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Abstract

Background: Electrooculogram (EOG) can be used to continuously track eye movements and can thus be

considered as an alternative to conventional camera-based eye trackers. Although many EOG-based eye tracking

systems have been studied with the ultimate goal of providing a new way of communication for individuals with

amyotrophic lateral sclerosis (ALS), most of them were tested with healthy people only. In this paper, we

investigated the feasibility of EOG-based eye-writing as a new mode of communication for individuals with ALS.

Methods: We developed an EOG-based eye-writing system and tested this system with 18 healthy participants and

three participants with ALS. We also applied a new method for removing crosstalk between horizontal and vertical

EOG components. All study participants were asked to eye-write specially designed patterns of 10 Arabic numbers

three times after a short practice session.

Results: Our system achieved a mean recognition rates of 95.93% for healthy participants and showed recognition rates

of 95.00%, 66.67%, and 93.33% for the three participants with ALS. The low recognition rates in one of the participants

with ALS was mainly due to miswritten letters, the number of which decreased as the experiment proceeded.

Conclusion: Our proposed eye-writing system is a feasible human-computer interface (HCI) tool for enabling practical

communication of individuals with ALS.

Keywords: Electrooculogram (EOG), Saccade, Eye-writing, Amyotrophic lateral sclerosis (ALS), Human-computer

interface (HCI)

Background

Individuals suffering from amyotrophic lateral sclerosis

(ALS) gradually lose their ability to control muscles. Since

eye movement is one of the few communication methods

available until the later stages of this disease [1, 2], many

researchers have attempted to devise communication tools

utilizing this remaining eye function. If parents or guardians

of individuals with ALS can recognize slight eyeball

movements or subtle eyelid blinks, they can communicate

with these individuals using specially designed alphabet

boards or communication charts [3]. Recent developments

of assistive technologies utilizing eye tracking allow patients

with ALS to express themselves independently, thereby sig-

nificantly enhancing their quality of life [4–6].

Two different methods have been developed for auto-

matic eye movement tracking: 1) eyeball tracking utilizing

optical or infrared cameras and 2) eye tracking using elec-

trooculogram (EOG). Camera-based methods have shown

to achieve higher angular precision than EOG-based

methods [7]. In practice, a number of camera-based eye-

trackers are commercially available (e.g., iAble, DynaVox,

EyeMax). However, this method is subject to a number of

limitations, including relatively expensive price, difficulties

in system setups, and inconsistent recognition rates due to

the variability of eyelid/eyelash movements between indi-

viduals and differences in ambient brightness level [1, 7–9].
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EOG-based methods can be used as alternatives to camera-

based methods because most of the limitations of the

camera-based methods do not apply to the EOG-based

methods. For example, EOG-based eye tracking devices are

more economical to manufacture and are not influenced by

lighting or the physical conditions of the eyes. However, the

applications of EOG-based methods are limited by their

low spatial resolution. For instance, it is generally difficult

to estimate an absolute gaze position from EOG signals be-

cause of signals from other sources in the human body

[10]. For this reason, most EOG-based applications had

been able to classify up to only eight saccadic eye move-

ment directions [11–15] until Yan et al. classified 24 eye

movement directions with a wide screen (150° horizontal

visual angle) and a fuzzy system [16]. Using Yan et al.’s

system, the mean accuracy of three subjects was reported

to be 87.1% [16]. Nevertheless, the performance of this sys-

tem was not stable; gazes were often misclassified as adja-

cent positions, showing accuracies lower than 80% at

almost half of the positions. Moreover, turning eyes 75o to

the left/right from the center may be difficult even for

healthy users, making it even more problematic for individ-

uals with ALS [9].

Recently, a new type of EOG-based method was intro-

duced to overcome the main limitations of classical

EOG-based methods. Specifically, Tsai et al. proposed a

system for writing Arabic numbers by drawing number

shapes using eye gaze in a process termed eye-writing

[17]. This process was developed with the aim of aiding

communication in individuals with ALS, but was evalu-

ated with healthy participants only. Recently, the eye-

writing concept was applied to the English alphabet [18],

where eye-writing could significantly increase the num-

ber of choices for a given individual. The mean F1 score

for classifying 36 patterns was reported to be 87.38%,

even without any individual optimization.

Although these results are encouraging, the question

of whether eye-writing is feasible for individuals with

ALS remains unanswered. Most of the previous studies

on EOG-based eye tracking were conducted only on

healthy participants. Although Kaethner et al. reported

results from a subject with ALS, the binary classification

rates varied from 60 to 100% over different trials [9]. It

is important to perform feasibility tests with individuals

with ALS for the following two reasons: First, the sac-

cadic patterns of individuals with ALS may differ from

those of healthy people. For instance, decreased saccadic

velocities were often (4 out of 9) observed even in the

earlier stages of ALS due to the oculomotor deficits that

are common in ALS [19]. Second, it may be difficult for

some individuals with ALS to learn how to eye-write

specific patterns. Since drawing patterns with the eyes is

an unusual behavior even for healthy people, we found

that preliminary training sessions demanding immediate

responses from the user were always necessary [18].

However, some individuals with severe ALS might have

difficulty expressing whether they are accustomed to the

eye-writing task.

In this paper, we propose a new eye-writing system for

individuals with ALS. This system includes 1) a series of

computational algorithms to reconstruct eye movement

traces and to more accurately recognize 10 Arabic num-

bers, 2) new designs of Arabic numbers aimed at facili-

tating eye-writing, and 3) a training procedure to

efficiently explain to the user, with minimal user feed-

back, how to eye-write. We validated our proposed sys-

tem with healthy participants and individuals with ALS.

Methods

Participants

A total of 23 participants (20 healthy participants and three

individuals with ALS) were recruited for this study. Prior to

the experiments, all participants received a detailed explan-

ation about the research purpose and design and provided

written consent. The study protocol was approved by the

Institutional Review Board (IRB) of Hanyang University

Hospital. Among the 20 healthy participants (15 males and

5 females, mean age 24.2 ± 4.17 years), data from two were

discarded due to severe artifacts caused by sweat. Six of the

18 healthy participants wore glasses/lenses. The first indi-

vidual with ALS (female) had been diagnosed for 4 years,

aged 59 years, and the ALSFRS (ALS functional rating

scale) was 17 at the time of the participation. The second

individual with ALS (male) was aged 63 years, had been di-

agnosed for 3.5 years, and the ALSFRS was 18. The third

individual with ALS (male) had been diagnosed for 8 years,

aged 41 years, and the ALSFRS was 25. The ALSFRS is a

well-known measure for evaluating the functional status of

individuals with ALS and is based on a questionnaire. The

questionnaire evaluates daily activities in 12 categories:

speech, salivation, swallowing, handwriting, cutting food,

dressing and hygiene, turning in bed, walking, climbing

stairs, dyspnea, orthopnea, and respiratory insufficiency

[20]. The average ALSFRS score for a healthy participant is

48, while the score of a patient with ALS in a completely

locked-in state is 0. Throughout the experiments, caregivers

helped the experimenters to communicate with the partici-

pants with ALS.

Experimental environments

EOG signals were acquired using an ActiveTwo biosignal

recording system (Biosemi, Amsterdam, Netherlands) at

a sampling rate of 2048 Hz. Four electrodes were placed

around the eyes: two on the left and right sides of the

eyes, and two above and below the right eye. A common

mode sense electrode and a driven right leg electrode,

which functioned as a reference and a ground electrode,

respectively, were placed at the left and right mastoid.
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Prior to electrode attachment, the skin was cleaned with

antiseptic wipes to eliminate sweat or other materials

that could interfere with signal acquisition.

We designed 10 different eye-writing patterns, each cor-

responding to an Arabic number. These patterns were de-

signed to minimize eye movement but to maintain the

shapes of the original numbers (see Fig. 1). A red dot in

each pattern indicates the starting point of eye-writing,

and an arrow indicates the end point. The same patterns

were used for healthy participants and participants with

ALS; however, the pattern of the number ‘1’ was shifted to

the center of the canvas to facilitate eye-writing by partici-

pants with ALS.

Data acquisition was controlled using E-Prime soft-

ware (Psychology Software Tools, Inc., Sharpsburg, PA,

USA). This software was also used to display numbers

or other graphical instructions on a monitor with audi-

tory instruction. All the raw EOG data recorded from

healthy participants during the experiments are available

at the EyeWriting repository (https://github.com/Eye-

Writing/EyewritingNumber), but data from participants

with ALS are not shared because IRB did not allow shar-

ing of this dataset.

All experiments with healthy participants were con-

ducted in a quiet room. Each participant was asked to

sit on a comfortable armchair in front of a 24-in. moni-

tor. The width and height of the monitor were 61 cm

and 28.5 cm, respectively. Each participant was asked to

place his/her head on a chin rest in order to minimize

head movement, and the height of the chin rest was

adjusted according to the participant’s preference. The

distance between the monitor and the participant was

set to approximately 62.5 cm, making 52.02° maximum

visual angle that participants could move their eyes

horizontally.

The experiments with participants with ALS used a dif-

ferent display device. Specifically, the first two experi-

ments with participants with ALS (No. 19 and No. 20)

were conducted in a hospital room, where the visual stim-

uli were projected on a wall using a video projector. The

size of the projected screen was approximately 135 cm

(width) × 102 cm (height). For the third experiment (par-

ticipant No. 21), a 55-in. [86 cm (width) × 48 cm (height)]

television was installed in the participant’s home. During

the experiment, the participants were seated either in a

wheelchair approximately 150 cm away from the projector

screen (participants 19 and 20) or 125 cm away from the

TV display (participant 21). Of note, a chin rest was not

used for the participants with ALS.

Experimental procedure

The experimental procedure for healthy participants con-

sisted of two consecutive sessions: a practice session and

an exercise session (Fig. 2). During the practice session,

the participants were asked to eye-write the number pat-

terns along the given guide lines; the guide lines were not

provided in the exercise session. For both sessions, the

participants were instructed to eye-write each number in

three steps. In the first step, each participant fixed his/her

gaze at a fixation mark for 3 s. After keeping the shape of

Fig. 1 Pattern designs of the Arabic numbers
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the number in mind, the participant began to eye-write

the number on the 3 × 2 grid. The practice session was re-

peated until each participant became accustomed to eye-

writing, without recording any EOG signals. The exercise

session was then repeated three times; EOG signals were

recorded during these sessions. The time durations for

eye-writing a number varied every time the participants

eye-wrote.

For the experiments with participants with ALS, the

experimental procedures were modified to facilitate

learning and to minimize user feedback. Each experi-

ment was composed of three sessions: instruction,

practice, and exercise (see Fig. 3). During the instruc-

tion session, the fundamental concepts of eye-writing

were explained. First, a pattern corresponding to the

number ‘0’ was shown to the participants for 7 s,

allowing them to identify the number pattern. The

patients were then asked to fix their gaze at the cen-

ter point in the screen, after which a small red dot

was displayed at the starting point. The red dot then

disappeared and soon reappeared at the next corner

point. In this manner, the red dot sequentially moved

and drew the number pattern until reaching the end

point. Each participant eye-wrote the number pattern

by shifting his/her gaze and following the sequential

displacement of the red dot. The disappearance and

appearance of the red dot were manually controlled

by an experimenter; the experimenter changed the

location of the red dot when saccadic movement of

the participant was observed. When the red dot was

displaced, a beep was presented to the participants to

notify them of this displacement. In this instruction

session, the participants only eye-wrote the number

‘0.’ Please note that the purpose of this session was

to let the participants know how to eye-write a num-

ber with their eye-movements. The experimenter

could sometimes misrecognize the participants’ eye-

movements, but such a little misrecognition did not

significantly affect the training of eye-writing.

In the practice session, the participants were asked to

eye-write all numbers from ‘0’ to ‘9.’ The procedure of the

practice session was the same as in the instruction session,

except that the position of the red dot shifted automatic-

ally. The participants were given a short rest of 11 s before

eye-writing next the number in this session. The exercise

session was the same as the practice session, except that

the time frame for eye-writing a number was fixed to 5 s

and no guide line or red dot was displayed (only dots on a

3 × 3 grid were displayed). A 9.5-s short break was given

between consecutive eye-writings to prevent eye fatigue of

the participants for the exercise session. This session was

repeated three times. However, participant No. 19 only

performed the session twice because of fatigue. The over-

all experimental procedures of the three sessions—instruc-

tion, practice, and exercise—were verbally explained to

the participants (see Appendix for further details).

Fig. 2 Experimental procedures of the two sessions for healthy participants: a practice session, b exercise session. The keyboards indicate

that each slide finishes with input from the keyboard

Chang et al. Journal of NeuroEngineering and Rehabilitation  (2017) 14:89 Page 4 of 13



To avoid fatigue, a relatively long resting period was

given to the participants between sessions and trials

(a trial denotes eye-writing of 0 to 9). The durations of

the resting period varied according to the participants’

opinion (varied from 18 s to 11 min).

Reconstruction of eye movement traces

EOG data were obtained during the exercise sessions,

and the eye movement traces were reconstructed using

signal processing techniques introduced in previous

studies [17, 21–23] (see Fig. 4 for the overall procedure).

First, source signals were down-sampled at a sampling

rate of 64 Hz and median-filtered. High-frequency

noises were removed in this step. Second, eye blink arti-

facts were automatically detected and removed as de-

scribed in [23]. The time interval, including eye blink

artifacts, was determined using the following equation:

R ¼ T Maxi−j
� �

− W f T Maxi−jð Þð Þ
�

�

�

�

�

�
; T Minið Þ

h in o

; ð1Þ

where f(t) is the output of a digital filter that emphasizes

eye blink signals [24], and T(Maxi) and T(Mini) are time

points of the ith local maximum and minimum, respect-

ively. Third, baselines were removed for each signal

channel. A median value calculated from 100 ms of pre-

ceding data was used as the baseline of each eye-written

number. Fourth, the horizontal and vertical EOG com-

ponents were obtained. The horizontal EOG component

was obtained by subtracting the EOG signal of the left

channel from that of the right channel, whereas the ver-

tical component was obtained by subtracting the EOG

signal acquired at the channel below the eye from the

corresponding channel above the eye. The fifth and sixth

steps consisted of signal interpolation due to eye blinks

and the removal of low-frequency monotonic drifts,

Fig. 3 Experimental procedures of the three sessions for participants with ALS. a Instruction, b practice, c exercise. The numbers within the blanks

denote the duration of image display. The sound images denote beeps or recorded verbal instructions (noted as Vx, where x denotes an

instruction index). The verbal instructions consisted of cues for participant action. For the full instructions given to the participants, see Appendix
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respectively. Specifically, missing data due to the eye

blink removal process were linearly interpolated using

adjacent signals, and the low-frequency drifts were re-

moved using linear regression. Saccadic eye movements

were then detected using the continuous wavelet

transform-saccade detection algorithm introduced by

Bulling et al. [22], which extracts signals whose absolute

wavelet coefficient values exceed a preset threshold (θ).

The wavelet coefficient Ca
b of data s at scale a and pos-

ition b is defined as

Ca
b sð Þ ¼

Z

ℝ

s tð Þ 1
ffiffiffi

a
p ψ

t−b

a

� �

dt ð2Þ

where ψ represents a Haar mother wavelet. The wavelet

scale was set to 20, as proposed by Bulling et al. The

threshold value was derived by collecting data from an

additional participant (male, 24 years old) who did not

participate in the main experiments. To derive the

threshold value, saccadic regions in the data were manu-

ally labeled, and the minimum value of the wavelet coef-

ficient within the saccadic region was used as the

threshold. After saccade detection, the signals were

resampled to have the same Euclidean distance between

adjacent points, and the signal sizes were normalized to

make both the width and height to be one. In addition,

the interdependency between horizontal and vertical

components was removed without any calibration data,

as follows:

EOGc
v ¼ EOGv–α EOGh; ð3Þ

where EOGc
v is the compensated vertical component, α

is a parameter that describes the amount of interdepend-

ency between the horizontal and vertical components,

and EOGv and EOGh are the vertical and horizontal

EOG components, respectively.

Unlike the conventional method that requires some pre-

liminary calibration data [23], we developed a new method

for estimating α without any calibration. Data in a se-

quence were differentiated by a finite difference function:

s′ tð Þ ¼ s t þ 1ð Þ–s t−1ð Þ: ð4Þ

The value of α can be estimated even in the absence of

calibration data, simply by linearly regressing the values

in the differentiated data. The processes for estimating α

and removing the interdependency are described in

Fig. 5. Figure 5b shows an example of an eye-written

character ‘3,’ where the eye-written shape is severely

skewed compared with the template pattern (Fig. 5a).

We found that the degree of skewness can be well de-

scribed as the linear regression slope of data distribution

in the finite difference space of adjacent values (Fig. 5d).

The parameter α was determined as the value that

makes the slope to be zero, as shown in Fig. 5e. Using

the determined α value, the eye-written pattern became

more similar to the template pattern (Fig. 5c).

Classifiers

We tested four different types of classifiers for the pro-

posed system: dynamic time warping (DTW), dynamic

positional warping (DPW), a combination of DTW with

support vector machine (SVM), and a combination of

DPW with SVM. DTW measures dissimilarity between

two time-series with different lengths and is often uti-

lized for handwritten character recognition or signature

verification [25, 26]. DPW is an extended version of

DTW that has been specialized for two-dimensional

shapes by allowing warping on value axes [27]. Conven-

tional DTW/DPW have utilized a very simple classifier

which just choose one with the minimum distance from

the reference. In this study, we tried to verify whether

the combination of the DTW/DPW with a more ad-

vanced classifier could increase recognition accuracy. In

this study, SVM was chosen as it is a well-known classi-

fier that is used in many research fields [22, 28–30].

Since it is not yet possible to use the dissimilarities

obtained from DTW or DPW as features for SVM,

we introduced a new way of combining the DTW/

DPW and SVM.

Fig. 4 Overall procedure for the reconstruction of eye

movement traces
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In DTW, the dissimilarities between two signals

(A and B) are defined as follows:

ddtw ¼ τðLA; LBÞ ð5Þ

τ i; jð Þ ¼ A ið Þ−A iprev
� �� 	

− B jð Þ−B j−jprev


 �n o
�

�

�

�

�

�

þ ω i; jð Þ ð6Þ

ω i; jð Þ ¼ min c τ i−CA cð Þ; j−CB cð Þð Þf g; ð7Þ

where LA and LB are the lengths of two signals, iprev = i

− 1, jprev = j − 1, τ(1, 1) = 0, and CA and CB are the pairs

of constraints for warping time. The constraints (CA , B)

are defined as

CA;B ¼ 1;mð Þ; m; 1ð Þj1≤m≤Mf g; ð8Þ

where M is the maximum distance for time-warping.

In DPW, the definition of dissimilarity is similar to

that in DTW. Specifically, dissimilarity can be written by

substituting iprev and jprev, as follows:

iprev ¼ i−CA cmin i; jð Þð Þ ð9Þ

jprev ¼ j−CB cmin i; jð Þð Þ ð10Þ

cmin i; jð Þ ¼ argmin c τ i−CA cð Þ; j−CB cð Þð Þf g: ð11Þ

Detailed descriptions of DTW and DPW can be

found in [23, 27].

To combine DTW/DPW with SVM, we used a set of

normalized dissimilarities to the templates as a feature

vector for SVM. Dissimilarities to all templates were cal-

culated for a test signal using DTW/DPW. These dis-

similarities were then divided by the normalization

factors of each template. These normalization factors

were calculated using training data. Specifically, dissimi-

larities to the corresponding template were calculated

for each of the training datasets, and the mean dissimi-

larity in a class was utilized as the normalization factor

of the class [31].

Validation

We evaluated the performance of each method by leave-

one-subject-out testing to verify whether our eye-writing

approach is user-independent. Each participant’s data

were tested individually, where data from all healthy par-

ticipants except the participant being tested were used

for training. Data from participants with ALS were not

used to train the models due to the limited sample size.

All the data during the exercise sessions were used for

the validation. Please note that three sets of eye-written

numbers were collected per participant during the exer-

cise session, except the participant #19.

Recognition performance was evaluated in three differ-

ent ways to express different aspects of the results. First,

the overall recognition performance was measured as

follows:

Fig. 5 Removal of interdependency between horizontal and vertical components. a Reference pattern, b signal before interdependency removal,

c signal after interdependency removal, d difference plot of (b), and e difference plot of (c). x and y are the the normalized values of the

horizontal and vertical signal, respectively; and dx and dy are the difference values of x and y, respectively
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ACCoverall ¼ TPoverall=Poverall; ð12Þ

where TPoverall denotes the number of patterns (eye-writ-

ten numbers) that were correctly classified, and Poverall is

the total number of patterns. The overall performance

was measured for each group (healthy or ALS) to enable

comparison of the performance of participants with ALS

versus that of healthy participants. Second, the recogni-

tion performance were evaluated for each participant as

follows:

ACCparticpant ¼ TPparticipant=Pparticipant ; ð13Þ

where TPparticipant denotes the number of the patterns

that were correctly classified for a given participant, and

Pparticipant is the total number of patterns attempted by

the participant. The performance was also evaluated for

each of the Arabic numbers, as follows:

Precisiondigit ¼
TPdigit

TPdigit þ FPdigit

� �

;
ð14Þ

Sensitivitydigit or Recalldigit

¼
TPdigit

TPdigit þ FNdigit

� �

;
ð15Þ

F1scoredigit ¼
2Precisiondigit ∙Recalldigit

Precisiondigit þ Recalldigit
; ð16Þ

where TP, FP, and FN represent the true positive, false

positive, and false negative rates, respectively.

Results

The overall accuracies of the proposed method with data

from healthy participants were 92.41% 94.07%, 94.07%,

and 95.37% for DTW, DTW + SVM, DPW, and

DPW + SVM, respectively. We found that the recogni-

tion rates of EOG-based eye-writing could exceed 95%,

demonstrating its viability as an alternative to camera-

based eye tracking interfaces. The DPW + SVM combin-

ation resulted in the highest overall recognition rate in

healthy participants. DPW showed better performance

than DTW; moreover, the combination with SVM effect-

ively increased the overall recognition rates for both dis-

similarity measures. The recognition rates dropped

drastically when the same method was applied to partici-

pants with ALS: 83.75%, 81.25%, 87.50%, and 85.00% for

DTW, DTW + SVM, DPW, and DPW + SVM, respect-

ively. Specifically, the best recognition rate was 87.50%

when DPW alone was used. Despite this drop, this rate

was still higher than that reported in a previous study,

where the recognition rate of binary classification was

just 71% for an individual with ALS [9].

Table 1 shows the recognition rates of the proposed

method for each participant. The DPW + SVM combin-

ation showed the best mean recognition rate (94.37%);

other classifiers resulted in slightly lower recognition

rates (93.10% for DPW, 92.38% for DTW + SVM, and

91.27% for DTW). However, no statistically significant

differences were found among the performances of these

classifiers. It is notable that one patient with ALS (par-

ticipant no. 20) showed the lowest recognition rate of all

participants, while the recognition rates of the other two

participants with ALS were comparable to those of

healthy participants.

Discussion

The main aim of the present study was to prove that

EOG-based eye-writing is a feasible human computer

interface (HCI) tool for the individuals with amyotrophic

lateral sclerosis (ALS). The promise of the EOG-based

eye-writing was demonstrated by a number of previous

studies [17, 18, 32], but it has not yet been tested on in-

dividuals with ALS, to the best of our knowledge. Re-

sults summarized in Table 1 showed that the recognition

accuracies for two out of three participants with ALS

(nos. 19 and 21) were as high as the healthy participants,

but the recognition rate was relatively lower in partici-

pant no. 20. In an attempt to better understand why par-

ticipant no. 20 exhibited such low recognition rate, we

analyzed the participant’s raw signals. This analysis

showed that many of the signals were misrecognized be-

cause they included additional or missing saccades. Fig-

ure 6 shows nine misidentified raw EOG signals that

were recorded while the participant was eye-writing spe-

cific patterns. As shown in Fig. 6, seven of the nine er-

rors were associated with additional or missing saccades.

However, this type of error decreased significantly as the

trials proceeded. Specifically, five miswritten numbers

were observed in the first trial, two in the second trial,

and none in the last trial. This finding indicates that,

while the participant had difficulty using the system ini-

tially, he quickly adapted to it. It would be an important

topic to improve the usability of the system in order for

the users to get accustomed to the proposed system

more easily. The other two errors were caused by high-

frequency ripples in the signal, which possibly originated

from microsaccades. We predict that these errors could

be further reduced by developing new features that con-

sider the global shapes of the numbers. Redesigning the

number shape may be another option for increasing the

recognition rates.

The small number of the participants with ALS may

not be enough to prove the feasibility of the eye-writing

system in clinical applications; however, we would like to

emphasize that this was the first study that applied the

eye-writing technology to the participants with ALS.
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Although EOG-based HCI has been studied by many re-

search groups with the ultimate goal for assisting the

people with ALS [17, 33–39], most of the previous stud-

ies evaluated their systems using data acquired from

healthy participants. To the best of our knowledge, there

has been only a single study that tested the developed

system to individuals with ALS [9], where only one par-

ticipant with ALS was recruited to evaluate an EOG-

based HCI system for binary communication (mean ac-

curacy of the binary classification was just 71%). We be-

lieve that the results of the current study are very

promising as two out of three participants with ALS

showed the overall recognition rates higher than 93%.

Nevertheless, application of our system to more num-

bers of participants with ALS and evaluation of the rec-

ognition rates with respect to the symptom severity

scores (ALSFRS) would be important topics that we

would like to pursue in future studies. We believe that

development of a mobile application incorporated with a

mobile EOG recording device would help to recruit

more participants with ALS.

Another issue to be addressed for implementing practical

EOG-based eye-computer interface would be the wavelet

threshold (θ) introduced in Reconstruction of eye move-

ment traces section This threshold affects the sensitivity of

detecting saccadic movements. When the threshold be-

comes higher, lower frequency noises are removed together

with low-speed eye-movements. An optimal threshold may

minimize the loss of the eye-movement information and re-

move the noises as much as possible. In our experiments,

the threshold was derived from data of a single participant.

To verify the stability of this approach, we derived the

threshold values from all the individual participants and

tested how much the changes in the threshold values influ-

ence the performance of recognizing eye-written numbers.

The derived threshold values for healthy participants

were 148.98 ± 64.80, ranging from 52.08 to 278.82. The

values derived from the participants with ALS were

Table 1 Recognition accuracies for each participant with different classifiers

Participant Status Participant number DPW + SVM DPW DTW + SVM DTW

Healthy 1 96.67 93.33 96.67 96.67

2 83.33 90.00 83.33 83.33

3 90.00 100.00 86.67 93.33

4 96.67 93.33 86.67 96.67

5 100.00 100.00 100.00 100.00

6 100.00 100.00 100.00 93.33

7 100.00 96.67 90.00 86.67

8 100.00 93.33 100.00 96.67

9 100.00 96.67 96.67 96.67

10 93.33 96.67 96.67 96.67

11 96.67 93.33 96.67 96.67

12 96.67 90.00 100.00 93.33

13 96.67 93.33 90.00 93.33

14 96.67 90.00 93.33 86.67

15 100.00 100.00 96.67 100.00

16 96.67 90.00 90.00 83.33

17 93.33 90.00 96.67 80.00

18 86.67 86.67 93.33 90.00

Avg. 95.74 94.07 94.08 92.41

Std. 4.83 4.21 5.18 6.03

ALS 19 95.00 85.00 90.00 90.00

20 70.00 80.00 66.67 73.33

21 93.33 96.67 90.00 90.00

Avg. 86.11 87.22 82.22 84.44

Std. 13.98 8.55 13.47 9.62

Overall Avg. 94.37 93.10 92.38 91.27

Std. 7.16 5.33 7.68 6.95
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200.55, 256.56, and 117.33 for participants #19, #20, and

#21, respectively. They were all within the range of the

healthy participants. The changes in overall accuracy

(Accoverall) are depicted in Fig. 7. In this experiment,

SVM significantly increased the accuracy when it was

combined with DTW or DPW (p < 0.001, Wilcoxon’s

signed rank test with Bonferroni correction). The best

recognition rate (95.42%) was achieved with the thresh-

old value of 120 when the combination of DPW and

SVM was used. The recognition rates of all the classi-

fiers decreased as the threshold increases after achieving

their bests in between 70 and 120. This trend occurred

because higher wavelet threshold removed the details of

signals [40] (shapes of the eye-written characters in this

study). It is noteworthy that the combination of SVM

with DPW/DTW showed enhanced stability of the

recognition rate with respect to the varying wavelet

thresholds. Since recognition rates varies from 70 to 95%

according to the wavelet parameter, this would be one of

the important advantage of combining SVM with DPW/

DTW. Moreover, SVM also has a big potential to further

increase the recognition rates if increased size of training

data are used.

One of the disadvantages of SVM would be that it

requires additional time for training procedure. We

measured the time durations of training and test pro-

cedures of each classifier to validate their usability for

practical applications. They were tested using Matlab

2015b on Windows 7 (Intel i5–2320 CPU and 16GB

RAM). In our experiment, SVM with DTW classifier

spent 79.152 s for training 17 subjects’ data, and

SVM with DPW classifiers spent 99.661 s on average.

Fig. 6 Misrecognized signals of a participant with ALS. The first and third rows show the misrecognized signals of participant No. 20. The second

and fourth rows show their corresponding templates. The numbers on the top left corner of each axis denote the intended numbers to be

written by the participant. Unexpected eye movements (additional or missing saccades) were highlighted by visual inspection of the signal. All

preprocessing procedures were minimized (baseline removal and median filtering only) for visual inspection. The template patterns did not

include eye fixation parts. First seven errors (i.e., 7 pairs of panels, a-f, b-g, c-h, d-i, e-j, k-m, and l-n) were associated with additional or missing

saccades. The other two errors (m-o and n-p pairs) were caused by high frequency ripples possibly originating from microsaccades
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This time, however, does not affect its usability for

real time applications. The testing time, which is im-

portant for a practical use, were 62 ms, 116 ms,

118 ms, and 189 ms, for DTW, DTW + SVM, DPW,

and DPW + SVM, respectively. It is clear that DTW/

DPW run faster without SVM, but the combined ap-

proach was still applicable for real time applications,

as we can still recognize five numbers per second.

In this study, we developed a series of computational

methods to more accurately recognize 10 Arabic numbers.

One of the important methods that we developed in this

study was one for removing interdependency between

horizontal and vertical eye-movement components in

EOG. Conventional method [22] needed some preliminary

calibration data to determine a parameter describing the

amount of interdependency between the horizontal and

vertical components, whereas the proposed algorithm

does not need any calibration to determine the same par-

ameter. The other method proposed in this study was one

to combine DTW or DPW with SVM, which has not been

introduced before this work. The combination of DPW

with SVM resulted in the highest overall recognition rates,

which was higher than those of the conventional DTW

and DPW algorithms.

We also proposed a training procedure to efficiently

explain to the user, with minimal user feedback, how

to eye-write. This approach is particularly of import-

ance in practical applications of the proposed eye-

writing system to patients with ALS because it is

generally difficult to receive immediate and accurate

responses or feedbacks from these individuals.

The recognition rates can be affected by the shape of

the Arabic numbers. Table 2 shows the classification ac-

curacies for each Arabic number. In calculating the

mean classification accuracies, data from all the partici-

pants were included except the participant no. 20 (an in-

dividual with ALS who showed lowest recognition rates).

The data were excluded so as to avoid potential bias in

the results. As seen from the table, most of the errors

occurred during the writing of two numbers, ‘4’ and ‘7.’

(Mean accuracies without the two numbers are 96.79%,

95.33%, 95.58%, and 94.74% for DPW + SVM, DPW,

DTW + SVM, and DTW, respectively) Specifically, the

F1 scores of these two numbers were lowest for all clas-

sifiers except DPW. These results suggest that changes

in the shape of the two numbers, 4 and 7, might en-

hance the overall recognition rates.

Conclusion

Here we demonstrated that EOG-based eye-writing can

be an alternative communication tool for individuals

Table 2 Recognition rates of each Arabic number with different classifiers

Number DPW + SVM DPW DTW + SVM DTW

PR SE/RE F1 PR SE/RE F1 PR SE/RE F1 PR SE/RE F1

0 96.72 100.00 98.33 98.15 89.83 93.81 93.10 91.53 92.31 96.36 89.83 92.98

1 86.15 94.92 90.32 96.30 88.14 92.04 95.08 98.31 96.67 96.61 96.61 96.61

2 98.28 96.61 97.44 98.33 100.00 99.16 94.83 93.22 94.02 98.21 93.22 95.65

3 96.67 98.31 97.48 100.00 96.61 98.28 95.08 98.31 96.67 96.61 96.61 96.61

4 98.00 83.05 89.91 81.82 91.53 86.40 87.72 84.75 86.21 77.05 79.66 78.33

5 100.00 98.31 99.15 100.00 96.61 98.28 98.31 98.31 98.31 98.28 96.61 97.44

6 95.16 100.00 97.52 91.67 93.22 92.44 92.19 100.00 95.93 83.10 100.00 90.77

7 89.47 86.44 87.93 85.07 96.61 90.48 90.57 81.36 85.71 87.72 84.75 86.21

8 98.33 100.00 99.16 96.72 100.00 98.33 95.08 98.31 96.67 96.61 96.61 96.61

9 94.92 94.92 94.92 94.44 86.44 90.27 94.83 93.22 94.02 94.55 88.14 91.23

Avg. 95.37 95.25 95.22 94.25 93.90 93.95 93.68 93.73 93.65 92.51 92.20 92.24

St dev. 4.33 5.91 4.23 6.27 4.81 4.38 2.94 6.34 4.41 7.35 6.45 6.05

PR, SE, RE, and F1 denote precision, sensitivity, recall, and F1 score, respectively. The recognition rates were computed from the data of all the participants except

participant #20

Fig. 7 Overall accuracies with respect to wavelet threshold
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with ALS. To implement this practical communication

tool, we designed simplified patterns of Arabic numbers

and proposed a series of algorithms for efficiently recon-

structing and identifying the eye movement traces.

Through our experiments with 18 healthy participants

and three participants with ALS, we confirmed that our

EOG-based eye-writing system can be successfully used

as a communication tool by individuals with ALS. Al-

though performance was lower in participants with ALS

than in healthy participants, their performance could po-

tentially be improved by consistent practice. Moreover,

our proposed system could increase the usability of this

technique if it is applied to portable hardware.

Appendix

Verbal instructions for participants with ALS

This section lists the verbal instructions during data ac-

quisition for participants with ALS. The item numbers

(Vx) are the same as in Fig. 4.

Instruction session

Va1: Open your eyes and look at the number to draw.

Va2: Stare at the fixation mark. Draw the number when

you hear the beep. To draw the number, follow the red

dot that shifts position with the beep.

Va3: Close your eyes and take a rest.

Practice session

Vb1: Open your eyes and look at the number to draw.

Vb2: Stare at the fixation mark. Draw the number when

you hear the beep. To draw the number, follow the red

dot that shifts with the beep.

Vb3: Close your eyes and take a rest.

Exercise session

Vc1: Open your eyes and look at the number to draw.

Vc2: Stare at the fixation mark. Draw the number when

you hear the beep.

Vc3: Close your eyes and take a rest.
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