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Cemented paste backfill (CPB) is an eco-friendly composite containing mine waste or tailings and has been widely used as
constructionmaterials in underground stopes. In the field, the uniaxial compressive strength (UCS) of CPB is critical as it is closely
related to the stability of stopes. Predicting the UCS of CPB using traditional mathematical models is far from being satisfactory
due to the highly nonlinear relationships between the UCS and a large number of influencing variables. To solve this problem, this
study uses a support vector machine (SVM) to predict the UCS of CPB. (e hyperparameters of the SVM model are tuned using
the beetle antennae search (BAS) algorithm; then, the model is called BSVM.(e BSVM is then trained on a dataset collected from
the experimental results. To explain the importance of each input variable on the UCS of CPB, the variable importance is obtained
using a sensitivity study with the BSVM as the objective function. (e results show that the proposed BSVM has high prediction
accuracy on the test set with a high correlation coefficient (0.97) and low root-mean-square error (0.27MPa).(e proposedmodel
can guide the design of CPB during mining.

1. Introduction

Cemented paste backfill (CPB) is widely used for mining
operations in underground metal mines, in which tailings are
normally used as main aggregates and they are mixed with
cementitiousmaterial and water [1]. CPB is normally filled into
the underground stope, and thus, it plays a critical role in
supporting the roof and surrounding rock mass after a certain
period of dehydration and consolidation [2–5]. Comparedwith
other backfill materials, CPB is an eco-friendly and economic
mine composite due to themaximumutilization ofminewaste,
which attracts much attention these years [6–11].

Filling strength is the most important mechanical pa-
rameter that affects filling quality, and unconfined com-
pressive strength (UCS) is the most basic and key parameter
to evaluate the filling strength of CPB [12]. Generally, the
UCS of CPB is obtained in the laboratory, similar to the
strength evaluation of the concrete. However, when multiple
parameters are related to UCS of CPB, experimental

measurement is a tedious, time-consuming, and expensive
method [13, 14]. Many scholars have put forward many
methods to predict the strength of CPB such as empirical
formula estimation, numerical simulation, and elastic me-
chanics analysis [15, 16]. It should be pointed out that the
CPB is a multiphase composite and the mentioned methods
normally cannot obtain accurate prediction results. To ac-
curately predict the UCS of CPB, it is necessary to put
forward simple and reliable methods.

Recently, machine learning methods have been widely
used for predicting the mechanical properties of construc-
tion materials [12, 17–23]. (e assessment of the strength of
CPB by artificial intelligence methods has also been pre-
sented. For instance, artificial neural network (ANN) con-
sidering influencing variables of CPB has been used to model
the relationship between inputs and outputs [24, 25]. Fur-
thermore, the evolutionary ANN method, namely, ANN-
based methods, was proposed for estimating the UCS of
CPB, by which the hyperparameters such as the number of
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neurons and the structure of ANN are optimized by some
global optimization algorithms, i.e., particle swarm opti-
mization (PSO) and firefly algorithm (FA). Similarly, other
normally used machine learning methods such as the ran-
dom forest algorithm (RF) and RF-based models reported in
the literature are also used for predicting the UCS of CPB
[26]. Although the above artificial intelligence methods
(ANN, ANN-based, RF, and RF-based) were applied in
strength prediction of CPB, they are limited in calculating
efficiency and uncertain structures. Besides, there is no
intelligent model for the prediction of UCS of CPB con-
sidering the overall effect of cement-coarse tailings ratio,
solids-water ratio, fine tailings percentage, and curing time.

(erefore, in this paper, the machine learning algo-
rithms, support vector machine (SVM) that has the perfect
ability in regression and classification, and an excellent
global optimization algorithm, beetle antennae search al-
gorithm (BAS) that is used for selecting hyperparameters of
SVM, were combined. (erefore, an evolutionary support
vector machine model (BSVM) is proposed. Several con-
tributions to the literature can be concluded as follows:

(1) (e support vectormachine (SVM) and beetle antennae
search (BAS) algorithms were combined to establish the
evolutionary support vector machine model;

(2) (e strength properties of CPB was analyzed by
conducting the experiments considering the key
influencing variables, i.e., cement-coarse tailings
ratio, solids-water ratio, fine tailings percentage, and
curing time

(3) (e UCS of CPB was directly estimated by consid-
ering the combined effect of four key influencing
variables

(4) (e sensitive analysis of the mentioned influencing
variables of CBP was first analyzed and discussed

2. Materials and Methods

2.1. Mechanical Tests. To prepare the CPB specimen, the
grain size distribution of tailings and the mineralogical
composition are necessary to determine. (us, a laser dif-
fraction analyzer was utilized for determining the size dis-
tribution of coarse tailings and fine tailings. As we can see
from Figure 1, there are two different tailings of various sizes.
To analyze the influence of fine tailing on the strength of
CPB is critical. (e Portland cement P.O 32.5R was applied
as a binder. (e water obtained in this mine was used as the
mixing water. According to the field trial tests, coarse
tailings-cement ratio (T/C) was set as 4, 6, 8, and 10, and the
solids-water ratio (S/W) was set as 0.68, 0.70, and 0.72. (e
fine tailings are as an admixture, and its percentage (FTP)
was set as 0%, 10%, 15%, and 20%. (e blinder and ag-
gregates were mixed by using a mixer (UJZ-15) for 5min.
(en, the prepared mixture was poured into the molds
(70.1mm× 70.1mm× 70.1mm). (e curing time in this
study was set as 7, 28, and 60 days. (e detailed statistics of
variables of CPB are given in Table 1. A total of 435 spec-
imens were completed, and they were used for obtaining the

UCS values by conducting unconfined compressive tests
according to ASTM C 39.

2.2. Model of Evolutionary Support Vector Machine (BSVM)

2.2.1. Support Vector Machine (SVM). SVM is normally
applied for classifying the samples by the hyperplanes [26].
When the hyperplane canmake a largemargin in two classes, the
vectors corresponding to the hyperplanes are support vectors.
(e schematic diagram of the SVM is depicted in Figure 2.

Generally, the hyperplane equation is as follows:

f(x) � w
Tg(x) + b, (1)

where wmeans an m-dimensional vector; b denotes the bias
term; and when w and b are obtained, the x can be classified
by the sign of f (x).

For linear separable data, the following equation can be
concluded as follows:

yi w
Tg(x) + b( ) − 1≥ 0. (2)

(e support vectors are on the hyperplane:

yi w
Tg(x) + b( ) � 1. (3)

To minimize the ‖w‖2, the hyperplane can be found (‖w‖
is the Euclidean norm of w).

2.2.2. Beetle Antennae Search (BAS). BAS is a very famous
metaheuristic algorithm, which is proposed recently [20]. It
can be used for global optimization problems. Nowadays,
BAS has been widely utilized in obtaining hyperparameters
in machine learning algorithms [20, 21]. In this algorithm, it
simulated the beetles’ behavior, and the objective of its
antennae is to find the odor with high concentration. A
typical flow chart of BAS is shown in Figure 3.

In this study, the hyperparameters of SVM (C, penalty
coefficient and c, kernel parameter) were tuned by BAS
instead of trial-and-error methods.
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Figure 1: Grain size distribution of coarse and fine tailings.
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2.3. Performance Evaluation. According to the suggestion in
previous studies, the training dataset and testing dataset are split
into 70% dataset and 30% dataset, respectively. A 10-fold cross-

validation method was applied. (e correlation coefficient (R)
and root-mean-square error (RMSE) for evaluating the per-
formance of the established model are defined as follows:

R �
∑Ni�1 y∗i − y∗( ) yi − y( )�������������

∑Ni�1 y∗i − y∗2( )
√ ������������

∑Ni�1 yi − y2( )
√ ,

RMSE �

���������������
1

N
∑N

i�1
y∗i − yi( )2

√
,

(4)

Table 1: Statistics of influencing variables.

Variable Min Max Mean Standard deviation

Coarse tailings-cement ratio (T/C) 4 10 7 2.2
Solids-water ratio (S/W) 0.68 0.72 0.7 0.02
Fine tailings percentage (FTP) 0 0.2 0.11 0.07
Curing time 7 60 31.6 21.8

Separating hyperplane

Support vector

Margin

Figure 2: Diagram of SVM.
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Figure 3: Flow chart of BAS.
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where Nmeans the numbers in the dataset; y∗i and yi are the
expected values and real values, respectively; and y and y∗

indicate the mean predicted values and mean actual values,
respectively.

3. Results and Discussion

3.1. Results of UCS of CPB. Figure 4 shows the UCS of CPB
combined with different variables under different curing
times. It can be seen that the coarse tailings-cement ratio is
the main index for determining the strength of CPB. With
the increase of coarse tailings-cement ratio, the UCS of CPB
increased obviously. Similarly, the UCS of CPB improved
with the increase of the solids-water ratio. However, in terms
of the effect of fine tailing percentage on CPB strength, it
depends on the solids-water ratio. Specifically, when the
solids-water ratio is between 68% and 70%, with the increase
of the fine tailing percentage, the UCS of CPB increased to
the peak values and then declined. When the solids-water
ratio is 72%, the UCS of CPB decreased slightly with the
increase of fine tailing percentage. (e curing time played a
positive effect on the increase in the strength of CPB, which
is consistent with the previous studies.

3.2. Results of Hyperparameter Tuning. In this study, BAS is
applied to tune hyperparameters of SVM on the training set.
RMSE is selected as the objective function. Figure 5 shows
the RMSE versus iteration curve. It can be seen that RMSE
decreases significantly and is stable after 15 iterations, in-
dicating that the BAS is efficient in tuning hyperparameters.
(e final hyperparameters of SVM are tabulated in Table 2.

3.3. Assessment of the EstablishedModel. Figure 6 shows the
correlation between predicted UCS values and actual UCS
values on the training and test sets. A nearly linear rela-
tionship is observed with R values of 0.9701 and 0.973 on the
training and test sets, respectively, indicating that the pro-
posed SVMmodel can establish the relationship between the
UCS of CPB and its influencing variables successfully. Be-
sides, the low and similar RMSE values on the training
(0.1798) and test (0.2674) sets suggest that no underfitting or
overfitting phenomena are produced.

3.4. Analysis of the Variable Importance. (e relative im-
portance of the input variables is calculated using global
sensitivity study, as shown in Figure 7. It can be observed
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Figure 4: UCS test results of CPB in 4D: (a) 7 days; (b) 28 days; (c) 60 days.
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that the coarse tailings-cement ratio has the most significant
influence on the UCS of CPB with an influencing score of
4.46, followed by curing time (3.178) and solids-water ratio
(0.23), while fine tailings percentage is the least sensitive
variable with an influence score of 0.088. (is result agrees
well with the previous study. It should be noted that the
importance score is obtained by the dataset used in this
paper. More accurate results can be obtained if more data
samples are included in the dataset in the future.

4. Conclusions

(is study uses the BSVM for predicting the UCS of CPB.
(e hyperparameters of SVM are tuned by BAS. (e BSVM
can establish the relationship between the UCS of CPB and
its influencing variables successfully, indicated by high
correlation coefficients on the training (0.97) and test (0.973)
sets. Also, the calculated variable importance by sensitivity
analysis shows the coarse tailings-cement ratio is the most
important variable to UCS.

In future work, the dataset will be enlarged by including
more influencing variables and samples to improve the
generalizability of the proposedmodel. Also, a graphical user
interface will be implemented to facilitate the use of the
model in designing CPB mixtures.
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Figure 6: Comparison of UCS values. (a) Training dataset.
(b) Testing dataset.
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Table 2: (e obtained hyperparameters of RF.

Parameters Empirical scope Initial Results
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Figure 7: Variable importance of CPB based on the BSVM.
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