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An errorable car-following driver model is presented in this paper.  An errorable driver 
model is one that emulates human driver’s functions and can generate both nominal 
(error-free) as well as devious (with error) behaviors.  This model was developed for 
evaluation and design of active safety systems.  The car-following data used for 
developing and validating the model was obtained from a large-scale naturalistic driving 
database.  The stochastic car-following behavior was first analyzed and modeled as a 
random process. Three error-inducing behaviors were then introduced.  First, human 
perceptual limitation was studied and implemented.  Distraction due to non-driving tasks 
was then identified based on the statistic analysis of the driving data. Finally, time delay 
of human drivers was estimated through a recursive least square identification process.  
By including these three error-inducing behaviors, rear-end collisions with the lead 
vehicle could occur. The simulated crash rate was found to be similar but somewhat 
higher than that reported in traffic statistics. 
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1. INTRODUCTION   

Driver behavior is an important topic for transportation and ground vehicle 

research.  The way drivers respond to the surrounding traffic influences roadway designs, 

traffic rules and human-vehicle interface design.  Driver inattention or distraction is 

responsible for 25%-30% of police-reported crashes [1]. Inattentive drivers were found to 

have three – six times higher near-crash/crash risk than drivers who are attentive [2].  

Over the past decade, Active Safety Technology (AST) was developed to assist human 

drivers to avoid or mitigate accidents; in other words, they are useful when the driver is 

either making a mistake or simply is not able to handle the situation.  To evaluate the 

effectiveness of AST, driver models that achieve driving tasks normally are not very 

useful. A new kind of driver models need to be developed based on the concept that a 

driver model that normally achieves driving tasks could be perturbed to make mistake 

like human drivers.  When the error mechanisms and the parameters are properly 
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designed, this type of driver models can generate crash or near-crash behaviors that are of 

interest to engineers who are developing AST.  To our best knowledge, such “errorable” 

driver models have not been studied in the literatures.  This main contribution of this 

paper is the development of an architecture and tuning process for errorable driver 

models. 

The focus of this paper will be on the longitudinal car-following behavior, which 

is important because rear-end collisions account for about 60% of all crashes [3].  Rear-

end collision warning/collision avoidance system were developed to avoid or mitigate 

this type of accidents.  The effectiveness of CW/CA system working with a human driver 

or other human controlled vehicle needs to be evaluated exhaustively because of 

legal/liability and other concerns.  Errorable driver models constructed and used properly, 

can capture human/control interaction and thus accelerate the CW/CA system 

development process.   To make a model errorable, mechanisms of driver errors and their 

effects on driving must be understood.  Driver errors can be viewed as a recurring event 

which, when combined with events from surrounding vehicles, could result in an 

accident—but in a stochastic fashion.  For example, a driver may be distracted or 

engaging in alter-control tasks and thus fails to adjust vehicle speed properly.  If the 

leading vehicle happens to decelerate at a wrong moment, a rear-end collision could 

happen.  The human behavior (distraction) and the lead vehicle deceleration can both be 

described by stochastic processes. If proper human cognition/error mechanisms are 

included and proper probability distribution functions are used to introduce human errors, 

it is possible to reproduce accident/incident behavior that is statistically similar to field 

testing results – which is the final goal of this paper. 

2. LONGITUDINAL DRIVER MODELS 

As early as the 1950’s, car-following driver models were developed to evaluate 

traffic capacity and congestion. Pipes [4] suggested a linear follow-the-leader model, 

which assumes a linear relationship between drivers’ desired acceleration and the speed 

difference between the following and leading vehicles.  The desired acceleration is 

realized after a neuromuscular delay.   The Proportional gain and neuromuscular delay of 

drivers were identified by Chandler [5].  Gazis [6] modified this linear follow-the-leader 



model with a nonlinear approach.  The proportional gain of acceleration in Pipes’ model 

was replaced by a function of the mth power of range and the lth power of the following 

vehicle speed.  The parameters m and l were estimated by several researchers [7]-[9].  

Newell [10] proposed another nonlinear model that the desired speed is an exponential 

function of range errors.  All models above describe drivers’ objective as either zero 

range error or zero range-rate.  Intuitively, drivers are more likely to do both.  This 

hypothesis was first discussed by Helly [11].  In Helly’s model, the acceleration is a 

function of both range error and range-rate.  Tyler [12] used the linear optimal control 

approach to approximate human driving behavior.  A quadratic function of range error 

and range-rate was optimized and the resulting model has the same form as Helly’s 

except that the desired range is only a function of the controlled vehicle speed.  Later on, 

Burnham [13] included driver delay and nonlinear vehicle dynamics into Tyler’s model.  

Other than following the lead vehicle, a safety distance strategy was proposed by Gipps 

[14].   By estimating the kinematic relationship between the lead vehicle and the 

following vehicle in braking situation, a safe-distance is calculated.  A second mode was 

added in the Gipps’ model to describe free flow condition.  Switching between the two 

modes, this model can capture driver’s behavior under different traffic flows.  Bando [15] 

adopted a hyperbolic tangent function to mimic the switching mechanism.  By doing so, a 

single mode model can be used to describe both free and congested traffic flow.   

Other than measuring dynamic variables and modeling driver decision as a 

continuous dynamic process, psychophysical studies provided an alternative for modeling 

car-following behaviors.  Michael [16] argued that drivers would detect range variation 

through the change of the lead vehicle size.  Once the change exceeded a threshold, the 

driver would adjust vehicle acceleration until a proper perceptual size was regained.  The 

driver’s behavior was modeled as a sequential control, which responds to an event 

(exceeding threshold) and resets the action when a new event is triggered.  Some basic 

concepts and criteria were provided in Michael’s work but no specific mathematic model 

was presented.  Lee [17] claimed that drivers use time-to-collision as the perceptual 

threshold for braking and used τ (angular separation over separation rate) to estimate 

time-to-collision.  In Lee’s hypothesis, the driver initiates brake action based on τ 

threshold and controls the brake force based on the time rate of change of τ.  This 



hypothesis was verified by Yilmaz [18] but a general agreement about the threshold value 

is not reached.  Reiter [19] used range as the perceptual threshold and provided 

experimental results to obtain model parameters.  On the other hand, Brackstone [20] 

conducted experiments based on a similar approach, but he uses range-rate instead of τ. 

From the literature above, it can be seen that both engineering and psychophysical 

approaches were attempted to model driver behaviors. Engineering models focused on 

the physical signals instead of what happened internal of the driver. Psychophysical 

models help to qualitatively explain the driver’s actions.  In this paper, an engineering 

type of longitudinal driver model will be used as the basis of this errorable model to 

perform normal car-following behavior.  Psychophysical approach will be used to 

introduce error mechanisms.  The parameters of the error mechanisms will be obtained 

through naturalistic driving data.   

3. ERRORABLE CAR-FOLLOWING DRIVER MODEL TEMPLATE 

To develop an errorable model, a model that normally achieves car-following 

tasks will be used as a template.  Many existing car-following models can fulfill this 

need.  The majority of those models assume driving as a deterministic process, i.e., the 

vehicle states can be calculated exactly from dynamic equations [12], [14] or heuristic 

rules [19], [20]. Precise prediction of vehicle states might be useful in traffic flow 

analysis, but has little use for AST development.  In actual driving, human do not behave 

deterministically and some randomness is always observed.  This stochastic behavior of 

driving has been studied in [22]-[25].  Human randomness is commonly modeled as a 

random noise.  By adjusting magnitude and parameters of the noise, the driver model can 

be tuned to fit the test data.  However, the tuning processes of noise are not convincing 

and have little reflection of actual driving behavior.  In this section, stochastic behaviors 

of human drivers will be analyzed with more physical insights.  Hypothesis will be 

validated with naturalistic driving data and a stochastic driver model will be 

development.  This model should capture human’s normal driving behaviors as well as 

some deviations.  Those deviations are considered as part of driver’s nature, not error.  

The resulting normal and deviated behaviors should be consistent with what we observed 

in realistic driving data in a statistic fashion.  In Section 4, the stochastic driver model 



will combine with error mechanisms derived from driving data; then, this new model can 

be made to make mistake in a controlled fashion, in other words, errorable. 

3.1 Stochastic Behavior of Longitudinal Driving 

During a car-following task, the driver normally regulates the vehicle speed so 

that the space between the following vehicle and the leading vehicle is at a desirable 

level, even under lead vehicle speed fluctuation. This process is usually modeled by a 

deterministic process [1]–[6], with the desired velocity calculated from kinematic or 

dynamic equations.  It might be a good approximation for traffic analysis; however, it is 

not suitable to describe individual driver behavior, because human cannot perceive, 

calculate, or control perfectly and human is also unlikely to perform such tasks at a 

regular tempo. 

3.1.1 Hypothesis 

In everyday driving, human drivers normally aim to regulate the vehicle speed so 

that the spaces between the following vehicle and the leading vehicle are large enough.  

The above statement has two assumptions: human drivers have intention to achieve a 

desired vehicle state (speed) and as long as this state was roughly achieved, some 

deviations would be acceptable, and unavoidable.  The deviation of control is due to 

various reasons including driver’s imperfection in perception, control, or exogenous 

disturbances (powertrain dynamics, road gradient, etc.)  The assumption regarding 

deviation of control was discussed in [25] and modeled as a random noise. However, the 

color and magnitude of the stochastic process are unknown and a tuning step is needed.  

In [26], the deviation of braking control of human drivers under deceleration was 

modeled as a truncated Gaussian distribution.  In this study, the deviation will be 

modeled and assumed to exist in both braking and accelerating, and the distribution will 

be obtained from naturalistic driving data. 

3.1.2  Modeling of Stochastic Behavior 

In this section, drivers are assumed to have a target acceleration which is a 

function of range, range-rate, and/or time headway. 
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Unlike most of the existing models, this desired state will not be achieved exactly 

and, instead, will have some uncertainties dependent on range.  When the range is large, 

the driver cannot perceive range accurately and there is more room to deviate.  Thus, the 

deviation increases with range.  This hypothesis is summarized below and will be verified 

in the following section. 

( ) ( ))(tRft σσ ∝  (3.2) 

3.2 Data Analysis and Validation 

The hypothesized model in Eqs. (3.1) and (3.2) was verified with field test data, 

which are from Road-Departure Crash-Warning System Field Operational Test [27].  The 

RDCW FOT was designed to study road departure behavior.  This system was 

implemented on 11 passenger vehicles with data acquisition systems.  Seventy-eight test 

drivers participated and each drove a test vehicle for four weeks.  Total data set 

accumulated 83,000 miles of driving and over 400 signals were captured at 10 Hz 

including signals useful for our study, such as range, range-rate, following vehicle 

acceleration, etc.  Participants were instructed for road departure field operational test; no 

restriction what-so-ever in longitudinal driving.  Therefore, this field test data is 

naturalistic in car-following and ideal for analyzing human driver’s stochastic behaviors. 

3.2.1 Range-rate and Acceleration Distribution 

In Eg. (3.1), the desired acceleration was assumed to be a function of range, 

range-rate, and/or time headway.  First, we started from a simple linear relationship (3.3) 

which is inspired by the Pipe’s model [1].  

( ) ( )tRPtad ⋅=  (3.3) 

 

It can be seen from Figure 3.1 that this simple relationship does not describe the 

test data very well. However, with the proportional gain P in Eg. (3.3) replaced by a 

function of range, the data fit quality is much improved (see Figure 3.2). 



 

Figure 3.1 RDCW data acceleration vs. range-rate 
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Figure 3.2 RDCW data acceleration vs. range-rate with various range 

 

The sensitivity function ( )( )tRP  was found to be a cubic function of )(tR , i.e. 

( ) ( )( ) ( )tRtRPtad ⋅=  (3.4) 
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Figure 3.2 shows that the accelerations of the following vehicle are proportional 

to the range-rate, but with a small scatter around the linear fit.  The distributions and the 

residues were plotted in Figure 3.3 with their standard deviations calculated.  The 

standard deviation can be fitted by a second order polynomial reasonably well.   
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Figure 3.3 RDCW data acceleration distribution with various range 
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The vehicle acceleration under human driver control is generated from a 

stochastic process with a mean of ad(R(t)) and standard deviation σ(R(t)).  The overall 

stochastic driver model is summarized below.  
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A remaining unknown in the stochastic driver model is the density function f in 

Eq. (3.7). Brunson [26] adopted a truncated Gaussian distribution for the decelerating 

cases.  However, the observation in Figure 3.3 shows that the distribution is not 

symmetric.  Lognormal distribution (3.8) or extreme value (3.9) distribution [28] are two 

possible candidates for non-symmetric distributions. 
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Simulation results show that the extreme value distribution has better agreement 

with the RDCW data.  Therefore, Eq. (3.9) will be used in this study.  One fitting 

example with range between 40-50 m was showed in Figure 3.4. 



-0.4 -0.2 0 0.2 0.4 0.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
ro

ba
bi

lit
y

Acceleration (g)

Range Rate vs Acceleration @ range <=50

 

 

Acc Distribution
Extreme Value Distribution

 
Figure 3.4 Distribution fitting of the RDCW acceleration data 

3.3 Extension for Range Regulation  

In Eq. (3.4), the driver only responds to non-zero range-rate. Therefore, the model 

may be trapped in a tailgating situation; in other word, the model may follow the lead 

vehicle with a very small range.  Moreover, the proportional gain in Eq.(3.5) is a function 

of range.  If the range is too large (e.g. >70), the model will hardly response to any 

stimulus; the following vehicle will thus fall behind.  Both situations are considered 

possible but not normal car-following behavior. 

3.3.1 Range Regulation 

  In reality, human drivers regulate range or time headway in addition to range-

rate [11][12].  Human driver are assumed to have a desired range and will regulate the 

vehicle speed to achieve the desired range. To capture this behavior, an extra term was 

included in Eq. (3.4).  

( ) ))()(()()()( tVTtRCtRtRPta Fhd ⋅−⋅+⋅=  (3.10) 

where C is a constant gain for range regulation and hT  is the time headway. 

3.3.2 Time Headway 

The time headway hT  in Eq. (3.10) was obtained from steady-state cruising 

RDCW data.  The actual time headway of each human driver can be calculated and a 

example distribution was shown in Figure 3.5. 
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Figure 3.5 Time headway distribution and fitting results 

The time headway distribution is approximated as a random process with 

lognormal distribution.  However, this random process generates a random variable every 

sampling time.  In real driving, human drivers obviously do not adjust their time headway 

so frequently.  By adding a 4-step running average filter, the output becomes smoother 

and similar to actual driving data. 

3.3.3 Driver Model Diagram 

A schematic diagram of the stochastic driver model is shown in Figure 3.6.  The 

inputs are the desired time headway (Th) and the lead vehicle velocity (VL), which is from 

naturalistic driving data.  The average desired acceleration (ad) and deviation (σ) are 

calculated from Eq. (3.10) and Eq. (3.6), respectively. The actual acceleration is then 

generated through a random number generator (MATLAB function “evrnd”) and the 

output VF can be integrated.  This model simulates the normal driver behavior and 

random deviations derived from actual driving data.  Three different simulations (under 

the same lead vehicle stimulus) are shown in Figure 3.7 to illustrate the stochastic natural 

of this model.  
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Figure 3.6 Stochastic driver model diagram 
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Figure 3.7 Examples of stochastic driver model simulation 

3.4 Simulation Results and Discussion 

The proposed stochastic driver model (SDM) was evaluated by the RDCW data.  

The lead vehicle speed from the RDCW data is used as the input to the SDM.  The SDM 

response is compared with the measured following vehicle speed from the RDCW 

database.  The model performance is assessed by examining the model prediction error. 

In addition, the SDM performance was also assessed by comparing its range-range rate-

acceleration behavior with other driver models.  

3.4.1 Evaluation by RDCW 

In the RDCW database, driving records of 78 drivers’ data are available.  Based 

on the query criteria, the car-following data was extracted. The obtained query results 

include between 20 and 74 maneuvers from each driver.  Those maneuvers were 



separated into a training set and an evaluating set.  The ten longest maneuvers of each 

driver were used as the training data for calibrating the SDM parameters.  Then, the next 

ten longest maneuvers were used as the evaluating sets.  The measured lead vehicle speed 

is used as the input and the model predicted VF is compared with the experiment data 

from the RDCW.  The model prediction error distributions of 10 randomly selected 

drivers were shown in Figure 3.8. 
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Figure 3.8 Distribution of model prediction error 

To assess the performance of the stochastic longitudinal driver model, the 

performance of several deterministic longitudinal driver models is also studied.  Three 

models were selected because of their simplicity and accuracy.  Note that, Lee [21] 

reported that the Gipps model [14] has the best performance for fitting human driver in 

his study.  However, the Gipps model generates a desired velocity.  When applying 

parameters to evaluating sets, this desired speed generated from training sets would not 

be valid.  Therefore, the Gipps model was not selected as a model to compare with. 

The same training sets used to obtain the SDM parameters were selected and a 

numerical optimization technique was applied to obtain the best parameters for the three 

models.  For each driver, there are ten maneuvers in the training sets; hence ten sets of 

parameters were obtained.  The parameter values were averaged and applied to the 

evaluating maneuvers.  The distributions of the velocity error are shown in Figure 3.9. 
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Figure 3.9 Model comparison results 

For the training set alone, the SDM has the worst performance in terms of standard 

deviation of the predicted speed.  However, several facts should be pointed out: 

• SDM did not go through an optimization scheme for each training maneuver. 

• SDM used only one set of parameters for all ten maneuvers in the training set, 

meanwhile all other models used a unique parameter set for each maneuver. 

For the evaluation set, the SDM has the most consistent performance among all 

models.  The error of the SDM increases only slightly while all other models’ 

performances degrade significantly.  This indicts that deterministic driver models with 

optimized parameters can fit human driver behaviors well but are not robust in prediction.   

Another significant advantage of SDM is demonstrated by examining the 

acceleration and range-rate plots (Figure 3.10). The acceleration, range and range-rate 

distributions of the SDM were plotted in Figure 3.10 to compare with the RDCW data 

qualitatively.   

 

 



 

  

  
Figure 3.10 Range and range-rate distribution comparison 

 

It can be seen that except the SDM and the Tyler’s model, all other models have 

very different data distribution than observed in the RDCW data.  Because of the tight 

regulation of time headway, Tyler’s model has an elliptic shape distribution similar to 

RDCW.  However, its distribution still did not spread out enough.  This is because these 

deterministic models are “optimal” models and do not capture the stochastic behavior of 

drivers adequately.  



3.5 Discussion 

A stochastic longitudinal driver model was developed and evaluated against 

naturalistic driving data.  Sufficient flexibility was shown in training this model to fit 

experimental data.  Meanwhile, superior robustness was demonstrated in predicting the 

human driving behavior in the evaluation test sets.  This SDM captures human’s normal 

driving behaviors with deviations similar to actual driving data.   

The SDM will serve as driver model template for the development of the 

errorable driver model, which is the focus of the rest of the paper.  Combining with error 

mechanisms derived from human behavior, this model can be manipulated to make 

mistake, i.e., errorable.  To model driver error mechanisms, driver errors and their effects 

on driving must be understood.  In the following section, three human driving error 

mechanisms will be studied and implemented in the SDM.   

4. LONGITUDINAL ERRORABLE CAR-FOLLOWING DRIVER MODEL 

The final goal of this paper is to build a longitudinal car-following driver model 

for evaluating active safety technology (AST) systems.  Models that achieve driving tasks 

perfectly are not useful. On the contrary, a model that makes mistakes similar to human 

drivers is useful for the development of AST. We believe a car-following driver model 

can be manipulated to make mistakes by introducing proper error mechanisms.  The 

analysis and modeling of error mechanisms will be discussed in this section and the 

resulting errorable driver model is validated against actual traffic data. 

4.1 Error-Inducing Behaviors  

Three types of error-inducing behaviors are analyzed: perceptual limitation, time 

delay, and distraction.  Each of them degrades the car-following performance separately.  

The error-inducing behaviors are modeled as stochastic processes based on their 

frequency of occurrence.  Then, these stochastic processes are introduced into the SDM 

independently.   



4.1.1 Perceptual Limitation  

Human drivers sense and perceive environmental variables such as range, range 

rate and vehicle speed to perform the driving task.  Among all the feedback information 

human drivers perceive, vision is the primary source when operating motor vehicles 

[31][32].  In a car-following task, the abilities to detect changes in distance and velocity 

are critical.  Therefore, they need to be studied as one of the error-inducing behavior in 

this research. 

The proposed SDM uses range and range-rate as two feedback cues.  The range 

between vehicles is perceived though optical invariants [33].  The perception is then 

limited by the resolution of human vision system.  A typical accepted localization 

threshold is 6 arc sec (0.5μ on the retina).  Other than visual angle, human also utilizes 

environmental information such as eye-height, relative position, and texture of the ground 

[34].  Therefore, we do not implement the perceptual limitation of distance or range. 

How human drivers perceive relative speed has long been a research pursuit.  

Many researches were done aiming to answer the following question: Can human 

perceive relative speed directly or is it indirectly inferred through the change in position?  

This question is sometimes recast in a different form: is perceptual sensitivity of velocity 

different from sensitivity of position?  Nakayama [35] used a random-dot pattern 

movement to isolate the motion from position cues.  Randomly generated dot pattern 

prevented the position comparison and allow motion detection to be the only mechanism. 

The result concluded that motion and position perception are two different mechanisms.  

In the low frequency range (< 2 Hz), human has a direct assessment of speed. But for 

higher frequency (> 2 Hz), position derivative seems to dominate.  A different perceptual 

threshold was also reported.  Various Just-Noticeable Differences (ΔV/V) of velocity 

discrimination from 0.05 to 0.2 were found in [36]-[39]. Since velocity detection in a car-

following task is relatively easy (comparing to other tasks such as hitting a baseball); a 

velocity threshold of 0.1 is used in this paper.   

The perceptual limitation was simulated through quantization for the range-rate 

input.  It is implemented as follows: 
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, where R  is the actual range-rate and R′ is the perceived range-rate.  An example 

simulation for the perceptual limitation quantizer was shown in Figure 4.1.    
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Figure 4.1 Range rate perceptual limitation simulation 

4.1.2 Time Delay 

Time delay is another source of error.  Neuromuscular delay and brain processing 

time are two major sources of time delay.  Neuromuscular delay may be close to constant 

for each driver [45], but the brain processing time is not.  Therefore, the total time delay 

is varying.  The truth is that the delay time may very well be related to distraction due to 

secondary tasks.  However, it is important to include delay as a separate error mechanism 

in the SDM. A parallel recursive least square (RLS) method was used to estimate the 

varying total time delay.  Thirty ARMA models with different delay steps (1 to 30) were 

used to fit the test data simultaneously by the RLS algorithm.  For every single data point, 

the delay step of the most accurate ARMA model was chosen as driver’s time delay, and 

then the time delay sequence can be constructed.  The driver time delay was reported to 

be .5-.9 sec from an instrumented vehicle in a test track [47] responding to a signal 

change.  A longer brake response time was found (1.5-3.5 sec) in a driving simulator [48]  

for the car-following and in normal traffic (3.5-4.5 sec) [49].  The value for N is selected 



to be thirty (three second). The estimated results of the RDCW data were analyzed.  One 

example was shown in Figure 4.2. 
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Figure 4.2 Time delay estimation of RDCW data 

 
This sequence shows a significant character that the delay step increases with time 

and, then dropped or reset to zero. This can be modeled by a renewal process as well.  

To duplicate the characteristic of time delay observed in the previous section, a 

probability distribution of time delay was first obtained from the time delay sequence.  If 

time delay step is zero, we define it as normal driving and their distribution was showed 

in Figure 4.3 (a) which can be fitted by an exponential distribution.  When time delay 

step increased from zero, we define it as delayed driving and their distribution can be 

approximated as uniform (Figure 4.3 (b)). 
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Figure 4.3 Time delay distribution and PDF fitting 

 

Next, the human time delay was modeled by a renewal process which has an 

inter-arrival time indicated by a probability density function.  When a renewal arrives, the 



time delay step will increase from zero and reset until the next renewal.  The resulting 

time delay sequence can represent the real sequence obtained by RLS and be used for 

simulations (Figure 4.4). 
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Figure 4.4 Time delay simulation and comparison with the RDCW estimation 

 

4.1.3 Distraction 

Driver distraction is responsible for almost thirty percent of police-reported 

crashes [1].  Therefore, it is an important error-inducing mechanism that should be 

included.  Driver can be distracted by in-vehicle tasks including cell phone usage, or 

interaction with other passengers [41].  When a secondary task happens, the human driver 

will have reduced attention to driving.  Some of the secondary tasks may require higher 

participation and may temporarily disable human driver’s ability of to attend to driving 

(Figure 4.5).  Sheridan [42] suggested a switching type of control configuration which 

can be used to model the transition between different modes of driving.  In this paper, we 

define the multi-task driving as cause for “mind off the road”.  The human driver is 

assumed to keep his/her eyes on the road while doing the secondary task.  However, the 

non-driving task increases the mental load and degrades the driving performance.  Boer 



[43] reported an increasing deviation of steering wheel angle under mental load for lane 

keeping driving.  The same increasing deviation of control should exist in the car-

following driving.   Meanwhile, if a human driver is fully engaged in a secondary task, 

very often he/she will move the eyes to this task and stop updating the driving 

information. We define this situation as “eyes off the road”.   

driving task
speed regulation, car following, lane change

Intention Vehicle

secondary task
dial cell phone, read map,…etc

multi task

single task

driving task
secondary task
cell phone, conversation,…etc

(mind‐off‐the‐road)

(eye‐off‐the‐road)  

Figure 4.5 Driving under distraction 

4.1.3.1 Mind-off-the-road 

One challenge in the errorable driver model is to identify the “mind off the road” 

mechanism and quantify it for modeling.  Driving data of 10 drivers was collected from 

the RDCW database.  Based on the actual test data, the SDM can predict the next vehicle 

states and calculate their deviations respectively. If the test data landed outside one 

standard deviation of the prediction, we define it as a deviated behavior (Figure 4.6).  In 

this paper, the deviated behavior was assumed to be a consequence of mind off the road.  

 

Figure 4.6 Distraction prediction based on the SDM 

 

This analysis was applied to the RDCW data and the results are shown in Figure 

4.7.  Once the RDCW VF lands within one standard deviation of SDM prediction, it will 



be defined as normal driving (the first two data points showed in left hand side of Figure 

4.7).  If the RDCW VF lands outside one standard deviation (the last two points in left 

hand side of Figure 4.7), it will be defined as deviated behavior.  The predicted result was 

showed in right hand side of Figure 4.7 with dotted line and can be modeled by an 

alternative renewal process with two independent identical distributions (IID) (Figure 

4.8).  

13.4 13.6 13.8 14 14.2 14.4 14.6 14.8 15 15.2

26.3

26.4

26.5

26.6

26.7

26.8

26.9

27

27.1

27.2

Distraction prediction of the RDCW data

Time (sec)

V
el

o
ci

ty
 (

m
/s

)

 

 
SDM Predictied
RDCW V

F
deviated

deviated
normal

20 40 60 80
24

26

28

30

Distraction prediction of the RDCW data

Time (sec)
V

el
o

ci
ty

 (
m

/s
)

 

 
SDM Predicted
RDCW V

F

RDCW V
L

deviated

Figure 4.7 Distraction prediction of the RDCW data 
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Figure 4.8 Distribution of the normal and deviated behavior 

 

Every time the process has a renewal event which indicates the driver is distracted 

the deviation in the random number generator Eq. (3.7) will be increased to model the 

increase workload and the degraded control. 

Table 4.1 Distributions parameters of mind-of-the-road. 
Lognormal 
Distribution 

Mean (sec) STD 



Normal 26.62 0.75156 

Deviated 1.8465 0.89344 

The type of distraction was modeled as alternative renewal processes.  Drivers are 

assumed to start at normal condition without distraction. After an inter-arrival time, 

which has mean and standard deviation listed in Table 4.1, drivers will become distracted 

for a short period of time.  This process will be repeated through simulations and one 

simulation was illustrated in Figure 4.9.  
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Figure 4.9 Example of renewal processes for the mind-off-the-road  distraction 

 

4.1.3.2 Eyes-off-the-road 

When eyes are taken off the road, drivers stop updating the feedback information.  

The perceived range, range-rate, and speed would remain unchanged from the previous 

step. Drivers are also assumed to freeze their control actions at the previous level.  Once 

the distraction ends, the driver will resume updating the information and perform proper 

control adjustment.  The above statement can be realized by using a switch and a register 

(Figure 4.10). 
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Figure 4.10 Block diagram with eyes off the road distraction module 

The eye-off-the road behaviors were studied in several literatures and frequency 

of occurrences can be found in [1] and [46].  However, the effect of eye-off-the-road was 

already included in this errorable driver model when the time delay was modeled in 

section 4.1.2.  In Figure 4.11, the time delay increased linearly with time. In other words, 

the driver model keeps using the same old data without updating, which is equivalent to 

switch off the information flow.   Therefore, the additional switch mechanism will not be 

implemented in order to avoid over-estimation of eye-off-the-road.  
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4.2 Simulation Results 

The final errorable driver model including the three error-inducing mechanisms is 

shown in Figure 4.12. 
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Figure 4.12 Block diagram of the errorable driver model 

A time-domain simulation example is shown in Figure 4.13.  A minor crash 

occurs under a lead-vehicle maneuver extracted from the RDCW database.  Notice that in 

this particular case, the simulated driver is much slower than the actual test result, 

because during the critical moment, the simulated driver happens to have several long 

delays.  If we simulate the same scenarios multiple times, under most cases there will be 

no crash.  The behavior of the simulated driver should be similar to the actual driver 

statistically. 

2

4

6

8

10

12
Errorable Driver Model Simulation

V
el

o
ci

ty
 (m

/s
)

 

 

0

50

D
el

ay
 S

te
p
 (0

.1
 s

ec
) Time Delay Step

normal
distracted

Mind Off the Road

0 10 20 30 40 50 60 70 80
normal

distracted

Time (sec)

Eyes off the Road

 

 

crash
Errorable Driver Model
RDCW VF

RDCW VL30

 

Figure 4.13 Time domain simulation of errorable driver model 

 



A thorough validation of the proposed model is hard to do, because of the 

statistical nature of human drivers and the proposed model.  In addition, despite of great 

promise, advanced tools such as functional MRI is still far away from practical use to 

assess real human errors.  Therefore, crash per Vehicle Miles Traveled is used to define 

error rate in this paper.   To evaluate the crash rate of the errorable driver model, 340 

RDCW driving maneuvers of ten drivers were selected and the lead vehicle speed was 

used as the input to the errorable driver model.  Those maneuvers have time-span from 

fifty to more than three hundred seconds.  Each of them was simulated for one thousand 

times to fully demonstrate the stochastic nature of the model.  The simulated crash rate 

was shown in Table 4.2  

Table 4.2 Errorable driver model crash rate 

Crash Number 
Total Simulated 

Miles Travelled 
Crash/100M VMT 

25  8,846,976  282.6 

 

This simulation results was compared with actual crash data obtained from 

NHTSA report [1]. In year 2005, the actual crash rate for rear-end collision is 

approximately 120/100M VMT.  Our simulation crash rate is a little bit higher.  One 

possible reason is that not all minor crashes are reported.  Another possible explanation is 

the lack of a feedback mechanism in our model under near-crash situations.  In actual 

near crash driving, a driver may be warned by passengers, brake light, etc. and engage in 

an emergent maneuver, with much higher deceleration level, which was not captured in 

our model.  In other words, the errorable driver model developed in this paper represents 

a conservative approximation of actual drivers, with all statistical characteristics 

identified from actual driving data.  This conservative characteristic, we believe, is 

actually useful for evaluating AST, such as Collision Warning/Collision Avoidance 

systems.  CW/CA system is designed for situations when the driver does not properly 

react to a near crash event, which the proposed model seems to emulate. 



5. CONCLUSION   

An errorable car-following driver model was developed in this paper.  A 

stochastic driver model (SDM) was used as a basis for approximating normal human 

driving task.  In contrast to many driver models in the literature, this SDM contains a 

stochastic part extracted from real driving data and already captures some of the random 

nature of human drivers.  Subsequently, three error-inducing mechanisms were 

implemented in the SDM: perceptual limitation, distraction, and time delay.  Each of 

them degrades the driving performance.  The perceptual limitation was implemented as a 

quantization process.  The distraction and time delay were modeled as stochastic 

processes.  The parameters of those stochastic processes were estimated from available 

data in the literature.  The resulting crash rate of the errorable driver model is slightly 

higher than reported NHTSA data (272/100M simulated VMT vs. 120/100M VMT).  The 

possible explanation of this discrepancy are (i) non-reporting of minor crashes in the 

NHTSA data, and (ii) lack of a feedback mechanisms under near-crash situations in our 

model.  Comparing with conventional car-following driver models that aim to 

approximate normal human driving, the errorable driver model is more useful for the 

design and evaluation of active safety vehicle systems. 
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