

 is taken as the harmonic average of the matrix and fracture permeabilities. Therefore, 

k
nnc

 is close to the matrix permeability in most cases where fracture permeability is 

significantly greater than matrix permeability.  

To calculate d
nnc

, Li and Lee (2008) and Hajibeygi et al. (2011) assumed that the 

pressure varies linearly in the normal direction to each fracture in a gridblock and 

proposed the following equation for computing the average normal distance (<d>): 

	< ݀ > 	= 	 ݀௡௡௖ = 	 ∫ ௏ݒ௡݀ݔ ܸ 			,																																																																																				(4.4) 

where ݀ݔ ,ݒ௡, and ܸ are the volume element, the normal distance of the element from the 

fracture, and volume of a gridblock, respectively. We calculate this integral numerically 

in a pre-processing code. Analytical expressions, however, exist for simple cases. 

Analytical expressions for some simple 2D scenarios are presenetd in Figure 4.7.  Figure 

4.8 also shows examples of more complex 3D scenarios calculated numerically using our 

pre-processing code. 
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Figure 4.7: Analytical expressions of average normal distance between a matrix 

gridblock and an embedded fracture for some simple 2D scenarios (from 

Hajibeygi et al., 2011) 

 

       
(a) <d> = 4.70      (b)  <d> = 7.55 

Figure 4.8: Examples of average normal distance between a matrix cell and its 

embedded fracture for complex 3D scenarios. (a) Normal vector of the 

fracture plane is (-0.5,0.5,√2/2) and the fracture plane passes through the 

point (10,10,10). (b) Normal vector of the fracture plane is (0.5,0.8,-0.3317) 

and fracture plane passes through the point (7,1,10).    
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4.2.3.2   NNC Type II 

For a NNC between two intersecting fracture segments, we use the same approach 

presented by Karimi-Fard et al. (2004), wherein the transmissibility is calculated by ݇௡௡௖ ௡௡௖݀௡௡௖ܣ	 = 	 ଵܶ		 ଶܶ	ଵܶ	 + 	 ଶܶ	 			,																																																																																														(4.5) 

ଵܶ = 	 ݇௙ଵ	 ௙߱ଵ	ܮ௜௡௧݀௙ଵ 		,				 ଶܶ = 	 ݇௙ଶ	 ௙߱ଶ	ܮ௜௡௧݀௙ଶ 			,																																																													(4.6) 

where ܮ௜௡௧ is the length of the intersection line bounded in a gridblock (black solid line in 

Figure 4.6b). Also, ௙߱  and ݇௙ are fracture aperture and fracture permeability, 

respectively. Likewise, ݀௙ is the average of normal distances from the center of the 

fracture subsegments (located in each side of the intersection line) to the intersection line.  

Such a NNC is required for any pair of intersecting fractures. Thus, if more than 

two fractures intersect in a gridblock, a NNC is defined between each pair of intersecting 

fracture control volumes. Also, if two fractures penetrating a gridblock do not intersect 

with each other within the gridblock, no NNC is needed. 

 

4.2.3.3   NNC Type III 

For a NNC between two cells of an individual fracture, k
nnc

 is equal to the fracture 

permeability and d
nnc

 is the distance between the centers of two fracture segments. The 

black solid line in Figure 4.6c represents the intersection line of the fracture plane and the 

common face of two neighboring gridblocks.  Parameter A
nnc

 is the fracture aperture 

times the length of this intersection line.  
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4.2.4   Transmissibility of Neighboring Fracture Control Volumes 

As described in Chapter 3, the IPARS framework calculates the constant part of 

transmissibility between adjacent cells in all directions based on the geometry and the 

permeability of gridblocks. In implementing the EDFM approach, the fracture control 

volumes defined in the fracture domain do not represent the realistic location and 

geometry of fractures. Hence, the transmissibility between adjacent fracture control 

volumes should be computed in a pre-processing code rather than in the IPARS 

framework.    

For illustration, consider the fracture cell marked with a black circle and 

numbered 1 in Figure 4.5a. This fracture cell should communicate with the fracture cell 

numbered 2 since the corresponding fracture segments are connected in the actual 

reservoir model (see Figure 4.4a). Such a communication is maintained through a proper 

transmissibility factor in the x direction in the fracture domain. However, the fracture cell 

numbered 1 should not communicate with the one numbered 11 although they are 

adjacent in the fracture domain, because the corresponding fracture segments are not 

directly connected in the actual model (see Figure 4.4a). Hence, the transmissibility in the 

y direction (between these two fracture cells) should be set to zero.   

We need to properly calculate all the transmissibility factors in the x, y, and z 

directions for fracture control volumes in a pre-processing code. These factors are then 

used in the reservoir simulator over the course of simulation. We use the same approach 

described for the NNC type III to compute the transmissibility between fracture cells 

( ௙ܶ), which is given by 

௙ܶ =
݇௙	 ௙߱	ܮ௙݀௙ 					,																																																																																																												(4.7) 
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where ݇௙ and ௙߱  are the fracture permeability and fracture aperture, respectively.  

Likewise, ݀௙ is the distance between the centers of two fracture segments, and ܮ௙ is the 

length of the intersection line of the fracture plane and the common face of two 

neighboring gridblocks. 

 

4.2.5   Well and Fracture Intersection 

An accurate well model is required to relate the well rate to the well pressure and 

the pressure of fracture intersecting the well.  This intersection has the most significant 

influence on well productivity.  Peaceman (1983) established a mathematical model 

between the well block pressure and the wellbore pressure for a vertical well. The 

Peaceman’s well index (WI) for a vertical well, which is used in most reservoir 

simulators, is given by 

ܫܹ = 	 ݇ℎ݈݊ ቀݎ଴ݎ௪ቁ 				,																																																																																																												(4.8) 

଴ݎ = 0.28	 ට൫݇௬/ 	݇௫൯଴.ହ	∆ݔଶ + 	 ൫݇௫/ 	݇௬൯଴.ହ	∆ݕଶ൫݇௬/ 	݇௫൯଴.ଶହ
+ 	 ൫݇௫/ 	݇௬൯଴.ଶହ 			,																																															(4.9) 

where ݇௫ and ݇௬ are the permeability in the x and y directions, respectively, and Δx and 

Δy are the horizontal dimensions of the well block. Also, k, h, and ݎ௪ are the well block 

permeability, the well block height (identical to the length of well in the gridblock), and 

the wellbore radius, respectively.   

In EDFM, depending on well-fracture geometric configuration, we adapt the 

Peaceman’s well model to derive a relationship for the well-fracture intersection. For 

instance, when a transverse hydraulic fracture intersects a horizontal well in a gridblock, 
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the well index of a fracture, that relates the wellbore pressure to the pressure of the 

corresponding fracture control volume, is approximated by (assuming isotropic fracture 

permeability) 

௙ܫܹ = 	 ݇௙ ௙݈߱݊ ቀݎ଴ݎ௪ቁ 			,																																																																																																									(4.10) 

଴ݎ = 0.14ටܮ௙ଶ
+ ℎ௙ଶ		, 																																																																																														(4.11) 

where ݇௙ is the fracture permeability, ௙߱  is the fracture aperture (equal to the length of 

the well intercepted by a transverse fracture), ܮ௙ is the fracture length bounded in the 

gridblock, and ℎ௙ is the fracture height in the same block.  

 

4.3   PRE-PROCESSING CODE 

We have developed a pre-processing code to provide the required data for fluid-

flow simulations in GPAS. The input of the pre-processing code is the description of the 

model reservoir including the reservoir dimensions, fracture network, location of wells, 

structured grid for the matrix domain, aperture and permeability of fractures, and porosity 

and permeability of matrix. The following calculations are carried out in the pre-

processing code: 

 Check the intersection of each fracture plane with all matrix gridblocks and 

determine the exact specification of intersections.  

 Check if any two fracture planes intersect and identify the gridblocks in which the 

intersection lies.  

 Determine the arrangement of fracture control volumes in the fracture domain. 

Corresponding to each gridblock containing a segment of a fracture, a fracture 
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control volume should be defined in the fracture domain. Figure 4.5 presented an 

example of fracture arrangement for a simple 3D model reservoir. Furthermore, 

arrangement of fracture cells leads to the identification of dead blocks. 

 Calculate the porosity of fracture control volumes in the fracture domain. The 

porosity of each fracture control volume is the volume of the corresponding 

fracture segment bounded in a gridblock divided by the bulk volume of the 

gridblock. Moreover, the permeability of a fracture control volume is equal to the 

permeability of the corresponding fracture segment. 

 Calculate the depth associated with each fracture control volume.  Depth of each 

fracture cell is equal to the depth of fracture segment midpoint. Implementing the 

depth of fracture control volumes in the mass balance equation (Equations 4.2 and 

4.3) will take into account the effect of gravity within vertical and non-vertical 

fractures. 

 Calculate the number of NNCs for each computational gridblock either in the 

matrix domain or in the fracture domain.  

 Prepare a list of NNC pairs.  This list includes all three types of NNCs used in the 

EDFM approach. 

 Calculate the transmissibility between each NNC pair using the methods 

presented earlier. 

 Calculate the transmissibility factors in the x, y, and z directions for the fracture 

control volumes in the fracture domain.  

 Identify fracture segments intersected by a well and calculate the well index of the 

corresponding fracture control volumes. 
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The entire model, including the matrix grid and fracture control volumes, is 

entered into a reservoir simulator, which allows for non-neighboring connections and 

transmissibility modifiers. The governing equations for fracture control volumes are 

similar to those described for the matrix medium, implying that Darcy’s law is used in the 

fracture domain. 

In order to implement the EDFM approach in GPAS, we have added the NNC 

term to the mass balance equations, as previously described in Equations 4.2 and 4.3. In 

doing so, the residual vector and the Jacobian matrix (see Chapter 3) are augmented with 

additional terms associated with NNCs. Other modifications to GPAS have also been 

implemented to properly include the parameters calculated in the pre-processing code. 

These parameters include porosity, permeability, and depth of fracture control volumes, 

transmissibility factors between NNCs, transmissibility factors between adjacent fracture 

cells, and well indices for the fractures intercepted by a well. Also, we have made 

necessary changes to bypass all calculations carried out for the dead blocks in the fracture 

domain. 

The addition of the NNC term to the mass balance equations affects the sparsity 

and location of zeros in the Jacobian matrix and reduces the sparseness of the linear 

system that must be solved. The EDFM approach may require excessive NNCs and 

consequently may affect the performance of the linear solvers used in the simulator.  

However, in several case studies presented in the forthcoming chapters, the performance 

of the linear solver, PETSc package (Balay et al., 1998), was not significantly diminished 

by adding excessive NNCs. 
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4.3.1   Example Calculation 

This section presents an example calculation including parameters calculated in 

the pre-processing code. For illustration purposes, the example is a 2D reservoir 

containing 14 vertical fractures as shown in Figure 4.9a. Simulations performed for this 

model will be presented in Chapter 6. Reservoir dimensions are 500×500×20 ft and Table 

4.1 describes the location of fractures using two endpoints, (X1, Y1) and (X2, Y2). The 

matrix grid is 20×20×1, where the sizes of each gridblock in the x, y, and z directions are 

25, 25, and 20 ft, respectively. The aperture and permeability of all fractures are 0.025 ft 

and 7×10
5
 md, respectively. Also, porosity and permeability of the matrix are 0.1 and 20 

md.  

Figure 4.9b shows the arrangement of fracture control volumes in the fracture 

domain, which are marked with the same color as their corresponding fracture in Figure 

4.9a. In our implementation we do not place the fracture control volumes in the first and 

last rows in y direction. This is because of the future implementation of EDFM for 

parallel processing, wherein the reservoir domain is divided in the y direction into several 

subdomains and the ghost layers maintain communication between processors (see 

Chapter 3). Also, blue dashed lines in Figure 4.9b show the NNCs associated with 

intersection of fractures (NNC type II).  

Table 4.2 presents only a portion of the calculated data in the pre-processing code 

for the model reservoir shown in Figure 4.9a. That is, only the relevant data associated 

with the first three fractures (as defined in Table 4.1 or depicted in Figure 4.9b) are 

presented in Table 4.2. The first column in this table counts the cell number of fracture 

control volumes in the fracture domain. This column starts with 21 owing to the absence 

of fracture cells in the first row. The cells are numbered sequentially, first in the x 

direction and then in the y direction. The second column of Table 4.2 presents the 
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porosity assigned to each fracture control volume. The third column shows the cell 

number of matrix gridblocks that are connected to the fracture cells through NNCs type I. 

The fourth column presents the transmissibility of NNCs between corresponding matrix 

and fracture cells. When a fracture does not fully penetrate a gridblock, we first calculate 

the transmissibility assuming that the fracture fully penetrates the gridblock. Then, we 

correct the transmissibility for the partially-penetrating fracture (transmissibility is 

proportional to the fracture area bounded in the gridblock). The fifth column in Table 4.2 

shows the computed transmissibility factors between adjacent fracture cells in the x 

direction. Furthermore, Table 4.3 presents the NNCs type II and type III for the reservoir 

shown in Figure 4.9. Both ends of NNCs type II and type III are located in the fracture 

domain. Table 4.3 includes the cell number of NNC pairs in conjunction with the 

transmissibility assigned to them.  

 

 

 

 

 

 

 

 

 

Table 4.1: Fracture endpoints for the model reservoir shown in Figure 4.9a. 

Fracture X1 (ft) Y1 (ft) X2 (ft) Y2 (ft) 

1 117.5 37.5 285 210 

2 396 251.5 206 336.5 

3 352.5 241 445 434 

4 297 83 128.5 246 

5 201.5 461.5 366.5 387 

6 297 351 401 454.5 

7 127 203.5 243.5 476.5 

8 211.5 101.5 436 211.5 

9 451.5 34 329.5 213.5 

10 44.5 411.5 181.5 285.5 

11 360.5 29.5 460.5 93.5 

12 42 120.5 87.5 231 

13 42 312 94.5 438.5 

14 36.5 37.5 160 70 
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(a) 

 
(b) 

Figure 4.9: (a) A synthetic 2D model containing 14 fractures. (b) Arrangement of 

fracture control volumes in the fracture domain, which are marked with the 

same color as their corresponding fracture in Figure 4.9a. Also, blue dashed 

lines show the NNCs associated with intersection of fractures (NNC type 

II). 
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Table 4.2: A portion of the calculated data for the fractures in Figure 4.9.  

Fracture 

cell no.  

Fracture 

porosity 

Matrix cell no. 

(NNC type 1) 

NNC 

Transmissibility  

x-transmissibility 

between  Gf  and Gf-1 

Gf ϕ f Gm Tnnc (md.ft) Tx (md.ft) 

21 0.000431 25 655.34 ----- 

22 0.000266 26 185.08 40175.96 

23 0.001169 46 1828.53 19505.72 

24 0.000225 47 150.87 20087.98 

25 0.001211 67 1939.69 19505.72 

26 0.000183 68 118.87 20087.98 

27 0.001252 88 2047.59 19505.72 

28 0.000141 89 88.89 20087.98 

29 0.001294 109 2150.29 19505.72 

30 0.000100 110 60.78 20087.98 

31 0.001336 130 2245.81 19505.72 

32 0.000058 131 34.37 20087.98 

33 0.001377 151 2332.16 19505.72 

34 0.000017 152 9.53 20087.98 

35 0.000558 172 946.07 48764.30 

36 0.000920 216 1153.58 0 

37 0.001095 215 1643.41 13890.71 

38 0.000286 214 206.20 20265.93 

39 0.000809 234 844.34 25558.91 

40 0.001095 233 1780.51 14698.97 

41 0.000544 232 467.56 ----- 

42 0.000552 252 476.83 25558.91 

43 0.001095 251 1782.71 16999.28 

44 0.000802 250 831.53 14758.88 

45 0.000294 270 212.85 25558.91 

46 0.000833 269 1253.27 24857.06 

47 0.000399 195 368.01 0 

48 0.001109 215 1826.59 18566.02 

49 0.000574 235 507.32 16635.36 

50 0.000535 236 458.62 25249.79 

51 0.001109 256 1821.79 17035.78 

52 0.000670 276 636.66 15738.58 

53 0.000439 277 350.84 25249.79 

54 0.001109 297 1794.25 18091.44 

55 0.000766 317 783.32 14933.54 

56 0.000343 318 256.16 25249.79 

57 0.001109 338 1748.11 19286.58 

58 0.000399 358 439.64 18566.02 
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Table 4.3: NNCs type II and type III for the reservoir shown in Figure 4.9. The cell 

number of NNC pairs and the transmissibility assigned to them are 

presented in this table. 

  

NNC end 1  NNC end 2 NNC type NNC Transmissibility  

Gf1 Gf2 ---- Tnnc (md.ft) 

40 41 III 17079.46 

60 61 III 19467.82 

80 81 III 25048.60 

100 101 III 25753.11 

120 121 III 26782.55 

140 141 III 20609.07 

160 161 III 21321.99 

23 175 II 25417.21 

31 64 II 37632.75 

37 48 II 25403.41 

61 110 II 34709.91 

71 93 II 24520.68 

73 85 II 32222.45 

79 105 II 32116.61 

96 136 II 35202.38 

116 131 II 32526.68 

124 151 II 39297.52 

144 166 II 33073.55 
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4.4   HIGHLIGHTS OF THE CHAPTER 

 An embedded discrete fracture model (EDFM) is developed for our in-house 

fully-implicit compositional reservoir simulator (GPAS).  

 The work performed in this study is an extension of an algorithm developed 

by Li and Lee (2008). The extended algorithm includes slanted fractures of 

any orientation, honoring the complexity and heterogeneity of a typical 

fractured reservoir. 

 EDFM borrows the dual medium concept from dual continuum models, but 

also incorporates the effect of each fracture explicitly. 

 EDFM employs a structured grid to surmount challenges associated with 

unstructured gridding.  

 EDFM is based on non-neighboring connections (NNC). Three types of NNCs 

are required for modeling vertical and slanted fractures. It is necessary to 

properly calculate the transmissibility between NNCs and the transmissibility 

between fracture cells.  

 The EDFM approach is compatible with reservoir simulators that allow for 

NNCs and transmissibility modifiers (such as commercial reservoir 

simulators). 

 The NNC term is added to the mass balance equations in the EOS 

compositional module of GPAS. 
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Chapter 5:  Verification of Embedded Discrete Fracture Model 

 

In this chapter, we present simulation examples to verify the accuracy of the 

EDFM approach. First, we compare the results of our method with analytical solutions 

for multiply-fractured horizontal wells in bounded rectangular reservoirs. Then, the 

accuracy of the EDFM approach is confirmed by comparing the results with the fine-grid, 

explicit-fracture simulations for case studies including isolated fractures, intersected 

orthogonal fractures, and a non-orthogonal fracture, respectively. The analytical solutions 

are presented and compared with EDFM for primary production, while the fine-grid 

simulations are presented to confirm the accuracy of the EDFM approach for two-phase 

water flooding and three-phase compositional gas injection. We also perform a grid 

sensitivity study for the case study with a non-orthogonal fracture to show that EDFM 

can achieve accurate results using moderate grid refinement. Furthermore, we present the 

computational performance of EDFM simulations indicating that the developed approach 

is computationally efficient.  

 

5.1   COMPARISON TO ANALYTICAL SOLUTIONS 

This section compares the predictions of the EDFM approach with analytical 

solutions for multiply-fractured horizontal wells in bounded rectangular reservoirs. We 

tested EDFM for two production schemes, constant-pressure production and constant-rate 

production. Figures 5.1a and 5.2a show the geometrical configuration of reservoirs, 

horizontal wells, and fractures for the production scenarios mentioned above, 

respectively. In both cases, the horizontal well is parallel to the longer side of the 
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drainage region and the center of the well coincides with that of the drainage region.  

Likewise, three equally-spaced transverse fractures in each case are parallel to the shorter 

side and penetrate the formation completely. We consider flow of a slightly-compressible 

liquid in a homogenous porous medium. Analytical solutions are from Chen and 

Raghavan (1997) presented in dimensionless forms. The dimensionless bottom-hole 

pressure ( ௪ܲ஽), dimensionless rate (ݍ஽), and dimensionless time (ݐ஽) are 

௪ܲ஽(ݐ஽) = 	 ݇௠ℎ
	ܤߤݍ	141.2 [ ௜ܲ − ௪ܲ(ݐ) ] 		,																																																																							(5.1) 

(஽ݐ)஽ݍ = 	 )௠ℎ݇ܤߤ	141.2 ௜ܲ − ௪ܲ)
(ݐ)ݍ	 		,																																																																																		(5.2) 

஽ݐ = 	 0.0002637	݇௠߶ܿܮߤଶ  (5.3)																																																																																																	,		ݐ	

where Pi, Pw, q, t, ݇௠, h, µ, B, and ɸ are initial reservoir pressure [psi], bottom-hole 

pressure [psi], production rate [STB/day], time [hr], matrix permeability [md], formation 

thickness [ft], viscosity [cp], formation volume factor [RB/STB], and porosity, 

respectively. The fracture length is denoted by ݔ௙ and the distance between the two 

outermost fractures is denoted by d. The reference length (L) in Equation 5.3 is equal to 

fracture half-length for a single-fracture system and equal to d/ 2 for a multiple-fracture 

system. Moreover, the dimensionless fracture conductivity (ܥி஽) is defined as 

ி஽ܥ = 	 ݇௙	 ௙߱݇௠ ௙ݔ	 			,																																																																																																															(5.4) 

where ݇௙ and ௙߱  are the fracture permeability and fracture aperture. In both scenarios 

under consideration, the properties of all fractures are identical and chosen so that the 

dimensionless fracture conductivity is equal to one. Also, the ratio of the horizontal-well 

length to the length of each fracture is 10. For the EDFM simulations, the fracture 
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aperture, fracture permeability, formation permeability, fracture length, and horizontal-

well length are 0.03 ft, 10000 md, 0.3 md, 200 ft, and 2000 ft, respectively. Since the 

solutions are in dimensionless form, there is no additional constraint on other properties 

used in the simulations.  

Figures 5.1b and 5.2b compare the predictions of the EDFM approach with the 

analytical solutions. The log-log plot of dimensionless production rate versus 

dimensionless time in Figure 5.1b and the log-log plot of dimensionless wellbore 

pressure derivative versus dimensionless time in Figure 5.2b indicate that the EDFM 

simulations are in very good agreement with the analytical solutions.  

For the EDFM simulation in the first scenario, we used an 11×45×1 matrix grid.  

The computational time of EDFM simulation was 6 seconds. Likewise, for the second 

scenario we used a 31×55×1 matrix grid and the EDFM simulation took 65 seconds. The 

descriptions of matrix grid for both cases are given in Table 5.1. All simulations for this 

study were performed using Petros cluster, which is owned by the Center for Petroleum 

and Geosystems Engineering (CPGE) at The University of Texas at Austin. This 64-bit 

Linux cluster has 32 compute nodes where each node has 16 GB memory and 4 CPUs 

with the frequency of 2.73 GHz. 

 

Table 5.1: Grid description for the EDFM simulations performed for the models shown 

in Figures 5.1a and 5.2a. 

Production 

Scenario 
Grid Description 

Constant-pressure 

production 

∆x, ft 4×100, 80,40,80, 4×100 

∆y, ft 4×100, 2*(50,30,16,8,16,50,30, 8×100), 50,30,16,8,16,50,30, 4×100 

Constant-rate 

production 

∆x, ft 14×100, 80,40,80, 14×100 

∆y, ft 9×100, 2*(50,30,16,8,16,50,30, 8×100), 50,30,16,8,16,50,30, 9×100 
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(a) 

 
(b) 

Figure 5.1: (a) Geometrical configuration of a reservoir with a multiply-fractured 

horizontal well producing at a constant bottom-hole pressure. (b) 

Comparison of dimensionless rate versus dimensionless time calculated by 

the EDFM simulation and analytical solutions (from Chen and Raghavan, 

1997). 
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(a) 

 
(b) 

Figure 5.2: (a) Geometrical configuration of a reservoir with a multiply-fractured 

horizontal well producing at a constant rate. (b) Comparison of 

dimensionless wellbore pressure derivative versus dimensionless time 

calculated by the EDFM approach and analytical solutions (from Chen and 

Raghavan, 1997).  
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5.2   COMPARISON TO FINE GRID EXPLICIT FRACTURE SIMULATIONS 

In this section, we compare the EDFM approach with fine-grid, explicit-fracture 

models to investigate the accuracy and efficiency of the EDFM approach.  

 

5.2.1   Isolated Fractures  

Figure 5.3 shows a simple two-layer fractured reservoir containing two isolated 

fractures. Both fractures are vertical and aligned with the coordinate axes, thereby 

allowing us to perform standard finite-difference modeling. For the fine-grid simulation, 

the grid is 30×55×2 cells in the x, y, and z directions respectively. The cell dimensions 

are 20×15 ft in x and z, while they are non-uniform in y to accommodate refinement near 

fractures.  For the EDFM simulation, a uniform 30×15×2 matrix grid and 76 fracture 

cells are used. As shown in Figure 5.3, an injector is located in one side of the reservoir, 

injecting water at 250 bbl/day, and a producer is placed in the opposite side. Initial 

reservoir pressure and the constant producer BHP are 5000 psi. Also, matrix and fracture 

capillary pressures are zero. We assume straight-line relative permeability curves (with 

zero residual saturations and endpoints equal to one) for fractures in all simulations of 

this work. However, there is no limitation to use other relative permeability curves for the 

fractures. The only hydrocarbon component in this example is C10H22. Table 5.2 

summarizes petrophysical properties used in both simulations.  

Water saturation and pressure profiles after 100 days of water injection (0.26 PV 

injected) calculated by EDFM and fine-grid explicit-fracture models are presented in 

Figure 5.4, indicating a very good agreement between both models. Furthermore, Figure 

5.5 compares the oil production rate over a year (0.95 PV injected) and confirms the 

accuracy of the EDFM approach. The computational times for the EDFM and fine-grid 

explicit-fracture models were 3.4 and 58.5 minutes, respectively. 
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Figure 5.3: Geometrical representation of a simple 3D fractured reservoir (600 ft × 300 

ft × 30 ft) containing two isolated, discrete fractures. Both fractures are 

vertical and aligned with the coordinate axes. 

 

Table 5.2: Summary of properties assumed in the simulations performed for the model 

reservoir shown in Figure 5.3. 

Variable Value Variable Value 

Matrix porosity 0.1 Residual water saturation 0.2 

Matrix permeability 20 md Residual oil saturation 0.2 

Fracture aperture 0.0164 ft Water rel. perm. endpoint 0.8 

Fracture permeability 10
5
 md Oil rel. perm. endpoint 0.7 

Init. water sat. in matrix/fracture 0.2/0.0001 Water rel. perm. exponent 4.0 

Reservoir temperature 60° F Oil rel. perm. exponent 2.0 

Component :  C10H22 

Molecular weight (lb/lb-mol) 142.3 Critical temperature (°R) 1500.0 

Acentric factor 0.488 Critical pressure (psia) 350.0 

Parachor 431.0 Critical volume (ft
3
/ lb-mol) 10.087 
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Water saturation 

 

     
 

 

Pressure, psi 

        (a)       (b) 

Figure 5.4: Profiles of water saturation and pressure predicted by (a) EDFM, and (b) 

fine-grid explicit-fracture model at 0.26 PV injected. The first and second 

rows show water saturation maps in the first and second computational 

layers, respectively. The third row compares the pressure maps in the 

reservoir. 
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Figure 5.5: Comparison of oil production rate over a year (0.95 PV) of water injection 

for the model reservoir shown in Figure 5.3, calculated by the fine-grid 

explicit-fracture model and EDFM. 
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5.2.2   Intersected Orthogonal Fractures  

Figure 5.6 shows a 2D fractured reservoir containing three intersecting fractures. 

All fractures are vertical and aligned with the coordinate axes, thereby allowing us to 

perform standard finite-difference simulation. For the fine-grid simulation, the grid is 

50×55×1 cells in the x, y, and z directions, respectively. The cell dimensions are non-

uniform in the x and y directions to accommodate refinement around fractures. The 

widths of the fracture gridblocks and their adjacent gridblocks were equal to the fracture 

aperture. Subsequently, the widths of gridblocks are increased by a factor of two, hence 

creating a refined grid around the fractures for up to 20 ft on both sides of each fracture. 

For the EDFM simulation, a uniform 30×15×1 matrix grid and 40 fracture cells are used. 

An injector is located in one corner of the reservoir and a producer is placed in the 

opposite corner.  

This example is a displacement of oil by CO2, wherein the oil contains CO2, CH4, 

and C16H34. As described in Chapter 3, the Peng-Robinson equation-of-state (PR-EOS) is 

employed for the hydrocarbon phase behavior calculations. Table 5.3 describes the 

properties of hydrocarbon components used in these simulations. Also, the binary 

interaction coefficient between CO2 and hydrocarbon components is 0.12.  In this 

example, the initial reservoir-fluid composition is 1% CO2, 39% CH4, and 60% C16H34, 

while the injected-fluid composition is 98% CO2 and 2% CH4.  The injection rate is 200 

Mscf/day and both initial reservoir pressure and constant producer BHP are 1000 psi. 

Table 5.4 summarizes petrophysical properties used in the simulations. Matrix and 

fracture capillary pressures are assumed zero in the validation case studies.   

The profiles of reservoir pressure, gas saturation, and CO2 mole fraction in the 

oleic and gaseous phases after 130 days of gas injection calculated by EDFM and fine-

grid explicit-fracture model are presented in Figures 5.7, 5.8, and 5.9. Again, a very good 
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agreement exists between both models in all figures. Also, Figure 5.10 compares the oil 

and gas production rates over 600 days confirming the accuracy of the EDFM approach. 

The computational times for the fine-grid and EDFM simulations were 25.6 hours and 

24.6 minutes, respectively. 

The effect of phase behavior on fluid saturations is very pronounced in this 

example. Figure 5.11 shows the profiles of gas saturation simulated by EDFM after one 

month, three months, six months, and one year of gas injection. At the initial conditions 

as described in Table 5.4, both oil and gas phases are present in the reservoir. In a portion 

of the reservoir away from the wells and fractures and consequently from the injected 

fluid, a single-phase oil is formed owing to the pressure increase as time progresses 

(excluding irreducible water in the reservoir). However, in areas close to the wells and 

fractures, gas saturation gradually increases as CO2 overall mole fraction increases.   
 

 

 

 
 

Figure 5.6: Geometrical representation of a simple fractured reservoir (600 ft × 300 ft × 

15 ft) containing three intersected fractures. All fractures are vertical and 

aligned with the coordinate axes. 
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Table 5.3: Properties of the hydrocarbon components used in the simulations 

performed for the model reservoir shown in Figure 5.6.  

 

 

Table 5.4: Summary of properties used in the simulations performed for the model 

reservoir shown in Figure 5.6.   

 

 

 

 
 

Component CH4 C16H34 CO2 

Molecular weight (lb/lb-mol) 16.0 222.0 44.0 

Critical temperature (°R) 343.1 1322.4 547.6 

Critical pressure (psia) 667.2 252.1 1071.6 

Critical volume (ft
3
/ lb-mol) 1.586 13.377 1.506 

Acentric factor 0.008 0.684 0.225 

Parachor 71.0 831.9 49.0 

Variable Value Variable Value 

Matrix porosity 0.1 Residual water saturation 0.1 

Matrix permeability 1 md Residual oil saturation 0.1 

Fracture aperture 0.0264 ft Residual gas saturation 0.0 

Fracture permeability 810
4
 md Water rel. perm. endpoint 0.4 

Initial water saturation 0.1 Oil rel. perm. endpoint 0.6 

Initial oil saturation 0.633 Gas rel. perm. endpoint 0.6 

Initial gas saturation 0.267 Water rel. perm. exponent 3.0 

Reservoir temperature 160° F Oil rel. perm. exponent 2.0 

Reservoir pressure 1000 psi Gas rel. perm. exponent 2.0 
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(a)         (b) 

 

Pressure, psi 

Figure 5.7: Profiles of reservoir pressure predicted by (a) EDFM and (b) fine-grid 

explicit-fracture model after 130 days of gas injection for the model 

reservoir shown in Figure 5.6. 

 

 
 

 

(a)         (b) 

 
Gas saturation 

Figure 5.8: Profiles of gas saturation predicted by (a) EDFM and (b) fine-grid explicit-

fracture model after 130 days of gas injection for the model reservoir shown 

in Figure 5.6. 
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CO2 mole fraction in the oleic phase 

 
 
 
 

  
 

 
CO2 mole fraction in the gaseous phase 

 

(a)         (b) 

Figure 5.9: Profiles of CO2 mole fraction in the oleic and gaseous phases predicted by 

(a) EDFM and (b) fine-grid explicit-fracture model after 130 days of gas 

injection for the model reservoir shown in Figure 5.6. 
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(a) 

 
(b) 

Figure 5.10: Comparison of (a) oil production rate, and (b) gas production rate over 600 

days of gas injection for the model reservoir shown in Figure 5.6, calculated 

by the fine-grid explicit-fracture model and EDFM. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
Gas saturation 

Figure 5.11: Profiles of gas saturation predicted by EDFM after (a) 1 month, (b) 3 

months, (c) 6 months, and (d) 1 year of gas injection. 
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5.2.3   Non-Orthogonal Non-Aligned Fracture  

The next validation case comprises a non-aligned fracture to investigate the 

accuracy of the EDFM approach for modeling arbitrary-oriented fractures. In this 

example, we compare the results of the EDFM approach to the results of a Cartesian 

single-porosity model that uses a very fine stair-stepping representation of the non-

aligned fracture, as shown in Figure 5.12. The domain dimensions are 4×4×1 ft. The 

fracture endpoints are located at (0.56, 0.41) and (3.49, 3.34). An injector is located at 

one corner of the domain, injecting water at 0.001 bbl/day, and a producer is placed at the 

opposite corner. Initial domain pressure and the constant producer BHP are 3000 psi.  

Likewise, C10H22 is the only hydrocarbon component in these simulations. All other 

properties used in the simulations, except the fracture permeability, are summarized in 

Table 5.5.  

 

Table 5.5: Summary of properties used in the simulations performed for the model 

reservoir shown in Figure 5.12.  

Variable Value Variable Value 

Matrix porosity 0.2 Residual water saturation 0.2 

Matrix permeability 1 md Residual oil saturation 0.2 

Fracture aperture 0.05 ft Water rel. perm. endpoint 0.8 

Init. water sat. in matrix 0.2 Oil rel. perm. endpoint 0.7 

Init. water sat. in fracture 0.0001 Water rel. perm. exponent 4.0 

Domain temperature 60° F Oil rel. perm. exponent 2.0 

Component :  C10H22 

Molecular weight (lb/lb-mol) 142.3 Critical temperature (°R) 1500.0 

Acentric factor 0.488 Critical pressure (psia) 350.0 

Parachor 431.0 Critical volume (ft
3
/ lb-mol) 10.087 

Description of Fine-Grid 

Δx, ft  0.2,3×0.05, 132×0.025, 3×0.05,0.2 Δy, ft 0.2,3×0.05, 132×0.025, 3×0.05,0.2 



 86 

 
(a) 

 
(b) 

Figure 5.12: (a) A very fine stair-stepping representation of a non-aligned fracture used 

to investigate the accuracy of the EDFM approach for modeling arbitrary-

oriented fractures. The domain dimensions are 4×4×1 ft. (b) An enlarged 

region of the model shown in Figure 5.12a, depicting the size of the 

gridblocks used to represent the fracture gridblocks. 
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We assume straight-line relative permeability curves (with zero residual 

saturations and endpoints equal to one) for the fracture in the simulations. For the fine-

grid explicit-fracture simulation, the grid is 140×140×1 cells in the x, y, and z directions, 

respectively, and the cell dimensions are non-uniform in both x and y directions, as 

depicted in Figure 5.12a and described in Table 5.5.   

The permeability of fracture cells in the fine-grid simulation using stair-stepping 

approach is 100 md.  In order to mimic the simulation of fluid flow for the fine-grid 

simulation using the EDFM method, we adjusted the permeability of the 45°-deviated 

fracture to 70.7 md (100/√2) in the EDFM approach to model the same fluid-flow 

behavior as for the stair-stepping case. The reason for modification of the permeability 

using √2 multiplier is given below: 

As depicted in Figure 5.13, for the EDFM approach, flow between points 1 and 2 

occurs only in one direction (parallel to fracture) while for the fine-grid simulation flow 

occurs in a stair-step manner resulting from the sum of the two routes shown in the 

figure. Owing to the location of wells and orientation of the fracture in Figure 5.12a, we 

assume that the flow rates in the two routes are equal. Hence,  

ா஽ிெݍ = 	 ଵ,௙௜௡௘ݍ + 	 ଶ,௙௜௡௘ݍ = ଵ,௙௜௡௘ݍ2	 		,																																																																			(5.5) ݇௙,ா஽ிெ	 ௙߱,ா஽ிெ 	ℎ௙ߤ 		 ௙௜௡௘ݔ∆	2√ܲ∆ 		 = 	 2	݇௙,௙௜௡௘	∆ݔ௙௜௡௘	ℎ௙ߤ 		 ∆ܲ
௙௜௡௘ݔ∆	2 			,																			(5.6) 

݇௙,ா஽ிெ	 ௙߱,ா஽ிெ 	√2
		 = 	 	݇௙,௙௜௡௘	∆ݔ௙௜௡௘		,																																																																							(5.7) ݇௙,ா஽ிெ	 × 0.05	√2

		 = 	 	݇௙,௙௜௡௘	 × 0.025		,																																																																					(5.8) 

	݇௙,௙௜௡௘	 = 	 √2		݇௙,ா஽ிெ			.																																																																																														(5.9) 
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In order to perform similar fluid-flow simulations using two approaches (EDFM 

and fine-grid), as can be seen above, mimicking non-orthogonal fractures in Cartesian 

coordinates using a fine-grid is not an easy task for a general case.  For different cases the 

above computations have to be carried out in order to come up with a corresponding 

permeability for the fine-grid simulations. 

 

 

Figure 5.13: Representation of fracture permeability in the fine-grid simulation with 

respect to the fracture permeability in the EDFM simulations. 
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We examine three EDFM simulations with different grid resolutions to check the 

method for convergence as the grid is refined. The first, second, and third simulations use 

uniform 10×10×1, 20×20×1, and 40×40×1 matrix grids, respectively. Figure 5.14 

presents water saturation profiles after 140 days of water injection (0.233 PV injected) 

calculated by fine-grid and EDFM simulations. Also, Figure 5.15 compares the oil 

production rate over 350 days of water injection. From both figures, it is inferred that the 

EDFM approach could accurately reproduce the results of the fine-grid simulation using 

moderate grid refinement, demonstrating the general level of accuracy of the EDFM 

approach for modeling arbitrary-oriented fractures.  

We performed the fine-grid simulation using the parallel processing option of 

GPAS with four processors and the computational time was 88.3 hours. Our main goal 

for performing this study was to compare our results with that of a very fine-grid 

simulation. We note here that our goal was not to find the minimum number of 

gridblocks required for the fine-grid simulation to obtain a converged solution. The 

computational times for three EDFM simulations on a single processor were 2, 13, and 

127 seconds for various refinements as stated above.  

Owing to excessive computational efforts to carry out detailed fine-grid 

simulation, we did not perform further studies to compare the EDFM approach with fine-

grid simulations for domains with multiple intersecting fractures. However, the presented 

example shows good level of agreement for a single non-orthogonal fracture.  
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             (a)        (b) 

           
             (c)        (d) 

 
Water saturation 

Figure 5.14: Profiles of water saturation predicted by (a) fine-grid explicit-fracture 

model, (b) EDFM approach using a 10×10×1 matrix grid, (c) EDFM 

approach using a 20×20×1 matrix grid, and (d) EDFM approach using a 

40×40×1 matrix grid after 140 days of water injection (0.233 PV injected).  
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Figure 5.15: Comparison of oil production rate over 350 days of water injection for the 

model reservoir shown in Figure 5.12a, calculated by the fine-grid and 

EDFM simulations. 
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5.3   HIGHLIGHTS OF THE CHAPTER 

 The accuracy of the EDFM approach for modeling primary production from 

multiply-fractured horizontal wells is confirmed by its match with the 

analytical solutions for two production schemes of constant-pressure 

production and constant-rate production.   

 The accuracy of the EDFM approach is confirmed by comparing the EDFM 

results with the fine-grid, explicit-fracture simulations for case studies 

including isolated fractures, intersected orthogonal fractures, and a non-

orthogonal non-aligned fracture. The case studies examined both water-

flooding and compositional gas injection.  

 Comparison of our results using the EDFM approach with fine-grid 

simulations shows that accurate results can be achieved with moderate grid 

refinements. Hence, EDFM offers a computationally-efficient approach for 

simulating fluid flow in fractured reservoirs.   
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Chapter 6:  Case Studies using EDFM 

 

In the first part of this chapter, we present examples of water-flooding, gas 

injection with a cubic equation-of-state, and primary depletion to demonstrate the 

performance and applicability of the developed approach for simulating fluid flow in 

naturally fractured reservoirs. GPAS is used for all examples presented in the first part.  

In the first example, we investigate the effect of capillary pressure on water imbibition 

from fractures to matrix. Moreover, we perform a grid sensitivity study to check the 

convergence of the method as the grid is refined. The second example presents a 

compositional gas injection displacement to show the effect of gas-oil gravity drainage on 

oil recovery. In the third case study, we examine water-flooding into a 3D model and 

investigate the effect of fracture inclination. The last example examines primary 

depletion of a synthetic 3D reservoir to show the applicability of the EDFM approach for 

modeling a large number of obliquely dipping fractures.   

The second part of this chapter is a part of a study performed during a summer 

internship with Chevron Energy Technology Company. As described in the previous 

chapters, Li and Lee (2008) developed the EDFM approach for simulating fluid flow in 

vertical fractures. They implemented the method for a Chevron proprietary reservoir 

simulator, called CHEARS. During this internship, we compared the EDFM approach to 

an unstructured discrete fracture model (called USDFM) and a dual permeability method 

for simulating multiphase flow in NFRs. We gratefully thank Chevron Energy 

Technology Company for the financial support of this work and for permitting its 

publication. 
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6.1   SIMULATION EXAMPLES USING EDFM IN GPAS  

In this section, we present various simulation case studies to show the 

applicability, robustness, and performance of the EDFM approach for simulating fluid 

flow in naturally fractured reservoirs. 

 

6.1.1   2D Water-Flooding (Effect of Capillary Pressure) 

The purpose of the first example is to show the applicability of the EDFM 

approach for modeling a well-known recovery mechanism in naturally fractured 

reservoirs. Water-flooding produces oil from NFRs through spontaneous imbibition of 

water from fractures into the rock matrix and expulsion of oil from the rock matrix to the 

fractures and production wells. However, this capillary driving force is strong only when 

large capillary pressure contrasts exist between matrix and fractures, and when the rock 

matrix is water-wet. Many naturally fractured reservoirs are oil-wet or mixed-wet 

formations, leading to poor performance of water-flooding in these reservoirs. Here, we 

present two water-flooding simulations performed in the absence and presence of 

capillary pressure in the matrix.   

The model reservoir evaluated in this example is a synthetic 2D reservoir shown 

in Figure 6.1. The model contains 14 long, vertical, natural fractures striking at different 

orientations. The synthetic model is a quarter of a five-spot well pattern where an injector 

is located in one corner and a producer is installed in the opposite corner. The aperture 

and permeability of all fractures are 0.025 ft and 7×10
5
 md, respectively. Also, porosity 

and permeability of matrix are 0.1 and 20 md, respectively. All other petrophysical 

properties are similar to those reported in Table 5.2, and straight-line relative 

permeability is assumed for the fractures. Initial reservoir pressure and the constant 

producer BHP are 3000 psi.  The water injection rate is 100 bbl/day. The matrix grid is 
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20×20×1, where the sizes of each gridblock in the x, y, and z directions are 25, 25, and 20 

ft, respectively. Also, fractures are discretized into 156 control volumes in the fracture 

domain. Both matrix and fracture capillary pressures are assumed zero in the first 

simulation, but we use the following relation for matrix capillary pressure in the second 

simulation: 

௖ܲ௢௪ = 	 −5 × ln(ܵ௪) 		,																																																																																																		(6.1) 

where Sw is the water saturation and Pcow is the oil-water capillary pressure in psi.  

Fracture capillary pressure is zero in the second simulation. We used the above matrix 

capillary pressure relation since this was the relation used by Monteagudo and 

Firoozabadi (2004). The capillary pressure equation presented by Brooks and Corey 

(1964) would have also been an alternative equation to be used in this example.  

 

Figure 6.1: A synthetic 2D fractured reservoir (500 ft  500 ft  20 ft) considered in 

Example 1. The model contains 14 long, vertical fractures striking at 

different orientations. 
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Figure 6.2 compares the oil production rate calculated by EDFM for both 

simulations, while Figure 6.3 depicts the water saturation profiles at 0.17 and 0.28 of pore 

volumes injected. The first row in Figure 6.3 corresponds to the first case and the second 

row corresponds to the case wherein capillary contrasts exist between matrix and 

fractures. Water channeling through the highly conductive fracture network is evident in 

Figure 6.3. Both Figures 6.2 and 6.3 indicate that the water breakthrough is significantly 

delayed when there is a difference in the capillary pressures of matrix and fracture, owing 

to an improved sweep. As shown in Figure 6.3, in the presence of capillary contrasts, 

invasion of water is more apparent in the matrix around fractures as a result of stronger 

spontaneous imbibition.  

The oil recovery factors after one year of water injection are 0.441 and 0.474 in 

the absence and presence of capillary pressure contrasts, respectively. Consequently, 

favorable rock wettability along with capillary contrasts between matrix and fracture 

resulted in 7.5% increased oil recovery in this example. The consistency of our results 

with well-established findings of previous studies demonstrates the applicability of the 

EDFM approach for modeling different recovery mechanisms. The computational times 

in the absence and presence of capillary pressure contrasts were 2.5 and 3.8 minutes, 

respectively. 

To evaluate the impact of grid resolution on accuracy of the EDFM approach, we 

also performed a mesh sensitivity study for the case in the absence of capillary pressure 

contrasts. Retaining the same fracture network, we examined three additional EDFM 

simulations that use uniform 40×40×1, 50×50×1, and 80×80×1 matrix grids, respectively, 

to check the convergence of the method as the grid is refined. Figure 6.4 compares the oil 

production rate simulated by four grid resolutions under consideration.  Also, Figure 6.5 

shows the water saturation profiles after 250 days of water injection (0.28 PV injected) as 



 97 

we refined the grid. As it can be seen, the results which correspond to the 40×40×1 mesh 

are close to the results generated using 50×50×1 and 80×80×1 matrix grids. Figures 6.4 

and 6.5, once again, verify that the EDFM approach can achieve high accuracy using 

moderate mesh refinement. The computational times for three additional EDFM 

simulations were 26, 63, and 386 minutes for various refinements as stated above. 

 

 

 

Figure 6.2: Comparison of oil production rate calculated in the absence and presence of 

capillary pressure contrasts between matrix and fracture for the model 

reservoir shown in Figure 6.1. 
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Water saturation 

(a)              (b) 

Figure 6.3: Water saturation profiles calculated by EDFM at (a) 0.17 PV injected (150 

days), and (b) 0.28 PV injected (250 days). The first row shows water 

saturation maps simulated in the absence of capillary contrasts and the 

second row shows water saturation maps simulated in the presence of 

capillary contrasts between fractures and matrix. 
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Figure 6.4: Comparison of oil production rate calculated by the EDFM approach using 

four grid resolutions under consideration for the model reservoir shown in 

Figure 6.1 in the absence of capillary pressure contrasts.  
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(a)           (b) 

 

        
(c)          (d) 

 
Water saturation 

Figure 6.5: Profiles of water saturation predicted by (a) EDFM using a 20×20×1 matrix 

grid, (b) EDFM using a 40×40×1 matrix grid, (c) EDFM using a 50×50×1 

matrix grid, and (d) EDFM using a 80×80×1 matrix grid after 250 days of 

water injection (0.28 PV injected) for the model reservoir shown in Figure 

6.1 in the absence of capillary pressure contrasts. 
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In Section 4.3.1, we described a methodology to calculate the transmissibility 

between fracture control volumes and matrix gridblocks for partially-penetrating 

fractures. That is, when a fracture does not fully penetrate a gridblock, we first calculate 

the transmissibility assuming that the fracture fully penetrates the gridblock and then we 

correct the transmissibility for the partially-penetrating fracture. To evaluate the accuracy 

of this approximation, the top row in Figure 6.6 shows an enlarged region of the reservoir 

shown in Figure 6.1 around a partially-penetrating fracture using 40×40×1 and 80×80×1 

matrix grids. The matrix gridblock containing the fracture segment in the 40×40×1 grid is 

represented by four gridblocks in the 80×80×1 grid, only one of which includes the 

fracture segment. The bottom row in Figure 6.6 shows water saturation in the mentioned 

gridblocks after 20 days of simulation. The water saturation in the single gridblock of the 

40×40×1 case is 0.337 and water saturations in the four gridblocks of the 80×80×1 case 

are 0.579, 0.284, 0.281, and 0.2.  Hence, average water saturation of the four gridblocks 

in the 80×80×1 case is 0.336, which is very close to the water saturation of the 

corresponding gridblock in the 40×40×1 case. Furthermore, Figure 6.7 extends this 

comparison over the course of simulation, indicating that good agreement exists between 

water saturations calculated in both cases around the partially-penetrating fracture under 

consideration.   

We performed an additional simulation for the model reservoir shown in Figure 

6.1 to demonstrate the applicability of the EDFM approach for modeling fluid flow in 

heterogeneous reservoirs. Figure 6.8 presents the porosity and permeability maps 

assigned to a 40×40×1 matrix grid, wherein porosity of matrix ranges from 0.042 to 

0.158 and permeability of matrix ranges from 0.74 to 39.74 md. All other parameters are 

identical to those used in the previous simulations of this section. Subsequently, Figure 
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6.9 shows the water saturation profiles after 150 and 250 days of water injection. The 

computational time for this simulation was 30.6 minutes. 

 

  

    

 
Water saturation 

(a)      (b) 

Figure 6.6: The top row presents an enlarged region of the reservoir shown in Figure 6.1 

around a partially-penetrating fracture using (a) 40×40×1 and (b) 80×80×1 

matrix grids. The bottom row shows the corresponding water saturation 

profiles after 20 days of water injection. 
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Figure 6.7: Water saturation in the gridblock shown in Figure 6.6a calculated in the 

40×40×1 simulation compared to the average water saturation of four 

gridblocks shown in Figure 6.6b calculated in the 80×80×1 simulation.  
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       Porosity       Permeability, md 

(a)        (b)   

 Figure 6.8: Description of (a) porosity and (b) permeability maps assigned to a 40×40×1 

matrix grid for the fractured reservoir shown in Figure 6.1.   

              

 
Water saturation 

            (a)                (b)  

Figure 6.9: Water saturation profiles calculated for the heterogeneous reservoir 

described in Figure 6.8 at (a) 0.17 PV injected (150 days), and (b) 0.28 PV 

injected (250 days). 
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6.1.2   3D Gas Injection (Effect of Gravity) 

Gas injection into a reservoir is examined next to demonstrate that the EDFM 

method can treat both compositional gas flood processes and 3D flow. Also, we 

investigate the effect of a fracture network on oil recovery in this example. The reservoir 

considered for gas injection is shown in Figure 6.10.  The matrix grid is 20×20×2, with 

cell dimensions of 25×25×20 ft in the x, y, and z directions, respectively. The model 

comprises five angled macro-fractures. The dip angle of the fractures ranges from 60 to 

70 degrees. An injector is located in one corner and a producer is placed in the opposite 

corner. Both injector and producer have vertical wellbores completed in both layers. In 

addition to water, six hydrocarbon components are present in this example: CH4, C3H8, 

C6H14, C10H22, C15H32, and C20H42, and the Peng-Robinson equation-of-state is employed 

for the hydrocarbon phase behavior calculations. The initial reservoir-fluid composition 

is 50% CH4, 3% C3H8, 7% C6H14, 20% C10H22, 15% C15H32, and 5% C20H42, while the 

injected-fluid composition is 98% CH4, 1% C3H8, and 1% C6H14. Initial reservoir 

pressure and the producer BHP are 2100 psi, and the injection rate is 250 MSCF/day. 

Table 6.1 summarizes other petrophysical properties used in this example. Also, Table 

6.2 describes the properties of hydrocarbon components assumed in the simulations. 

Figure 6.11 shows the profiles of gas saturation after 30 and 150 days of gas 

injection, simulated by EDFM. The left and right panels in this figure correspond to the 

top and bottom computational layers, respectively. It is inferred from Figure 6.11 that 

significant oil is left unswept in the bottom layer, owing to gravity and presence of 

fractures. That is, high-permeability fractures not only expedite gas breakthrough, but 

also increase segregation of gas towards the top of the reservoir, leading to very low 

sweep efficiency in this example.  
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To assess the effect of fracture network on oil recovery, we repeated the 

simulation in the absence of fractures. Figure 6.12 illustrates the profiles of gas saturation 

simulated in the absence of fractures, indicating that the bottom layer is swept by the 

injected gas to some extent. A remarkable reduction of oil production in the presence of 

fractures is evident in Figure 6.13a, where, simulated oil production rates are compared 

for both cases. Likewise, Figure 6.13b compares the average reservoir pressure in the 

presence and absence of the fracture network. The computational times for the 

simulations in the presence and absence of fractures were 5.5 and 2.3 minutes, 

respectively. 

 

 

 

Figure 6.10: A synthetic 3D fractured reservoir (500 ft  500 ft  40 ft) studied in the 

second example. The model reservoir comprises five inclined macro-

fractures. The dip angle of the fractures ranges from 60 to 70 degrees.  
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Table 6.1: Petrophysical properties assumed in the simulations performed for the 

model reservoir shown in Figure 6.10. 

 

Table 6.2: Properties of the hydrocarbon components used in the simulations 

performed for the model reservoir shown in Figure 6.10. 

 

 

 

Variable Value Variable Value 

Matrix porosity 0.1 Residual water saturation 0.3 

Matrix horizontal perm. 20 md Residual oil saturation 0.1 

Matrix vertical perm. 2 md Residual gas saturation 0.0 

Fracture aperture 0.0264 ft Water rel. perm. endpoint 0.4 

Fracture horizontal perm. 710
5
 md Oil rel. perm. endpoint 0.9 

Fracture vertical perm. 710
4
 md Gas rel. perm. endpoint 0.9 

Initial water saturation 0.17 Water rel. perm. exponent 3.0 

Reservoir temperature 160° F Oil rel. perm. exponent 2.0 

Reservoir pressure 2100 psi Gas rel. perm. exponent 2.0 

Component CH4 C3H8 C6H14 C10H22 C15H32 C20H42 

Molecular weight (lb/lb-mol) 16.0 44.1 86.2 142.3 206.0 282.0 

Critical temperature (°R) 343.0 665.7 913.4 1111.8 1270.0 1380.0 

Critical pressure (psia) 667.8 616.3 436.9 304.0 200.0 162.0 

Critical volume (ft
3
/ lb-mol) 1.599 3.211 5.923 10.087 16.696 21.484 

Acentric factor 0.013 0.152 0.301 0.488 0.650 0.850 

Parachor 71.00 151.0 271.0 431.0 631.0 831.0 
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Gas saturation 

(a)          (b) 

Figure 6.11: Profiles of gas saturation in the (a) top layer, and (b) bottom layer of the 

model reservoir shown in Figure 6.10, simulated by EDFM. The first and 

second rows show gas saturation maps after 30 and 150 days of gas 

injection, respectively. 

     

 

Gas saturation 

(a)          (b) 

Figure 6.12: Profiles of gas saturation in the (a) top layer, and (b) bottom layer of a 

reservoir (500 ft  500 ft  40 ft) without natural fractures. The saturation 

maps are presented at 150 days of gas injection.  
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(a) 

 
(b) 

Figure 6.13: Comparison of (a) oil production rate, and (b) average reservoir pressure, 

over a year of gas injection into the model reservoir shown in Figure 6.10, in 

the presence and absence of the fracture network. 
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6.1.3   3D Water Flooding  

In most simulation studies performed in the past, natural fractures were assumed 

to be vertical in the subsurface. However, the new implementation of the EDFM 

approach presented in this research provides an effective and reliable environment to 

model obliquely dipping fractures.  Hence, the third example examines water-flooding 

into a 3D model reservoir shown in Figure 6.14, comprising 13 inclined fractures. The 

fractures are extended through different layers. We also investigate the effect of fracture 

inclination in this example. The dip angle of fractures ranges from 55 to 90 degrees. The 

matrix grid is 20×20×4, with cell dimensions of 25×25×20 ft in the x, y, and z directions, 

respectively. The aperture and permeability of all fractures are 0.025 ft and 3×10
5
 md, 

and the permeability of matrix is 15 md, and other petorphysical properties are identical 

to those assumed in the first example. Initial reservoir pressure and the constant producer 

BHP are 5000 psi, and the water injection rate is 1000 bbl/day.  

 

 

Figure 6.14: A synthetic 3D fractured reservoir (500 ft  500 ft  80 ft) studied in the 

third example. The model reservoir comprises 13 inclined macro-fractures. 

The dip angle of the fractures ranges from 55 to 90 degrees. 
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Figure 6.15 shows the water saturation maps in four computational layers after 80 

days of water injection (0.225 PV injected). It can be seen in Figure 6.15 that due to 

presence of inclined fractures, which are extended through different layers, the invasion 

patterns are different in various layers.  

 

 

 
(a)          (b) 

 

 

(c)         (d) 

 

 
Water saturation 

Figure 6.15: Profiles of water saturation in the (a) top layer, (b) second layer, (c) third 

layer, and (d) bottom layer of the model reservoir shown in Figure 6.14. The 

saturation maps are presented at 80 days of water injection. 
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We also repeated the simulation assuming that fractures are all vertical. Figure 

6.16 compares the oil production rate predicted by EDFM for both fracture 

configurations (inclined and vertical), showing different recovery curves for the scenarios 

under consideration. Thus, incorporating realistic fracture dip angles obtained from 

fracture characterization studies can be important for simulating fluid flow in naturally 

fractured reservoirs. 

 

 

Figure 6.16: Oil production rate calculated by EDFM for the model reservoir shown in 

Figure 6.14, compared with the one calculated for the same reservoir 

wherein all fractures are assumed to be vertical. 
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6.1.4   3D Primary Depletion 

The new implementation of the EDFM approach presented in this research 

provides an effective and reliable method to model a large number of obliquely dipping 

fractures. In order to show the applicability and performance of the EDFM approach for 

realistic simulation of fractured reservoirs, the next example examines primary depletion 

of a synthetic 3D model reservoir shown in Figure 6.17. The model reservoir represents a 

naturally fractured reservoir wherein a large number of fractures with various heights, 

lengths, orientations, spacings, and network connectivity are present. The reservoir 

dimensions are 1000×1000×75 ft and a vertical well is located at the center of the 

reservoir and perforated along the total height of the formation. The model reservoir 

contains a total of 150 vertical and slanted natural fractures.   

 

 

 

Figure 6.17: A synthetic 3D model reservoir (1000×1000×75 ft) that contains a total of 

150 vertical and slanted natural fractures.   
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The matrix grid is 45×45×3 cells in the x, y, and z directions, respectively.  The 

dip angle of the fractures ranges from 60 to 90 degrees. Some fractures penetrate all three 

numerical layers while the rest of them penetrate only one or two layers. Moreover, 

fractures have different apertures, ranging from 0.52 to 1.28 mm. The permeability of 

fractures, which is proportional to the square of fracture aperture, therefore ranges from 

54 to 335 Darcies. The reservoir fluid is oil with specific gravity of 0.74 and viscosity of 

1.5 cp, and the formation porosity and permeability are 0.26 and 0.1 md, respectively.  

Also, the formation temperature and the rock compressibility are 120°F and 5×10
-6

 psi
-1

, 

respectively.  The water saturation in rock matrix is at the irreducible water saturation of 

0.2 and the endpoint relative permeability of oil is 0.8.  The initial reservoir pressure is 

4000 psi and the vertical well produces at a constant bottomhole pressure of 2000 psi, 

which is above the bubble point pressure.   

Figure 6.18 shows the pressure profiles after 150 days of production, computed by 

the EDFM approach. Pressure profiles in all three numerical layers are presented in 

Figure 6.18, depicting different pressure depletion patterns in various layers because of 

the presence of randomly-generated fractures.  Also, Figure 6.19 shows the oil production 

rate and average reservoir pressure over two years of production. The computational time 

of the simulation was 3.31 hours. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 

Pressure, psi 

Figure 6.18: Profiles of pressure after 150 days of production in the (a) top, (b) middle, 

and (c) bottom numerical layers of the model reservoir shown in Figure 

6.17. 
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(a) 

 
(b) 

Figure 6.19: History of (a) oil production rate, and (b) average reservoir pressure over 

two years of production for the model reservoir shown in Figure 6.17.  
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6.2   COMPARISON OF EDFM TO AN UNSTRUCTURED DFM AND A DUAL PERMEABILITY 

MODEL  

This section presents a study performed during a summer internship with Chevron 

Energy Technology Company (Chevron ETC). The financial support for this work and 

the permission for its publication are gratefully appreciated. 

As previously described, natural fracture systems commonly show an 

asymmetrical distribution of fracture sizes, with numerous small fractures and fewer large 

fractures (Odling et al., 1999). It is not practical to treat small fractures explicitly in 

discrete fracture simulations. Hence, Lee et al. (2001) presented a hierarchical modeling 

approach for addressing flow in NFRs. In this approach, small fractures are represented 

by their aggregate effective properties and the large-scale fractures are modeled 

explicitly. Small fractures are less than the longest dimension of a grid cell in length 

while the large, explicit fractures are those longer than grid cells. Two discrete fracture 

modeling methodologies, developed at Chevron ETC, are designed to model the largest 

fluid conductive fractures in the system.   

 

6.2.1   Chevron Discrete Fracture Models 

Two discrete fracture models, based on different, independent techniques, have 

been developed for simulating the flow behavior of naturally fractured reservoirs. The 

unstructured discrete fracture model (USDFM) is based on unstructured gridding with 

local refinement near fractures (Hui and Mallison, 2009).  Alternatively, the embedded 

discrete fracture model (EDFM) directly incorporates fractures in a conventional, 

structured grid (Li and Lee, 2008). Both modeling methods allow large-scale, bedding-

normal fractures to be included into sector and full-field models. In both techniques, 

fractures are approximated by planar rectangles that are orthogonal to bedding, but have 
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arbitrary orientation in the horizontal plane. For simplicity of geometric design, both 

models are only implemented for vertical fractures.   

The USDFM uses the discretization approach proposed by Karimi-Fard et al. 

(2004). The method is based on unstructured gridding and employs the so-called lower 

dimensional approach to DFM gridding where the rock matrix is modeled by 3D 

polyhedral cells and the fracture network is represented by a subset of the 2D interfaces 

separating grid cells. The material balance for each control volume requires the 

knowledge of neighboring control volumes (a connectivity list) and the transmissibility 

associated with each connection in order to compute fluid exchange between neighboring 

control volumes. A two-point flux approximation is applied in the transmissibility 

calculations.  

Grid generation is a critical step for all DFMs that rely on unstructured gridding.  

Available general-purpose grid-generation tools are not well suited for gridding fracture 

networks. Addressing this limitation, Mallison et al. (2010) presented new grid-

generation algorithms for simulating fluid flow in NFRs. Moreover, Mallison et al. 

(2010) argue that there is inherent uncertainty in the precise position and geometry of 

fractures in an NFR and hence chose not to impose an exact agreement of fracture 

geometry between the geologic and flow-simulation models. Instead, their grid-

generation algorithms are designed to capture only geometric features that are larger than 

the specified grid resolution.  That is, compromises are made between maintaining good 

cell quality and honoring fracture geometry. These gridding tools make it possible to 

construct multiple models during the course of a single simulation study.   

 



 119 

6.2.2   Grid Sensitivity of DFMs 

As grid orientation can affect the accuracy of modeling, we investigated the 

sensitivity of the DFMs to grid design. Figure 6.20a shows a synthetic 2D reservoir 

containing 12 discrete fractures. Figures 6.20b and 6.20c show the same fracture 

configuration relative to a coordinate axes rotated 22.5° and 45° counter-clockwise, 

respectively, about the z axis. Grid cells outside of the outer circle in each model are 

inactive. Petrophysical parameters and fluid properties are summarized in Table 6.3.  

Initial conditions and wellbore operating constraints for this test are also described in 

Table 6.3. We simulate water injection for each grid orientation using both EDFM and 

USDFM. 

EDFM utilizes a fixed Cartesian grid. Therefore, the only relative differences 

between model realizations are the location of wells and fractures. In contrast, the 

simulation grid for the USDFM approach is constructed on a coarse background 

structured grid that is refined locally near the fractures and adjusted to approximate the 

fracture geometry. These local changes vary depending on the location and orientation of 

fractures within the background Cartesian grid. Hence, the three choices for the 

coordinate axes lead to three distinct grids. We used the same resolution for the EDFM 

Cartesian grid and the USDFM background grid.  

Figure 6.21 shows the water saturation maps predicted by EDFM approach for 

three grid orientations. We can see that the saturation maps are in good agreement with 

each other. That is, there is no appreciable effect of grid orientation on EDFM 

performance. This observation helps confirm that the model parameters of EDFM are 

accurate in cases where fractures are not aligned with the grid. Likewise, Figure 6.22 

presents the water saturation maps calculated by USDFM for the three cases. Water 

saturation maps in Figures 6.22b and 6.22c corresponded to the rotation of coordinate 
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axes by 22.5° and 45°, respectively, are very similar to those simulated by the EDFM 

approach.  However, a difference is observed in the water saturation map in Figure 6.22a.  

Due to approximations made during grid generation, two fractures in the 0° USDFM 

model have established a direct connection that does not exist in the other models. This 

“snapping” together of fractures can occur when they are offset by distances less than the 

grid resolution. This issue can be resolved through refinement of the grid.   

 

 

(a)       (b)           (c) 

Figure 6.20: (a) A synthetic 2D (5100 ft × 5100 ft) reservoir used to evaluate the 

sensitivity of DFMs to grid orientation. Panels (b) and (c) show the same 

fractured realization overlain on rotated coordinate axes. The coordinate x 

and y axes in Panels (b) and (c) are rotated 22.5° and 45° counter-clockwise, 

respectively, with regard to the coordinate axes in Panel (a). The reservoir 

model is cylindrical with the thickness of 20 ft. 
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Table 6.3: Petrophysical properties and wellbore operating constraints assumed in the 

simulations performed for the model reservoirs shown in Figure 6.20. 

 

Variable Value Variable Value 

Matrix porosity 0.03 Injector BHP 14000 psi 

Matrix permeability 1 md Producer BHP 10000 psi 

Fracture aperture 0.5 mm Reservoir pressure 10000 psi 

Fracture permeability 2.1110
7
 md Reservoir temperature 228°F 

Depth 14765 ft Initial water saturation 0.15 

Water-oil relative permeability and capillary pressure data for the matrix 

Sw krw kro Pcow, psi 

0.15 0 1 120 

0.20 0.013 0.828 50 

0.25 0.025 0.658 19.230 

0.30 0.035 0.520 17.307 

0.35 0.045 0.394 15.384 

0.40 0.055 0.240 13.461 

0.45 0.069 0.137 11.538 

0.50 0.089 0.090 9.615 

0.55 0.112 0.061 7.692 

0.60 0.135 0.037 5.769 

0.65 0.162 0.017 3.846 

0.70 0.200 0.001 1.923 

0.75 0.250 0 0 

0.80 0.315 0 0 

0.85 0.402 0 0 

0.90 0.523 0 0 

0.95 0.704 0 0 

1.00 1 0 0 
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(a)              (b)                (c) 

 
Water saturation 

Figure 6.21: Water saturation maps simulated by EDFM for three grid orientations 

shown in Figure 6.20. Panels (a), (b), and (c) correspond to similar panels in 

Figure 6.20. 

 
(a)              (b)                (c) 

 
Water saturation 

Figure 6.22: Water saturation maps simulated by USDFM for three grid orientations 

shown in Figure 6.20. Panels (a), (b), and (c) correspond to similar panels in 

Figure 6.20. The red circle in Panel (a) indicates the region where water 

saturation map differs slightly from those shown in Panels (b) and (c). 
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6.2.3   Dual Permeability Modeling 

Dershowitz et al. (2000) proposed a technique to integrate discrete fracture 

models with dual porosity models. Parameters used for dual porosity simulations are 

derived through more geologically realistic discrete fracture networks in order to reflect 

the connectivity, heterogeneity, and anisotropy of fractured reservoirs more accurately.  

They derived directional fracture system permeability from stochastically generated 

fracture models, and the calculated flow parameters were then used as a basis for dual 

porosity simulation. This approach provides an opportunity to improve dual porosity 

simulations. In the subsequent sections, we compare the discrete fracture models with 

classical dual continuum models for solving various fluid-flow problems in complex 

fractured reservoirs. We focus on dual permeability modeling rather than dual porosity 

because allowing flow to occur between matrix gridblocks can provide a more accurate 

simulation of NFRs than dual porosity. Moreover, to improve dual continuum 

simulations, we extend the approach proposed by Dershowitz et al. (2000) to dual 

permeability modeling as described below. 

Our dual permeability simulation entails the calculation of effective fracture 

porosity and effective directional permeability tensor for each cell containing fractures.  

This improves modeling of connectivity and heterogeneity in fractured porous media. 

Fracture porosity is the volume of fractures embedded in a cell divided by its bulk 

volume. Furthermore, a single-phase upscaling tool is used to compute fracture system 

directional (tensor) permeability from fracture and matrix permeabilities and their 

interaction. The details of calculation of effective directional permeability are presented 

in Lee et al. (2000). In order to simulate large (multi-cell) discrete fractures, active dual 

permeability cells are arranged stepwise to form connected linear pathways.  
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6.2.4   Comparison of DFMs and Dual Permeability 

In this section, we compare the discrete fracture models (USDFM and EDFM) 

and the proposed dual permeability approach for modeling fluid flow in complex 

fractured reservoirs. We consider two important NFR recovery mechanisms in our tests: 

capillary imbibition during water-flooding and gravity drainage in oil-gas systems. We 

evaluate two different reservoir models for the comparison: a sparsely fractured reservoir 

and an irregular, anisotropic fractured reservoir. 

 

6.2.4.1   2D Sparsely Fractured Reservoir, Water Injection 

 The first reservoir model evaluated in this section is the synthetic 2D reservoir 

previously considered for the grid-orientation sensitivity test (Figure 6.20a). This model 

represents a sparsely fractured reservoir containing only 12 discrete fractures. Figures 

6.21a and 6.22a show water saturation maps computed by two DFMs. Figure 6.23 shows 

a water saturation map predicted by the dual permeability model using the same 

Cartesian grid as that of the EDFM. Differences between water saturation maps are 

relatively small. Likewise, Figure 6.24 compares the field water-cut with respect to time 

calculated by the three models, exhibiting a good agreement among the three models. 

Consequently, the dual permeability technique successfully reproduced the results of the 

DFMs.  
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Water saturation 

Figure 6.23: Water saturation map simulated by the systematic dual permeability model 

for the sparsely fractured reservoir of Figure 6.20a. 

 

 

Figure 6.24: Comparison of field water-cut calculated by dual permeability, EDFM, and 

USDFM models for the sparsely fractured reservoir of Figure 6.20a. 
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6.2.4.2   3D Sparsely Fractured Reservoir, Gas-Oil Gravity Drainage 

The second comparison between the dual permeability and DFM approaches 

involves gas-oil gravity drainage in a synthetic 3D reservoir. Viewed in a horizontal 

plane, the fracture pattern is the same as previous example (Figure 6.20a) but fractures 

are extended vertically from the top to the bottom of the reservoir (Figure 6.25). A 

horizontal producing well is completed at the bottom of the reservoir where it intersects 

several fractures. The petrophysical and fluid properties are presented in Table 6.4, 

indicating that the bottom layer has high matrix permeability. The horizontal producer is 

completed in this high-permeability layer to provide productivity during depletion. Table 

6.4 also describes the initial conditions and wellbore operating constraints of this 

example. Production initially occurs due to fluid expansion. When the reservoir pressure 

drops below the bubble point pressure, 3664 psi, a two-phase oil-gas system develops and 

gravity drainage occurs as a result of the large oil-gas density difference and the highly-

permeable vertical fractures. 

We performed DFM and dual permeability simulations for this reservoir model.  

The spatial distribution of pressure after 5 years of production simulated by USDFM, 

EDFM, and dual permeability results in pressure maps that are reasonably similar (Figure 

6.26). Furthermore, Figure 6.26 illustrates the impact of the changing production 

mechanism.  The producing well creates a pressure gradient in the fractures connected to 

it, which in turn create a pressure drawdown on the adjacent matrix. Thus, fractures 

connected to the producing well play an important role in bringing oil to the producer. 

Figure 6.26 also shows that the pressure in parts of the reservoir is below the bubble point 

pressure at the illustrated time-step, suggesting the presence of both oil and gas.  This is 

confirmed by Figure 6.27, which shows the spatial distribution of oil saturation at the 

same time-step as in Figure 6.26. Although small differences are observed, a reasonable 
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agreement is evident between the dual permeability and DFM results. Figure 6.27a also 

shows oil saturation in the fractures, indicating that fractures are nearly saturated with 

gas.  Figure 6.28 compares the oil-production rate and cumulative oil produced predicted 

by the three models. The ultimate oil recovery calculated by the dual permeability model 

is underestimated by 6% compared to the nearly identical forecasts of the DFMs. The 

differences in oil recovery curves start when the reservoir pressure drops below the 

bubble point pressure.  However, the differences present in Figures 6.26, 6.27, and 6.28 

are relatively small, thus affirming our earlier observation that the three modeling 

methods tested here are in close agreement for a sparsely fractured reservoir.  

 

 

Figure 6.25: A 3D (5100 ft  5100 ft  2000 ft) sparsely fractured reservoir studied in 

the second comparison case. A horizontal producer is completed at the 

bottom of reservoir in a high-permeability layer to provide productivity 

during depletion. The horizontal producer intersects some discrete fractures. 
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Table 6.4: Petrophysical properties assumed in the simulations performed for the 

model reservoir shown in Figure 6.25. 

Variable Value Variable Value 

Matrix porosity 0.03 Bottom-layer porosity 0.05 

Matrix permeability 1 md Bottom-layer perm. 1000 md 

Fracture aperture 0.5 mm Reservoir pressure 10000 psi 

Fracture permeability 2.1110
7
 md Reservoir temperature 228°F 

Initial oil saturation 1.0 Producer BHP 1000 psi 

Oil-gas relative permeability and capillary pressure data for the matrix 

Sg krg kro Pcog, psi 

0.050 0 1 1.283 

0.084 0 0.991 1.603 

0.119 0 0.970 1.924 

0.153 0 0.922 2.484 

0.188 0.001 0.830 2.938 

0.223 0.002 0.693 3.312 

0.257 0.004 0.539 3.653 

0.292 0.008 0.400 3.943 

0.326 0.012 0.290 4.171 

0.361 0.017 0.208 4.371 

0.396 0.024 0.148 4.639 

0.430 0.033 0.105 5.003 

0.465 0.043 0.074 5.245 

0.500 0.056 0.051 5.420 

0.534 0.071 0.035 5.753 

0.569 0.088 0.024 6.108 

0.603 0.107 0.015 6.326 

0.638 0.129 0.009 6.663 

0.673 0.155 0.005 7.088 

0.707 0.183 0.002 7.629 

0.742 0.214 0 8.429 

0.850 1 0 12.344 
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(a)              (b)                (c) 

Pressure, psi 

 

Figure 6.26: Cut-section view of profiles of pressure after 5 years of production 

simulated by (a) USDFM, (b) EDFM, and (c) dual permeability models for 

the fractured reservoir shown in Figure 6.25. 

 

 

 
(a)              (b)                (c) 

Oil saturation 

 

Figure 6.27: Cut-section view of profiles of oil saturation after 5 years of production 

simulated by (a) USDFM, (b) EDFM, and (c) dual permeability models for 

the fractured reservoir shown in Figure 6.25. Panel (a) also shows the oil 

saturation in some fractures. 
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(a) 

 

 
(b) 

Figure 6.28: Comparison of (a) oil production-rate and (b) cumulative oil produced, 

calculated by USDFM, EDFM, and dual permeability models for the 

fractured reservoir shown in Figure 6.25.   
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6.2.4.3   Irregular and Anisotropic 2D Fractured Reservoir, Water Injection 

The synthetic 2D reservoir model in Figure 6.29 has 254 fractures arranged as two 

sets of aligned fractures with heterogeneous distributions.  One set strikes approximately 

030° azimuth and the other strikes approximately 120°.  The intensity of fractures varies 

in different regions. For instance, fractures oriented at 120° are most abundant in the 

southwest portion of the model, and rare in the north. A few fractures are near 

injecting/producing wells, affecting fluid flow significantly. All petrophysical parameters 

and fluid properties, except the injector operating constraint, remain identical to those of 

the first comparison example.  In this example, the injector is injecting water at constant 

BHP of 12000 psi.  

 

 

Figure 6.29: A synthetic 2D (5100 ft × 5100 ft) complex fractured reservoir studied in the 

third comparison example. This model comprises 254 fractures in two 

nearly orthogonal sets. The reservoir thickness is 20 ft. 
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Here we are interested to assess the effect of the fracture network in oil recovery 

for a fractured reservoir with a higher degree of geometrical complexity. Figure 6.30 

compares the field water-cut prediction from a matrix-only model with one in which 

fractures are included, using the USDFM approach. As expected, water breakthrough 

time is significantly earlier in the presence of highly fluid-conductive fractures.  Producer 

3 records the earliest water breakthrough time among producing wells while the latest 

one occurs at the Producer 1. 

 

 

 

Figure 6.30: Comparison of water-cut calculated by USDFM approach in the presence 

and absence of fractures. In the presence of fractures, Producer 3 records the 

earliest water breakthrough time among producing wells while the latest 

breakthrough occurs at Producer 1. 
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We performed simulations with both DFMs and dual permeability for this 

complex NFR.  For this case, the dual permeability results are remarkably different from 

those of the DFM simulations.  Figure 6.31 shows the water saturation maps after 1616 

and 5356 days of water injection simulated by DFMs and the dual permeability model. 

Similar to previous examples, good agreement exists between the results of USDFM and 

EDFM approaches. The dual permeability model, however, significantly smears the 

water saturation distribution compared to the channelized flow evident in the DFM 

results. Figure 6.32 further shows that the water-cut calculated by dual permeability 

simulation is also considerably different from those predicted by the DFMs. For instance, 

water breakthrough time predicted by the dual permeability model occurs about 10 years 

later than those predicted by the DFMs.   

It is clear from these results that the dual permeability model is not able to capture 

the strong anisotropy of flow caused by the irregular fractures that are not aligned with 

the grid. Relative to the size of the grid cells, the fracture variability is too complex to 

model accurately with a dual medium approach because the discrete nature of the 

fractures cannot be distinctly maintained.  In contrast, the consistency between the results 

of the DFMs, which are based on entirely different technologies, suggests that their 

forecasts are reliable. 
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(a)              (b) 

 
Water saturation 

Figure 6.31: Profiles of water saturation after (a) 1616 and (b) 5356 days of water 

injection acquired in the fractured reservoir shown in Figure 6.29. The first, 

second, third, and forth rows correspond to simulations of dual permeability, 

USDFM, fine-grid (85×85) EDFM, and coarse-grid (51×51) EDFM 

approaches, respectively. 
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(a) 

 

 
(b)                     (c) 

Figure 6.32: Comparison of (a) field water-cut, (b) water-cut of Producer 3 which has the 

earliest breakthrough time, and (c) water-cut of Producer 1 which has the 

latest breakthrough time, calculated by EDFM, USDFM, and dual 

permeability models for the fractured reservoir shown in Figure 6.29. 
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We also evaluated the impact of grid resolution by comparing the results from this 

complex model based on fine and coarse grids.  The third row in Figure 6.31 shows 

results of an EDFM simulation performed on an 85×85 Cartesian grid. We repeated the 

EDFM simulation on a 51×51 Cartesian grid, and results are shown in the fourth row of 

Figure 6.31. The water saturation maps obtained with the coarse-grid simulation are 

qualitatively similar to those obtained with the fine-grid simulation. The water-cut curves 

for these simulations shown in Figure 6.33 are very similar, but show water breakthrough 

occurring earlier in the fine-grid model.   

 

 

Figure 6.33: Comparison of field water-cut, calculated by fine-grid (85×85) and coarse-

grid (51×51) EDFM simulations for the fractured reservoir shown in Figure 

6.29. 
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6.2.5   Discussion of DFMs 

The EDFM method is fundamentally a simpler approach than USDFM as it does 

not require specialized gridding. With the same background grid resolution, EDFM 

simulations are usually faster than USDFM simulations because the local refinement of 

the unstructured grid leads to a larger number of grid cells. EDFM is conceptually similar 

to dual continuum approaches, but improves them in several ways. Fluid transport 

between matrix and each individual fracture is systematically calculated based on the 

fracture geometry, rather than general transfer functions which rely on effective 

parameters for fracture spacing. Embedded fractures are able to transport fluids in any 

direction relative to the grid axes which makes it possible to construct models that reflect 

the high localized anisotropy observed in naturally fractured reservoirs. The USDFM 

technique requires specialized gridding and hence substantial modifications from 

conventional simulation workflows that are based on structured grids. However, Hui et 

al. (2008) and Lim et al. (2009) showed that multiple grids can be constructed for 

simulation during the course of practical studies.  

Comparing the computational performance of the two DFM methods was not 

straightforward because they are designed to run with simulators that have different 

solvers and native grid structures.  The EDFM was run on a proprietary general-purpose 

simulator that was designed for structured grid models. The USDFM runs were 

performed using a next-generation simulator that was designed for parallel simulation of 

unstructured grid models (DeBaun et al., 2005). Because performance data are not 

directly comparable we do not present them here.  
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6.2.6   Concluding Remarks  

Simulations showed that the EDFM approach is insensitive to grid orientation. 

Simulations also showed consistency and agreement of results using the EDFM and 

USDFM methods in synthetic models with complex fracture patterns, in contrast with the 

less-satisfactory results from a conventional dual permeability model. Although dual 

continuum approaches were originally introduced for studying the behavior of densely 

fractured reservoirs with good connectivity, we found that the dual permeability approach 

described in this study is reasonably accurate for predicting the behavior of sparsely 

fractured systems. The simulations showed that for very sparse fractured reservoirs, 

where fracture spacing is much larger than grid cell size, the dual permeability model can 

capture the general trends.  However, when the fracture density is greater and fracture 

pattern is more irregular, our tests showed that the dual permeability model is generally 

unable to resolve details of complex flow paths and high, localized anisotropy in 

naturally fractured reservoirs. In contrast, both EDFM and USDFM were found to be 

capable of representing flow anisotropy and preferential channeling caused by realistic 

fracture geometries.  
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6.3   HIGHLIGHTS OF THE CHAPTER  

 Examples of water-flooding, compositional gas injection, and primary 

depletion are presented to demonstrate the applicability, robustness, and 

efficiency of the EDFM approach (developed in GPAS) for modeling fluid 

flow in naturally fractured reservoirs. 

 The grid sensitivity study, once again, verifies that the EDFM approach can 

achieve high accuracy using moderate mesh refinement. 

 The EDFM approach is found to be insensitive to grid orientation.    

 Simulations show consistency and agreement of results using the EDFM 

approach with results using an unstructured discrete fracture model (USDFM) 

for synthetic models with complex fracture patterns. 

 Simulations also show that the dual permeability model fails to provide 

accurate solutions in the presence of large-scale fractures and high localized 

anisotropy. 
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Chapter 7: Incorporation of Dynamic Behavior of Fractures into EDFM 

 

One advantage of the embedded discrete fracture model (EDFM) developed in 

this research is that it can be easily extended to many applications by incorporating 

different physics in the model. For instance, a number of studies have demonstrated the 

dynamic behavior of fractures with pressure changes and the subsequent effects on 

hydrocarbon recovery. Hence, we have incorporated the dynamic behavior of fractures 

into EDFM. In this chapter, we present the methodology used to implement fracture 

deformation into EDFM, followed by several example simulations.  

 

7.1   INTRODUCTION 

Pore pressure changes caused by production from a reservoir or injection into a 

reservoir can induce rock deformations. Fluid-flow characteristics of reservoir rocks, 

such as permeability and pore compressibility, can be very sensitive to effective stress 

changes caused by changes in pore pressure. Settari and Mourits (1998) coupled a 

commercial reservoir simulator with a three-dimensional geomechanics code to account 

for interactions between geomechanics and multiphase flow. Chin et al. (2000) developed 

a fully coupled geomechanics and fluid-flow model to analyze pressure transient 

problems in stress-sensitive reservoirs with nonlinear elastic and plastic constitutive 

behavior. Also, Raghavan and Chin (2004) presented correlations to evaluate productivity 

losses owing to permeability changes in stress-sensitive reservoirs. Gutierrez et al. (2001) 

discussed the issues related to the interaction between rock deformation and fluid-flow 
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behavior of hydrocarbon reservoirs. Moreover, Samier et al. (2006) discussed and 

compared various approaches to perform coupled reservoir-geomechanical simulations.  

The effect of geomechanics on fluid flow is more crucial in fractured media due 

to presence of fissures, which might be more stress-sensitive than the rock matrix.  

Fractures are the major conduits for fluid flow in fractured reservoirs and thus, fracture 

permeability plays an important role in production. The flow characteristics of fractures 

are significantly affected by effective normal stress acting on them. Bandis et al. (1983) 

and Barton et al. (1985) presented laboratory experiments on fractured cores to propose 

an unfilled joint deformation model. Also, experiments conducted by Wilbur and Amedei 

(1990) and Makurat and Gutierrez (1996) showed that the transmissivity of a fracture 

depends on the stress acting on that fracture. Likewise, Lorenz (1999) discussed stress 

sensitivity of fractures in several reservoirs wherein variations in reservoir deliverability 

during production are caused by changes in permeability of the fractured system.  

Moreover, Pinzon et al. (2000) presented field data indicating that the fracture 

permeability is dynamic rather than static and declines with pressure depletion. In spite of 

extensive experimental and field studies that have demonstrated the dynamic behavior of 

fractures, flow characteristics of fractures have been often treated as static parameters in 

simulations of naturally fractured reservoirs. Hence, changes in fracture aperture, 

porosity, and permeability with pressure changes should be accounted for in modeling 

fractured systems. 

A coupled fluid-flow and geomechanics model is required for a better 

understanding and accurate modeling of naturally fractured reservoirs.  Bai et al. (1999) 

are among the first who considered the effect of fracture deformation on permeability in 

flow simulations but they neglected the non-linearity of fracture deformation.  Later, Pao 

and Lewis (2002), Shchipanov and Nazarov (2005), Zhao and Chen (2006), Shchipanov 
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and Rusakov (2008), Khalili (2008), Bagheri and Settari (2008), Tao et al. (2009), and 

Ranjbar et al. (2011) incorporated fracture geomechanics into modeling of naturally 

fractured reservoirs. For example, Bagheri and Settari (2008) included the effect of 

fractured-media deformation into a dual porosity approach by incorporating dynamic 

tensor permeability for fractures.  None of the above-mentioned studies considered 

discrete fracture network modeling. There have been very few attempts to couple flow 

and geomechanics in discrete fractures models.  An attempt was made by Monteagudo et 

al. (2011) who coupled a finite-element poroelastic code with a control volume discrete 

fracture flow simulator. 

We have incorporated the dynamic behavior of fractures into EDFM.  The model 

allows inclusion of the impact of stress regime on fluid flow in a 3D discrete fracture 

network. We use empirical joint models to represent normal deformation of pre-existing 

natural fractures and couple them with the EDFM approach. Using these models, the 

aperture and permeability of an arbitrarily-oriented fracture become functions of the 

effective normal stress acting on the fracture plane. In addition, we allow for fracture-

conductivity tables to model dynamic behavior of propped hydraulic fractures in 

stimulated reservoirs. 

In the following sections, we first describe empirical joint models that relate 

deformation of fractures to effective stress changes. We also describe the methodology 

used to couple the discrete fracture model with fracture deformation. Several examples 

are then presented to demonstrate the dynamic behavior of fractures and its impact on 

hydrocarbon production in naturally fractured reservoirs.  We illustrate the dependency of 

fracture aperture and permeability on pressure changes during simulations. Furthermore, 

we examine the dynamic behavior of propped hydraulic fractures in unconventional gas 

reservoirs. 
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7.2   FRACTURE DEFORMATION 

Fully-coupled geomechanics and flow models can provide an accurate 

environment to incorporate geomechanical effects into fluid-flow simulation of fractured 

reservoirs. In these models, mechanical deformation of rock and fractures is numerically 

simulated. However, fully-coupled approaches for modeling fractured systems are 

numerically difficult and complex to implement and computationally expensive. In order 

to include dynamic behavior of fractures in the simulation of fractured reservoirs, one 

simplified approach is to use stress- or pressure-dependent empirical models for fracture 

deformation. In this section, first, we present empirical models that describe dynamic 

behavior of natural fractures with pressure changes. Then, we describe pressure-

dependent conductivity of propped hydraulic fractures. 

 

7.2.1   Deformation of Natural Fractures 

Pore pressure depletion due to hydrocarbon production induces more compression 

on fracture planes, thereby reducing the fracture aperture.  Goodman (1974) explained the 

basic mechanics of joint normal deformation and performed experiments to show that the 

joint closure under increasing normal stress varies in a non-linear manner resembling a 

hyperbola.  Later, Bandis et al. (1983) and Barton et al. (1985) used a large number of 

experimental data on interlocked block samples with natural unfilled joints. They 

conducted experiments on fresh and weathered joint samples from five rock types, 

namely slate, dolerite, limestone, siltstone, and sandstone.  The interlocked joint samples 

were subjected to a sequence of loading/unloading cycles. Figure 7.1 shows typical 

normal stress vs. closure curves calculated from the experiments.  
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(a)                            (b) 

Figure 7.1: Normal stress (σn) vs. closure (ΔVj) curves for a range of (a) fresh joints and 

(b) weathered joints in different rock types, under repeated loading cycles 

(from Bandis et al., 1983). 
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Based on their experimental data, Bandis et al. (1983) and Barton et al. (1985) 

suggested a hyperbolic model for the normal deformation of fractures as given below: 

௡ߪ =
௡ܽܦ − ௡ܦܾ 			,																																																																																																														(7.1) 

where σn is the effective normal stress and Dn is the normal closure of fracture.  Also, a 

and b are constants related to two joint parameters, initial normal stiffness and maximum 

joint closure. For very large values of normal stress, the fracture closure reaches its 

maximum and thus, ܦ௡௠௔௫ = ܽ ܾൗ 		,																																																																																																																(7.2) 

where Dnmax is the maximum normal closure of fracture.  Also, joint normal stiffness (Kn) 

is defined as the ratio of change in normal stress to change in normal closure and can be 

obtained from the derivative of Equation 7.1 as 

௡ܭ =
௡ܦ௡݀ߪ݀ =

1ܽ ቀ1 − ܾܽ ௡ቁଶܦ 		.																																																																																						(7.3) 

The normal stiffness at zero normal stress is called the initial normal stiffness (Kni), 

which corresponds to zero normal closure and can be written as 

௡௜ܭ = 1 ܽൗ 		.																																																																																																																						(7.4) 

Hence, two basic joint parameters, initial normal stiffness and maximum normal closure, 

uniquely define the hyperbolic relationship between normal stress and closure of a 

fracture. These parameters can be determined experimentally. Thus, we can calculate the 

normal fracture closure in terms of joint parameters and normal effective stress (using 

Equations 7.1, 7.2, and 7.4), which is given by 
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௡ܦ =
௡௠௔௫ܦ௡௜ܭ௡ߪ௡௠௔௫ܦ + ௡ߪ 			.																																																																																																(7.5) 

Normal stress (Sn) acting on a fracture plane can be calculated by considering the 

orientation of the fracture with respect to the in-situ stress field. If principal in-situ 

stresses act in the x, y, and z directions, then the normal stress acting on an arbitrary-

oriented fracture plane is resolved by 

ܵ௡ = ݊௫ଶܵ௫௫ + ݊௬ଶܵ௬௬ + ݊௭ଶܵ௭௭ 		,																																																																																			(7.6) 

where nx,  ny, and nz are the directional cosines of the angles between the normal of the 

fracture plane and the principal stress axes, and Sxx, Syy, and Szz are the present-day 

principal stresses acting in the x, y, and z directions, respectively. Subsequently, effective 

normal stress can be calculated by  

௡ߪ = ܵ௡ − ௣ܲ		,																																																																																																																	(7.7) 

where Pp is the pore pressure. Hence, in anisotropic stress field, different fracture planes 

experience different normal deformation depending on their orientations. The Barton-

Bandis model is the most commonly applied deformation model for natural fractures in 

reservoir conditions. Other empirical models also exist which relate fracture normal 

closure to effective normal stress. For example, Evans et al. (1992) suggested a 

logarithmic relationship for fracture normal deformation but this model cannot be used at 

highly stressed in-situ conditions. Compared to normal deformation, fracture deformation 

behavior under shear stress is more complicated and requires a complex mathematical 

modeling. Furthermore, the effect of shear stress on fracture flow properties is secondary. 

Thus, we only consider the normal deformation of fractures in this study.   
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In order to incorporate the dynamic behavior of fractures into EDFM, one 

simplified approach is to use stress- or pressure-dependent empirical models for fracture 

deformation rather than fully coupled fluid-flow and geomechanics models, which are 

more complicated and computationally expensive. Therefore, we use the non-linear 

Barton-Bandis joint model to represent deformation of natural fractures and couple it 

with the EDFM approach. As a result, fracture properties (aperture, porosity, and 

permeability) become functions of the effective normal stress acting on the fracture 

plane. At the end of each time-step in reservoir simulation, effective normal stress and 

normal closure are re-calculated for each fracture. Also, fracture permeability (kf), which 

is proportional to the fracture aperture square according to the Poiseuille law, is updated 

by 

݇௙ = ݇௙௜ ቆ ௙߱௙߱௜ቇଶ 	,																																																																																																												(7.8) 

where ௙߱  is the new fracture aperture and subscript i denotes the properties at the initial 

conditions. For the EDFM approach, as described in Chapter 4, we compute the 

transmissibility between fracture control volumes in the fracture domain, the 

transmissibility between matrix grids and fracture control volumes (connected through 

non-neighboring connections), the transmissibility between intersecting fractures (also 

connected through non-neighboring connections), and the transmissibility between 

fractures and wells using a pre-processing code prior to reservoir simulation.  Hence, at 

the end of each time-step we re-calculate all these transmissibilities using the updated 

values of fracture apertures and fracture permeabilities. The new porosities, 

permeabilities, and transmissibilities are then returned to the flow equations for the next 

time-step.  
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7.2.2   Deformation of Propped Hydraulic Fractures 

Apart from naturally fractured reservoirs, development of unconventional 

resources through hydraulic fracturing of horizontal wells has received increased 

attention in the last few years. Hydraulic fracture conductivity is a key parameter to 

economic development of low-permeability reservoirs. However, the conductivity of 

hydraulic fractures is significantly reduced by pressure depletion.  Fracture-deformation 

empirical models, previously mentioned, are appropriate for describing dynamic behavior 

of pre-existing natural fractures in in-situ conditions and are not necessarily applied to 

propped hydraulic fractures.   

Some effort has been made to investigate the effect of closure stress on hydraulic 

conductivity of proppant packs. Maloney et al. (1989) showed that the proppant packs 

may crush under stress leading to reduction in the fracture porosity.  Likewise, Fredd et 

al. (2001) presented laboratory data showing the effect of closure stress on propped 

fracture conductivity for a rock with relatively high Young’s modulus.  Therefore, recent 

studies such as Rubin (2010) and Cipolla et al. (2010) used specific closure-stress-

conductivity tables in the simulation of unconventional reservoirs to account for the 

dynamic behavior of hydraulic fractures. Closure stress acting on the hydraulic fracture is 

defined as the horizontal stress perpendicular to the fracture minus the pressure inside the 

fracture.  Hence, for dynamic treatment of fractures in the EDFM approach we allow for 

closure-stress-conductivity tables as well as empirical fracture closure models.  
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7.3   EXAMPLE SIMULATIONS 

In this section, we present several examples to investigate the effect of pressure-

dependent fracture aperture and permeability on production of fractured reservoirs. The 

first set of examples investigates the effect of fracture deformation on oil production from 

naturally fractured reservoirs using the Barton-Bandis empirical joint-deformation model. 

The second example compares gas production from a hydraulically-fractured low-

permeability reservoir under static and dynamic treatments of fractures.  

 

7.3.1   Depletion of an Oil Reservoir 

A synthetic 2D model reservoir shown in Figure 7.2 is evaluated in the first 

example, which is used as the base case. The model contains a few long, vertical, and 

highly-conductive fractures. Reservoir dimensions are 1000×1000×50 ft. A vertical well 

is located at the center of the model and intercepted by one long fracture. All fractures 

and the well completely penetrate the height of the formation. The reservoir fluid is oil 

with specific gravity of 0.74 and viscosity of 1.5 cp, and the formation porosity and 

permeability are 0.26 and 0.1 md, respectively.  Also, the formation temperature and the 

rock compressibility are 120°F and 5×10
-6

 psi
-1

, respectively. The water saturation in 

rock matrix is at the irreducible water saturation of 0.2 and the endpoint relative 

permeability of oil is 0.8.   

The initial reservoir pressure is 4000 psi and the vertical well produces at a 

constant bottomhole pressure of 2000 psi, which is above the bubble point pressure.  The 

vertical stress is 7500 psi while the minimum horizontal stress (Shmin) and maximum 

horizontal stress (SHmax) are 4500 psi and 7200 psi, respectively, representing high 

horizontal stress anisotropy. Fractures are oriented at different angles ranging from 

parallel-to-Shmin to parallel-to-SHmax. Also, initial normal stiffness and maximum closure 



 150 

for all fractures are 7×10
4
 psi/ft and 0.011 ft, respectively. Initial aperture of fractures are 

assigned using the Barton-Bandis model and assuming that the maximum aperture size is 

equal to the maximum closure and corresponds to zero effective normal stress.  By re-

writing Eq. 7.5, we can calculate the fracture aperture as 

௙߱ = ௡௠௔௫ܦ 	 ௡௠௔௫ܦ௡௜ܭ௡௠௔௫ܦ௡௜ܭ + ௡ߪ 		.																																																																																			(7.9) 

Thus, fractures have different initial apertures, ranging from 0.65 to 2.03 mm.  Initial 

permeability of fractures, which is proportional to the square of initial fracture aperture, 

therefore ranges from 43 to 418 Darcies.  

 

  

 

 

Figure 7.2: A synthetic 2D fractured reservoir (1000×1000×50 ft) considered in the first 

example. Three fractures are shown with numbers for detailed investigation 

during production. 
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The matrix grid is 45×45×1 cells in x, y, and z directions, respectively, and there 

are 267 fracture control volumes in the fracture domain, representing 14 discrete fractures 

in the model. We investigate the behavior of three fractures, which are shown with 

numbers in Figure 7.2, in more detail. The first fracture is directly connected to the 

wellbore while the second and third fractures are oriented parallel to SHmax and Shmin, 

respectively. Figure 7.3 shows the ratio of fracture aperture to the maximum closure 

(maximum aperture) for the given joint parameters, depicting the nonlinear relationship 

of effective normal stress and fracture closure. At the initial conditions, Fracture 2, which 

is perpendicular to Shmin, is under the lowest effective normal stress (marked with a red 

circle in Figure 7.3) and has the largest initial aperture among fractures while Fracture 3, 

which is perpendicular to SHmax, is under the highest effective normal stress (marked with 

a blue square in Figure 7.3) and has the smallest initial aperture. This suggests that the 

fractures oriented normal to the minimum principal stress are the most conductive.   

Since the pressure drawdown in this example is 2000 psi, pressure inside each 

fracture may decrease by 2000 psi during simulation.  After pressure depletion of 2000 

psi in the fractures, Fracture 2 would lose 61% of its initial aperture (as shown in Figure 

7.3) and subsequently, lose 85% of its initial permeability.  However, Fracture 3 would 

lose 33% of its initial aperture and 55% of its initial permeability.  Therefore, fractures 

under lower initial effective normal stress are prone to larger aperture decline and 

permeability loss due to pressure depletion. That is, the rate of deformation is greatest at 

low values of normal stress.   

Figure 7.4a shows the pressure histories simulated for a segment of the above-

mentioned fractures over two years of production.  Correspondingly, Figure 7.4b presents 

the permeability profiles of the fractures during simulation. Fracture 1, which is 

intercepted by the wellbore, experiences a rapid pressure drop over the first days of 
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production, which results in significant reduction in its hydraulic conductivity.  However, 

fractures 2 and 3 undergo moderate pressure depletion over the simulation duration.  

Figure 7.4b indicates that the permeabilities of fractures 1, 2, and 3 are reduced to 0.38, 

0.25, and 0.59 of their initial values, respectively, over two years of production. 

 

 

Figure 7.3: Ratio of fracture aperture to the maximum closure calculated by the Barton-

Bandis model. Initial normal stiffness is 7×10
4
 psi/ft and maximum fracture 

closure is 0.011 ft. 
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(a) 

 

(b) 

Figure 7.4: Comparison of (a) pressure and (b) permeability profiles simulated for three 

fractures, shown with numbers in Figure 7.2, over two years of production. 
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Taking into account the dynamic behavior of fractures, slower reservoir depletion 

and lower hydrocarbon recovery are expected due to reduction of fracture network 

conductivity, compared to static treatment of the fractures. Figure 7.5 compares the 

pressure profiles after 150 days of production for dynamic and static cases, demonstrating 

a smaller depleted area in the dynamic case. The pressures of fractures are also mapped 

back to their original locations and depicted in the profiles. Furthermore, Figure 7.6 

shows the history of oil production rate and cumulative oil production for both cases.  

When properties of fractures are pressure-dependent, the total oil production after two 

years is 27.5% lower than the one associated with the static case. Thus, considering 

fracture closure induced by production and pressure depletion can be very important in 

evaluating production from fractured reservoirs. However, dynamic treatment of fractures 

does not always result in such a substantial difference. The significance of this effect 

depends on many parameters involved in the dynamic behavior of fractures as well as 

parameters determining the degree of contribution of fractures in the production. The 

computational times for the dynamic and static simulations were 1.8 and 2.0 minutes, 

respectively. 
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(a) 

 

 
(b) 

 

 
Pressure, psi 

Figure 7.5: Pressure profiles after 150 days of production simulated by the coupled 

model when (a) fracture properties are pressure-dependent, and (b) fracture 

properties are constant during production.   
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(a) 

 

(b) 

Figure 7.6: History of (a) oil production rate, and (b) cumulative oil production over 

two years of production, for the dynamic and static treatments of fractures in 

the simulations.   
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We repeated the simulations for another scenario, which retains the same fracture 

network and parameters as the base case, but the initial normal stiffness is increased to 

3×10
5
 psi/ft.  That is, natural fractures are stiffer compared to the previous case.  Similar 

to Figure 7.3, Figure 7.7 shows the ratio of fracture aperture to the maximum closure, 

calculated by the Barton-Bandis model, for the new joint parameters. Comparison of 

these figures leads to the conclusion that the initial aperture and permeability of fractures 

are larger in this case. More importantly, the aperture decline and the permeability loss 

caused by pressure depletion are smaller in the new scenario. Upon 2000 psi pressure 

drawdown in fractures, Fracture 2 (in Figure 7.2) would lose 34% of its initial aperture 

and 56% of its initial permeability.  Also, Fracture 3 (in Figure 7.2) loses 23% of its 

initial aperture and 41% of its initial permeability. As these fractures are stiffer, the 

reductions in their conductivities are not as severe as those reported for the base case.   

 

 

Figure 7.7: Ratio of fracture aperture to the maximum closure calculated by the Barton-

Bandis model. Initial normal stiffness is 3×10
5
 psi/ft and maximum fracture 

closure is 0.011 ft. 
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Figure 7.8 compares the cumulative oil production for dynamic and static 

treatments of fractures, indicating a much smaller difference between both treatments 

compared to the base case. When fracture properties are pressure-dependent, the total oil 

production after 1 and 2 years are 6.6% and 2.5% lower than the ones calculated 

assuming that fracture properties are constant. Consequently, the influence of fracture 

deformation on production strongly depends on parameters controlling the deformation 

behavior of fractures, such as the initial normal stiffness.  

 

 

 

Figure 7.8: History of cumulative oil production over two years of production for the 

dynamic and static treatments of fractures in the simulations. 
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In order to show the applicability and performance of the coupled geomechanics-

EDFM approach for realistic simulation of fractured reservoirs, additional simulations 

were performed on a synthetic 3D model reservoir shown in Figure 7.9.  The model 

reservoir represents a naturally fractured reservoir wherein a large number of fractures 

with various heights, lengths, orientations, spacings, and network connectivity are 

present.  The reservoir dimensions are 1000×1000×75 ft and a vertical well is located at 

the center of the reservoir and perforated along the total height of the formation. The 

model reservoir contains a total of 148 vertical and slanted natural fractures.  The matrix 

grid is 45×45×3 cells in x, y, and z directions, respectively.  Some fractures penetrate all 

three numerical layers while the rest of them penetrate only one or two layers. All 

parameters in the simulations are identical to those used in the base case. 

 

 

 

Figure 7.9: A synthetic 3D model reservoir (1000×1000×75 ft) that contains a total of 

148 vertical and slanted natural fractures. 
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Figure 7.10 shows the pressure profiles after 150 days of production, computed by 

the coupled geoemchanics-EDFM approach.  The first and second rows correspond to the 

dynamic and static treatments of fractures, respectively.  For the sake of completeness, 

pressure profiles in all three numerical layers are presented in Figure 7.10, depicting 

different pressure depletion patterns in various layers due to the presence of randomly-

generated natural fractures. Again, slower pressure depletion is observed when fracture 

properties are pressure-dependent. Also, Figure 7.11 compares cumulative oil production 

and average reservoir pressure over two years of production for dynamic and static cases.  

The total oil production after two years calculated by the dynamic treatment of fractures 

is 0.86 of that computed assuming fracture properties are static. Similarly, the average 

reservoir pressure drop after two years in the dynamic case is 979 psi, which is 0.86 of 

that for the static case (1135 psi). The computational times for the dynamic and static 

simulations were 63.8 and 60.4 minutes, respectively, indicating that incorporating 

dynamic behavior of fractures into EDFM does not degrade the computational 

performance of EDFM. 
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     (a)          (b) 
Pressure, psi 

 
 

Figure 7.10: Profiles of pressure after 150 days of production for the (a) dynamic and (b) 

static treatments of fractures. The first, second, and third rows correspond to 

the top, middle, and bottom layers of the reservoir shown in Figure 7.9. 
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(a) 

 

 
(b) 

Figure 7.11: History of (a) cumulative oil production, and (b) average reservoir pressure 

over two years of production from the model reservoir shown in Figure 7.9. 

Comparisons are made between the dynamic and static treatments of 

fractures. 
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7.3.2   Depletion of an Unconventional Gas Reservoir 

The purpose of the second example is to investigate the effect of hydraulic 

fracture closure resulting from pressure depletion in an unconventional gas reservoir 

shown in Figure 7.12. The reservoir dimensions are 3000×1500×50 ft.  The model 

contains five transverse hydraulic fractures with 600-ft spacing. All vertical fractures 

intercept a common horizontal well and penetrate the entire height of the formation.  

Also, they are perpendicular to the minimum horizontal stress, which is 5000 psi.  The 

half-length of all fractures is 150 ft. The formation porosity, temperature, and the rock 

compressibility are 0.03, 120°F, and 1×10
-6

 psi
-1

, respectively. The water saturation in the 

rock matrix is at the irreducible water saturation of 0.2 and the endpoint relative 

permeability of gas is 1.0.  The initial reservoir pressure is 3800 psi and the horizontal 

well produces at a constant bottomhole pressure of 1000 psi. All fractures are propped 

and thus, we do not use the Barton-Bandis model for the dynamic behavior of hydraulic 

fractures.  Instead, we use Table 7.1, which relates the conductivity of hydraulic fractures 

(fracture aperture times fracture permeability) to the closure stress acting on them.   

 

 

Figure 7.12: A 2D model representing an unconventional gas reservoir, which is 

considered in the second example. The model comprises a 2400-ft 

horizontal well (brown line) and five transverse hydraulic fractures (blue 

planes). 



 164 

We examine gas production for two matrix permeabilities, 0.0001 and 0.001 md. 

The matrix grid is 85×31×1 cells in x, y, and z directions, respectively.  In order to 

achieve higher accuracy, the gridblocks around the hydraulic fractures and the wellbore 

are moderately refined. Figure 7.13 shows the pressure profiles after 15 years of 

production, simulated by the coupled geomechanics-EDFM approach, for both matrix 

permeabilities examined. Significantly greater pressure depletion is seen for the case of 

0.001 md matrix permeability compared to the case of 0.0001 md.   

Also, Figure 7.14 compares the cumulative gas production calculated by the 

dynamic and static treatments of hydraulic fractures for both scenarios. When matrix 

permeability is 0.0001 md, the effect of hydraulic fracture closure with pressure depletion 

is very small and results in 2.1% lower gas recovery after 30 years.  However, the effect 

is more pronounced for the case of 0.001 md matrix permeability. That is, total gas 

production would be overestimated by 5.5% if we neglect the dependency of hydraulic 

fracture conductivity on pressure changes.  At the beginning, hydraulic fractures in both 

cases behave like infinite-conductivity fractures. After conductivity reduction due to 

pressure depletion, hydraulic fractures in the first scenario (km = 0.0001 md) still behave 

close to that of infinite-conductivity fractures, while in the second scenario (km = 0.001 

md), they behave like finite-conductivity fractures, resulting in a considerable difference 

in production between dynamic and static treatments of hydraulic fractures. Thus, 

creating sufficiently high-conductivity fractures during stimulation treatment of low 

permeability reservoirs could mitigate the adverse effect of fracture closure on production 

to a good extent. The computational times for all four cases presented here were less than 

2 minutes. However, more realistic simulation of unconventional gas reservoirs requires 

incorporating the effect of gas desorption and non-Darcy flow, which were neglected in 

this example. 
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Table 7.1: Conductivity of hydraulic fractures in Figure 7.12 versus closure stress  

 

 
(a) 

 
(b) 

 

 
Pressure, psi 

Figure 7.13: Pressure profiles after 15 years of production when fracture properties are 

pressure-dependent and formation permeability is (a) 0.0001 md, and (b) 

0.001 md.  

 

Closure stress, psi 1200 1500 2000 2500 3000 3500 4000 

Fracture conductivity, md-ft  21.50 12.82 6.24 2.51 1.45 0.92 0.61 
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(a) 

 
(b) 

 Figure 7.14: Comparison of the cumulative oil production over 30 years for the dynamic 

and static treatments of hydraulic fractures when formation permeability is 

(a) 0.0001 md, and (b) 0.001 md. 
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7.4   DISCUSSION  

The study presented in this chapter is among the first attempts to couple 

geomechanics and flow for a discrete fracture model. That is, we incorporated the effect 

of fracture geomechanics into EDFM in order to simulate naturally fractured reservoirs 

more accurately. We used the empirical fracture-closure models to account for normal 

deformation of fractures, which is caused by changes in effective normal stress acting on 

the fracture and leads to fracture permeability reduction with pressure depletion. 

Nevertheless, in some special cases where fractures are very weak, fracture permeability 

could be enhanced by production due to shear deformation. Likewise, dynamic treatment 

of rock-matrix properties may affect production in fractured systems. Therefore, the 

developed model can be improved by including matrix geomechanics and fracture shear 

deformation, which were neglected in this study.  However, the effect of shear stress on 

flow characteristics of fractures is not well understood. Also, we considered the static 

impact of stress regime on fracture conductivity while, in order to accomplish more 

realistic simulations of fractured reservoirs, the impact of fractures and production on 

local changes of stress field should be taken into account. Fully-coupled geomechanics-

flow simulations, wherein mechanical deformation of rock and fractures is numerically 

simulated, can handle the effect of geomechanics more precisely, but they are very 

complex and computationally-expensive. The coupling approach presented in this study 

does not degrade the computational performance of a discrete fracture model, even 

though its measure of accuracy should be evaluated by comparison to a fully-coupled 

geomechanics-flow model.   
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7.5   HIGHLIGHTS OF THE CHAPTER 

 One advantage of the EDFM approach is its extensibility for various 

applications by incorporating different physics in the model. 

 The dynamic behavior of fractures is incorporated into EDFM. The coupled 

approach allows considering the impact of stress regime on fluid flow in a 3D 

discrete fracture network. 

 The non-linear Barton-Bandis joint model is used to represent normal 

deformation of pre-existing natural fractures. Also, fracture-conductivity 

tables are allowed to model dynamic behavior of propped hydraulic fractures 

in stimulated reservoirs.  

 Several examples are presented to demonstrate the applicability and 

performance of the developed model for simulating fractured reservoirs.   

 Using the Barton-Bandis model, fractures under lower initial effective normal 

stress are prone to larger aperture decline and permeability loss with pressure 

depletion. 

 Consideration of dynamic behavior of fractures substantially affects pressure 

depletion and hydrocarbon recovery. The significance of such effects on 

production strongly depends on parameters controlling the deformation 

behavior of fractures. 

 Creating sufficiently high-conductivity fractures during stimulation treatment 

of low permeability reservoirs can mitigate the adverse effect of hydraulic 

fracture closure to a good extent. 

 Implementation of fracture geomechanical effects in EDFM did not degrade 

the computational performance of EDFM. 
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Chapter 8:  A Coupled Dual Continuum and Discrete Fracture Model 

for Application in Unconventional Reservoirs 

 

Accurate modeling of hydrocarbon production is a necessary, yet challenging step 

for economic exploitation of unconventional resources. One of the main challenges is to 

model flow to a horizontal well from a complex network of hydraulic and natural 

fractures. Many unconventional reservoirs comprise well-developed natural fracture 

networks with multiple orientations and complex hydraulic fracture patterns based on 

microseismic data. Conventional dual porosity and dual permeability models are not 

adequate for modeling these complex networks of natural and hydraulic fractures. Also, it 

is neither practical nor advantageous to model a large number of pre-existing fractures 

with a discrete fracture model.  

An appropriate approach to model production from these reservoirs is to perform 

discrete fracture modeling for hydraulic fractures and employ a dual continuum approach 

for numerous natural fractures. We have developed a coupled dual continuum and 

discrete fracture model to efficiently overcome challenges for the simulation of 

unconventional reservoirs. In this chapter, we present the methodology used to 

implement the coupled approach followed by several example simulations. 

 

8.1   INTRODUCTION 

The exploitation of unconventional reservoirs is increasingly a major source of 

short- and long-term energy in the United States. The economic development of 

unconventional oil and gas hinges in part on effective stimulation of low-permeability 
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rock through multi-stage hydraulic fracturing of horizontal wells. To achieve this goal, 

accurate characterization and simulation of production is necessary for selecting the best 

stimulation strategy. However, the presence of highly-conductive hydraulic fractures 

neighboring tight or ultra-tight rock matrix makes numerical simulation of fluid flow very 

challenging.   

Challenges for the simulation of unconventional reservoirs are not limited to the 

large contrast between the permeability of hydraulic fractures and their neighboring tight 

rock matrix. Many shale gas units and tight sandstones contain numerous embedded 

natural fractures, making the numerical simulation of these unconventional reservoirs 

more challenging. Although recent advances in seismic technology have improved 

mapping of fracture orientations and densities in unconventional reservoirs, detailed 

characterization of pre-existing natural fractures is often unavailable.  Another substantial 

challenge for unconventional reservoir simulations is the presence of complex hydraulic 

fracture geometry.  Warpinski et al. (1993) and Fast et al. (1994) presented observations 

of multi-stranded fracture propagation in cores drilled across expected hydraulic fracture 

planes and challenged the conventional assumption of single, planar hydraulic fracture 

propagation. Moreover, complexity of hydraulic fracture propagation became more 

evident over the last decade with the prevalent application of fracture diagnostic 

measurements. Maxwell et al. (2002) and Fisher et al. (2005) interpreted microseismic 

data in the Barnett Shale and observed significant branching of hydraulic fractures, likely 

the result of opening pre-existing natural fractures.  Also, Weng et al. (2011) showed that 

low in-situ stress anisotropy and pre-existing natural fractures play important roles in 

creating fracture network complexity.   
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Analytical approaches for predicting production in unconventional reservoirs do 

not consider a complex network of fractures with multiple orientations. Also, Cipolla et 

al. (2011) showed that dual porosity models are not adequate for simulating complex 

fracture patterns. They presented flow simulations indicating that neither early-time rate 

nor estimated ultimate recovery is captured by the dual porosity approach. Hence, we 

have developed a coupled dual continuum and discrete fracture method to simulate 

production from unconventional reservoirs. Large-scale hydraulic fractures (macro-

fractures) are modeled explicitly using EDFM and numerous small-scale natural fractures 

(micro-fractures) are modeled using a dual continuum approach.   

In this chapter, we first describe the methodology used for dual continuum 

modeling of numerous small-scale natural fractures. Then, we consider a synthetic tight 

oil reservoir including multi-stage hydraulic fractures and numerous natural fractures to 

evaluate the accuracy and performance of the coupled approach by comparing its results 

with the results using the EDFM approach. We also present several examples to 

demonstrate the applicability and robustness of the hybrid approach for simulating 

unconventional reservoirs. We examine multi-stage hydraulic fractures with multiple 

configurations in the presence of numerous pre-existing fractures. We also examine 

production from a tight gas reservoir wherein hydraulic fractures partially penetrate the 

formation height. Finally, we discuss the physics, which may affect fluid flow in 

unconventional reservoirs, leading to the conclusion that the hybrid model presented in 

this chapter can be easily extended to develop a complete and robust unconventional 

reservoir simulator. 
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8.2   METHODOLOGY 

Large-scale hydraulic fractures provide the main conduits for production of 

unconventional resources. Thus, a discrete fracture model that can accurately evaluate 

production from these fractures is preferred to a dual continuum model. Moreover, DFMs 

allow for complex hydraulic fracture geometry that exists in shales. Compared to 

hydraulic fractures, numerous small-scale natural fractures play a secondary, yet 

important role in unconventional oil and gas recovery.  Detailed characterization of pre-

existing natural fractures is still challenging for geologists and engineers so that it is 

neither practical nor advantageous to model a large number of natural fractures with a 

discrete fracture model.  Hence, a dual continuum approach is ideal for modeling these 

numerous small fractures.  The approach used here is to couple a DFM to account for the 

large-scale hydraulic fractures with a dual continuum model that accounts for flow in the 

naturally fractured networks. We use the EDFM approach for the large-scale hydraulic 

fractures. As demonstrated in the previous chapters, EDFM allows for not only transverse 

and longitudinal hydraulic fractures but also macro-fractures of any orientation.  

Therefore, the coupled model is a type of triple porosity approach, including three 

domains:  

1. Matrix domain  

2. Discrete-fracture domain  

3. Continuum-fracture domain  

The same gridblock sizes are used for all three domains; however, there is no constraint 

for three grid sizes to be the same in the coupled model. Because of the triple porosity 

nature of the model, we must calculate the appropriate transmissibilities between the 

various types of fractures and matrix.  
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To illustrate the methodology used in the coupled model, Figure 8.1a shows a 

synthetic 2D model comprising a 2000-ft horizontal well (brown line), seven transverse 

hydraulic fractures (blue lines) with 300-ft fracture spacing, and 1819 small natural 

fractures (black lines) with various orientations. Figure 8.1b depicts an enlarged region of 

the model in Figure 8.1a showing the grid boundaries and the embedded natural fractures. 

This figure indicates that every gridblock may contain multiple natural fractures, which is 

why a continuum model for those fractures is applicable.   

The transport parameters between matrix and discrete-fracture domains are 

calculated using the same methodology described for the EDFM approach in Chapter 4.  

In order to account for the effect of small natural fractures in the coupled approach, we 

need to properly calculate the following transport parameters associated with the third 

domain (continuum-fracture domain): 

 Transmissibility between fracture cells in the continuum-fracture domain and 

the corresponding matrix gridblocks.  

 Transmissibility between adjacent fracture cells in the continuum-fracture 

domain.  

 Transmissibility between a fracture cell in the continuum-fracture domain and 

a fracture control volume in the discrete-fracture domain if any embedded 

natural fracture within a gridblock intersects a hydraulic fracture segment. 
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(a) 

 

(b) 

Figure 8.1: (a) A synthetic 2D reservoir used to illustrate the methodology applied in 

the coupled model. The model comprises a 2000-ft horizontal well (brown 

line), 7 transverse hydraulic fractures (blue lines), and 1819 small-scale 

natural fractures (black lines). (b) An enlarged region of the model in Figure 

8.1a showing the grid boundaries and the embedded natural fractures. 
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8.2.1   Transport Parameters for Dual Continuum Modeling 

In this section, we describe a systematic approach to calculate the aforementioned 

transport parameters. The subscripts m, F, and f in the forthcoming equations refer to the 

cells in the matrix, discrete-fracture, and continuum-fracture domains, respectively. In 

Chapter 4, we described the concept of non-neighboring connection (NNC) used in 

EDFM and the transmissibilities associated with NNC pairs. In the coupled model, we 

consider a matrix gridblock and its corresponding continuum-fracture gridblock as a 

NNC pair. Fluid communication between them is accounted for in the NNC term shown 

in Equation 4.2. The transmissibility between this NNC pair is a weighted sum of 

transmissibility of individual embedded fractures with the corresponding matrix 

gridblock and is given by  

ܶ௠ି௙ = ෍ (8.1)																																																																																													,								௜ܶ௠ି௙,௜ݓ

ே೙೑
௜ୀଵ  

ܶ௠ି௙,௜ =
݇௠ି௙,௜ܣ௙,௜݀௠ି௙,௜ 				,																																																																																																			(8.2) 

where ௡ܰ௙ is the number of embedded natural fractures in the gridblock, ݓ௜ is the volume 

of the i-th fracture bounded in that gridblock divided by the total volume of fractures in 

that cell, and ܶ௠ି௙,௜ is the transmissibility of the i-th fracture with the matrix gridblock.  

Subsequently, ݇௠ି௙,௜  is the harmonic average of the matrix and fracture permeabilities 

(which is close to the matrix permeability when the natural fracture permeability is much 

greater than the matrix permeability), ܣ௙,௜ is the fracture surface area in the gridblock, 

and ݀௠ି௙,௜  is the average normal distance of the fracture from the matrix gridblock 

calculated using Equation 4.4. Detailed description of parameters used in Equation 8.2 is 

presented in Chapter 4 (see Section 4.2.3.1).  
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Furthermore, if any natural fracture embedded in a gridblock intersects a 

hydraulic fracture segment in that cell, there should be a connection between the 

continuum-fracture gridblock and the corresponding fracture control volume in the 

discrete-fracture domain through a NNC. The transmissibility between this NNC pair is a 

weighted sum of transmissibility of individual embedded fractures with the hydraulic 

fracture segment and is given by 

ிܶି௙ = ෍ ௜ݓ ிܶି௙,௜
ே೙೑
௜ୀଵ 				,																																																																																																		(8.3) 

where ிܶି௙,௜ is the transmissibility of the i-th fracture with the hydraulic fracture segment 

approximated using Equations 4.5 and 4.6 (see Section 4.2.3.2). Clearly, ிܶି௙,௜ is zero if 

two fractures do not intersect within the gridblock.   

In order to calculate the transmissibility of two neighboring fracture cells in the 

continuum-fracture domain, we use the following equation:  

௙ܶభି௙మ = ෍ ௙ݓ
ே೑భష೑మ

௙ୀଵ ௙ܶ					,																																																																																																(8.4) 

௙ܶ =
݇௙ ௙߱ܮ௙݀௙ 					,																																																																																																														(8.5) 

where ௙ܰభି௙మ  is the number of natural fractures crossing both neighboring gridblocks.  

Subsequently, ݓ௙  is the product of the fracture ݓ௜-values in two neighboring gridblocks, ݇௙ is the fracture permeability, ௙߱  is the fracture aperture, ܮ௙ is the length of the 

intersection line of the fracture plane with the common face of two neighboring 

gridblocks, and ݀௙ is the distance between the centers of two fracture segments (see 

Section 4.2.4). If none of the embedded natural fractures in a gridblock extends to a 

neighboring gridblock, then the transmissibility between two gridblocks in the 
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continuum-fracture domain is zero. For instance, the right gridblock in Figure 8.1b has 

zero transmissibility with the gridblock above it.   

The porosity of a fracture cell in the continuum-fracture domain is the total 

volume of natural fractures embedded in a gridblock divided by the bulk volume of the 

gridblock. Hence, if a gridblock contains no embedded natural fractures, then the 

corresponding fracture cell in the continuum-fracture domain is treated as a null block in 

the fluid-flow simulations to avoid increased computational time. We remark here that 

the intersections between embedded natural fractures are neglected in the calculation of 

the transmissibilities described above.   

It can be easily inferred from the above-mentioned equations that the parameters 

for dual continuum modeling of numerous natural fractures are derived by upscaling the 

EDFM equations. Consequently, we have extended our pre-processing code, previously 

developed for EDFM (see Section 4.3), to incorporate the required calculations 

associated with the fracture gridblocks in the continuum-fracture domain. The entire 

model, including the matrix gridblocks, discrete-fracture control volumes, and 

continuum-fracture gridblocks, is then an input into a reservoir simulator, which allows 

for non-neighboring connections and transmissibility modifiers (such as commercial 

reservoir simulators). The governing equations for the fracture cells in the continuum-

fracture domain are similar to those described for the matrix and discrete-fracture 

domains, implying that Darcy’s law is used in the continuum-fracture domain. 
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8.3   ACCURACY AND PERFORMANCE OF THE COUPLED APPROACH 

In this section, we evaluate the accuracy and performance of the coupled dual 

continuum and EDFM approach. Figure 8.2 shows a synthetic 2D reservoir comprising a 

660-ft horizontal well, four identical transverse hydraulic fractures with 220-ft spacing, 

and 740 small-scale natural fractures. The reservoir dimensions are 1200×800×30 ft. The 

half-length, width, and permeability of each hydraulic fracture are 160 ft, 0.025 ft, and 10 

Darcies, respectively. All fractures completely penetrate the height of the formation and 

there is no additional perforated interval along the well. The reservoir fluid is oil with 

specific gravity of 0.82 and viscosity of 0.5 cp, and the formation porosity and 

permeability are 0.08 and 0.001 md, respectively, representing a tight oil reservoir. Also, 

the formation temperature and the rock compressibility are 120°F and 8×10
-6

 psi
-1

, 

respectively. The water saturation in rock matrix is at the irreducible water saturation of 

0.2 and the endpoint relative permeability of oil is 0.8. The aperture and permeability of 

all natural fractures are assumed to be identical and equal to 0.003 ft and 1 Darcy, 

respectively. The initial reservoir pressure is 4000 psi and the horizontal well produces at 

a constant bottomhole pressure of 2000 psi, which is still above the bubble point pressure. 

Table 8.1 summarizes the properties used in the simulations of this section. 

In order to provide a reference solution to evaluate the accuracy of the coupled 

method, we perform an EDFM simulation in which all hydraulic and natural fractures are 

modeled explicitly. For the EDFM simulation, a 150×101×1 matrix grid is used. Also, we 

examine three simulations using the coupled model with different grid resolutions. The 

first, second, and third simulations use 30×21×1, 60×41×1, and 100×67×1 matrix grids, 

respectively. The descriptions of matrix grid for all simulations are given in Table 8.2. 

Figure 8.3 presents profiles of pressure in the matrix domain after 200 days of production 
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calculated by EDFM and coupled simulations. Also, Figure 8.4 compares the oil 

production rate over six years of production.  

As it can be seen, the results of the coupled approach which correspond to the 

60×41×1 and 100×67×1 matrix grids are in close agreement with the results using the 

EDFM approach. The computational time for the EDFM simulation was 74.1 minutes 

and the computational times for three simulations using the coupled approach were 2.1, 

6.3, and 32.6 minutes for various refinements as stated above. 

 

 

 

Figure 8.2: A synthetic 2D reservoir used to evaluate the accuracy of the coupled 

approach. The model comprises a 660-ft horizontal well (brown line), four 

transverse hydraulic fractures (blue lines), and 740 small-scale natural 

fractures (black lines).  
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Table 8.1: Summary of properties used in the simulations performed for the model 

reservoir shown in Figure 8.2. 

 

 

 

 

 

 

Table 8.2: Grid description for the simulations performed for the model shown in 

Figure 8.2. 

 

  

Variable Value Variable Value 

Matrix porosity 0.08 Specific gravity of oil 0.82 

Matrix permeability 0.001 md Oil viscosity 0.5 cp 

Hydraulic fracture half-length 160 ft Reservoir temperature 120° F 

Hydraulic fracture width 0.025 ft Rock compressibility 8×10
-6

 psi
-1

 

Hydraulic fracture permeability 10 D Initial water saturation 0.2 

Natural fracture aperture 0.003 ft Initial reservoir Pressure 4000 psi 

Natural fracture permeability 1 D Producer BHP 2000 psi 

Simulation approach Δx (ft) Δy (ft) 

EDFM - 150×101×1 150×8 49×8, 6, 4, 6, 49×8   

Coupled - 100×67×1 100×12 33×12, 8, 33×12 

Coupled - 60×41×1 60×20 19×20, 16, 8, 16, 19×20  

Coupled - 30×21×1 30×40 9×40, 30, 20, 30, 9×40   
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
Pressure, psi 

Figure 8.3: Pressure profiles simulated by the (a) EDFM approach, (b) coupled model 

using a 100×67×1 matrix grid, (c) coupled model using a 60×41×1 matrix 

grid, and (d) coupled model using a 30×21×1 matrix grid after 200 days of 

production for the reservoir shown in Figure 8.2. 
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Figure 8.4: Comparison of oil production rate over six years of production for the 

reservoir shown in Figure 8.2 calculated by the EDFM approach and three 

simulations using the coupled approach.  
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8.4   EXAMPLE SIMULATIONS 

In this section, we present several examples to demonstrate the applicability, 

robustness, and performance of the coupled model for simulating production from 

unconventional reservoirs. 

 

8.4.1   2D Tight Oil Reservoir 

In the first example, we simulate production from the synthetic 2D reservoir 

shown in Figure 8.1a. The reservoir dimensions are 3000×1500×70 ft. Seven identical 

transverse hydraulic fractures with 300-ft spacing are placed along a 2000-ft horizontal 

well and there is no additional perforated interval along the well. The half-length, width, 

and permeability of each hydraulic fracture are 150 ft, 0.025 ft, and 10 Darcies, 

respectively. The synthetic model resembles a densely-fractured, tight reservoir, which 

comprises 1819 small-scale natural fractures with various lengths and different 

orientations. The intensity of fractures varies in different regions. All other petrophysical 

parameters, fluid properties, and wellbore operating conditions are identical to the 

previous example.  

The matrix grid is 157×77×1 cells in x, y, and z directions, respectively. Table 8.3 

describes the matrix grid used in the simulations of this example. There are 119 fracture 

control volumes, corresponding to seven hydraulic fractures, in the discrete-fracture 

domain, indicating that most gridblocks in this domain are treated as dead blocks in the 

simulations. Also, out of 12089 gridblocks in the continuum-fracture domain, 5771 cells 

do not contain any embedded natural fracture and are null blocks for flow simulations.  

Figure 8.5 shows four pressure profiles after three months, one year, three years, and six 

years of production for the reservoir shown in Figure 8.1a, which is the base case for the 

first example. The dark red areas denote original reservoir pressure and the dark blue 
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represents wellbore bottomhole pressure. The pressures of hydraulic fractures are also 

mapped back to their original locations and depicted in the profiles.  The impact of 

natural fracture network on the reservoir depletion is very clear in Figure 8.5. That is, 

regions with higher intensity of natural fractures experience faster pressure depletion. 

Furthermore, the pressure depletion pattern reflects the presence of locally-connected 

natural fracture networks close to the hydraulic fractures.  

We repeated the simulation in the absence of numerous natural fractures to 

quantify their effect on production of unconventional resources. Figure 8.6 shows four 

pressure profiles in the absence of natural fracture network after three months, one year, 

three years, and six years of production, depicting significantly smaller drainage area 

compared to those shown in Figure 8.5.  Even after six years, oil production is still 

limited to the proximity of the hydraulic fracture network. The profiles presented in 

Figure 8.6 are similar to those in previously published studies, which simulated 

unconventional reservoirs. The profiles shown in Figure 8.5 exhibit the novelty and 

applicability of the coupled model, developed in this study, for realistic simulation of 

fractured, low- permeability reservoirs.   

Figure 8.7 compares oil production rate and average reservoir pressure calculated 

by the coupled model for both simulations, indicating much higher oil production and 

pressure depletion in the presence of the natural fracture network. Also, oil recovery after 

six years of production in the first simulation is about 2 times larger than that of the 

second simulation, emphasizing the noticeable contribution of pre-existing natural 

fractures on total oil production. The computational times for the first and second 

simulations were 67.6 and 2.6 minutes, respectively.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Pressure, psi 

Figure 8.5: Pressure profiles simulated by the coupled model after (a) 3 months, (b) 1 

year, (c) 3 years, and (d) 6 years of production for the reservoir shown in 

Figure 8.1a. 
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Pressure, psi 

Figure 8.6: Pressure profiles simulated by EDFM after (a) 3 months, (b) 1 year, (c) 3 

years, and (d) 6 years of production for the reservoir shown in Figure 8.1a 

but in the absence of the natural fracture network. 
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(a) 

 
(b) 

Figure 8.7: Comparison of (a) oil production rate, and (b) average reservoir pressure, 

over six years of production for the reservoir shown in Figure 8.1a, in the 

presence and absence of the natural fracture network. 



 188 

Additional simulations were made on the previous model reservoir to demonstrate 

the potential use of our coupled approach for optimizing fracture treatments and 

evaluating the efficiency of different completion schemes. We examine two additional 

stimulation schemes while retaining the network of natural fractures. Figure 8.8a shows 

the first scenario in which hydraulic fractures are longer and thinner compared to the base 

case.  The width and half-length of seven hydraulic fractures are 0.015 ft and 250 ft, 

respectively. Likewise, Figure 8.9a shows the second stimulation scheme in which ten 

hydraulic fractures with 200-ft spacing are placed along the horizontal well. In this 

scenario, the width and half-length of hydraulic fractures are 0.0175 ft and 150 ft, 

respectively. Thus, the total volume of hydraulic fractures is identical in all three 

scenarios.  

The pressure profiles after three years of production are depicted in Figure 8.8b 

and 8.9b for both configurations. Likewise, Figure 8.10 compares oil production rate and 

also cumulative oil production for all three stimulation schemes. Despite its higher 

operational costs, creating ten hydraulic fractures is not the best stimulation strategy for 

maximizing production over six years for this model reservoir. However, the stimulation 

scenario with longer and thinner hydraulic fractures significantly improves total oil 

production after six years of production compared to the other two cases (20.5% and 

9.8% higher oil recovery compared to the base and the last cases, respectively). These 

conclusions were made assuming that we want to maximize total production over six 

years. Based on different economic goals for field development, different decisions can 

be made for fracture treatments. The purpose of this example was to show how the 

coupled model can be used efficiently to improve stimulation designs and completion 

strategies. The computational times for simulating the model reservoirs shown in Figures 

8.8a and 8.9a were 74.3 and 76.5 minutes, respectively. 
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(b) 
 

Figure 8.8: (a) A model reservoir which retains the natural fracture network in Figure 

8.1a, but contains longer hydraulic fractures. (b) Pressure profile simulated 

by the coupled model after three years of production for the reservoir shown 

in Figure 8.8a. 
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(b) 

Figure 8.9: (a) A model reservoir which retains the natural fracture network in Figure 

8.1a, but contains ten hydraulic fractures. (b) Pressure profile simulated by 

the coupled model after three years of production for the reservoir shown in 

Figure 8.9a. 
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(a) 

 

 
(b) 

Figure 8.10: Comparison of (a) oil production rate, and (b) cumulative oil production, 

over six years of production for the reservoir models shown in Figures 8.1a, 

8.8a, and 8.9a. 
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As previously mentioned, hydraulic fracture complexity is a common occurrence 

for unconventional reservoirs. Since we use the EDFM approach for modeling hydraulic 

fractures, we can solve for complex hydraulic fracture patterns as well as simple fracture 

geometries. Thus, the next simulation scenario presented retains the same natural fracture 

network as the other cases but includes a multi-stranded, complex hydraulic fracture 

pattern, as depicted in Figure 8.11a. This hydraulic fracture geometry resembles a more 

realistic hydraulic fracture pattern observed in unconventional reservoirs, as 

schematically depicted in Figure 8.11b. All parameters for the simulation except the 

fracture half-length are identical to the base case.  

Figure 8.12 shows pressure profiles after six months and three years of 

production. The first and second rows correspond to the simulations in the absence and 

presence of the natural fracture network, respectively. The pressure maps, especially 

those simulated in the absence of natural fractures, clearly illustrate that pressure 

depletion is primarily limited to the reservoir area directly adjacent to the hydraulic 

fracture network. The computational time for simulating the model reservoir shown in 

Figure 8.11a was 82.3 minutes. 

The pressure maps exhibit the applicability of the EDFM approach for studying 

production performance of horizontal wells with complex hydraulic fracture patterns. 

Capturing the effect of this complexity can be very important in evaluating the 

performance of multi-lateral wells. There has been a considerable debate on the 

desirability of complex fracture growth in low-permeability reservoirs and our modeling 

approach can be used efficiently to shed light on this problem.  
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(a) 

 

 

(b) 

Figure 8.11: (a) A model reservoir which retains the natural fracture network in Figure 

8.1a, but comprises a multi-stranded complex hydraulic fracture pattern. (b) 

Schematic geometry of hydraulic fracture propagation in unconventional 

reservoirs (from the website of University of Michigan). 



 194 

 

 

 
 

Pressure, psi 

 

(a)        (b)  

Figure 8.12: Pressure profiles after (a) 3 months, and (b) 3 years of production for the 

model reservoir shown in Figure 8.11a. The first and second rows show the 

pressure maps simulated in the absence and presence of the natural fracture 

network, respectively. 

    

 

 

Table 8.3: Grid description for various simulations performed in Section 8.4.1. 

 

Reservoir model Grid size Grid description 

Figures 8.1a, 8.8a, 

and 8.11a 
157×77×1 

∆x (ft):  29×20, 6*(16,8,16, 13×20), 16,8,16, 29×20 

∆y (ft):  37×20, 8,6,8, 37×20   

Figure 8.9a 160×77×1 
∆x (ft):  29×20, 9*(16,8,16, 8×20), 16,8,16, 29×20 

∆y (ft):  37×20, 8,6,8, 37×20   
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8.4.2   3D Unconventional Gas Reservoir 

Hydraulic fracture planes are not always vertical, especially when fracturing fluid 

opens up non-vertical natural fractures during stimulation treatment. Here, we simulate 

natural gas production from a synthetic 3D tight reservoir model shown in Figure 8.13. 

The reservoir dimensions are 2000×1000×100 ft.  The model contains three hydraulic 

fractures, represented by blue planes in Figure 8.13, with 500-ft spacing. The left and 

middle hydraulic fractures are inclined 60° and 75°, respectively, from the horizontal 

plane while the right hydraulic fracture is vertical. Furthermore, the hydraulic fractures 

partially penetrate the height of the formation.  That is, the height of hydraulic fractures is 

60 ft, which penetrates from 20-ft to 80-ft in the z direction. The width and permeability 

of each hydraulic fracture are 0.01 ft and 5 Darcies, respectively.  The formation porosity, 

horizontal permeability, vertical permeability, temperature, and the rock compressibility 

are 0.05, 100 nd, 10 nd, 120°F, and 8×10
-6

 psi
-1

, respectively. The water saturation in the 

rock matrix is equal to the irreducible water saturation of 0.2 and the endpoint relative 

permeability of gas is 0.75. Furthermore, the reservoir comprises 1892 small-scale natural 

fractures, presented by red planes in Figure 8.13. The aperture, permeability, and height 

of all natural fractures are 0.002 ft, 500 md, and 20 ft, respectively. The initial reservoir 

pressure is 4500 psi and the horizontal well produces at a constant bottomhole pressure of 

1500 psi. Table 8.4 summarizes the properties used in the simulations of this section. 

The matrix grid is 83×41×5 cells in x, y, and z directions, respectively. The 

description of matrix grid is presented in Table 8.5. The cell dimensions are 20 ft in the z 

direction, indicating that hydraulic fractures penetrate three middle computational layers 

and do not penetrate the first and last ones. Figure 8.14 shows the pressure profiles, 

computed by the coupled model, after ten years of gas production for the first, second, 

fourth, and fifth computational layers. Although none of hydraulic fractures penetrate the 



 196 

first and last layers, a considerable amount of pressure depletion is observed in both 

layers because of vertical proximity to the hydraulic fractures and their neighboring 

depleted areas.  Moreover, due to presence of randomly-generated natural fractures, the 

pressure depletion patterns are different in various layers. We also repeated the 

simulation assuming that hydraulic fractures fully penetrate the formation height. Figure 

8.15 compares the calculated gas production rate for both configurations (partially-

penetrating and fully-penetrating). The total gas production after ten years is 248 MMscf 

and 337 MMscf for partially-penetrating and fully-penetrating fractures, respectively. 

Consequently, 26.4% of total gas production is lost due to inefficient fracturing 

treatment. The computational times for the first and second simulations were 130.1 and 

112.5 minutes, respectively.    

 

 

 

Figure 8.13: A synthetic 3D reservoir studied in Section 8.4.2. The model comprises a 

1200-ft horizontal well (green line), 3 hydraulic fractures (blue planes), and 

1892 small-scale natural fractures (red planes). 
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Table 8.4: Summary of properties used in the simulations performed for the model 

reservoir shown in Figure 8.13. 

 

 

Table 8.5: Grid description for two simulations performed in Section 8.4.2. 

 

  

  

Variable Value Variable Value 

Matrix porosity 0.05 Hydraulic fracture width 0.01 ft 

Matrix horizontal permeability 100 nd Hydraulic fracture 

permeability 

5 D 

Matrix vertical permeability 10 nd Natural fracture aperture 0.002 ft 

Reservoir temperature 120° F Natural fracture 

permeability 

500 md 

Rock compressibility 8×10
-6

 psi
-1

 Initial water saturation 0.2 

Initial reservoir Pressure 4500 psi Producer BHP 1500 psi 

Component :  CH4 

Molecular weight (lb/lb-mol) 16.0 Critical temperature (°R) 343.0 

Acentric factor 0.013 Critical pressure (psia) 667.8 

Parachor 71.0 Critical volume (ft
3
/ lb-mol) 1.6 

Reservoir model Grid size Grid description 

Figure 8.13 83×41×5 

∆x (ft):  19×25, 2*(20,10,20, 18×25), 20,10,20, 19×25 

∆y (ft):  19×25, 20,10,20, 19×25 

∆z (ft):  5×20   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Pressure, psi 

 

Figure 8.14: Pressure profiles simulated by the coupled model after 10 years of 

production in the (a) first, (b) second, (c) fourth, and (d) fifth computational 

layers of the model reservoir shown in Figure 8.13.  
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Figure 8.15: Gas production rate calculated by the coupled model over ten years of 

production for the reservoir shown in Figure 8.13 wherein all hydraulic 

fractures penetrate 60% of the formation height, compared with the one 

calculated for the same reservoir where all hydraulic fractures fully 

penetrate the formation height. 
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8.5   DISCUSSION 

In this chapter, we proposed a hybrid method for the simulation of unconventional 

reservoirs in the presence of a complex hydraulic fracture network and numerous small-

scale natural fractures. The developed approach is designed to precisely and efficiently 

reflect the effect of both hydraulic and natural fractures. However, accurate and reliable 

simulation of unconventional reservoirs requires incorporating all physics, which have 

considerable impact on fluid flow in these reservoirs. For instance, Javadpour et al. 

(2007) discussed the contribution of gas desorption to gas flow in shale plays.  Rubin 

(2010) presented example simulations to quantify the effect of non-Darcy flow in shale 

gas reservoirs. Cipolla et al. (2010) incorporated the effect of stress-dependent fracture 

conductivity in reservoir simulations and showed that the well productivity can be 

significantly reduced in unconventional reservoirs. It should be noted that different 

physics mentioned above were neglected in the example simulations of this chapter, but 

all can be added to the hybrid model in order to develop a complete and robust 

unconventional reservoir simulator.    

The coupled dual continuum and discrete fracture model can be used not only for 

the simulation of unconventional reservoirs but also for simulating naturally fractured 

reservoirs. Natural fracture systems commonly show an asymmetrical distribution of 

fracture sizes, with numerous small fractures and few large fractures. As previously 

mentioned, Lee et al. (2001) presented a hierarchical modeling approach for addressing 

fluid flow in naturally fractured reservoirs. In this approach, small fractures are 

represented by their aggregate effective properties and the large-scale fractures are 

modeled explicitly. An appropriate alternative for this approach is the hybrid method 

presented in this chapter. That is, small fractures are modeled using the proposed dual 

continuum approach and large-scale fractures are modeled explicitly using EDFM.   
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8.6   HIGHLIGHTS OF THE CHAPTER 

 A coupled dual continuum and discrete fracture model is developed to 

simulate production from unconventional reservoirs.   

 Large-scale hydraulic fractures (macro-fractures) are modeled explicitly using 

the EDFM approach. EDFM can handle the complexity of hydraulic fracture 

networks, which is a common occurrence in low-permeability reservoirs. 

 Numerous small-scale natural fractures (micro-fractures) are modeled using a 

dual continuum approach. The parameters for dual continuum modeling of 

numerous natural fractures are derived by upscaling the EDFM equations.   

 The coupled model is similar to a triple porosity approach, including three 

domains: matrix, discrete-fracture, and continuum-fracture domains. A 

systematic approach is devised to calculate transport parameters between all 

three domains. 

 Comparison of the results using the coupled dual continuum and EDFM 

approach with that of using the EDFM approach to represent all natural and 

hydraulic fractures explicitly shows that reasonably accurate results can be 

obtained at much lower computational time by using the coupled approach 

with moderate grid refinements.    

 Several examples are presented to show the applicability, robustness, and 

performance of the hybrid method for the simulation of unconventional 

reservoirs in the presence of complex hydraulic fracture pattern and numerous 

pre-existing fractures.   

 The coupled model can be used efficiently to improve stimulation designs and 

completion strategies.  

 An underlying network of natural fractures is very important to recovery.   
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Chapter 9:  Summary, Conclusions, and Recommendations  

 

9.1    SUMMARY AND CONCLUSIONS 

The following presents the summary and conclusions for this research: 

1. We developed an embedded discrete fracture model (EDFM) for our in-house 

fully-implicit compositional reservoir simulator (GPAS). The work performed 

in this study is an extension of an algorithm developed by Li and Lee (2008) 

for modeling fluid flow in vertical fractures. The extended algorithm includes 

slanted fractures of any orientation, honoring the complexity and 

heterogeneity of a typical fractured reservoir. EDFM borrows the dual 

medium concept from dual continuum models, but also incorporates the effect 

of each fracture explicitly. EDFM employs a structured grid to surmount 

challenges associated with unstructured gridding.  

2. EDFM is based on non-neighboring connections (NNC). We introduced and 

described three types of NNCs required for modeling vertical and slanted 

fractures. It is necessary to properly calculate the transmissibility between 

NNCs using the equations presented in this work.  

3. We added the NNC term to the mass balance equations in the EOS 

compositional module of GPAS. EDFM is compatible with reservoir 

simulators that allow for NNCs and transmissibility modifiers (such as 

commercial reservoir simulators). 

4. We developed a pre-processing code to provide the required data for fluid-

flow simulations in GPAS using the EDFM approach. The input of the pre-
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processing code is the description of model reservoir, including the reservoir 

dimensions, fracture network, location of wells, structured grid for the matrix 

domain, aperture and permeability of fractures, and porosity and permeability 

of matrix. Subsequently, the parameters calculated in the pre-processing code 

include porosity, permeability, and depth of fracture control volumes, 

transmissibility between NNCs, transmissibility between adjacent fracture 

cells, and well indices for the fractures intercepted by a well. 

5. The accuracy of the EDFM approach for modeling primary production from 

multiply-fractured horizontal wells was confirmed by its match with the 

analytical solutions for two production schemes, constant-pressure production 

and constant-rate production.   

6. The accuracy of the EDFM approach was confirmed by comparing the EDFM 

results with the fine-grid, explicit-fracture simulations for case studies 

including isolated fractures, intersected orthogonal fractures, and a non-

orthogonal non-aligned fracture. The case studies examined both water-

flooding and compositional gas injection.  

7. We presented examples of water-flooding, compositional gas injection, and 

primary depletion to demonstrate the applicability, robustness, and efficiency 

of the EDFM approach for modeling fluid flow in naturally fractured 

reservoirs. 

8. EDFM offers a computationally-efficient approach for simulating fluid flow 

in fractured reservoirs. Comparison of our results using the EDFM approach 

with fine-grid simulations showed that accurate results can be achieved with 

moderate grid refinements. This was further verified in our mesh sensitivity 
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study that the EDFM approach using moderate grid refinement can obtain a 

converged solution.   

9. The EDFM approach was found to be insensitive to grid orientation.    

10. We compared the EDFM approach to an unstructured discrete fracture model 

(USDFM) and a dual permeability method for simulating multiphase flow in 

NFRs. Simulations showed consistency and agreement of results using the 

EDFM and USDFM methods in synthetic models with complex fracture 

patterns. Simulations also showed that the dual permeability model fails to 

provide accurate solutions in the presence of large-scale fractures and high 

localized anisotropy. 

11. We incorporated the dynamic behavior of fractures into EDFM. The coupled 

approach allows the impact of stress regime on fluid flow in a 3D discrete 

fracture network. The non-linear Barton-Bandis joint model was used to 

represent normal deformation of pre-existing natural fractures. Also, fracture-

conductivity tables were used to model dynamic behavior of propped 

hydraulic fractures in stimulated reservoirs.  

12. Using the Barton-Bandis joint model, fractures under lower initial effective 

normal stress were found prone to larger aperture decline and permeability 

loss with pressure depletion. 

13. Consideration of dynamic behavior of fractures substantially affects pressure 

depletion and hydrocarbon recovery. The significance of such effects on 

production strongly depends on parameters controlling the deformation 

behavior of fractures. 
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14. Based on examples presented in this research, implementation of fracture 

geomechanical effects in EDFM did not degrade the computational 

performance of EDFM. 

15. We developed a coupled dual continuum and discrete fracture model to 

simulate production from unconventional reservoirs. Large-scale hydraulic 

fractures (macro-fractures) are modeled explicitly using the EDFM approach 

and numerous small-scale natural fractures (micro-fractures) are modeled 

using a dual continuum approach. The coupled model is similar to a triple 

porosity approach, including three domains: matrix, discrete-fracture, and 

continuum-fracture domains. 

16. EDFM can handle the complexity of hydraulic fracture networks, which is a 

common occurrence in unconventional reservoirs. 

17. The transport parameters for dual continuum modeling of numerous natural 

fractures were derived by upscaling the EDFM equations. 

18. Comparison of the results using the coupled dual continuum and EDFM 

approach with that of using the EDFM approach to represent all natural and 

hydraulic fractures explicitly showed that reasonably accurate results can be 

obtained at much lower computational cost by using the coupled approach 

with moderate grid refinements.    

19. We presented several examples to show the applicability and performance of 

the hybrid method for the simulation of unconventional reservoirs. An 

underlying network of natural fractures was found very important to recovery.  

20. We examined multi-stage hydraulic fractures with multiple configurations to 

show how the coupled model can be used efficiently to improve stimulation 

designs and completion strategies.  
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9.2    RECOMMENDATIONS FOR FUTURE RESEARCH 

The following recommendations are suggested for future studies: 

1. As repeatedly emphasized in this research, one advantage of the EDFM 

approach compared to other DFMs is its compatibility with existing finite 

difference reservoir simulators. Hence, we recommend implementing the 

EDFM approach in two other University of Texas compositional reservoir 

simulators, UTCOMP and UTCHEM. UTCOMP is a 3D compositional 

reservoir simulator capable of simulating a variety of enhanced oil recovery 

methods (Chang, 1990). UTCOMP has several numerical and physical 

features such as higher-order finite difference methods, full physical-

dispersion tensor, and gas-foam flooding. Likewise, UTCHEM is a 3D 

compositional reservoir simulator developed for modeling chemical enhanced 

oil recovery methods (Delshad et al., 1996). In order to solve the governing 

equations, both simulators employ an IMPEC scheme that refers to a 

formulation in which pressure is solved implicitly and concentrations and 

saturations are solved explicitly. Implementing the EDFM approach in 

UTCOMP and UTCHEM provides an effective and reliable environment to 

study a variety of enhanced oil recovery processes in naturally fractured 

reservoirs. Furthermore, Varavei (2009) developed a thermal model in GPAS; 

we also recommend coupling the EDFM approach with this model in order to 

study thermal enhanced oil recovery methods in fractured systems. 

2. The pre-processing code for the EDFM approach was developed in the 

MATLAB environment. For the sake of compatibility with existing reservoir 

simulators developed at The University of Texas at Austin (GPAS, UTCOMP, 

and UTCHEM), we recommend translating this code to FORTRAN. This is 
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especially needed for applications where the geometry of fracture network 

changes during simulation, and hence the pre-processing code needs to be 

used in a dynamic manner. 

3. Investigate the accuracy of the EDFM approach for modeling fluid flow in 

synthetic models with complex fracture patterns by comparing its results with 

fine-grid unstructured discrete fracture simulations that consider slanted 

fractures. 

4. Investigate the accuracy of the EDFM approach when dispersion term is 

included in the simulations. 

5. Evaluate the accuracy of the coupled geomechanics and fluid-flow 

simulations presented in this work using the results of a fully-coupled 

geomechanics and fluid-flow model. 

6. Incorporate all physics, which have considerable impact on fluid flow in tight 

oil and shale gas reservoirs, into the hybrid model presented in this work in 

order to develop a complete and robust unconventional reservoir simulator. 

7. Apply the EDFM approach in modeling contaminant transport in naturally 

fractured aquifers. 

8. Investigate using higher-order discretization schemes for application in matrix 

and fracture domains.  
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Appendix A:  Sample Input Files  

 

Appendix A presents examples of GPAS input files used in this research. The first 

and the second input files correspond to the case studies described in Sections 5.2.2 and 

8.4.2, respectively.  

 

A.1   COMPOSITIONAL GAS INJECTION USING EDFM (SECTION  5.2.2) 

 

TITLE(2) = "2 DIMENSIONAL COMPOSITIONAL GAS INJECTION" 

 

DESCRIPTION() = 

"THICKNESS (FT) : 15 " 

"LENGTH (FT) : 600 " 

"WIDTH (FT) : 300 " 

"GRID BLOCKS : 30151" 
 

COMPOSITIONAL_MODEL 

EDFM    

 

TIMEEND= 600 

 

$ I/O OPTIONS 

OUTLEVEL = 1  

OUTPUT_PRE 

OUTPUT_SAT 

OUTPUT_GAS 

OUTPUT_OIL 

OUTPUT_DEN 

 

$TDPVOPT 

OUTPUT_TIME() = 1 5 30 60 90 130 183 365 600 

 

ISTEP(,,) = 1 

JSTEP(,,) = 1 

KSTEP(,,) = 1 

 

$ FAULT BLOCK AND MESH DATA 

METHOD = 2 

DOWN() = 0 0 1 

MES = "cart" 

NX(1) = 30  NY(1) = 15  NZ(1) = 2 
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DX()= 20    DY()= 20    DZ() = 15.0 

 

$ COMPOUND NAMES 

COMPOUND(1) = "CO2"      COMPOUND(2) = "C1" 

COMPOUND(3) = "NC16" 

 

$ COMPOUND CRITICAL TEMPERATURES 

CRIT()  547.57 343.08 1322.43 

 

$ COMPOUND CRITICAL PRESSURES 

CRIP()  1071.6 667.1961 252.105 

 

$ COMPOUND CRITICAL VOLUMES 

CRIV()  1.5060 1.586 13.3768 

 

$ COMPOUND ACEN 

ACEN()  .225 0.008 0.683727 

 

$ COMPOUND MOL WEIGHTS 

MOLW()  44.01 16.043 222.0 

 

$ COMPOUND PARA 

PARA()  49.00 71.00 831.90 

 

$ BINARY INTERACTION COEFFICIENTS 

BINC(,) = 0.0    0.120   0.120 

          0.120   0.0   0.0 

          0.120   0.0   0.0 

 

$ MAX NUMBER OF PHASES 

NPHASE = 3 

 

$ MAXNEWT MAX NUMBER OF NEWTON ITERATION 

MAXNEWT = 35 

 

$ Initial rock & water properties 

ROCKZ = 0.00000  ROCKP = 1000 

H2OZ =  0.00000  H2OP = 14.7  H2OD = 3.46666 

SURTF = 60.0  SURPS = 14.696 

RESTF = 160.0 

 

$ TOLERANCE 

CVGOPT = 1 

TOL_FLASH = 0.0001 

TOL_VOLUME = 0.0001 

TOL_MASS = 0.0001 

TOL_WATER = 0.0001 

 

$ KEYOUT 

Include keyout.dat 

 

$ POROSITY 

Include por.dat 
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$ DEPTH 

Include depth.dat 

 

$ PERMEABILITIES 

Include perm.dat 

 

$ INITIAL WATER SATURATION 

SWINI1() = 0.1 

 

$ INITIAL WATER CELL PRESSURE                    

PINI1() = 1000  

 

$ INITIAL PHASE VISCOSITIES AT EACH CELL 

VIS1() = 0.80  

 

$ INITIAL COMPOSITIONS 

ZXY1(,,,1) = .01 

ZXY1(,,,2) = .39 

ZXY1(,,,3) = .60 

 

$ ROCK TYPE 

Include rocktype.dat 

 

$ RELPERM DATA 

$RELP 1 for table lookup and 2 for Corey model 

RELP 2  

NRELFUN = 1 

 

$ MATRIX RELPERM DATA: Water, Phase-2, and Phase-3  

ENDPT() = 0.4 0.6 0.6 

SR() = 0.1 0.1 0.0 

EXPN() = 3. 2. 2 

$ FRACTURE RELPERM DATA: Water, Phase-2, and Phase-3 

ENDPT0() = 1.0 1.0 1.0  

SR0() =    0.0 0.0 0.0  

EXPN0() = 1.0 1.0 1.0  

 

$ CALCULATED DATA FOR EDFM FROM THE PRE-PROCESSING CODE 

Include fracture.dat 

 

NUMWELL = 2 

 

WELLNAME(1) = "FIRST WELL" 

KINDWELL(1) = 2 

WELLTOP(1 TO 3,1,1) =  10 10 0.0  

WELLBOTTOM(1 TO 3,1,1) = 10 10 15.0 

DIAMETER(1,1) = 0.7 

PRLIMIT(1) = 10000 

WELLPQ(1) Block 

  Interpolation Linear 

  Extrapolation Constant 

  Data  0.0 200.0 

EndBlock 
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WELLNAME(2) = "SECOND WELL" 

KINDWELL(2) = 3 

WELLTOP(1 TO 3,1,2) = 570 270 0.0 

WELLBOTTOM(1 TO 3,1,2) = 570 270 15.0 

PRLIMIT(2) = 10000 

DIAMETER(1,2) = 0.7 

WELLPQ(2) Block 

  Interpolation Linear 

  Extrapolation Constant 

 Data  0.0  1000 

EndBlock 

 

EndInitial 

 

$ TRANSIENT DATA INPUT BLOCKS 

BeginTime    0.0000 

TIME_CONTROL = 2 

DELTIM = 0.001  DTIMMUL = 1  DTIMMAX = 0.5   DTIMMIN = 0.0001 

DPMAX = 1 DSMAX = 0.1  DCMAX = 0.1  DAQCMAX = 0.1 

WZ() = 0.98 0.02 0.0 0.0 

EndTime 

 

A.2   COUPLED DUAL CONTINUUM AND EDFM SIMULATION (SECTION  8.4.2) 

 

TITLE(2) = "3 DIMENSIONAL COUPLED DUAL CONTINUUM AND EDFM" 

$ SECTION 8.4.2 

 

DESCRIPTION() = 

"THICKNESS (FT) : 100 " 

"LENGTH (FT) : 2000 " 

"WIDTH (FT) : 1000 " 

"MATRIX GRID BLOCKS : 83415" 
 

COMPOSITIONAL_MODEL 

EDFM    

 

TIMEEND = 5475 

 

$ I/O OPTIONS 

OUTLEVEL = 1  

OUTPUT_PRE 

OUTPUT_SAT 

OUTPUT_NVEL 

OUTPUT_DEN 

OUTPUT_VIS 

OUTPUT_WEL 

OUTPUT_HIS 

WELLFILE = "WELL.OUT" 
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$TDPVOPT 

OUTPUT_TIME() = 1 5 30 180 365 730 1195 1460 1825 3650 5475 

 

ISTEP(,,) = 1 

JSTEP(,,) = 1 

KSTEP(,,) = 1 

 

$ FAULT BLOCK AND MESH DATA 

METHOD = 2 

DOWN() = 0 0 1 

MES = "cart" 

NX(1) = 83  NY(1) = 41   NZ(1) = 15 

 

DX() = 19*25 20 10 20 18*25 20 10 20 18*25 20 10 20 19*25 

DY() = 19*25 20 10 20 19*25 

DZ() = 20.0 

 

 

$ COMPOUND NAMES 

COMPOUND(1) = "C1" 

 

$ COMPOUND CRITICAL TEMPERATURES 

CRIT() 343.0 

 

$ COMPOUND CRITICAL PRESSURES 

CRIP() 667.8 

 

$ COMPOUND CRITICAL VOLUMES 

CRIV() 1.599 

 

$ COMPOUND ACEN 

ACEN() 0.013 

 

$ COMPOUND MOL WEIGHTS 

MOLW() 16.0 

 

$ COMPOUND PARA 

PARA() 71.0 

 

$ MAX NUMBER OF PHASES 

NPHASE = 3 

 

 

$ MAXNEWT MAX NUMBER OF NEWTON ITERATION 

MAXNEWT = 35 

 

$ Initial rock & water properties 

ROCKZ = 0.000008  ROCKP = 4000 

H2OZ =  0.00000  H2OP = 14.7  H2OD = 3.46666 

SURTF = 60.0  SURPS = 14.696 

RESTF = 120.0 
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$ TOLERANCE 

CVGOPT = 2 

TOL_FLASH = 0.00001 

TOL_VOLUME = 0.00001 

TOL_MASS = 0.00001 

TOL_WATER = 0.00001 

 

$ KEYOUT 

Include keyout.dat 

 

$ POROSITY 

Include por.dat 

 

$ DEPTH 

Include depth.dat 

 

$ PERMEABILITIES 

Include perm.dat 

 

$ INITIAL WATER SATURATION 

SWINI1() = 17015*0.2 34030*0.0001 

 

$ INITIAL WATER CELL PRESSURE 

PINI1() = 4500 

                                                            

$ INITIAL PHASE VISCOSITIES AT EACH CELL 

VIS1() = 0.80  

 

$ INITIAL COMPOSITIONS 

ZXY1() = 1.000 

 

$ ROCK TYPE 

Include rocktype.dat 

 

$ RELPERM DATA 

$RELP 1 for table lookup and 2 for Corey model 

RELP 2  

NRELFUN = 1 

 

$ MATRIX RELPERM DATA: Water, Phase-2, and Phase-3  

ENDPT() = 0.7 0.8 0.75   

SR() = 0.2 0.2 0.0   

EXPN() = 3.0 3.0 1.0  

 

$ FRACTURE RELPERM DATA: Water, Phase-2, and Phase-3  

ENDPT0() = 1.0 1.0 1.0  

SR0() =    0.0 0.0 0.0  

EXPN0() = 1.0 1.0 1.0  

 

$ CALCULATED DATA FOR EDFM FROM THE PRE-PROCESSING CODE 

Include fracture.dat   

 

 



 214 

NUMWELL = 3 

 

WELLNAME(1) = "FIRST WELL" 

KINDWELL(1) = 3 

WELLTOP(1 TO 3,1,1) =  490 500 50.0 

WELLBOTTOM(1 TO 3,1,1) = 510 500 50.0 

DIAMETER(1,1) = 0.7 

PRLIMIT(1) = 100 

WELLPQ(1) Block 

  Interpolation Linear 

  Extrapolation Constant 

  Data  0.0 1500 

EndBlock 

 

WELLNAME(2) = "SECOND WELL" 

KINDWELL(2) = 3 

WELLTOP(1 TO 3,1,2) =  990 500 50.0 

WELLBOTTOM(1 TO 3,1,2) =  1010 500 50.0 

PRLIMIT(2) = 10 

DIAMETER(1,2) = 0.7 

WELLPQ(2) Block 

  Interpolation Linear 

  Extrapolation Constant 

 Data  0.0  1500 

EndBlock 

 

WELLNAME(3) = "THIRD WELL" 

KINDWELL(3) = 3 

WELLTOP(1 TO 3,1,3) =  1490 500 50.0 

WELLBOTTOM(1 TO 3,1,3) =  1510 500 50.0 

PRLIMIT(3) = 10 

DIAMETER(1,3) = 0.7 

WELLPQ(3) Block 

  Interpolation Linear 

  Extrapolation Constant 

 Data  0.0  1500 

EndBlock 

 

EndInitial 

 

$ TRANSIENT DATA INPUT BLOCKS 

BeginTime    0.0000 

TIME_CONTROL = 2 

DELTIM = 0.00001  DTIMMUL = 1.0  DTIMMAX = 10   DTIMMIN = 0.0001 

DPMAX = 1 DSMAX = 0.10  DCMAX = 0.1  DAQCMAX = 0.1 

EndTime 
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Nomenclature 

 area 	ܤ ܣ

formation volume factor ܥ		 		ܥி஽ ݀		 								< ݀ > 		 
total compressibility 

dimensionless fracture conductivity 

distance 

average normal distance ܦ		ܦ ௡ 						ܦ௡௠௔௫ 

depth 

fracture normal closure 

maximum normal closure 

௜݂௝
 ℎ	 ܬ 

fugacity of component i in phase j 

height 

Jacobian matrix ܭ௜ equilibrium ratio of component i ݇	ന  absolute permeability tensor ݇	 	݇௥௝ ܭ௡ 

absolute permeability 

relative permeability of phase j 

normal stiffness ܮ	 			ܮ௜௡௧ ܮ௝ 

n 

length 

length of intersection line 

mole fraction of phase j 

unit vector normal to fracture   

௜ܰ ௝ܰ 

moles of component i per unit pore volume 

moles of phase j per unit pore volume 
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௖ܰ number of hydrocarbon components 

௣ܰ number of hydrocarbon phases 

P 

௣ܲ 

pressure 

pore pressure 			 ௖ܲ௢௪ 		 ௖ܲ௢௚ 

oil-water capillary pressure  

oil-gas capillary pressure 

q ݍ௜ 			ݍ௠௙ ݎ	 ܴ	 ܵ	 						ܵ௛௠௜௡  							ܵு௠௔௫  ܵ௡ 

t 

T 

production rate 

molar rate of component i injected or produced 

matrix-fracture flow rate per unit bulk volume 

radius 

residual vector / gas constant 

stress 

minimum horizontal stress 

maximum horizontal stress 

normal stress 

time 

transmissibility / temperature 	ܵ௪ ݒ	ݒ̅ ௝ 

௕ܸ  

w ݔ௜௝ ݔ௙ ܼ 

water saturation 

volume 

molar volume of phase j 

bulk volume 

volume fraction 

mole fraction of component i in phase j 

fracture half-length 

compressibility factor 
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Greek Symbols 

 ௜௝߮	 ߰ ߶ ߤ ௡ߪ	 ߪ	           

shape factor 

effective normal stress 

viscosity 

porosity 

potential 

fugacity coefficient of component i in phase j ߦ௝	 ߛ௝ 

molar density of phase j  

specific gravity of phase j ߣ ߱ 	 ௙߱  ߜ 

interporosity flow coefficient 

ratio of fluid capacitance / acentric factor 

fracture aperture 

binary interaction coefficient 

 

 

Subscripts / Superscripts 

c 

D 

i 

m 

nnc 

f 

F 

w 

o 

g 

critical 

dimensionless 

initial 

matrix 

non-neighboring connection 

fracture (continuum-fracture in Chapter 8) 

fracture (discrete-fracture in Chapter 8) 

water / well 

oil 

gas 
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Acronyms 

BHP 

CVFE 

DFM 

Bottom-hole Pressure 

Control-Volume Finite-Element 

Discrete Fracture Model 

EDFM 

EOS 

GPAS 

IOR 

IPARS 

MINC 

Embedded Discrete Fracture Model 

Equation of State 

General Purpose Adaptive Simulator 

Improved Oil Recovery 

Integrated Parallel Accurate Reservoir Simulation 

Multiple Interacting Continua 

NNC 

NFR 

PETSc 

PV 

USDFM 

UTCHEM 

UTCOMP 

WI 

 

Non-Neighboring Connection 

Naturally Fractured Reservoir 

Portable Extensible Toolkit for Scientific Computation 

Pore Volume 

Unstructured Discrete Fracture Model 

University of Texas Chemical Simulator 

University of Texas Compositional Simulator 

Well Index 
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