

Journal of Information Processing Systems, Vol.7, No.2, June 2011 DOI : 10.3745/JIPS.2011.7.2.321

321

Development of an OPC Client-Server Framework
for Monitoring and Control Systems

Vu Van Tan* and Myeong-Jae Yi**

Abstract—In this article, the current technological state of OPC (Openness, Productivity,

and Collaboration; formerly “OLE for Process Control”) standards and the problem

statement of these OPC standards are discussed. The development of an OPC client-

server framework for monitoring and control systems is introduced by using the new OPC

Unified Architecture (UA) specifications, Service Oriented Architecture (SOA), web

services, XML, etc. The developed framework in turn minimizes the efforts of developers

in learning new techniques and allows system architects and designers to perform

dependency analysis on the development of monitoring and control applications. The

potential areas of the proposed framework and the redundancy strategies to increase the

efficiency and reliability of the system are also represented according to the initial results

from the system that was developed by the Visual Studio 2008 and OPC UA SDK.

Keywords—OPC, OPC UA SDK, Monitoring and Control, Redundancy, Unified
Architecture

1. INTRODUCTION

In general, a monitoring and control system can be characterized as a distributed and inte-

grated monitoring, control, and coordination system with partially cyclic and event-based opera-

tions. Its control functions can be divided into continuous, sequential and batch control. In addi-

tion to control functions, such a system has other functions including performance monitoring,

condition monitoring, abnormal situation handling, and reporting [38, 16]. Information achieved

from monitoring and control systems can be used for the condition based maintenance system

that uses this information to make decisions such as the loop and sending out an alarm or event,

to re-identify a system, and to monitor a system [24, 11].

A few competing protocols such as FOUNDATION fieldbus, PROFIBUS, DeviceNet, Con-

trolNet, and Ethernet/IP can be found in automation systems [34]. Different communication

solutions adopted today share a historical problem related to the fact that data from different

systems may have different formats and different communication protocols. This is a key factor

when, for instance, drives are connected to a Supervisory Control And Data Acquisition

(SCADA) system. Software vendors creating process monitoring, control, and data management

※ This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korean

Government (MEST) (NRF-2010-0016252). The authors also would like to thank the anonymous referees for their

valuable comments and suggestions.

Manuscript received October 15, 2010; first revision January 25, 2011; accepted March 7, 2011.

Corresponding Author: Myeong-Jae Yi

* Network Based Automation Research Center (NARC), University of Ulsan, San-29, Moogu-2 dong, Namgu, Ulsan

680-749, South Korea (tanvv2905@gmail.com)

** School of Computer Engineering and Information Technology, University of Ulsan, San-29, Moogu-2 dong, Namgu,

Ulsan 680-749, South Korea (ymj@mail.ulsan.ac.kr)

Copyright ⓒ 2011 KIPS (ISSN 1976-913X)

Development of an OPC Client-Server Framework for Monitoring and Control Systems

322

systems must develop individual I/O drivers for each protocol. Developing unique drivers for

each type of the plant floor (or shop floor) is not only time consuming and inefficient, but also

inherently adds additional risks to the successful and timely completion of a project. For these

reasons, OPC technology has been developed as a middleware technology for integration and

interoperation since 1996 by Fisher-Rosemount, Intellution, Intuitive Technology, Poto22,

Rockwell, and Siemens AG [28].

The classic OPC technology uses a client-server approach for the information exchange [13].

An OPC server encapsulates the source of process information like a device and makes the in-

formation available via its interfaces. An OPC client connects to the OPC server and can access

and consume the offered data. Although the OPC technology comes from industries, which still

makes a lot of researcher suspicious [24], but the classic OPC technology like OPC Data Access

(DA) [33] or OPC Alarms and Events (AE) [30] is not a new and fancy name for something

already used for many years. It can be a possibility for many universities, research departments,

and institutes to get products into the market (e.g., Advosol Inc. [1], MatrikonOPC [20], etc.).

A number of approaches have been recently done on developing methods or guidelines for the

design and development of monitoring and control systems using the classic OPC technology.

However, current approaches are still far systematic design methods or an ultimate solution due

to a late indication of changes in the production environments, a delay of the implementation of

changed production plans, and changes in technology [8, 38]. In addition, they have only re-

sulted in small-scale capability or specific-applications in the domain of monitoring and control

applications as studied by Eppler et al. [10], Chilingargyan and Eppler [5], Jia and Li [15], Usa-

mi et al. [35], Khailgui et al. [17], Torrisi and Oliveira [34], Venzke et al. [36], Sahin and Bolat

[23], Han et al. [12], Yang et al. [38], Wang et al. [37], etc. Three types of the data such as cur-

rent data, historical data, and alarms and events are not related to others in the address space of

the server. The OPC Foundation now is working on supporting XML and web services, as well

as in the OPC Unified Architecture (UA) specifications [29], so that Internet-based monitoring

and control with the leverage of XML and web services will become a reality [8, 18].

The Service Oriented Architecture (SOA) is a new architectural paradigm used for distributed

computing and services sharing [25]. It has evolved from object oriented and component based

architecture to being able to develop networks of collaborating applications. It also utilizes ser-

vices with autonomous platform-independent computational elements that can be described,

published, discovered, and accessed over the Internet by standard protocols [6, 3, 22].

This research attempts to provide state-of-the-art OPC standards and the current situation and

problem statement of such standards. The OPC client-server framework, which is based on the

SOA and new OPC UA specifications, was proposed and developed. This framework is devel-

oped and implemented as an integration solution for the monitoring and control of devices and

the intention of condition based maintenance. The initial results from the performed simulation

to demonstrate the good performance of the proposed framework are provided. The potential

areas of the proposed architecture and the redundancy strategies to increase the efficiency and

reliability of the system are discussed.

This paper is organized as follows: the next section provides state-of-the-art OPC technology. In

Section 3, the current situation and problem statements of OPC standards are explained in detail. The

concept of an OPC UA client-server framework is introduced in Section 4. Section 5 discusses the

potential areas of the proposed architecture based on the performance of the proposed framework and

the redundancy strategies, respectively. Finally, Section 6 concludes some remarks and future works.

Vu Van Tan and Myeong-Jae Yi

323

2. WHAT IS OPC?

Software applications like Distributed Control System (DCS) and Enterprise Resource Plan-

ning (ERP) can be used with SCADA systems for a range of different purposes. SCADA soft-

ware systems are used in the automation industry for the applications of industrial measurement,

monitoring, and control. Components for SCADA software systems were designed and devel-

oped by a single software or hardware company for a specific system or specific domain, which

has a lack of generally accepted interfaces. Thus, these components cannot be applied to systems

manufactured by other companies. It is essential to consider how to design a set of standard

components for the automation industry.

An example of conventional communication architecture between three different software ap-

plications and three different process control devices in the automation industry is shown in Fig.

1. Each software application in the system has to have a driver for each device in order to be

able to communicate with each other. It is easy to recognize several disadvantages of such a

conventional architecture like complexity, high cost, inefficiency, etc. Therefore, the hardware

and software companies should develop new solutions for this. In addition, different communi-

cation solutions available today share a history problem that data from different systems have

different formats and different communication protocols. Software vendors creating process

monitoring, control, and data management systems have to develop individual I/O drivers for

each protocol. Developing unique drivers for each type of the plant floor is not only time con-

suming and inefficient, but also inherently adds additional risks to the successful and timely

completion of a project. For those reasons, the OPC Foundation was established.

OPC technology is the technological basis for the convenient and efficient linking of automa-

Fig. 1. Conventional communication architecture

Fig. 2. Communication architecture based on the OPC standard

Development of an OPC Client-Server Framework for Monitoring and Control Systems

324

tion components with control hardware and field devices. It is also for communication among

various data sources, either devices on the plant floor, or a database in a control room. A com-

munication architecture using the OPC standard is shown in Fig. 2, which provides a means to

gather data from a data source. These data are communicated with any client application using a

standard and efficient method. The most diverse OPC components of different manufacturers

can work together with no additional programming for the adaption of the interface between

components [21, 13].

2.1 Current OPC Specifications

OPC specifications include important industrial issues like Data Access (DA), Alarms and

Events (AE), Historical Data Access (HDA), Batch, Security, XML, Complex Data, and Data

eXchange as shown in Fig. 3 [21]. These specifications now are accepted as industrial standards

for the automation industry. The OPC UA specifications defining a vendor and protocol inde-

pendent server-client model have been released and will become the IEC 62541 standard [21,

29]. In general, every specification is used for a specific field of industrial applications and is

based on a model that corresponds to the field of such applications.

Since the introduction of the new OPC generation, called Unified Architecture (UA), the OPC

specifications have been divided into "classic" OPC and OPC UA, respectively [29, 19]. The

classic OPC technology is based on Component Object Model (COM)/Distributed COM

(DCOM) technology from Microsoft. The advantage of using COM/DCOM technology was the

reduction of the specification work to the definition of different APIs for different specialized

needs without the requirement to define a network protocol or mechanism for inter-process

communication [21]. However, the main disadvantages are Windows-platform dependency and

DCOM issues when using remote communication. The OPC UA standard uses XML and web

services as base technologies for transferring data from field devices to enterprise applications

via the Internet. It defines only one address space for process data, alarms, historical data, and

programs.

Fig. 3. Available OPC specifications

Vu Van Tan and Myeong-Jae Yi

325

3. THE CURRENT STATE OF OPC TECHNOLOGY

3.1 COM/DCOM Technology

COM technology developed by Microsoft enables software components to communicate.

COM is used by developers to create re-usable software components, to link components to-

gether to build applications, and to take advantages of windows services. COM objects can be

created with a variety of programming languages [4]. This defines interaction mechanisms be-

tween objects including data objects and application objects. Data on these objects are stored

and can be accessed locally. Interfaces that are a collection of functions are used for communi-

cation between objects. The family of COM technologies includes COM+, DCOM, and ActiveX

Control [4]. Classic OPC technology is based on COM/DCOM technology, but the

COM/DCOM technology can detect timeouts which can lead to unreliable data transmission

such as hardware problems, overload networks, networks based on satellite links, etc [24].

Classic OPC technology still has some limitations due to the use of COM/DCOM technology.

These limitations are as follows: (i) it is only for Windows platforms; (ii) DCOM can be used

for the applications over the Internet, but firewall authentication problems are not easy to re-

solve; and (iii) data exchange between devices on the plant floor and enterprise applications is

an issue that needs to be tackled.

3.2 Web Services

Web services technology is software components based on Web Services Description Lan-

guage (WSDL) [7]. These components are capable of being accessed via standard network pro-

tocols such as SOAP over HTTP/HTTPS. Application developers can quickly create and use

web services by employing existing tools and frameworks, and web servers also supply the es-

sential infrastructure to exploit web services. XML and web services today are accepted in the

industry and business [39, 14]. The OPC Foundation is working on supporting XML and web

services for developing industrial applications as introduced in the OPC UA specifications [29].

Web services have a few disadvantages: Only the method of Poll-Report-By-Exception is

provided and the driver reports the changes for the time intervals where the services were dis-

connected [25]. Therefore, this method works well for applications where data is collected from

remote sources, but does not require real-time data updates. However, the size of XML mes-

sages is much larger than the size of DCOM messages when carrying out the same information.

The solution of using binary data encoding can be used for web services to improve the per-

formance of the system [29, 10, 5].

3.3 OPC Unified Architecture

The OPC UA standard is the next generation technology for secure, reliable, and interoper-

able transport of raw data and preprocessed information from the plant floor or shop floors to

production planning or ERP systems [29]. It extends existing OPC standards with fundamental

features such as platform independence, scalability, high-availability, Internet capability, and

many more. It defines services that should be provided by servers for clients and also defines

how servers can indicate which services they provide. One of the key problems with the new

standard is that implementing it can be quite challenging. To do this, the OPC Foundation has

taken many steps to guarantee that the implementation of such a standard would be relatively

Development of an OPC Client-Server Framework for Monitoring and Control Systems

326

straightforward and easy process.

To facilitate the adoption of this new standard and to reduce the barrier to entry, an OPC-UA

Software Development Kit (SDK) is being developed. The SDK is the entry point to jump-start

the existing applications and makes them OPC-UA-enabled. The SDK consists of a series of

application programming interfaces and sample code implementations. To that end, the OPC UA

specifications are written to be platform-agnostic and, for that reason, the SDK comes in differ-

ent flavors to facilitate the adoptions on different platforms. The .NET, ANSI C, and Java im-

plementation samples will be provided [28].

This unified standard intends to enable enterprise interoperability and expects to solve enter-

prise integration challenges. It is clear that this standard does not provide everything needed for

interoperability from the enterprise-IT perspective, but the impact is expected to be considerable.

3.4 Security Issue

Security is becoming an important issue in the automation industry due to the collaboration of

business networks and process networks. Devices are now being connected via such communi-

cation systems and Programmable Logic Controllers (PLCs) can be easily programmed via a

communication network. Data and events from industrial systems are sent to operator systems

and enterprise systems via the Ethernet and Internet. The problems with malicious network at-

tacks will be carried into the process area, and viruses and worms will corrupt the system from

PLC to field devices. For the classic OPC standards (e.g., OPC Data Access), an OPC server

might implement one of three levels of security [9]: (i) Disabled security - no security; (ii)

DCOM security - launch and access permissions to OPC servers are limited to selected clients;

or (iii) OPC security - the OPC server serves as a reference monitor to control access to vendor-

specific security objects exposed by the OPC server.

The OPC security specification covers only server/object access control, but is not concerned

with confidentiality and integrity during transmission. However, additional security settings as

well as defined in the OPC security specification have been implemented in only a few products

on the market [21]. The OPC UA standard has a scalable security concept based on W3C stan-

dards and includes user authentication, digital signatures, and encryption for the exchange mes-

sages [29, 19]. Implementation, evaluation, and performance depending on this standard are now

a challenge for researchers and developers.

3.5 Discussion

Industrial systems now need to be independent of any operating system and platform. The

new OPC UA technology will surely rise as the eventual winner and the OPC DA technology

still continues to dominate applications used in operations that this standard focuses on solving

real-time data transfer requirements. Therefore, all of the OPC standards (e.g., OPC UA [29],

OPC XML-DA [32], OPC HDA [31], and OPC DA [33]) complement each other and they will

continue to do more in the future. The OPC UA technology can be used on all levels of industry

processes, from sensors through SCADA systems to MES/ERP systems. More than 600 prod-

ucts have been based on the OPC specifications because these OPC specifications are now ac-

cepted as industrial standards [21]. However, designing, developing, and deploying industrial

automation applications based on the new OPC UA specifications are very challenging to sys-

tem architects, designers, and developers due to the complexity and difficulty of related control

Vu Van Tan and Myeong-Jae Yi

327

and monitoring decision tasks and information systems.

4. PROPOSED OPC CLIENT-SERVER FRAMEWORK

4.1 Overview of the Framework Architecture

With the introduction of web services at the level of production devices or facility automation,

there are still big problems in communication between device-level SOA and the one that is

used in back-end systems [8]. These problems can be overcome by using a middleware between

the back-end applications and the services, which are offered by devices, service mediators, and

gateways. At least two different ways can be used to couple networked embedded devices with

enterprise services: (i) direct integration of device-level services in business processes and (ii)

exposure of device functionalities to the application layer via a middleware layer [16].

The framework architecture to expose device-level services from plant floors to enterprise

systems using OPC technology is proposed as shown in Fig. 4. The service provided by a device

at the device level offers a given functionality to the service user, and provides a well-defined

interface in which the service can be invoked by the user from the OPC UA server. It runs trans-

parently from the viewpoint of the user. To support OPC UA clients that can access existing

OPC servers such as OPC DA servers [33], OPC HDA servers [31], and OPC AE servers [30],

the wrappers to map the address space of these servers into the address space of OPC UA server

have been developed. However, many of innovations and advantages of the OPC UA technol-

ogy are lost such as the uniform access to process data, historical data, and alarms in one server

address space, programs, type information, and structured data types. The wrapper also repre-

sents an additional conversion layer that reduces the transmission rate considerably [19].

4.2 Information Model

To provide better integration of alarms and events in the address space of an OPC UA server,

three different types of data such as current data, historical data, and alarms and events are en-

Fig. 4. The proposed architecture of an OPC client-server framework for monitoring and control

Development of an OPC Client-Server Framework for Monitoring and Control Systems

328

abled to be accessed by a single OPC UA server based on a unified object model [27]. In addi-

tion, commands or methods from device objects can be represented as method services in the

address space of the server. For example, the methods like “Start” and “Stop” in a motor can be

invoked by the client to start or stop the motor. Each method specifies the input arguments and

the output arguments. A unified object model is developed for three types of data: (i) current and

historical data can be stored in variables; (ii) the commands to control devices at the process

plants can be considered as method services for execution; and (iii) the occurrence of an alarm

or event from hardware devices can be considered as an event service [26].

4.3 Server Implementation

The steps to be implemented for the development of an OPC UA server are as follows: (i) the

necessary libraries are loaded and static variables are instantiated; (ii) the configuration of appli-

cation for the necessary certificates and the identification of the application; (iii) the construc-

tion of address space in the OPC UA server; and (iv) the configuration and opening of endpoints

that a server can create several endpoints with different security policies and modes for commu-

nication with the clients [21, 29].

The OPC SDK provided by the OPC Foundation is implementing the features that are com-

mon to all OPC UA servers. It is designed to be extensible and allows the integration of data and

events from different sources. The following functionalities have to be implemented for a pro-

duction server: (i) exposing one or more endpoints; (ii) security environments like authentication,

authorization, certificates maintenance, security policies and modes; (iii) configuration mainte-

nance and connection handling (e.g., the management of endpoints); and (iv) address space

management; (v) underlying real-time process interoperability (e.g., reading and writing data to

devices), etc.

The StandardServer class is the root class for the development of a server application. It pro-

vides implementations for most of the UA services. Therefore, developers can customize these

implementations by creating a subtype of the StandardServer and can override the appropriate

methods. After initializing the endpoints, the “Start” method creates all of the manager objects,

which handle different aspects of the server functionality and stores them in an instance of the

ServerInternalData object. For example, creating a session in the OPC UA server application is

Fig. 5. Creating a session from the viewpoint of the StandardServer

Vu Van Tan and Myeong-Jae Yi

329

shown in Fig. 5: (i) when an OPC UA client creates a session, the OPC UA server must validate

the client application instance certificate and the client software certificates; (ii) the session

manager then creates, monitors, or closes sessions and also validates user identity; and (iii) the

session impersonates the user, validates requests, and manages continuation points.

Based on the StandardServer class, the SampleServer class, for example, can be inherited and

implemented in the C# language as follows:

public class SampleServer : StandardServer

{

protected override void LoadConfigration()

{

// Load the configuration file for the server.

}

protected override MasterNodeManager

CreateNodeManager(ServerConfiguration configuration)

{

// Create the master node manager for the server.

// Get the list of available wrappers

// e.g., COM DA wrappers, AE wrappers, etc.

}

protected override ServerProperties GetServerProperties()

{

// Get the properties of a server.

}

protected override void OnNodeManagerStated()

{

// Create the object and add it to the address space

// For example

m_boiler1 = new Boiler(this);

m_boiler1.CreatInstance(

Objects.ObjectFolder,

Opc.Ua.ReferenceTypes.Organizes,

false,

new QualifiedName("Boiler 1", 1));

m_boiler1.Register();

...

}

...

public override ResponseHeader Read(

RequestHeader requestHeader,

int maxAge,

TimestampsToReturn timestampsToReturn,

ReadValueIdCollection nodesToRead,

out DataValueCollection values,

out DiagnosticInfoCollection diagnosticInfos)

Development of an OPC Client-Server Framework for Monitoring and Control Systems

330

{

// Read data from the server.

}

public override ResponseHeader Write(

RequestHeader requestHeader,

WriteValueCollection nodesToWrite,

out StatusCodeCollection results,

out DiagnosticInforCollection diagnosticInfos)

{

// Write data to the server.

}

...

}

The Read and Write services not only allow us to read and write the values of variables, but

are also used in a generic way to read and write the attributes of nodes to access metadata in the

address space of an OPC UA server. The Read service is used to read one or more attributes of

one or more nodes [29]. It also allows for reading subsets or the single element of array values

and to define a valid age of values to be returned to reduce the need for devices. The request

parameters for the Read service are MaxAge, TimestampsToReturn, and NodesToRead. The re-

sponse parameters for the Read service are Value, StatusCode, SourceTimestamp, and Server-

Timestamp [19]. The implementation of the Read service in the C# language can be shown as

follows:

...
diagnosticInfos = null;
DataValue value = new DataValue();
value.Value = Int32.MaxValue;
value.SourceTimestamp = DateTime.UtcNow;
values = new DataValueCollection(nodesToRead.Count);
foreach (ReadValueId valueId in nodesToRead)
{
values.Add(value);
}
return new ResponseHeader();

The Write service is used for writing one or more attributes of node(s) and subsets or single

element of array values. It is optimized for bulk write operations but not for writing single value.

The request parameters for the Write service are NodeId, AttributeId, IndexRange, Value, Sta-

tusCode, SourceTimestamp, and ServerTimestamp. The response parameters for such a service

are a list of result status codes for each Write operation (e.g., Results[]).

From the viewpoint of the StandardServer, monitored items can be created and added for a

subscription as shown in Fig. 6(a) and reporting data changes from the underlying systems to the

monitored items is shown in Fig. 6(b). A subscription maintains a list of monitored items which

must be polled for notifications to report. The NodeManager handles subscriptions for data val-

ues and the EventManager handles subscriptions for events. The NodeManager has to create a

Vu Van Tan and Myeong-Jae Yi

331

SamplingGroup for polled values where the SamplingGroup periodically reads the values and

updates them to the MonitoredItem.

4.4 Client Implementation

For facilitating the development of OPC UA client applications for specific industrial applica-

tions, the OPC UA client framework is proposed and developed by handling the standard tasks

in which all OPC UA clients need to do. These tasks for a development like this include: (i)

sending the session keep-alive requests, (ii) keeping the track of current status for subscriptions

and monitored items, (iii) managing a client-node-cache and data publish issues, (iv) processing

and caching incoming data change and event notifications, and (v) saving and restoring the ses-

sion state. The necessary classes for the development of OPC UA client applications can be seen

in Fig. 7.

All of the OPC UA services in the Session class are accessible as methods on the Session ob-

ject. The Session object provides a number of methods, for example the Open (String, IUserI-

dentity) method which creates and activates a session (see Fig. 9). This is responsible for send-

ing and processing the publish requests. The required process in order to establish a session be-

tween the OPC UA client and the OPC UA server is shown in Fig. 8. It indicates that the OPC

UA client application has to choose the EndpointDescription for use manually or automatically

by using Discovery Services.

The Subscription class stores the client state for a subscription with an OPC UA server. It

maintains two sets of properties such as the requested values and the current values based on the

Fig. 6. (a) Creating monitored items in the viewpoint of StandardServer. (b) Reporting data
changes from the underlying systems to monitored items.

Fig. 7. The classes for the development of OPC UA client applications

Development of an OPC Client-Server Framework for Monitoring and Control Systems

332

revised values provided by the OPC UA server. A Subscription object is designed for batch op-

erations(e.g., the subscription parameters and the monitored items can be updated several times).

However, the changes to the subscription on the server do not happen until the method Apply-

Changes() is called. The parameters for a subscription can be updated and changed as shown in

Fig. 10: (a) user interface and (b) code fragment in C# language for updating the changed values

to variables. The Subscription maintains a cache of received messages in which the size of the

cache can be controlled and set by the MaxMessageCount property, i.e., the maximum number

of messages to keep in the internal cache. When a new message is received, the subscription

adds it to the cache and removes any extras. The subscription then extracts the notifications and

pushes them to the MonitoredItem.

The MonitoredItem class, which stores the client state for a monitored item, belongs to a sub-

scription on an OPC UA server. It maintains the requested values and the current values based

on the revised values returned by the server. It also provides a notification event, which can be

used by the OPC UA client application to receive events whenever a new notification is received

from the OPC UA server. Changes to any of the properties that affect the state of the Monitored-

Item on the OPC UA server will be applied when the ApplyChanges() method for the subscrip-

tion is called. A local queue for data exchanges or events received from the OPC UA server is

maintained by the MonitoredItem (e.g., the OPC UA client application does not need to explic-

itly process notification messages and can read the latest value from the MonitoredItem when it

is required). The parameters of each monitored item can be changed as well, as shown in Fig. 11.

Fig. 8. The required process for establishing a session between the OPC UA client and the OPC
UA server

Fig. 9. The Open method for creating a session

Vu Van Tan and Myeong-Jae Yi

333

In addition, the size of the local queue can be controlled by the CacheQueueSize property.

5. POTENTIAL AREAS AND DISCUSSION

5.1 Performance

Performance is a key aspect in assessing a technology. In general, it is the transfer perform-

ance, the response time, and the ability to handle a large amount of data that decide whether a

technology will be used [21]. In this article, the performance measurement covers the round-

trips necessary for a Read method call depending on the number of variables (e.g., OPC items

[19]) (see Fig. 12). The method was called in a loop for different configurations, for example,

XML or binary data encoding, different security modes, etc. The type of data used for the opera-

tion Read was a four-byte-integer value and the measurement was performed with server-client

applications without application logic just creating return parameters with valid values. The si-

mulation setup was composed of the OPC UA server and the OPC UA client running on Win-

dows XP Service Pack 2 with 2.66 Ghz Intel Pentium IV CPU and 1 Gb PC 3200 DDRAM.

The time taken for operation Read according to the HTTP (remote) or TCP (local) protocol is

shown in Fig. 13. It indicates that the performance of the proposed framework used for remote

OPC communication is acceptable to many real monitoring and control applications because

5,000 variables in one Read call only take 240 ms. In order to analyze the performance of the

OPC UA communication system over the Internet when controlling time critical processes like

grinding processes, attention should be focused on the round-trip time of the communication

systems because the round-trip time is strictly related to the refresh time of periodical data proc-

esses. The proposed framework provides an average round trip enough to support the periodicity

Fig. 10. The interface for updating the subscription parameters

Fig. 11. Interface for changing the parameters of a monitored item

Development of an OPC Client-Server Framework for Monitoring and Control Systems

334

for data and event processes around 240 ms for 5,000 items over the HTTP protocol. The initial

results in this article can be used to compare with a number from the round-trip time of the dif-

ferent access methods from the Advosol Inc. [2]. The round trip time of the access from a client

to a local XML-DA server, an XML-DA Gateway to a local OPC DA server, and a client in

USA to a server in Europe, in turn, is 45 ms, 35 ms, and 1.2 s while the round-trip time of the

proposed framework is about 18 ms for one item in one Read call.

In addition, to validate performance, the performance comparison of the time taken for opera-

tion Read with the fixed conditions such as HTTP, signature and encryption, and 256-bit Basic

by either using binary or XML encoding is shown in Fig. 14. It indicates that the number of val-

ues transferred with binary encoding is several times higher than with XML encoding. Thus, the

overall performance of the system is much improved when using binary data encoding for data

changes and event notifications. There is a much bigger overhead when using HTTP protocol

with XML encoding instead of binary encoding. It is about 2 times slower for small messages

and more than 10 times slower for large messages (see Fig. 14).

In summary, only the initial results have been presented in this article because the proposed

framework is being developed and implemented for providing performance validation and a

collection of libraries, classes, interfaces, and sample implementations. However, they indicate

that the proposed framework has good performance and is acceptable to many monitoring and

control applications in the real-world.

Fig. 12. The application setup for measurement performance

Fig. 13. The time taken for operation Read according to the HTTP (remote) or TCP (local)
protocol

Vu Van Tan and Myeong-Jae Yi

335

5.2 Potential Areas for the Proposed Framework

As the simulation results from the performance tests have indicated the proposed framework

has good performance, and the potential areas for the proposed framework include the follow-

ing:

1. Applications of monitoring and control systems for the purpose of process condition main-

tenance and monitoring (e.g., automatic data acquisition, condition based maintenance, iden-

tifying malfunctioning instruments, monitoring multiple factors, maintaining control loops

and more [11]), in process and factory automation where control is distributed and large

amounts of distributed data are collected. In addition, the development of industrial applica-

tions for integrating plant floor devices and enterprise systems with the control and monitor-

ing part can be satisfied. A modern maintenance system using the proposed framework as an

example is shown in Fig. 15. Real-time data is collected and the condition based mainte-

nance system can use this kind of data to make decisions such as the loop and sending out an

alarm or event, to re-identify a system, and to monitor a system [24].

2. Business applications such as the Computerized Maintenance Management System

(CMMS), Enterprise Resource Planning (ERP), and the Enterprise Asset Management

(EAM) systems, which require data updates where the frequency is a few seconds or min-

utes, etc.

3. Process Analysis applications such as Enterprise Process Historian, Analysis Reporting,

Trending, and others. The frequency of data capture for these applications is not nearly as

important as the fact that data does not get loss.

4. Remote Monitoring applications such as web-based process visualization, which require

very slow data update rates (sometimes every few seconds or minutes) and only limited su-

pervisory control.

5.3 Discussion on Redundancy Strategies

For the applications of the automation industry, redundancy is an important feature for in-

Fig. 14. The performance comparison of the time taken for operation Read under the fixed
conditions: HTTP, signature and encryption, 256-bit Basic

Development of an OPC Client-Server Framework for Monitoring and Control Systems

336

creasing the efficiency and reliability of the system [19]. Redundancy is therefore needed for

both cases of the communication link from OPC server and devices, and for the communication

between a server and a client. From this point of view, three different redundancy strategies

should be considered such as Device Level redundancy, Server Level redundancy, and Client

Level redundancy [24]. In a Device Level redundancy strategy, controllers or devices are im-

plemented in a redundant configuration. If the server-device connection fails, then the redundant

devices start operating. Hardware vendors guarantee this strategy. Thus, Server Level and Client

Level redundancy is considered and discussed in this section. In OPC UA based applications,

redundancy is based on the existence of duplicate client or server applications and can be

achieved by using particular data structures and services of the OPC UA specifications.

1. Server Redundancy. The principle of server redundancy is that there are two servers for

providing data to a client. One can be the primary server while the other one is in standby

mode, or both are operating at the same time. If the communication between the first server

and the client fails, the redundant server supplies the necessary process data. For OPC UA

based applications, it must keep data on both servers because the OPC UA server supports

historical data. Two modes of server redundancy can be considered and implemented such

as Transparent Redundancy and Non-transparent Redundancy [29]. Transparent Redundancy

is that server redundancy is handled transparently to the client. The server is responsible to

ensure that all information is synchronized between redundant servers (e.g., the redundant

servers have to be mirrored or they must have exactly the same data and session informa-

tion). In contrast, Non-transparent Redundancy requires some actions by the client to con-

tinue its tasks when the primary server fails. The concepts of cold, warm, and hot failovers

Fig. 15. The concrete architecture of a condition based maintenance system by using the
proposed framework

Vu Van Tan and Myeong-Jae Yi

337

in Non-transparent Redundancy are defined to deal with various use cases [29, 19].

2. Client Redundancy. Client redundancy is needed for environments in which the continuous

supervisory of a production process is required. It requires that two clients or applications

have to be implemented in a redundant way. If the connection or link to a server or the ap-

plication itself fails, then the second client starts operating. The backup client monitors the

session information of the active client in the server's address space [19]. When the active

client fails and the status of the session changes in the address space, the backup client

would receive the appropriate notification from the server. The backup client then uses the

TransferSubscription service to get all running subscriptions from the active client by re-

questing the server to transfer the subscriptions and sessions (e.g., the TransferSubscription

service is used to transfer a subscription and its Monitored Items from one session to another

[21]). If the backup client meets the correct security requirements, the subscriptions will

successfully transfer. For example, a redundant approach uses at least a heartbeat signal in

which two clients are active and inform each other about its current health state, or the oper-

ating client activates the backup client if a standby mode is preferred [24].

6. CONCLUDING REMARKS AND FUTURE WORKS

In this article, the current technological state of OPC standards and the current problems of

these standards were provided and discussed. An OPC UA client-server framework for the de-

velopment of monitoring and control applications in the automation industry was developed and

presented by using the Visual Studio 2008 and OPC UA SDK. The proposed framework is con-

sidered as an integration solution for the monitoring and control of devices on the plant floor or

shop floors, and condition based maintenance systems according to the data and events received

from the devices. This framework provides a collection of libraries, classes, reference interfaces

and sample implementations that make it easy for developers and programmers to create and

implement their OPC components and related applications for the terms of monitoring and con-

trol. Moreover, exposing information in much more semantics based on the OPC UA Informa-

tion Model allows OPC clients to process highly sophisticated tasks in industrial and informatics

systems. Such OPC clients can access device information, device data, and events, which are

provided by different and vendor-specific OPC UA servers in the same manner.

The proposed framework in turn minimizes the efforts of developers in learning new tech-

niques and allows system architects and designers to perform dependency analysis on the devel-

opment of industrial automation applications. The potential areas of the proposed framework

and the redundancy strategies to increase the efficiency and reliability of the system were also

considered and provided. The initial simulation results have indicated the performance of the

proposed framework is sufficient and acceptable to many industrial applications in the domains

of the monitoring and control system.

A challenging task for future works is to actually implement, evaluate, and refine the pro-

posed framework for applying to real-world applications. In addition, non-functional issues like

performance, scalability, communication overhead, and security need to be monitored and deep-

ly investigated. The redundancy strategies, as adequately aforementioned, will be developed and

implemented by using special data structures and services that were mentioned in the OPC UA

specifications. These strategies will be investigated carefully before deploying the proposed

Development of an OPC Client-Server Framework for Monitoring and Control Systems

338

framework to real applications.

REFERENCE

[1] Advosol, Inc., http://www.advosol.us/

[2] Advosol, Inc.: “The Advosol Benchmarks,” http://www.advosol.us/t-WhitePaperXMLDANET.aspx

[3] J. Bean: “SOA and Web Services Interface Design - Principles, Techniques, and Standards.” Morgan

Kaufmann OMG Press (2010)

[4] COM: Component Object Model Technologies, http://www.microsoft.com/com/default.mspx

[5] S. Chilingargyan, W. Eppler: “High Speed Data Exchange Protocol for Modern Distributed Data

Acquisition Systems Based on OPC XML-DA.” In Proceedings of the 14th IEEE-NPSS Real-time

Conference, 2005, pp. 352-356.

[6] T. Cucinotta, A. Mancina, G.F. Anastasi, G. Lipari, L. Mangeruca, R. Checcozzo, F. Rusina: “A Real-

Time Service-Oriented Architecture for Industrial Automation.” IEEE Transactions on Industrial In-

formatics, vol. 5, no. 3, 2009, pp. 267-277.

[7] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana: “WSDL - Web Services Description Lan-

guage, Version 1.1,” 2001, http://www.w3.org/TR/wsdl

[8] L.M.S. de Souza, P. Spiess, D. Guinard, M. Kohler, S. Karnouskos, D. Savio: “SOCRADES - A Web

Service Based Shop Floor Integration Infrastructure.” In: C. Floerkemeier, M. Langheinrich, E.

Fleisch, F. Mattern, S.E. Sarma (eds) IOT 2008. Lecture Notes in Computer Science, vol. 4952, 2008,

pp. 50-67. Springer, Heidelberg.

[9] D. Dzung, M. Naedele, T.P. Von Hoff, M. Crevatin: “Security for Industrial Communication Sys-

tems.” Proceedings of IEEE, vol. 93, no. 6, 2005, pp. 1152-1177.

[10] W. Eppler, A. Beglarian, S. Chilingarian, S. Kelly, V. Hartmann, H. Gemmeke: “New Control System

Aspects for Physical Experiments.” IEEE Transactions on Nuclear Science, vol. 51, no. 3, 2004, pp.

482-488.

[11] F. Gord: “CMMS: Integrating Real-Time Information for Condition-Based Maintenance.” Matrikon,

Inc., 2005, www.MatrikonOPC.com/tutorial

[12] K.H. Han, S. Kim, Y.J. Kim, J.H. Kim: “Internet Control Architecture for Internet-based Personal

Robot.” Autonomous Robots, vol. 10, 2001, pp. 135-147.

[13] F. Iwanitz, J. Lange: OPC: “OPC: Fundamentals, Implementation, and Application.” Huthig Verlag

Heidelberg, 3rd rev. Ed., 2006.

[14] F. Jammes, H. Smit: “Service-Oriented Paradigms in Industrial Automation.” IEEE Transactions on

Industrial Informatics, vol. 1, no. 1, 2005, pp. 62-70.

[15] Z. Jia, X. Li: “OPC-based Architecture of Embedded Web Server.” In: Z. Wu, C. Chen, M. Guo, and

J. Bu (eds.) ICESS 2004. Lecture Notes in Computer Science, vol. 3605, 2005, pp. 362-367. Springer,

Heidelberg.

[16] S. Karnouskos, O. Baecker, L.M.S de Souza, P. Spiess: “Integration of SOA-ready Networked Em-

bedded Devices in Enterprise Systems via a Cross-Layered Web Service Infrastructure.” In Proceed-

ings of the 12th IEEE International Conference on Emerging Technologies and Factory Automation,

2007, pp. 1-8. IEEE Press, Los Alamitos.

[17] M. Khalgui, X. Rebeuf, F. Zampognaro: “Adaptable OPC-XML Contracts Taking into Account Net-

work Traffic.” In Proceedings of the 10th IEEE Conference on Emerging Technologies and Factory

Automation, 2005, pp. 31-38. IEEE Press, Los Alamitos.

[18] R. Kondor: "OPC, XML, .NET and What it all Means Down on the Factory Floor.” Industrial Ether-

net Book, 2007, Issue 34:38, http://ethernet.industrialnetworking.com/articles/articles.asp

[19] W. Mahnke, S.H. Leitner, M. Damm: “OPC Unified Architecture.” Springer, Heidelberg, 2009.

[20] MatrikonOPC, 2010, http://www.matrikonopc.com/

[21] J. Lange, F. Iwanitz, T.J. Burke: "OPC - From Data Access to Unified Architecture.” VDE Verlag

GMBH, 4th rev. Ed., 2010.

[22] W. Roshen: "SOA Based Enterprise Integration – A step-by-step Guide to Services Based Application

Vu Van Tan and Myeong-Jae Yi

339

Integration.” McGraw-Hill Companies, 2009.

[23] C. Sahin, D. Bolat: “Development of Remote Control and Monitoring of Web- Based Distributed

OPC system.” Computer Standard & Interfaces, vol. 31, 2009, pp. 984-993.

[24] M.H. Schwarz, J. Boercsoek: “Advances of OPC Client Server Architectures for Maintenance Strate-

gies - a Research and Development Area not only for Industries.” WSEAS Transactions on Systems

and Control, vol. 3, no. 3, 2008, pp. 195-207.

[25] M.P. Singh, M.N. Huhns: “Service-Oriented Computing: Semantics, Processes, and Agents." Wiley

& Sons, Chichester, 2005.

[26] V.V. Tan, M.-J. Yi: “Design Issues and Approach to Internet Based Monitoring and Control Sys-

tems.” In: Garcia-Pedrajas, N. et al. (eds.) IEA/AIE 2010. Lecture Notes in Artificial Intelligence,

Part I, vol. 6096, 2010, pp. 478-488. Springer, Heidelberg.

[27] V.V. Tan, M.-J. Yi: “OPC UA Based Information Modeling for Distributed Industrial Systems.” In:

Huang, D.-S. et al. (eds.) ICIC 2010. Lecture Notes in Computer Science, vol. 6215, 2010, pp. 531-

539. Springer, Heidelberg.

[28] The OPC Foundation, http://www.opcfoundation.org/

[29] The OPC Foundation: "The OPC Unified Architecture Specifications: Parts 1-11, Version 1.xx,” 2009,

http://www.opcfoundation.org/Downloads.aspx

[30] The OPC Foundation: "The OPC Alarms and Events Specification, Version 1.0,” 2002.

http://www.opcfoundation.org/Downloads.aspx

[31] The OPC Foundation: "The OPC Historical Data Access Specification, Version 1.0,” 2003.

http://www.opcfoundation.org/Downloads.aspx

[32] The OPC Foundation: "The OPC XML-Data Access Specification, Version 1.01,” 2004.

http://www.opcfoundation.org/Downloads.aspx

[33] The OPC Foundation: “The OPC Data Access Specification, Version 3.0,” 2004.

http://opcfoundation.org/Downloads.aspx

[34] N.M. Torrisi, J.F.G. Oliveira: “Remote Control of CNC Machines Using the Cyber OPCCyberOPC

Communication System over Public Networks.” International Journal of Advanced Manufacturing

Technology, vol. 39, no. (5-6), 2008, pp. 570-577.

[35] K. Usami, S.-I. Sunaga, H. Wada: "A Prototype Embedded XML-DA Server and its Evaluations." In

Proceedings of the SICE-ICASE International Joint Conference, 2006, pp. 4331-4336.

[36] M. Venzke, C. Weyer, V. Turau: "Application Specific vs. Standard Web Service Interfaces for the

Vertical Integration of Fieldbus Systems." In Proceedings of the 3rd International Workshop on Intel-

ligent Solutions in Embedded Systems, 2005, pp. 153-162. IEEE Press, Los Alamitos.

[37] S. Wang, Z. Xu, J. Cao, J. Zhang: “A Middleware for Web Service-Enabled Integration and Interop-

eration of Intelligent Building Systems.” Automation in Construction, vol. 16, 2007, pp. 112-121.

[38] S.H. Yang, X. Chen, J.L. Alty: “Design Issues and Implementation of Internet-based Process Control

Systems.” Control Engineering Practice, vol. 11, 2003, pp. 709-720.

[39] F. Zhao, J. Chen, G. Dong, L. Guo: “SOA-Based Remote Condition Monitoring and Fault Diagnosis

System.” International Journal of Advanced Manufacturing Technology, vol. 46, 2010, pp. 1191-1200.

Vu Van Tan

He was born in Haiduong Province, Vietnam, in 1981. He received the engineer

degree in Information Technology from the Hanoi University of Technology, Viet-

nam, in 2004. He also received the PhD degree in Information Technology from

the University of Ulsan, Republic of Korea, in 2010. He has worked as a design

and analysis engineer in KhaiTri Software Company, Vietnam, for one year

(June 2004 – August 2005). He is currently a postdoctoral researcher at the

Network Based Automation Research Center (NARC), University of Ulsan. His main interests are soft-

ware engineering, software for automation systems, internet technologies for industrial automation

systems, agent technologies for process monitoring and control, and real-time communication systems.

Development of an OPC Client-Server Framework for Monitoring and Control Systems

340

Myeong-Jae Yi

He received the BS degree in Computer Science from the Seoul National Uni-

versity, Republic of Korea, in 1987. He also received the MS and PhD degrees in

Computer Science from the Seoul National University in 1989 and 1995, respec-

tively. He was a part-time lecturer at the Department of Computer Science of the

Seoul National University and the Sookmyung Women’s University from 1991 to

1996. He is currently a professor in the School of Computer Engineering and

Information Technology, University of Ulsan, Republic of Korea. Professor Yi is also a deputy-director

of NARC (Network based Automation Research Center) at the University of Ulsan and is a member of

KIISE and KIPS. His main interests are software engineering, software for automation systems, Internet

technologies for industrial automation systems, mobile agent, and E-commerce.

