

Department of Mechanical Engineering

Development of an Optimisation Algorithm for Auto-

sizing Capacity of Renewable and Low Carbon

Energy Systems

Author: Sana Waqas

Supervisor: Dr Paul Strachan

A thesis submitted in partial fulfilment for the requirement of the degree

Master of Science

Sustainable Energy: Renewable Energy Systems and the Environment

2011

2

Copyright Declaration

This thesis is the result of the author’s original research. It has been composed by the

author and has not been previously submitted for examination which has led to the

award of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material contained in,

or derived from, this thesis.

Signed: Sana Waqas Date: 7.09.2011

3

To My Parents……

4

Abstract

Hybrid renewable energy systems can help in improving the economics and

environmental sustainability of renewable/low carbon energy systems. For better

utilization of renewable/low carbon energy systems, design of hybrid systems in terms

of correct size and selection is very important. Finding optimum capacity of each

component of hybrid systems in large scale problems will be time taking associated

with exhaustive search and it will requires complex computer program/package. The

main goal of this study is to research and develop optimization algorithm for auto

sizing capacity of renewable/low carbon energy systems to assist in development of

hybrid energy systems. The developed algorithm is mainly designed for

implementation into MERIT, an energy systems evaluation simulation computer

package that supports the analysis of new and renewable energy schemes. Merit lacks

this capability, thus this developed algorithm will work as Merit improvement.

Existing literature about auto sizing capacity of renewable/low carbon energy, their

match evaluation criteria’s and optimization algorithms was reviewed. Genetic

algorithms and inequality along with correlation coefficients of supply/demand profile

have proved to be most suitable algorithm and main objective function respectively

for the particular problem. The particular auto sizing problem is then formulated

mathematically and designed in C++ which is integrated development environment of

Merit. Particular design of algorithm deals with single objective optimization using

genetic algorithm and inequality coefficient as main objective to find several results

from which one is selected with maximum correlation coefficient as best optimized

solution. Analysis of particular nature of genetic algorithm, optimization methods,

and renewable energy match criterias provide the reasons behind the particular design.

The developed algorithm is verified by global optimization toolbox of Matlab

software.

An actual case study is done with help of Merit by using actual hourly supplies and

demand data based on climatic conditions. Results show that developed algorithm can

handle large scale problems, works in a reasonable computation time, good in

eliminating exhaustive search and can be successfully embedded with Merit. Further

work areas are also discussed at end.

5

Acknowledgements:

First of all, I would like to thank Dr. Paul Strachan and Dr. Jun Hong for spending

their time on my project and helping me throughout to reach towards optimized

contents of my research work. I really have no words to describe how Dr. Jun Hong

assisted me to polish my knowledge and concepts during the course of project and I

really enjoyed progressing in an innovative way in the light of his ideas. Meanwhile,

supervision of Dr. Paul Strachan has enabled me to learn and analyze about MERIT

software during course work and to complete my work on time during thesis research

work of my MSc.

I am also thankful to my class mates in MSc who made my time very beautiful in

Scotland. The experience I gained by interacting with students from different

nationalities also improved my vision.

I want to thank with utmost gratitude Mr. Waqas Khan, my husband, who managed to

provide me finance for my MSc, encouragement when I needed, support in domestic

work, and above all this, love and kindness. I will never forget his help to reinforce

my determination throughout the year of study and he deserves more than words.

At the end, I want to dedicate my thesis to my parents who have made me what I am

today by sacrificing their time and money and my each and every success belongs to

their initial guidance. Above all, I am thankful to Allah who has given me these

loving people and beautiful opportunities in my life.

6

Table of Contents

1. INTRODUCTION: ... 12

1.1. INTRODUCTION: ... 12

1.2. OBJECTIVES: .. 14

1.3. M ETHODOLOGY: .. 15

1.4. REPORT LAYOUT:.. 16

2. BACKGROUND ON OPTIM IZATION PROCESS: .. 19

2.1. OPTIM AL PROBLEM FORM ULATION: .. 19

2.1.1. Design variables: .. 20

2.1.2. Constraints: ... 21

2.1.3. Object ive Funct ion: .. 21

2.1.4. Variable bounds: .. 22

2.2. REVIEW OF OPTIM IZATION ALGORITHM S: ... 22

2.2.1. General classificat ion: .. 23

2.2.2. Classification based on method of operations: .. 23

2.3. EVOLUTIONARY ALGORITHM S:... 26

2.3.1. Genetic Algorithms (GA): ... 27

2.3.2. M ulti Objective Genetic algorithms (M OGA): .. 30

2.3.3. Software packages available for GA analysis: ... 31

3. OPTIM IZATION OF RENEWABLE/ LOW CARBON ENERGY SYSTEM S: .. 35

3.1. CURRENTLY USED OPTIM IZATION M ETHODS FOR RENEWABLE ENERGY SYSTEM S: 35

3.2. GENETIC ALGORITHM & AUTO SIZING OF RENEWABLE/ LOW CARBON ENERGY: 36

3.3. M ATCH EVALUATION M ETHODS FOR RENEWABLE/ LOW CARBON ENERGY: 40

4. FORM ATION OF OPTIM IZATION ALGORITHM FOR AUTO SIZING: ... 45

4.1. INTRODUCTION: ... 45

4.2. DEVELOPED OPTIM IZATION ALGORITHM ... 45

4.2.1. Opt imal design of auto sizing Problem: .. 47

7

4.2.2. Details of genetic algorithm used: .. 49

4.2.3. Details of object ive funct ions used:... 56

4.2.4. Discussion on developed algorithm: ... 59

5. VERIFICATION AND CASE STUDY FOR AUTO SIZING ALGORITHM : ... 64

5.1. VERIFICATION OF DEVELOPED ALGORITHM : ... 64

5.2. CASE STUDY DONE WITH M ERIT: .. 66

6. CONCLUSION AND FURTHER WORK: ... 77

6.1. CONCLUSION: .. 77

6.2. FURTHER WORK: .. 78

APPENDIX: ... 81

A. PROGRAM CODE GENERATED FOR M ATLAB ... 81

B. LIST OF AVAILABLE GA SOFTWARE PACKAGES .. 82

C. RESULTS FOR CASE STUDY WITH 1 WT AND DIFFERENT NUM BERS OF PV PANELS FROM M ERIT 83

D. EXAM PLE OF CODE GENERATED IN C++ FOR DESIGNED ALGORITHM (WITH WEEK DATA) 84

8

List of Figures

Figure 1: Background for Project Work Figure 2: Hybrid system (wind/solar)

 ...13

Figure 3: Merit Tool environment...14

Figure 4: Methodology of Thesis Work ..16

Figure 5: A flow chart of optimal design procedure (Deb, 2005, p.3)20

Figure 6: Duality principle show maximum point of f(x) is same point as the

minimum of F(x) (Deb, 2005, p.8) ..22

Figure 7: Graphical Representation of an algorithm (Rieger & Hartmann, 2002)22

Figure 8: Classification of optimization algorithms ...23

Figure 9: The taxonomy of Global Optimization Algorithms (Weise, 2009, p.23)24

Figure 10: Solution of problem using evolutionary algorithms (Pohlheim, 2006)27

Figure 11: Types of encoding ...28

Figure 12: Concept of optimal solution in multi objective optimization30

Figure 13: Concept of Pareto Front ...31

Figure 14: Global Optimization tool box of Matlab (The Mathworks, 1994-2011)32

Figure 15: Step by step selection of algorithm ..37

Figure 16: Flow chart for optimization Process ...46

Figure 17: Graphical representation of auto sizing problem47

Figure 18: Flow chart of genetic algorithm ...50

Figure 19: Roulette wheel selection ..53

Figure 20: Flip bit mutation ..55

Figure 21: Single point cross over ..55

Figure 22: Pareto front obtained in multi objective genetic algorithm58

9

Figure 23: Graph of cosine function with more than one extrema60

Figure 24: Result of GA behaviour from Matlab ...65

Figure 25: Proposed Ecobarn site ...67

Figure 26: The location of Garvald House, to the South-West of West Linton.67

Figure 27: IC values for optimized capacities measured using week/month/year data

 ...68

Figure 28: CC values for optimized capacities measured using week/month/year data

 ...68

Figure 29: Variation of solar radiations over whole year ...70

Figure 30: Variation of wind speed over whole year ...70

Figure 31: Values of IC and CC for 16 supply combination using 1wind t/b and

varying number of PV panel from 1-16. ...72

Figure 32: Values of Match %age for 16 supply combination using 1wind t/b and

varying number of PV panel from 1-16. ...72

Figure 33: Values of surplus and deficit energy for 16 combination using 1wind t/b

and varying number of PV panel from 1-16. ...73

Figure 34: Graph of residual with optimum capacity for whole year with 4 batteries 74

Figure 35: Graph of residual with optimum capacity for whole year with 8 batteries 74

Figure 36: Graph of residual with optimum capacity for whole year with 16 batteries

 ...74

Figure 37: More demand options with more supplies options79

10

List of Tables

Table 1: Option of genetic algorithm available in Matlab (The Mathworks)32

Table 2: Option of multi objective genetic algorithm solver available in Matlab (The

Mathworks) ..32

Table 3: Built in options in GAlib...33

Table 4: Computation time based on different types of GA51

Table 5: Computation time of algorithm with different termination criteria...............54

Table 6: Detail of selected genetic parameters for design of algorithm54

Table 7: Pareto front/optimal solutions obtained from multi objective optimization ..58

Table 8: Result of 35 GA runs using supply and demand data from equations 18-21.64

Table 9: Result of 35 GA runs using supply and demand data from equations 24-27.65

Table 10: Match rate for optimized capacities ...69

Table 11: Result for 20 runs of genetic algorithm for month of July..........................70

11

Chapter 1

12

1. Introduction:

1.1. Introduction:

The environmental effects related to energy production have attained global attention

since 1970 when the world major industries faced the shortage of Petroleum and

worst energy crises. Along with the scarcity problems associated with fossil fuels,

they are also related to severe environmental problems which include mainly green

house gas emissions and global warming. The world started looking for the ways to

get energy from the sources which will be emissions free as well as sustainable i.e.

will also be available for the future needs so renewable energy resources started

gaining attraction. Researches and development were started in order to achieve their

best utilization to find the most efficient conversion technologies to convert them into

the form which can be used for useful purposes. The renewable energy resources are

present naturally, have huge potential to achieve the goals like diversity in energy

production technologies, movement towards clean energy resources, balancing the use

of fossil fuel, saving them for other applications in future, and reducing emissions.

Renewable energy sources are highly unpredictable, variable with time and dependant

on climatic conditions. Renewable energy system is competitive and feasible for off-

grid application; single source renewable usually leads to component over sizing,

which increases the operating and life cycle costs (Bagul et al., 1996). Single

renewable energy supply do not provide same amount of energy all the time so

concept of combined utilization of more than one supply is presented which is known

as hybrid energy systems concept. Hybrid energy system concept is becoming popular

because of their high efficiency, high load factor, reliability, low emission and

acceptable maintenance cost when compared with individual supply options. Design

of renewable energy hybrid systems requires correct selection and size of different

options available based on appropriate strategy and here comes main background and

justification for thesis work which provides the motivation for this report.

13

Figure 1: Background for Project Work Figure 2: Hybrid system (wind/solar)

There are challenges related to find correct capacity for hybrid energy systems.

Considering two or three options of supplies to be matched with a single demand can

lead towards a simple hit and trial method to find optimum size or capacity of each

supply but dealing with finding optimum capacity of 1000’s of supplies to satisfy a

demand would be difficult and exhaustive with manual search keeping in mind

variable nature of renewable energy. For this purpose complex computer programs

and optimization algorithms are required to find optimum solution in a reasonable

time.

Extensive research has been done in the field of optimizing renewable energy supplies

with different objectives for example minimizing cost, maximizing match or

reliability. Initial optimization and component sizing methods are based on worst

month scenario leads to non-optimal design with excess capacity (Celik, 2003). This

report represents a new design of optimization process for finding optimum capacity

of renewable/low carbon energy supplies with objective of maximizing electricity

match rate between demand and supplies by utilizing concept of genetic algorithms.

Genetic algorithms are search heuristic that mimics the process of natural evolution.

Genetic Algorithms are selected after reviewing extensive literatures related to

optimization algorithms, current researches done in field of optimization of renewable

energy, advantages of genetic algorithm and their good match with nature of

renewable/low carbon energy. The designed optimization process is made mainly to

implement and use in Merit tool. Merit is a computer program developed by

14

University of Strathclyde to support the development of new and renewable energy

schemes and is a quantitative evaluation tool that allows user to determine match

between supply and demand in order to make right decisions.

Figure 3: Merit Tool environment

Merit tool has already option available for auto searching optimum capacity of a

single renewable energy supply to match with a single supply but if more than one

supply options are to be matched with a single demand then Merit cannot provide

optimum capacity of each supply to be best suited with demand. This thesis is

showing work for auto sizing capacity of number of supplies available to match with

single demand to overhaul Merit capabilities and hence will prove to be a further

improvement to Merit tool.

1.2. Objectives:

The main purpose of this thesis is to research and generate an optimization algorithm

for auto sizing capacity of different renewable/low carbon energy supplies to assist

creation of new option available for Merit tool which would prove to be useful in

analysis of hybrid energy systems.

Particular objectives of thesis include

• To research best suited optimization algorithm which match finely with

nature of renewable/ low carbon energy systems.

15

• To analyse different match evaluation criterias used for renewable/low

carbon energy systems for finding best suited objective function for

development of algorithm.

• To develop a method of optimization best suited for particular auto sizing

problem utilizing selected optimization algorithm and objective functions.

• To develop a C++ programming code using Microsoft visual studio which

is integrated environment of Merit tool for selected optimization algorithm

with help of appropriate mathematical model.

• To verify, analyse and discuss results obtained from developed

optimization method.

1.3. Methodology:

Theses work methodology is provided in figure 4. Report will first present literature

review about match evaluation criteria’s, optimization algorithms and current

researches on particular auto sizing problem. From literature review, best suitable

match evaluation criteria and optimization algorithms are selected for use in design of

optimization algorithm. Design of optimization algorithm also involves selection of

design variables, variable bounds and mathematical formulation of particular auto

sizing problem. Then programming codes are produced for Microsoft visual studio

C++ and Matlab designed optimization process. C++ with a special library of genetic

algorithm named as GAlib is used for designing optimization algorithm because

integrated environment of Merit tool is C++ and Matlab is used for verification of

designed algorithm. After designing, a detailed analysis is done on the basis of

different objective functions, different combinations of objective functions, genetic

parameters, genetic nature and mathematical function behaviour. A case study is done

by using actual profiles of hourly supply and demand data which are exported from

Merit tool to conclude about the behaviour of designed algorithm when it will be

implemented in Merit tool. At the end conclusions and further work is presented.

16

Figure 4: Methodology of Thesis Work

1.4. Report Layout:

This work has six chapters. Chapter 1 starts with introduction of thesis work and

provide information about background, motivation, objectives and methodology for

thesis work along with report layout.

Chapter 2 provides a review of existing literature on optimization process. It includes

optimal problem formulation process in detail along with classification of

optimization algorithms after which working of genetic algorithms for single and

multi objective optimization is presented. Introduction about global optimization

toolbox of Matlab as well as of C++ genetic Library ‘GAlib’ is also given in this

chapter.

Chapter 3 is written mainly for understanding of optimization for renewable/low

carbon energy auto sizing capacity problem. It first looks on nature of renewable/low

carbon energy systems and currently used optimization methods for its auto sizing

problem and then move towards reasons for selection of genetic algorithm for this

problem. It also includes existing literature on different match evaluation criteria for

renewable/low carbon energy systems.

17

Chapter 4 deals with formation and design of algorithm. Mathematical details of

problem are given in detail after which flow charts of designed process and genetic

algorithms are presented. Analysis of designed algorithm process is also given in this

chapter based on different genetic parameters, different objective functions, nature of

genetic algorithm and objective function behaviour. Detail discussion on reason

behind design of particular generated design with its benefits is also provided in this

chapter.

Chapter 5 deals with the information about verification and case study for the

designed algorithm method while Chapter 6 provides conclusion as well as possible

further work area for this thesis work.

18

Chapter 2

19

2. Background on Optimization Process:

The process of optimization is of concern for man from many ages. Previously there

were no defined and scientific rules for optimum conditions. But with the passage of

time and advancement in science and technology, everything was considered to be

based on certain reason or logic. Mathematical calculations involving process of

optimization have become more famous in recent years. True meaning of optimization

is to find the best answer for a particular problem. For example, problems dealing

with the cost will require the best cost to be as less as possible. On the other hand,

problems dealing with profit will see the maximum value as the best answer. So

‘Optimum’ is the word which is used to demonstrate the meaning of best and the

process of finding best solution to a particular problem is known as process of

optimization (Antoniou & Lu, 2007) .

2.1. Optimal problem formulation:

To solve an optimization problem, there is a particular optimal formulation procedure.

It is not possible to apply single optimal formulation procedure for every design

problem because objective functions and the associated parameters in optimization are

different for different problems. The main purpose of formulation procedure is to

make the mathematical model of optimal design problem which is then solved by

using some optimization algorithm. Optimization algorithm accepts the optimization

problem in a particular format. Deb (2005) has provided this format in his book which

is shown in figure 5.

20

Figure 5: A flow chart of optimal design procedure (Deb, 2005, p.3)

The first step in designing an algorithm is to understand the need and purpose of

optimization. After which design variables, constraints, objective function, variable

bounds, and algorithms are selected for that particular problem. These steps are

explained below.

2.1.1. Design variables:

A design problem is associated with many variables some of which are more sensitive

to the problem. Design variables selection is dependent on user. These are the

variables which are primarily varied in optimization process. Efficiency and speed of

the optimization algorithm is largely dependent on number of design variables. So the

efficiency can be improved by selectively choosing design variables. Deb (2005) says

that first thumb rule is to select as few design variables as possible then outcome of

optimization must be analysed to check that weather number of variables should be

increased or decreased.

21

2.1.2. Constraints:

After selecting design variables, next step is to choose constraints. Constraints show

some type of relationship with design variables and other design parameters satisfying

some physical phenomena or resource limitations. Some of these considerations

include design to stay within static or dynamic equilibrium. For example in many

Mechanical engineering problems there are some limitations on stress and deflection.

There is no particular format for defining the constraints as they vary from problem to

problem and depend on the user.

There are two types of constraints; equality and inequality. Most of the constraints in

the design problems are of inequality type. They state a design variable is either

smaller than, greater than, or equal to a resource value. Example of inequality

constraint is “σ(x) ≤ Sallowable” which shows that stress developed “σ(x)” in the

component anywhere must be smaller than and equal to allowable length “Sallowable”.

Other type of constraint is of equality type and they state that functional relationship

must exactly match the resource value. Example of equality constraint is “δ(x) =5”

which shows that deflection “δ(x)” at some point must be exactly equal to 5mm.

Equality constraints are more difficult to handle as compared to inequality constraints.

Deb (2005) states in his work that second thumb rule in the formulation of

optimization problems is to keep number of complex equality constraints as low as

possible.

2.1.3. Objective Function:

The third step in optimal problem formulation is to select objective function in terms

of design variables and other problem parameters. There can be more than one

objective function for real problems of optimization but due to their complex nature

high number of objective functions is mostly avoided. Objective functions are of two

types. Either they have to be maximized or to be minimized. If algorithm is developed

with the objective of minimization then it can be converted to maximization by just

simply multiplying the objective function by -1. For example, f(x) = x
2
+1 is the

objective function of maximization then the duality principle suggests that this

problem is equivalent to minimization of f(x) = -(x
2
+1) but once the solution is

obtained then the original function value must be obtained by multiplying solution

with -1 (Deb, 2005, p.7). The duality principle is shown in figure 6.

22

Figure 6: Duality principle show maximum point of f(x) is same point as the minimum

of F(x) (Deb, 2005, p.8)

2.1.4. Variable bounds:

To define variable bounds is next step in which minimum and maximum bounds are

set on design variables. This information is not necessary in some algorithms but

some others need it. Variable bounds describe that solution points must be between

them.

After these steps of formulation, optimization algorithms is selected based on above

information and problem is written in a special mathematical form known as non

linear programming format (NLP) which is then solved. All above written tasks are

dependent on each other.

2.2. Review of optimization Algorithms:

An algorithm is assumed to be a sequence of statements which can be readable by

computer and has some unambiguous meaning and it always has some input and

output. Graphical representation of an algorithm is shown in figure 7. (Rieger &

Hartmann, 2002, p.9).

Figure 7: Graphical Representation of an algorithm (Rieger & Hartmann, 2002)

23

In mathematics, the procedure of generating the sequence of solutions for a particular

problem is known as iterative method and an algorithm is a specific form of iterative

method. An optimization algorithm is the algorithm which is used to define an

optimized solution for a particular function. For example, for a function f(x),

optimized solution would be the value of x for which f(x) is as small as possible or as

large as possible where x has some constraints on it. The value of x could be scalar or

a vector consisting of continuous or discrete values.

2.2.1. General classification:

The optimization problems can be classified in various ways and a simple

classification is shown in figure 8 (Collette & Siarry, 2004, p.17)

Figure 8: Classification of optimization algorithms

Apart from this classification described above, classification of optimization

algorithms can also be given as based on method of operations (Weise, 2009, pp.22-

24).

2.2.2. Classification based on method of operations:

For global optimization problems, classification of optimization algorithms according

to method of operation is given by Weise (2009) shown in the figure 9.

•Monovariable

•Multi variable
Based on number of
decision variable

•Function is linear with respect to decisions variables: Linear

•Function is quadratic with respect to decision variables: Quadratic

•Function is nonlinear with respect to decision variables:Nonlinear

Based on type of
objective function

•With constraints: Constrained

•Without constraints: Unconstrained
Based on form of
problem

•Continuous real number: Continuous

•Integer number: Integer or Discrete

•Permutations on a set of numbers of finite size: Combinatorial

Based on type of
decision variable

• Online opt imizat ion: t ime of opt imizat ion is very short of order of

milli second

• Offline opt imizat ion: t ime of opt imizat ion is not given importance

Based on properties

24

Figure 9: The taxonomy of Global Optimization Algorithms (Weise, 2009, p.23)

According to this classification, there are two main types of optimization algorithms

which are known as Deterministic and Probabilistic Algorithms.

2.2.2.1. Deterministic Algorithms:

If there exists a clear relationship between the characteristics of the possible solutions

and their utility for a given problem then most often these algorithms are used. In

formal words, it is an algorithm which behaves predictably. For a particular input, it

will always produce the same output. The machine under this type of algorithms will

undergo same sequence of steps. The existing state of the machine is determining

25

what would be the nest stage for machine (Wikipedia, the free encyclopedia, 2011).

“In each execution step of a deterministic algorithm, there exists at most one way to

proceed. If no way to proceed exists, the algorithm has terminated.” (Weise, 2009).

One example of deterministic algorithms is hill climbing in which for the same

starting point it will follow the same path always when it is run.

2.2.2.2. Probabilistic Algorithms:

If the relationship between solution candidate and its fitness is complicated or not

obvious then they cannot be solved deterministically. Then to deal with such type of

problems probabilistic algorithms are used. They use some kind of randomness in

their logic. They include input which is consisted of uniformly random bits in hope of

achieving good performance. Either running time of algorithm or the output or both

are the random variables in these algorithms (Wikipedia, the free encyclopedia, 2011).

They can be referred to stochastic or randomized algorithms. “A randomized

algorithm includes at least one instruction that acts on the basis of random numbers.

In other words, a randomized algorithm violates the constraint of determinism.”

(Weise, 2009).

However these algorithms have the chance to produce incorrect results based on the

random inputs by signalling the type of error or by showing its failure to termination

but still in many practical problems they are the only way to solve a problem. One

example of these algorithms is genetic algorithm in which strings or solutions in the

program will be different every time when the program is run. Though their final

results do not have much difference but the path of each individual is not exactly

repeatable. There are two main types of probabilistic algorithms. One is Las Vegas

algorithms and other is Monte Carlo algorithms.

 Las Vegas algorithms: These algorithms never return a false value. Either

they show the failure to proceed or do not return any value at all. If it returns

some value then its output is deterministic. Their termination cannot be

guaranteed and they usually have an expected runtime limit because their

actual execution may be very long (McConnell, 2007). Weise (2009) stated

that a Las Vegas algorithm terminates with a positive probability and is

(partially) correct.

26

 Monte Carlo algorithms: These algorithms are the randomized algorithms

whose running time is deterministic but whose output may be incorrect with

certain small probability. (Wikipedia, the free encyclopedia, 2011). Weise

(2009, p.552) stated that it is an algorithm which terminates always which is

its main difference from Las Vegas algorithms.

However, sometimes probabilistic algorithms are classified as heuristic and

metaheuristic algorithms (Weise, 2009).

 Heuristic: A heuristic is a part of an optimization algorithm that uses the

information currently gathered by the algorithm to help to decide which

solution candidate should be tested next or how the next individual can be

produced. They can also be referred as to find and discover solution by trial

and error. One example of Heuristics is travelling salesman problem.

 Metaheuristic: A metaheuristics is a method for solving very general classes

of problems. It combines objective functions or heuristics in an abstract and

hopefully efficient way, usually without utilizing deeper insight into their

structure i.e., by treating them as black-box-procedures. The examples of

metaheuristics are hill climbing/greedy search, tabu search, simulated

annealing, genetic algorithms and ant colony optimization. It can be applied to

all problems as these algorithms do not actually know what problems they are

solving for.

There is a third type of algorithm which is the mixture of deterministic and

probabilistic algorithms. For example hill climbing with a random restart where the

basic idea is to use deterministic algorithm but it starts with different initial points.

This hybrid algorithm is obviously having some advantages on simple techniques.

However as they include randomness so they are put under probabilistic algorithms

(Yang, 2010).

2.3. Evolutionary Algorithms:

“Evolutionary algorithms are population-based metaheuristic optimization algorithms

that use biology-inspired mechanisms like mutation, crossover, natural selection, and

survival of the fittest in order to refine a set of solution candidates iteratively” (Weise,

2009). Main advantage of evolutionary algorithms to other optimization method is

27

their “black box” character that makes only few assumptions about the underlying

objective function. They are utilizing some phenomena of biological evolution for

example reproduction, mutation, recombination and selection. They operate on a

population of potential solutions and apply the principle of survival of the fittest to get

close to solution gradually. Solution is improved at each generation and the process

leads to evolution of population that is best suited for particular environment.

Figure 10: Solution of problem using evolutionary algorithms (Pohlheim, 2006)

Figure 9 show that there are five subtypes of evolutionary algorithms. The family of

evolutionary algorithm include Genetic Programming (GPs), Learning classifier

systems (LCS), Evolutionary strategy (ES), Evolutionary programming (EPs) and

Genetic algorithms (GAs).

Genetic Programming (GPs) includes all evolutionary algorithms that grow program

and algorithms and things like that. Evolutionary programming is an approach that

treats the instances of genomes as different species rather than as individuals. Also it

has now more or less merged in genetic programming and other evolutionary

algorithms. LCS (Learning classifier systems) are online learning approaches that

assign output values to the given input values. They internally use a genetic algorithm

to find new rules for this mapping. Here it can be stated that GPs (Genetic

programming) are well suited for problems that require the determination of a

function that can be simply expressed in a function form. Also ES (Evolutionary

strategy) and EPs (Evolutionary programming) are well suited for optimizing

continuous functions and finally GAs (Genetic algorithms) are well suited for

optimizing combinatorial problems (though they have occasionally been applied to

continuous problems) (Gray et al., 1997).

2.3.1. Genetic Algorithms (GA):

28

Genetic algorithms are subtype of evolutionary algorithms and inspired by Darwin’s

theory about evolution. GAs are adaptive heuristic search based on evolutionary ideas

of natural selection and genetics. GAs are intelligent exploitation of random search

used in optimization problems. Genetic algorithms start with a set of solutions called

population. Solutions from one population are taken and used for to create new

population. New population is considered better than old one. Solutions are selected

to form new population on basis of their fitness. More is their fitness; more will be the

chances to get selected for reproduction. This process is repeated until some

termination condition (number of populations, improvement of best solution) is

reached.

Before genetic algorithm is used in a real problem, there is need of encoding the

solutions in the form which can be processed by computer. There are four types of

coding available based on type of representation given in figure 11.

Figure 11: Types of encoding

Binary encoding is most commonly used in which every chromosome is a string of

bits 0 or 1. Its example is Knapsack problem. Permutation encoding is used in

29

ordering problems e.g. travelling sales man problem and in this encoding every

chromosome is a string of numbers and numbers are represented in sequence. For

problems in which complex values e.g. real number are involved, such as in finding

weights of neural network, value encoding is used in which every chromosome is a

string of some value which could be characters, real numbers or form numbers. Tree

encoding is used for evolving programs, for example finding some value from a

function, in which every chromosome is a tree of some object.

Initial population is chosen randomly then following steps are repeated until a

termination criterion is met.

i. Evaluate fitness in order to maintain genetic diversity or differentiate between

similar individuals raw objective scores are scaled to produce final fitness

scores. There are different types of scaling schemes e.g. rank scaling, sigma

truncation scaling, linear scaling and sharing (similar sharing).

ii. Prune population (typically all; if not then the worst)

iii. Select pairs to mate from best ranked individuals. There are various selections

schemes defined e.g. rank selection, roulette wheel selection, tournament

selection, Boltzman selection, and steady state selection.

iv. Replenish population by applying crossover and mutation operators. There

are number of techniques available for cross over e.g. one point crossover, two

point crossover, multipoint crossover, uniform crossover, arithmetic crossover,

and heuristic cross over. All types involve swapping genes, sequences of bits

in the strings, between two individuals (or between two strands of a diploid

individual). Mutation alters one or more gene values in a chromosome from its

initial state. Various types of mutation include Flip bit, boundary, non

uniform, uniform and Gaussian etc.

v. Checking for termination criteria which can be number of generations, amount

of time, minimum fitness threshold satisfied, fitness has reached a plateau,

other.

Further detail of all these steps including parameters about GA can be found in books

of Goldberg (1989), Mitchell (1998), Man et al. (1999), Gen & Cheng (1997) and

Haupt & Haupt (2004).

30

2.3.2. Multi Objective Genetic algorithms (MOGA):

When there are more than one objectives involved in optimization then multi

objective optimization is used. Fonseca and Fleming (1993) have first introduced the

concept of multi objective genetic algorithm which used the non dominated

classification of a GA population. MOGA differs from GA in a way fitness is

assigned to each solution in the population. The rest of algorithm works in the same

way as classical GA. Multi objective optimization provides a Pareto front which is

non dominated set of solutions with regard to all objective functions. All solutions in

Pareto front are optimal. Consider the plots of two functions in figure 12 which have

their minima at point x=-2 and x=2 respectively. But in a multi objective problem, x

= -2, x = 2, and any solution in the range -2 <= x <= 2 is equally optimal. The goal of

the multi objective genetic algorithm is to find a set of solutions in that range (ideally

with a good spread). The set of solutions is also known as a Pareto front (The

MathWorks, 1994-2011).

Figure 12: Concept of optimal solution in multi objective optimization

Figure 13 show Pareto front by red line and all points on Pareto front are more

efficient as compared to any other point which is not on Pareto front. (Point C is not

on the Pareto Frontier because it is dominated by both point A and point B.

Points A and B are not strictly dominated by any other, and hence do lie on the

frontier) (Wikipedia, 2011).

31

Figure 13: Concept of Pareto Front

2.3.3. Software packages available for GA analysis:

Due to increase in researches and development in field of genetic algorithms, there are

many software packages available in market which can be used to analyse genetic

algorithms behaviour. List of available GA packages is given in appendix B. Two

packages are used for this thesis work as given below in detail.

1. GA package in Matlab:

GA package in Matlab is used for purpose of verification of designed algorithm.

Global optimization tool box of Matlab (The Mathworks, 1994-2011) provide the

solutions for those problems that have multiple maxima and minima involved and

need global solutions. Matlab Global Optimization deals with optimizations where

objective functions are continuous, discontinuous, stochastic, does not possess

derivatives, or includes simulations or black-box functions with undefined values for

some parameter settings (The Mathworks, 1994-2011). In Global Optimization tool

box, genetic algorithm solver as well as multi objective genetic algorithm solver is

used to analyse the behaviour of single objective genetic algorithm and multi

objective genetic algorithm. Global Optimization tool box view is shown in figure 14.

32

Figure 14: Global Optimization tool box of Matlab (The Mathworks, 1994-2011)

The following tables 1 and 2 provide the information of standard genetic algorithm

options and standard multi objective genetic algorithm solver options which can be

used in global optimization tool box.

Table 1: Option of genetic algorithm available in Matlab (The Mathworks)

Step Genetic Algorithm Option

Creation Uniform, feasible

Fitness
scaling

Rank-based, proportional, top (truncation), shift linear

Selection Roulette, stochastic uniform selection (SUS), tournament, uniform,

remainder

Crossover Arithmetic, heuristic, intermediate, scattered, single-point, two-point

Mutation Adaptive feasible, Gaussian, uniform

Plotting

Best fitness, best individual, distance among individuals, diversity of

population, expectation of individuals, max constraint, range, selection

index, stopping conditions

Table 2: Option of multi objective genetic algorithm solver available in Matlab (The

Mathworks)

Step Multi objective Genetic Algorithm Option

Creation Uniform, feasible

Fitness scaling Rank-based, proportional, top (truncation), linear scaling, shift
Selection Tournament

Crossover Arithmetic, heuristic, intermediate, scattered, single-point, two-point

Mutation Adaptive feasible, Gaussian, uniform

Plotting

Average Pareto distance, average Pareto spread, distance among

individuals, diversity of population, expectation of individuals,

33

Pareto front, rank histogram, selection index, stopping

conditions

Global Optimization Toolbox can also allow changing population size, number of

elite children (not in case of multi objective genetic algorithm), crossover fraction,

migration among subpopulations (using ring topology), Pareto front (not in case of

genetic algorithm) and bounds, linear, and nonlinear constraints for an optimization

problem. Stopping criteria can also be selected based on time, stalling (not in case of

multi objective genetic algorithm), fitness limit, or number of generations.

2. GAlib: A C++ library of Genetic Algorithms

GAlib provides object oriented C++ classes and objects to implement genetic

algorithms. It basically works with two classes, genome and genetic algorithm where

genome represents the single solution to problem and genetic algorithm defines how

evaluation must take place. The library contains different types of genomes

(GAListGenome, GATreeGenome, GAArrayGenome and GABinaryStringGenome

etc.) and different types of genetic algorithm (simple, steady-state, and incremental).

It has many built in genetic parameters including elitism, selection strategies and

replacement strategies and has the possibility to customize them as well according to

need of user. New genetic algorithms can be quickly tested by deriving from base

genetic algorithm classes in the library (Fahimuddin, 2003). Built in options available

in galib library is listed in table 3. Further detail of GAlib can be found out from its

website (Wall, n.d.).

Table 3: Built in options in GAlib

Step GALib Genetic Algorithm Option

Built-in chromosome
type

Real number arrays, list, tree, 1D, 2D, and 3D arrays, 1D, 2D, and
3D binary string.

Built-in initialization

operators

Uniform random, order-based random, allele-based random, and

initialize-to-zero.

Built-in selection

methods

Rank, roulette wheel, tournament, stochastic remainder sampling,

stochastic uniform sampling, and deterministic sampling.

Built-in crossover
operators

arithmetic, blend, partial match, ordered, cycle, single point, two
point, even, odd, uniform, node- and subtree-single point

Built-in mutation

operators

Random flip, random swap, Gaussian, destructive, swap subtree,

swap node.

Type of objective
function

Population- or individual-based.

34

Chapter 3

35

3. Optimization of Renewable/Low Carbon Energy Systems:

This chapter is presenting literature for currently used optimization methods in field

of renewable/low carbon energy and scope of present and future researches for sizing

problems of hybrid renewable energy systems. In the light of already employed

optimization methods for RE, nature of RE, and type of particular problem of auto

sizing, genetic algorithms are selected for developing optimization algorithm for auto

sizing problem of renewable/ low carbon energy and benefits of genetic algorithms

are provided in detail. Then different available match evaluation criteria (especially

available in Merit tool) are discussed for renewable energy supply and demand

matching along with their advantages and disadvantages to select best one to be used

as objective function in optimization algorithm for auto sizing problem of renewable/

low carbon energy for match evaluation. Inequality coefficients ideally and

correlation coefficients to some extents are proved to be good match evaluation

criteria in light of literature review.

3.1. Currently used optimization methods for Renewable Energy systems:

Improvement in renewable/low carbon energy technologies is required for sustainable

development and to reduce energy problems. Optimization algorithms are a suitable

tool for solving problems related with complex nature of renewable/low carbon

energy systems. There are several methods available for renewable energy systems

using optimization methods e.g. renewable energy models, energy supply models,

energy planning models, emission reduction models, energy supply demand models,

control models etc (Jebaraj & Iniyan, 2006). Banos et al. (2011) provided list of all

researches which have been done related to use of optimization algorithms for design,

planning and control problems associated with renewable energy. Initially

optimization methods were based on traditional approaches e.g. mixed-integer and

interval linear-programming, Lagrangian relaxation, quadratic programming, and

Nelder–Mead Simplex search. But in recent years, non traditional approaches i.e.

heuristic optimizations have become more famous which include especially genetic

algorithms and practical swarm optimization. There are also multi-objective problems

related to renewable energy systems using Pareto-optimization techniques. It can be

concluded that the use of heuristic approaches, Pareto-based multi-objective

36

optimization and parallel processing are promising research areas in the field of

renewable and sustainable energy (Banos et al., 2011).

The researches about sizing problems related to renewable energy include most of

work related to wind and solar energy systems. For sizing standalone photovoltaic’s,

grid connected photovoltaic’s and for photovoltaic-wind hybrid systems, Mellit

(2009) studies performance of artificial intelligence techniques. ANN and Genetic

Algorithms were used by Mellit et al (2010) for sizing problems of photovoltaics.

Thiaux et al. (2010) applied NSGAII which is a fast multi objective GA to optimize

stand-alone photovoltaic systems while Kornelakis and Marinakis (2010) applied PSO

to such problems. Anagnostopoulos and Papantonis (2007) utilized a stochastic EA

for the optimal sizing of a small hydropower plant with objective of maximizing the

economic benefit and the energy produced. A GA was used for optimal sizing of

stand-alone photovoltaic-wind generator systems, which selects the optimal number

and type of units to minimize the cost subject to the constraint that the load energy

requirements are completely covered (Koutroulis et al., 2006). GA are also employed

for optimal sizing to optimize the configurations of a hybrid solar–wind system

employing battery banks, where the decision variables are the number of photovoltaic

modules, wind turbines and batteries, the photovoltaic module slope angle and wind

turbine installation height (Yang et al., 2008). Bilal et al. (2010) used multi objective

GA for sizing a hybrid solar–wind-battery system with objective of minimizing the

annualized cost system and the loss of power supply probability while Moghaddas-

Tafreshi (2009) used PSO for sizing problems. Papantonis (2008) combined an

evaluation algorithm that simulates in detail the plant operation and an automated

optimization software based on EA for optimum sizing of the various components of

a reversible hydraulic system, i.e. turbine size, the size and the number of the pumps,

the penstock diameter and thickness, the capacity of the reservoirs and some financial

parameters.

3.2. Genetic algorithm & auto sizing of Renewable/low carbon Energy:

Literature review on classification of optimization algorithms is analysed with

particular nature of auto sizing problem of renewable/low carbon energy systems. The

particular problem lies under

37

 Multi variable optimization as problem deals with finding optimum capacity

of more than one supply options available.

 Non linear optimization as renewable energy supply and demand profiles are

non linear involving many maxima and minima.

 Constrained optimization as auto sizing of renewable/low carbon energy

supply deals with finding capacity in some particular constraint e.g. cost.

 Dynamic optimization as renewable/low carbon energy profiles change their

value at each time step and hence can be represented as a function of time

 Discrete as the considered sizes of each supply can take only discrete values.

 Combinatorial optimization as sizes of particular supplies can only take

specific values and sizing problem is to deal with only finite number of

possible values.

 Probabilistic optimization as renewable/ low carbon energy is variable and

stochastic in nature because of their high dependency on climatic conditions.

It is clear that problem lies under probabilistic optimization. Under probabilistic

algorithms, metaheuristics produce high quality results as compared to heuristic and

as described by Yang (2010) that metaheuristics are suitable for global optimization

problems. Also under probabilistic algorithm, Monte Carlo algorithms are better than

Las Vegas because they always terminate and produce some results. Evolutionary

algorithms are type of metaheuristics as well as of Monte Carlo algorithms.

Evolutionary algorithms further consisted of five types from which genetic algorithm

are the one which are well suited for combinatorial problems (Gray et al., 1997). So

selection of algorithms well suited for renewable energy problems is given in

following figure.

Figure 15: Step by step selection of algorithm

38

It can be noted from figure 9 that there are also other algorithms along with

evolutionary algorithm which comes under Monte Carlo and Meta heuristics for

example Hill climbing, simulated annealing, tabu search and swarm intelligence etc.

The reasons behind selection of GA which comes under evolutionary algorithms are

provided here. Hill climbing simulated annealing and tabu search deal with a single

solution rather than with populations of solutions and therefore can’t explore the

neighbourhood of the whole population. They are also termed as local search methods

and their main disadvantage is that they get stuck in local optima.

GA is population based, inspired by nature and search globally. However swarm

intelligence algorithms (PSO and ACO) are also inspired by nature and proved good

for optimization problems but researches show that GA approach is superior to PSO

approach in terms of its computational time/efforts (Jones, 2005). Artificial neural

network (ANN) is also effected by problems of local optima and to get good results

from them they must be used combine with other methods such as GA.

Also current researches in field of renewable energy optimization problems related to

sizing are mostly about evolutionary algorithms (genetic algorithms and multi

objective genetic algorithms). Initially, applications of genetic algorithm were mainly

theoretical. With the increase in research, growth of computing power and

development of internet, they moved in commercial sector. Now they are solving

problems of every day interest and found wide applications in areas of acoustics,

aerospace engineering, astronomy and astrophysics, chemistry, electrical engineering,

financial markets, game playing, geophysics, materials engineering, mathematics and

algorithmics, Military and law enforcement, molecular biology, pattern recognition

and data mining, robotics, routing and scheduling and systems engineering.

Further benefits of genetic algorithm explained by Haupt & Haupt (2004, p.23) and

Marczyk (The talk origin archives, 2004) which are in favour of particular auto sizing

problems include

 It can deal with problems with continuous as well as discrete variables. Some

experimental works (Water et al., 1998) show that for some class of problems

which deal with highly discrete variables, GA , because of their inherent

discrete nature, can be more accurate than other algorithms built originally for

continuous variables (Solomatine, 1998).

39

 They can perform well on a wide variety of test functions, including noisy,

discontinuous, and multimodal search landscapes (Goldberg, 1989, p.107).

 Compared with traditional methods (the direct exhaustive search method and

the gradient-directed search method) for function optimization, one of the

main advantages of the GA is that it is generally robust in finding global

optimal solutions, particularly in multimodal and multi-objective optimization

problems (Yang et al., 2008). However, even if a GA does not always deliver

a provably perfect solution to a problem, it can almost always deliver at least a

very good solution (Marczyk, 2004).

 Genetic algorithms are intrinsically parallel. Instead of exploring solution

space in one direction, they explore in multiple direction at once as they have

multiple offsprings. If one path is turn out to be dead, they eliminate that one

and move towards other direction which is more promising in finding optimal

solution in each run. More over by evaluating one particular string, they

sample each of its spaces to which it belongs due to which they build up an

increasingly accurate value for the average fitness of each of these spaces,

each of which has many members. Therefore, a GA that explicitly evaluates a

small number of individuals is implicitly evaluating a much larger group of

individuals. This phenomenon is known as schema theorem and is main

advantage over other problem solving techniques (Goldberg, 1989).

 They are suitable for solving problems in which search space is really huge

which is usually the case of non linear problems. In case of linear problems,

improvement in one part will improve the systems as a whole while in case od

non linear problems, improvement at one point is not having much effect on

the entire system. Search space of non linear systems is require search 1000 of

times more than that of the linear systems resulting in exhaustive search. But

GA due to producing multiple schemas at once and parallelism complete such

tasks in reasonable amount of time. So they can optimize variables with

extremely complex cost surfaces.

 GA has ability to deal with many parameters simultaneously (Forrest, 1993).

So they behave very well for multi objective problems.

40

 Another quality of genetic algorithm is that they solve the problem about

which they never know before. They start with random solutions and use

fitness function to find improvement which means all possible search

pathways are theoretically open to a GA.

 It does not need the objective functions to be differentiable or continuous and

can deal with a large number of variables.

 It provides a list of optimum number instead of single solution and can encode

the variables so that the optimization is done with encoded variables.

 It works with numerically generated data, experimental data, or analytical

functions and can solve different types of problems including bound-

constrained and general optimization problems.

Based on above description, GA’s are considered to be most suitable algorithms in

terms of global optimization, particular nature of renewable energy and particular

problem of auto sizing.

 “Genetic Algorithms are good at taking large, potentially huge search spaces and

navigating them, looking for optimal combinations of things, solutions you might not

otherwise find in a lifetime.” - Salvatore Mangano Computer Design, May 1995

3.3. Match Evaluation Methods for Renewable/Low carbon Energy:

Objective function in case of Renewable/ Low carbon energy systems is to maximize

match between supplies and demands i.e. to ensure that period of generation is

matched with period of consumption. In particular case of renewable/low carbon

energy systems, the accuracy of match is dependent on supply and demand profiles.

Born in his work says that match is also effected by data resolution. For example a

data obtained at very high frequency that is order of seconds can lead to poor match

while time averaged over half hourly intervals can give improved results.

Mathematical formula is required for computing objective function for its use in

optimization algorithm (Born, 2001). Many match evaluation methods along with

their mathematical relationships are given below.

‘A building’s self-sustenance is the ratio of the demand displaced by on-site

generation, to the demand without generation. The optimal value for self-sustenance

41

is taken to be unity, whereby all the sites demand could be displaced by on site

generation’ (Mahdavi et al., 1999). The self sustenance index is given by the

following equation.

 -------------EQ 1

Where ESSx = site energy self sustenance for energy type x, dispx,t = energy

displacement by generation system, for energy type x, at time t, demx,t = energy

demand of building without generation, for energy type x, at time t, n = total number

of time steps

Shared area between supply and demand profiles can also be used for match

evaluation. This value can be approximated by evaluating the area between the x-axis

and the lowest value between supply and demand for every time step. For a perfect

match %SA would equal 100 where shared area can be evaluated by following

equation.

 -------------EQ 2

Where D (t) = demand profile, S (t) = supply profile, n = time period.

Excess supply is another criterion to describe match rate and must be 0 for perfect

match where it can be given by following relationship.

 -------------EQ 3

The residual, r (t), of two profiles can be used to represent the combined profile and

can be obtained by subtracting the supply at each time step from the demand.

 -------------EQ 4

42

‘The least-squares approach can be used to quantify the magnitude of deviation

between two sets of data variables’ (Born, 2001). The answer will always be a

positive value, with a lower limit of zero indicating a perfect match and without an

upper limit. The following equation defines this method.

 -------------EQ 5

Spearman’s Rank Correlation Coefficient describes the correlation between any pair

of variables by calculating the degree to which the variables fall on the same least

square line (Scheaffer & McClave, 1982). Its value varies from ‘-1’ to ‘1’. ‘1’ shows

the perfect positive correlation and ‘-1’ show the perfect negative match where ‘0’

represents no match. Correlation coefficient can be given by the following equation.

 -------------EQ 6

Where Dt = demand at time t, St = supply at time t, d = mean demand over time period

n, s = mean supply over time period n

‘The Inequality Coefficient, IC, describes the inequality in a time-series due to three

sources: unequal tendency (mean), unequal variation (variance) and imperfect co-

variation (co-variance)’ (Born, 2001). The value of Inequality coefficient varies from

0 to 1 where 0 shows good match and 1 show no match.

 -------------EQ 7

Born (2001) in his work has used an example to show different merits and demerits

for these match criteria. Energy self-sustenance index accounts for displaced energy

but neglects excess energy production which can also affect the quality of match.

When comparing scenarios where one of the profiles is common, i.e. a demand profile

43

matched to a number of supplies or vice-versa, the shared area can be used to compare

the individual matches. However Shared area can provide information about the

demand portion satisfied by renewable energy but cannot give any indication of

excess energy. Shared area and excess energy both are very important to describe a

match. For a perfect match %SA would equal 100 and %ES zero and addition of these

terms yields an optimum value of 100, however non-perfect match values could range

above and below this figure, making judicious comparisons difficult. Similarly,

residual cannot describe match between supply and demand accurately. Due to lack of

an upper limit in case of least square method quality of match is difficult to find.

Where numerous profile pairs are to be compared, bands defining the quality of match

are useful in processing various possibilities, although establishing such bands is

extremely difficult where a worst case cannot be defined. Correlation coefficient is

describing trend between two data sets but ignores relative magnitude of the two. For

example if two profiles are exactly in phase but of very different magnitude would

result in perfect correlation. For a perfect match, magnitude and phase, both must be

considered. Still importance of CC cannot be ignored as it provides ‘a measure of the

potential match that could exist given changes to the relative capacities, i.e. through

energy efficiency or altering the size of the RE system’. However, Inequality

coefficient is the one which can be ideally used to describe match rate. Smaller the

inequality, larger will be the match. Values of Inequality Coefficient (IC) between 0-

0.4 represent good matches and values above 0.5 show bad matches.

To sum up, for defining match between supply and demand profiles of renewable

energy systems, inequality coefficient can prove to be best criteria and correlation

coefficient is also good but up to some extent.

44

Chapter 4

45

4. Formation of Optimization Algorithm for Auto sizing:

4.1. Introduction:

This chapter deals with the development of optimization algorithm for auto sizing

capacity of renewable/low carbon energy systems. The auto sizing problem is first

mathematically formulated and most suitable genetic parameters are selected. And

then analysis of objective function IC and CC, optimization method and working of

algorithm leads towards a particular design for particular auto sizing problem.

4.2. Developed optimization algorithm

An optimization algorithm is developed for auto sizing capacity of renewable/ low

carbon energy systems. The optimization algorithm is developed for the purpose of

finding optimized capacities of each supply while there is n number of supplies

available to satisfy a single demand. Optimization algorithm is designed and run in

C++ computer language utilizing genetic algorithms. Flow chart of algorithm is

shown in figure 16.

46

Figure 16: Flow chart for optimization Process

47

The designed program starts with taking input values of hourly data for different time

spans e.g. days, weeks, months or year etc. of demand and each renewable energy

supply and storing them in form of arrays. Data base for hourly supply and demand

profiles for different climates are exported from Merit. Then a for loop is run in

program to call genetic algorithm several times with objective of minimizing

inequality coefficient (IC). The results of optimum capacity generated by GA in

decimal values are then converted to closest integer values in order to get whole value

of each supply capacity. Optimum capacity results along with corresponding IC and

CC value are recorded for each GA run and stored in arrays. From all stored results

obtained, one result is selected as best optimized one which has maximum correlation

coefficient.

The design of algorithms first needs optimal design formulation process (Deb, 2005)

which is described in detail under section 4.2.1 and provides mathematical details and

non linear programming format of auto sizing problem according to figure 5. Details

of genetic algorithm (GA) used and selection of its parameters are given under section

4.2.2. Reasons for using inequality coefficient and correlation coefficient as

objectives for match evaluation in a particular order as given in flow chart along with

how many times GA is called/run is discussed in detail under section 4.2.4.

4.2.1. Optimal design of auto sizing Problem:

According to problem formulation procedure provided by Deb (2005), Particular

problem for auto sizing of renewable/low carbon energy systems is defined first as

shown graphically in figure 17.

Figure 17: Graphical representation of auto sizing problem

48

Demand (D) is required to be matched with different supplies in a way that Resultant

Supply (RS) = n1 (S1) + n2 (S2) + n3 (S3) + ----------------+ nn (Sn) where main

objective of required auto sizing algorithm is to find the optimized values of “n1, n2,

n3, -----, nn” to maximise match between demand and resultant supply where S1, S2,

S3… Sn represents unit capacities of supplies. After defining problem, next step is to

choose design variables. In this case, design variables are n1, n2, n3, -----, nn which

describes how many number/units of different supplies of particular capacities are

needed. When there are five supplies available to be matched with a demand then n=5

meaning that there are five design variables (n1, n2, n3, n4, n5).

After defining design variables, variable bounds are selected. Variable bounds include

minimum and maximum limits on a particular supply capacity in order to generate a

solution (size of each capacity) between certain ranges. There must be utilization of

each considered renewable energy supply at least once so minimum value (lower

bound) of design variables (n1, n2, n3, ---, nn) is selected as 1. For case of maximum

bound on design variables, there is a flexibility which varies with case to case. If

demand is in 10,000 of watts then maximum value of design variables (number of

supplies) could be in 1000’s. However in this particular auto sizing algorithm, a

simple procedure is adopted to find upper bound on each design variables which

depends on supply and demand hourly profiles data. Since data base of hourly

demand and supplies profiles are stored in form of arrays so upper bound of design

variables are found by dividing maximum value in demand array with minimum value

of each supply array.

Non linear programming format of problem which is suitable for solving by utilizing

some kind of optimization algorithm is given as below.

 ℎ ℎ =
√[.∑ { (. . . ⋯ .) }√[.∑ () √[.∑ (. . . ⋯ .)

 -------------EQ 8

Where if time span considered is n then Dt = Demand at time t and St1, St2, St3, … ,

Stn are values of S1, S2, S3, … , Sn at time t

1 ≤ 1 ≤ 1 Where 1 =
()

()
 -------------EQ 9

1 ≤ 2 ≤ 2 Where 2 =
()

()
 -------------EQ 10

49

1 ≤ 3 ≤ 3 Where 3 =
()

()
 -------------EQ 11

............

………

1 ≤ ≤ Where =
()

()
 -------------EQ 12

Where max (D) is the maximum value of demand over considered time period and

min (S1), min (S2), min (S3)… min (Sn) are the minimum values over considered

time period of S1, S2, S3 … Sn respectively.

IC and CC are computed as follow

 =
√[.∑ { (. . . ⋯ .) }√[.∑ () √[.∑ (. . . ⋯ .)

 -------------EQ 13

=
∑ () .{(. . . ⋯ .) }√[∑ () ∑ {(. . . ⋯ .) }]

 -------------EQ14

Where s=mean supply over time period n and d= mean demand over time period n

Also s and d are computed as follow

= ∑ {(n1.St1 + n2.St2 + n3.St3 + ⋯ + nn.Stn)} -------------EQ 15

= ∑ (Dt) -------------EQ 16

4.2.2. Details of genetic algorithm used:

Genetic algorithm is used for optimization purposes and body of genetic algorithm is

given in flow chart in figure 18.

50

Figure 18: Flow chart of genetic algorithm

51

The body of genetic algorithm starts with initializing population by randomly

generating genes within particular range between lower and upper limit on design

variables determined by a method as described in mathematical details under section

4.2.1. Fitness value of each gene is evaluated using specific sigma truncation scaling

scheme based on objective function (inequality coefficient as given in equation 7). If

any fitness value reaches to desired results of population convergence then genetic

algorithms is exited otherwise a new population is generated and crossover and

mutation are applied until termination criteria is met.

Microsoft visual studio C++ 2008 was used for writing code of this algorithm by

installing a special library of genetic algorithm named as Galib (Wall, n.d.) to utilize

specific functions of genetic algorithm. In Galib, there are three kinds of genetic

algorithms which are built in based on Genitor model, Goldberg’s work and DeJong’s

method. Goldberg’s work is based on simple GA while Genitor model and DeJong’s

method is based on steady state GA (SSGA). In a SSGA only one or two individuals

are replaced in a population at each iteration. These new individuals become part of

the population and are now available for selection. This is in contrast to the standard

GA where the entire population (with the possible exception of an elite group of

individuals carried over from the previous generation) is replaced each iteration

(referred to as a generation in this case) (Parker & Parker, n.d.). So SSGA deals with

overlapping populations while simple GA deals with non overlapping populations.

The selection of type of GA for desired algorithm is done by analysing computation

time of program with these algorithms. The computation time with different GA is

given in table 4.

Table 4: Computation time based on different types of GA

Sr No. Type of GA Computation time in seconds

1 Simple GA based on Goldberg’s work 3.65

2 SSGA based on Genitor method 1.30

3 SSGA based on DeJong’s method 1.65

It has been seen that both SSGA (DeJong’s method and Genitor model) have lower

computation time as compared to simple GA based on Goldberg’s work. Also other

researches for optimization problems have proved that simple GA has poor

performance as compared to steady state GA (SSGA) (Gordon & Whitely, n.d.). Two

52

SSGA methods though have more or less same computation time but it has been

analysed by results obtained that SSGA based on Genitor method converges

prematurely at a local optimum. They require large pool size and many trials to ensure

the best solution is found (Parker & Parker, n.d.). So finally SSGA based on DeJong’s

method is selected for design of required optimization algorithm.

Genetic algorithm from GAlib named as “GASteadyStateGA” (Wall, 1996, p.32) is

selected according to DeJong’s method. It uses overlapping populations with a user-

specifiable amount of overlap. The algorithm creates a population of individuals by

cloning the genome or population that is passed to it. Each generation the algorithm

creates a temporary population of individuals, adds these to the previous population,

then removes the worst individuals in order to return the population to its original

size.

Type of encoding selected is binary encoding. It is considered as natural for many

problems (Obitko, 1998).This type of encoding can provide many no of chromosomes

with small number of alleles and Binary GAs are preferred when the problem consists

of discrete variables which is the case with renewable/low carbon energy optimization

problems.

In Galib, GABin2DecGenome (Wall, 1996, p.54) is used for purpose of creating

genome/initial population. This genome uses conventional methods of converting

binary strings to decimal values and vice versa. This genome is selected because

supply and demand profiles of renewable/low carbon energy are consisted of decimal

values. A phenotype is made before instantiating this genome where phenotype

defines how bits should map in decimal values and vice versa. Number of bits and

minimum/maximum limit for initialization of genome are user defined and for

purpose of this algorithm, program reads upper and lower bound itself for each supply

and numbers of bits used are 16. This genome first encode input decimal value to

binary values and after terminating GA, binary values are decoded to decimal values

to display results.

Sigma truncation scaling scheme is used because it eliminates negative fitness scores

during GA run which is most common problem in minimization problems where other

scaling method fail in dealing with them. Sigma truncation scaling utilizes population

mean and standard deviation to set negative results arbitrarily to zero. Objective

scores are converted to fitness scores using the following relation (Wall, 1996, p.75).

 f = obj - (obj_ave - c • obj_dev) -------------EQ 17

53

Roulette wheel selection method is used to select chromosomes to become parent for

crossover. It is most commonly used for GAs and in this selection; wheel is spin N

times to get N individuals. Better fitness chromosomes are given more chances to be

selected.

Figure 19: Roulette wheel selection

Genetic algorithm termination criteria settings vary from problem to problem. For this

particular auto sizing problem of highly non linear and random nature, main objective

of optimization is to reach towards global optimum. A simple analysis is done by

comparing four different termination criteria i.e. number of generations, diversity,

population convergence and population standard deviation. Termination of GA when

specific numbers of generations are achieved has some disadvantages. It is difficult to

know whether global minimum is achieved or not even when specified numbers of

generations for termination are reached. Also since GA can run until many numbers

of generations to search and reach towards global optimum in case of different data

with different search spaces so one single general value of number of generation for

stopping can’t be defined for every type of data. A better usual way of termination is

to stop when population diversity drops below a specified threshold. Again best

threshold can be different for different data profiles considered (for supply and

demand match) so it is difficult to design a single value. Termination can also be done

by using the population's standard deviation as the stopping criterion. This type of

termination is good when GA run time or cost control is of more importance than to

reach towards global optimum so it is also not appropriate for auto sizing problem

where there is a need of best global solution and user is willing to wait for finding

best optimum match. Another good way to terminate is to find out that entire

population has converged to good score and this can be accomplished by comparing

the average score in the current population with the score of the best individual in the

54

current population. However, the optimization algorithm is tested by using all above

termination criteria in term of their computation time and results are given in table 5

showing that there is not a big difference in computation time for all of these

termination criteria.

Table 5: Computation time of algorithm with different termination criteria

Termination criteria Computation Time in seconds

Diversity 3.7

Generation 3.9

ScoreConvergence 3.6

Standard Deviation 3.8

So the suitable stopping criteria selected for this particular optimization problem is the

termination based on score convergence. The desired ratio for population convergence

is selected as 0.99 which means to stop when population average is 99% of best.

The efficiency of GA is largely dependent on its parameters. For the choice of

parameters, either standard parameters defined by different authors can be used or

parameters can be customized according to specific problem. There are several

recommended settings for these parameters but genetic parameters are selected

according to DeJong’s standard settings because type of genetic algorithm used is also

based on DeJong’s work. DeJong's settings (De Jong & Spears, 1990) are the de facto

standard for most GAs and DeJong stated that his defined parameters (Pop size, no of

generations, mutation rate, mutation type, crossover rate, crossover type) setting

work very good for many GAs used for specifically function optimizations. Other

parameters which are not available from DeJong’s work are selected according to

their most common use. The parameters of genetic algorithm which were used for

defined optimization algorithm are given in table 6 with detail.

Table 6: Detail of selected genetic parameters for design of algorithm

Genetic Parameter name Selected parameter values

Population size 50

Number of generations 1000

Encoding Binary

Mutation rate 0.001

55

Mutation type Flip bit

Crossover probability 0.6

Crossover type Single point crossover

Elitism Yes

No of generations for convergence test 50

Convergence %age 0.99

Selection method Roulette wheel selection

Scaling scheme Sigma truncation scaling

Termination criteria Population diversity

Genetic Algorithm Steady state GA

Genome Decimal values

Parameters such as population size, number of generations, mutation rate, mutation

type, crossover rate and crossover type are selected according to DeJong’s defined

standards. Very big population size does not improve efficiency of GA. Usually from

many researches 50-100 is reported as best (Obitko, 1998). In this optimized

algorithm, stopping criteria is not based on specific number of generations so number

of generations will not have much effect on solution improvement. Mutation rate must

be as low as possible otherwise it will alter the solution from originality. Cross over

rate must be very high as compared to mutation rate and usually 0.6 is reported best.

Flip bit mutation is used and is specific for binary operators in which value of chosen

genes are simply inverted.

11001001 => 10001001

Figure 20: Flip bit mutation

Single point crossover is used which is very common for binary encoding. In single

point crossover, everything after the crossover point is taken from other parent.

11001011+11011111 = 11001111

Figure 21: Single point cross over

56

Elitism is selected in order to eliminate the chances of loosing best chromosome.

Elitism is name of method, which first copies the best chromosome (or a few best

chromosomes) to new population. The rest is done in classical way. Elitism can very

rapidly increase performance of GA, because it prevents losing the best found

solution (Obitko, 1998). Elite count is selected as 2.

4.2.3. Details of objective functions used:

Literature review on match evaluation criteria for renewable energy has shown that

inequality coefficient (IC) has proved to be best match evaluation function so far and

it must be as low as possible with minimum value of 0. Lower is inequality means

larger is the match between supply and demand. However values of IC between 0-0.4

shows good match between supply and demand. It must be stated that importance of

correlation coefficient (CC) in renewable energy match evaluation cannot be ignored

and it must be as large as possible with maximum value of 1. Flow chart shown in

figure 16 describes genetic algorithm with objective of minimizing IC only. CC is

also involved in designed optimization algorithm but not as an objective function of

genetic algorithm but as a second filter on the results obtained from genetic

algorithms with objective of IC. For providing reasons for this method, an analysis is

done with different objective functions for optimization along with their merits and

demerits. For purpose of this analysis, a simple example is used with three number of

supplies which means that n=3 i.e. design variables are n1, n2 and n3. Analysis

includes different cases as given below.

Genetic algorithm using IC only (Single objective):

An optimization algorithm was written in C++ language using single objective genetic

algorithm with IC, as objective function to be minimized. Five time steps data was

assumed for supplies and demand as given below in equations 18 to21.

= {10.0,20.0,30.0,40.0,50.0} -------------EQ 18

1 = {2.0,5.0,4.0,6.0,7.0} -------------EQ 19

2 = {3.0,7.0,3.5,4.5,5.0} -------------EQ 20

3 = {1.0,2.0,3.0,4.0,5.0} -------------EQ 21

Results from genetic algorithm produced an optimum capacity (n1, n2, n3) of unit

supplies (S1, S2, S3) at (1, 1, 7) which show that 1 unit of supply S1 and S2 each

along with 7 units of S3 will be optimum combination for satisfying demand D. By

57

using these optimum capacities of supplies, inequality coefficient comes out to be

0.048, correlation coefficient is 0.984 and resultant supply (RS) is evaluated at each

time step which comes out to be

= {12.0,26.0,29.0,39.2,48.0} -------------EQ 22

IC value is less than 0.3 and there is very low difference at each time step between

demand D and resultant supply RS in terms of magnitude as well which shows a good

match between demand and resultant supply. CC value is also very high which tells

about good correlation between resultant supply and demand. Hence IC has proved to

be a good objective function for match evaluation purposes of renewable/ low carbon

energy profiles.

Genetic algorithm using CC only (Single objective):

When same program is run with CC only, as objective function to be maximized then

genetic algorithm produced optimum capacity (n1, n2, n3) of unit supplies (S1, S2,

S3) at (1, 1, 98) which describes 1 unit of S1 and S2 each along with 98 units of S3.

By using this optimum capacities correlation coefficients come out to be 0.99985,

value of IC is 0.8194 and resultant supply at each time step is

= {104.0,209.0,302.0,403.0,503.0} -------------EQ 23

So by maximizing CC as objective function, although good value of correlation

coefficient is achieved but value of inequality is very high and magnitude of resultant

supply (RS) at each time step is showing large difference with demand D depicting

very bad match. It can be seen that correlation coefficient deals with trend matching

but magnitude match is not guaranteed. Good matches must deal with matching of

magnitude as well as trend both. Hence, it can be stated that CC alone will not prove

as good match evaluation criteria for renewable/low carbon energy systems

Genetic algorithm using IC and CC both (Multi objective genetic algorithm):

In order to involve both IC and CC in an optimization algorithm for match evaluation,

multi objective genetic algorithm is analysed by considering two objective functions;

IC and CC. (IC to be minimized and CC to be maximized).

This method is analysed by using same data as given in equations 18 to21. The results

obtained for optimal capacities of S1, S2 and S3 from multi objective optimization

algorithm i.e. Pareto front is recorded in the table 7 which show 16 optimal solutions

on Pareto front i.e. 16 optimum capacity combinations for 3 supplies along with

58

values of IC and CC for them. If this Pareto front is plotted for IC and CC then a

curve is obtained shown in figure 22.

Table 7: Pareto front/optimal solutions obtained from multi objective optimization

 S.No f1(IC) f2(CC) S1 S2 S3

1 0.088278 0.98465 1.013309 1 7.15625

2 0.741079 0.99919 1.013309 1 35.79447

3 0.680111 0.99874 1.013309 1 28.42777

4 0.429439 0.99563 1.013309 1 14.65315

5 0.549349 0.99739 1.013309 1 19.34065

6 0.460176 0.99611 1.013309 1.003906 15.65315

7 0.89221 0.99987 1.013309 1 89.95592

8 0.239589 0.99161 1.013309 1 10.1875

9 0.60388 0.99802 1.013309 1 22.40315

10 0.759733 0.99931 1.013309 1 38.79447

11 0.162758 0.98934 1.013309 1 8.875

12 0.175685 0.98951 1.013309 1.015625 9.0625

13 0.89221 0.99987 1.013309 1 89.95592

14 0.876895 0.99982 1.013309 1.015625 78.39342

15 0.088278 0.98465 1.013309 1 7.15625

16 0.088287 0.98474 1.013309 1.000977 7.1875

Figure 22: Pareto front obtained in multi objective genetic algorithm

59

It is clear from figure 22 that the Pareto front includes those points for which IC value

is reaching to 0.9. IC must be as low as possible for being first preference in match

evaluation and its values more than 0.4 are not acceptable for providing good match.

The optimal solutions with high correlation coefficient reaching to 1 enclosed in red

line are not associated with low values of IC. On the other hand, optimal solutions

enclosed in pink circle are dealing with low IC values i.e. less than 0.3 and still have

good correlation coefficients. Results show that multi objective genetic algorithm is

providing equal importance to both of its objective function and there is a need of

another filter which would remove solutions with high IC values. So it can be stated

that multi objective optimization using IC and CC both as its objectives has not

proved to be good for development of auto sizing algorithm because correlation

coefficients can’t be given equal or more importance when compared with IC in

match evaluation.

4.2.4. Discussion on developed algorithm:

As above analysis show that IC must be used as main objective for match evaluation

but CC cannot be ignored completely in defining optimization algorithm, so there

must a method which can involve both objectives i.e. IC and CC but IC must be given

first and main preference. Optimization algorithm shown in flow chart of figure 16 is

designed for particular auto sizing problem in which main objective function of

genetic algorithm is IC (Inequality Coefficient) that is to be minimized and then CC

acts as a second filter on results which are already satisfying criteria of minimum IC.

This method is designed to avoid problems with single objective genetic algorithm

(using IC only as objective function and CC only as objective function) and multi

objective genetic algorithms (using IC and CC both as objective functions together).

This method is also based on some other important facts which must be considered in

finding global minima. First of all sometimes, there are some functions which have

their extrema (maxima/minima) occurring at more than one point. For example, the

graph of cosine function i.e. f(x) =Cos(x) as shown in figure 23 has its extrema

(absolute and relative) that occurs at many points. Maximum value of 1 is at

and minimum value of -1 at .

60

Figure 23: Graph of cosine function with more than one extrema

In case of renewable/low carbon energy systems that deal with highly non linear

supplies and demand profiles, there is also a possibility that there a number of same

absolute/global minima or maxima which in turn can result in more than one

optimized solution which means that good match criteria could be satisfied by

different optimized combinations of capacities. Also considering nature of genetic

algorithm which selects random number from its search space every time when it is

run, it can be possible to get any of these different optimized results on different runs

of GA.

Another fact related to genetic algorithm is that it can converge sometimes on local

minima but its convergence at local minima can be avoided by careful selection of

genetic parameters. So although rare but still there are chances of getting such results.

Consider an example in which a very simple data is assumed for three supplies and a

demand for five time steps as given below in equations 24 to 27.

= {11.0,11.0,11.0,11.0,11.0} -------------EQ 24

1 = {1.0,1.0,1.0,1.0,1.0} -------------EQ 25

2 = {2.0,2.0,2.0,2.0,2.0} -------------EQ 26

3 = {4.0,4.0,4.0,4.0,4.0} -------------EQ 27

When this data is provided to genetic algorithm with objective of minimizing

inequality coefficient then it is analysed that genetic algorithm provided different

results in different runs of program though many of these results were same. The

program is run for 35 times and 35 results are recorded given in table 9. The results

for which IC value is minimum of all i.e. 0 are (n1, n2, n3) =(3, 2, 1), (5, 1, 1), (1, 3,

1) and (1, 1, 2) which shows that global minima occurs at 0 for four different

optimized capacity solutions which is the case of multiple absolute/global extrema

with same extreme value just like cosine function. All other results are dealing with

61

IC values which are very close to 0 but not 0 which shows that genetic algorithm

converged early before reaching to global optimum. Now two questions arise here;

first is how to filter all results to find global minimum and second is how to find

single best result in case when multiple global extrema occur. For answer of first

question, in order to find a global minimum, Program has to search for result which

gives minimum value of IC. But as far as second question is concerned, there will be a

need of another evaluation or filter criteria where correlation coefficient can help.

Considering these reasons, two further methods can be analysed for making of

renewable energy auto sizing algorithm.

1. One method can be designed which first look for global minima from all

results and if situation of multiple global minima arises then one result with

maximum correlation coefficient can be selected as best optimized one.

However, in renewable/ low carbon energy problem which deals with highly

stochastic, random and non linear profiles, chances of multiple global minima

are very rare. So when there is only one global minimum then after searching

it, this method is left with nothing to involve correlation coefficient.

2. Second possible method can be to filter all results on basis of correlation

coefficient (to find one with maximum CC) without trying to find global

minima. It is clear that all results are obtained with objective of minimizing IC

meaning that every results will try to reach towards minimum value of IC i.e.

0 and values of IC between 0-0.4 can provide good supply and demand match.

So even if global minimum is not found, results are already dealing with very

low value of IC which is pretty acceptable. This method seems to be better

than first method because it always involve correlation coefficient in its

working.

Thus, finally designed optimization method as shown in flow chart of figure 16

utilizes single objective genetic algorithm with minimization of IC as objective

function thus fulfilling main criteria for match evaluation. GA is called n number of

times to get several results and one result with maximum correlation coefficient is

selected as best optimized one to display.

The question is still there for how many times GA must be called to look for

maximum correlation coefficient. By analysing some actual profiles of renewable

energy cases in designed algorithm, it is noted that 10-20 runs of GA are enough for

62

the method. No of GA runs must not be too small e.g. 1-5 to avoid losing chance of

analysing every possibility and must not be too large e.g. 100-1000 to avoid slow

speed and high computation time of overall algorithm working. However by analysing

some actual profiles of renewable energy cases in designed algorithm, it is also noted

that most of the time, optimum solutions are coming out to be same for all number of

GA runs describing single global/absolute extrema and chances of different solution

in different runs of GA are very rare. This designed optimization algorithm method

has following advantages.

 It is using minimization of IC as main objective function which is most

importantly desirable.

 It is not completely ignoring CC.

 Although it is involving CC but is not providing equal importance to CC as

that of IC thus eliminating problems arising in multi objective optimization

described above.

 It is calling GA for n number of times with different random numbers and

checks for all possible solutions which can fulfil criteria of minimum IC from

which only one solution i.e. single best optimized capacity is obtained at the

end of algorithm.

63

Chapter 5

64

5. Verification and Case Study for auto sizing Algorithm:

5.1. Verification of developed algorithm:

For the purpose of verification of optimization algorithm made, Matlab software

global optimization tool box with genetic algorithm solver as described in section

2.3.3 is used. Optimization algorithm is run with help of C++ program written in

Microsoft Visual Studio 2008 to obtain results which are then compared with results

obtained from the Matlab global optimization toolbox genetic algorithm solver.

Programming codes generated for C++ language with Microsoft Visual Studio 2008

as well as for Matlab Global Optimization Toolbox genetic algorithm solver are given

in appendix A and appendix D respectively. In both software (Matlab and C++), same

genetic algorithm parameters (as explained in table 6) are selected and IC is set as the

objective function to be minimized. For simplification purposes, single demand and

three supplies are assumed to be consisted of 5 time steps as given in equations 18-21.

GA from both software is run for 35 times and the results as given in table 8 which

came out to be similar for all 35 runs representing absolute minimum at this point.

This verifies correct working of optimization algorithm. Graphs representing

behaviour of GA i.e. fitness value at each number of generation and best individual of

three variables S1, S2 and S3) are plotted with help of Matlab shown in figure 24.

Table 8: Result of 35 GA runs using supply and demand data from equations 18-21

No Optimized Algorithm made Matlab genetic algorithm

Same result for 35 runs n1,n2,n3=1,1,7.18 n1,n2,n3=1,1,7.2

65

Figure 24: Result of GA behaviour from Matlab

A second example is considered by assuming data of demand and supplies as given in

equations 24 to 27. Results are recorded in form of table 9 for 35 runs of genetic

algorithm using optimization algorithm made in C++ and in Matlab. It is visible that

optimized combinations are coming out to be similar from both verifying correct

working of generated optimization algorithm code in C++. Results show that

optimized solutions are repeated many times but specific order of appearance for

different results in different runs is unpredictable. From all 35 runs, minimum value

of IC i.e. 0 is coming out for similar combinations which are (3, 2, 1), (5, 1, 1), (1, 3,

1) and (1, 1, 2) of three supplies S1, S2 and S3 representing absolute minima at theses

points. It is also noted that all possible results have been appeared in 20-25 runs and

all are associated with very low value of IC i.e. very close to 0.

Table 9: Result of 35 GA runs using supply and demand data from equations 24-27

Serial Optimization Algorithm made in C++ Matlab Software

No n1 n2 n3 IC n1 n2 n3 IC

1 2 2 1 0.048 1 1 2 0.000

2 3 2 1 0.000 1 1 2 0.000

3 2 2 1 0.048 1 1 2 0.000

66

4 2 2 2 0.120 2 1 2 0.043

5 5 1 1 0.000 3 2 1 0.000

6 3 1 1 0.100 2 2 1 0.048

7 2 2 1 0.048 2 1 2 0.043

8 4 1 1 0.048 1 2 1 0.100

9 2 2 1 0.048 1 1 2 0.000

10 1 2 1 0.100 1 1 2 0.000

11 3 1 1 0.100 1 1 2 0.000

12 2 2 1 0.048 3 1 1 0.100

13 4 1 1 0.048 1 3 1 0.000

14 4 1 1 0.048 1 3 1 0.000

15 1 2 2 0.083 3 2 1 0.000

16 3 1 1 0.100 2 1 1 0.158

17 3 2 1 0.000 1 2 1 0.100

18 3 1 1 0.100 1 2 2 0.083

19 2 2 1 0.048 4 1 1 0.048

20 2 2 2 0.120 1 3 1 0.000

21 1 3 1 0.000 1 1 2 0.000

22 2 1 2 0.043 2 2 1 0.048

23 2 1 2 0.043 1 2 1 0.100

24 2 1 2 0.043 1 3 1 0.000

25 1 2 2 0.083 2 2 1 0.048

26 2 1 2 0.043 1 1 2 0.000

27 3 1 2 0.083 5 1 1 0.000

28 2 2 1 0.048 2 2 1 0.048

29 4 2 1 0.043 1 1 2 0.000

30 2 3 1 0.043 3 2 1 0.000

31 3 1 2 0.083 2 3 1 0.043

32 1 3 1 0.000 1 1 2 0.000

33 4 1 1 0.048 3 2 1 0.000

34 2 2 1 0.048 2 2 1 0.048

35 2 2 2 0.120 1 1 2 0.000

5.2. Case Study done with Merit:

After designing and verification of optimization algorithm, a real case study is done

by running optimization using actual data of supplies and demands database which

varies with climatic conditions. The case considered is located in Garvaled House

Estate, five miles from West Linton in the Scottish Borders. Some area surrounding

Garvald house is subjected for a construction project of sustainable building or Eco

barn for which electricity is assumed to be supplied by off grid Wind/Solar hybrid

67

system. Developed optimization algorithm is utilized to find optimum capacity of

wind turbines and solar panels.

The database of demand and supplies over different periods (over months of four

different seasons and over whole year) for climatic conditions of Glasgow are

exported from Merit Tool. Hourly energy demand profile named ‘office_A_electrical’

in the demand database is scaled down to the predefined peak load (around 0.44kW)

for the Ecobarn building for use in case study. Supply options include 600W wind

turbine manufactured by Proven, 100W poly-crystalline PV panels manufactured by

Siemens (tilt angle @40deg, orientation facing south).

Discussion and Analysis:

The optimum capacity of two supplies to fulfil Ecobarn demand is found by using

designed optimization algorithm. One month hourly data (30 days case: 720 time

steps and 31 days case: 744 time steps) for four different seasons (winter-January,

Spring-April, Summer-July and Autumn-October) and yearly hourly data (8760 time

steps) for supplies and demand is used for optimization. Results of IC values obtained

for resulting optimum capacities of two different supplies are displayed in form of a

graph as shown in figure 27 .Optimized capacities of supplies for all months and year

are coming out with very low value inequality coefficients i.e. less than 0.4 depicting

Figure 25: Proposed Ecobarn site Figure 26: The location of Garvald House,

to the South-West of West Linton.

68

good match. So results with low inequality coefficient which was main objective of

developed algorithm represent fine working of optimization algorithm for different

time spans (months or years).

Figure 27: IC values for optimized capacities measured using week/month/year data

Correlation coefficients must be as close to 1 as possible for perfect match. The

designed optimization algorithm is mainly based on minimization of IC, but still

resulting optimum capacities for all months and year have positive values of

correlation coefficients as shown in figure 28 providing information of positive

correlation of resultant optimum supply with demand.

Figure 28: CC values for optimized capacities measured using week/month/year data

Optimized capacities results which are obtained for all months and year from

optimization algorithm are used in Merit tool against above described demand profile

to analyse results produced by match in merit. Values of IC and CC for these

January

April
July

Oct

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0 1 2 3 4 5

In
e

q
u

a
li

ty
 c

o
e

ff
ic

ie
n

ts

Values of IC for different 4 months and for whole year

M onth data

Year data

January

April

July

Oct

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5

C
o

rr
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
ts

Values of CC for different 4 months and for whole year

M onth data

Year data

69

optimized capacities from Merit tool are coming out to be exactly same as obtained

from designed optimization algorithm shown in figure 27 and 28 depicting proper

working of optimization algorithm results in Merit. Match rates for all optimized

capacities are close to 60 % or more than 60 % resulting in reasonable match. Results

for match rates are given in table 10.

Table 10: Match rate for optimized capacities

Climate Site Dundee 1980 Optimized capacity

(Wind T/b, PV)

Match rate Match type

Months data Jan (1, 15) 59.53 5/10

Apr (1, 1) 63.16 6/10

July (1,8) 63.8 6/10

Oct (1, 10) 61.37 6/10

Yearly data -- (1, 4) 61.61 6/10

Merit tool itself is utilizing inequality coefficient as base for finding match rates.

Since these optimized capacities are also mainly found with the objective function of

minimizing IC, so they are providing good match rates when they are checked in

Merit tool. Also as C++ is integrated development environment of Merit tool so it can

be stated that designed optimization algorithm can be embedded successfully with

Merit.

Optimized capacity is given as (Wind t/b, PV) with some number, for example in case

of yearly data, optimized capacity is (1, 4) which means that 1 unit of 600W Wind

turbines and 4 panels of 100W PV (Total requirement is 600 Watts capacity of wind

turbines and 400 Watts capacity of PV panels) are required to satisfy demand over

whole year.

By considering summer case of July only form table 9, there are 8 PV panels

appearing with 1 wind t/b as optimum capacity and number of PV panels are 15 when

a winter month of January is considered. This might be because of the fact that in

summer, there are more solar direct and diffuse radiations as compared to winter so in

winter more PV panels are required to satisfy demand while as wind speed remains

equally variable in summer and winter so number of wind turbines required for both

months are same. This represents logical results obtained from designed optimization

70

algorithm. Graph of solar direct and diffuse radiation along with wind speed is shown

in figure 29 and 30.

Figure 29: Variation of solar radiations over whole year

Figure 30: Variation of wind speed over whole year

In this case study 20 numbers of runs of genetic algorithm are set to obtain 20

resulting solutions and their CC and IC values are computed. However, when months

of January and April are considered then all 20 results produced from 20 runs of

genetic algorithm were same as provided in table 9. When month of July is considered

then optimized algorithm results for 20 runs of GA are listed in table 11.

Table 11: Result for 20 runs of genetic algorithm for month of July

No

of

GA

run

Optimum

capacity

obtained

(Wind t/b, PV)

IC CC No of

GA

run

Optimum

capacity

obtained

(Wind t/b, PV)

IC CC

1 1,8 0.3622 0.152 11 1,8 0.3622 0.152

2 1,7 0.3628 0.138 12 1,7 0.3628 0.138

3 1,8 0.3622 0.152 13 1,8 0.3622 0.152

71

4 1,8 0.3622 0.152 14 1,8 0.3622 0.152

5 1,8 0.3622 0.152 15 1,7 0.3628 0.138

6 1,7 0.3628 0.138 16 1,7 0.3628 0.138

7 1,8 0.3622 0.152 17 1,7 0.3628 0.138

8 1,7 0.3628 0.138 18 1,8 0.3622 0.152

9 1,8 0.3622 0.152 19 1,8 0.3622 0.152

10 1,8 0.3622 0.152 20 1,7 0.3628 0.138

From table it is clear that sometimes GA produced result with optimizes capacity of 1

t/b, 8 PV and sometimes with 1 t/b, 7 PV. Both of these solutions are resulted by

using minimization of IC as objective. This is the situation when CC value comes in

action then from these two solutions one is selected as better one with maximum CC

value which is optimum capacity of 1 t/b, 8 PV. This show that designed algorithm

works nicely in case when GA random nature produce different results however

chances of such cases are very less.

Optimum capacity obtained from designed algorithm is 1 wind turbine and 4 PV

panels over period of whole year as given in table 10. In order to analyse validity of

optimum capacity generated with help of designed algorithm, a simple analysis is

done for this case study using Merit by recording results of different number of PV

panels with 1 wind turbine to satisfy demand over whole year. Values of IC and CC

are displayed in form of a graph in figure 31 with 16 supply combinations (1 wind t/b

and number of PV panels varying from 1 to 16). The values of IC show that minimum

IC value which is 0.38 is appeared when 4 PV panels are used with wind turbine.

Graph of CC values represent that correlation coefficients increase with increase

number of PV panels and maximum CC is when 16 PV panels are used with wind

turbine but this capacity is associated with high inequality which was one reason of

not using CC as main objective function.

72

Figure 31: Values of IC and CC for 16 supply combination using 1wind t/b and

varying number of PV panel from 1-16.

Match percentage for all these optimum combinations (1 wind t/b and varying number

of PV panels from 1 to16) are displayed in form of graph in figure 32 and % age

match is maximum for this optimum combination of 1 wind t/b and 4 PV panels.

Figure 32: Values of Match %age for 16 supply combination using 1wind t/b and

varying number of PV panel from 1-16.

CC=0.34 for IC

value of 0.474PV; 0.38

16 PV, 0.47

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

V
a

lu
e

s
o

f
IC

 a
n

d
 C

C

No of PV panels

CC and IC for 1wind t/b and varying no of PV panels

CC

IC

4PV, 61.61

52

53

54

55

56

57

58

59

60

61

62

63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M
a

tc
h

 p
e

rc
e

n
ta

g
e

No of PV panels

%age Match for 1wind t/b and varying no of PV panels

73

Graph of surplus and deficit energy is displayed in figure 33 for all combination of

these two supplies (1 wind t/b and varying number of PV panels from 1 to16). The

graph shows that curve of energy surplus and energy deficit cut each other at a point

with supply of 4 PV panels with 1 wind turbine representing an optimum of energy

deficit and energy surplus. This optimum point i.e. optimum capacity is same as

generated by developed optimization algorithm.

Figure 33: Values of surplus and deficit energy for 16 combination using 1wind t/b

and varying number of PV panel from 1-16.

Surplus and deficit energy can be managed and match %age can be increased further

by using auxiliaries. No of auxiliaries are not optimized in this designed algorithm.

However after finding optimum capacity from algorithm, analysis of different number

of auxiliaries with optimum capacity can be done to achieve better results. The

residual graphs with optimum capacity (1 wind t/b and 4 PV panels) for Ecobarn

obtained from algorithm considering period of whole year are analysed by adding 4, 8

and 16 batteries (battery reserve sizes with the capacity of 215Ah at 12V). Residual

graphs are shown in figure 34 to 36 and represents that residual is decreased to great

extents when number of batteries is increased. Residual is very less when 16 number

of batteries are used.

4PV

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
n

e
rg

y
 s

u
rp

lu
s

a
n

d
 d

e
fi

c
it

 K
W

h

No of PV panels

Surplus and deficit energy for 1wind t/b and varying no of PV

panels

Surplus

Deficit

74

Figure 34: Graph of residual with optimum capacity for whole year with 4 batteries

Figure 35: Graph of residual with optimum capacity for whole year with 8 batteries

Figure 36: Graph of residual with optimum capacity for whole year with 16 batteries

Results proved that generated optimum capacity by designed algorithm is good for

many criteria including match percentage, deficit and surplus energy, inequality

coefficient and up to some extent correlation coefficient etc. Algorithm is avoiding

exhaustive search of analysing different capacity combinations which become more

ridiculous when there are more than 2 renewable energy supply options and help in

reducing time for finding optimum match.

75

As results can be generated by considering different periods of time (weeks, months

or year), so there can be different optimum capacities for different periods of time

because supply from renewable energy is variable with seasons and climatic

conditions. Designed algorithm can provide benefit for better energy utilization for

hybrid energy systems. Different supplies could be turn off and on in different seasons

according to their optimum requirement to get the best match and better energy

saving. If fixed numbers of supplies are to be installed to satisfy some demand over

whole year then optimum capacity obtained by considering whole year data can be

installed. There is a need a further analysis in order to know which optimum capacity

is best suited for a particular demand depending on further requirements of demand

which may include cost, economics, payback time, connection to grid, reliability and

accommodation of any future increases in energy demand. However, this can be

stated that optimum capacities generated from designed algorithm can prove to be

very useful base for any further analysis. Hence developed algorithm can provide

good benefits to renewable energy analysts.

76

Chapter 6

77

6. Conclusion and further work:

6.1. Conclusion:

Current concerns related to energy security and climate change leads toward a lot of

research and development in renewable energy. Hybrid energy systems can address

the limitations of cost, reliability, efficiency and emission on individual renewable

energy supply options for its better utilization. Design of hybrid energy systems need

correct selection and sizing of renewable energy systems to reduce variability in

supply and demand. MERIT provides a suitable platform for auto sizing a single

renewable energy supply source which can be extended to any n number of renewable

energy supplies to match with a single demand.

In this thesis, Optimisation Algorithm for Auto-sizing Capacity of Renewable and Low

Carbon Energy Systems is developed utilizing principles of genetic algorithm. Genetic

algorithm is selected based on its match with nature of renewable energy auto sizing

problem. Also existing literature of current research in sizing problems of hybrid energy

has shown an increasing trend towards evolutionary algorithms (genetic algorithms).

Genetic algorithms are very good in finding global minima but sometimes they converge

early at local optimum. However careful selection of genetic parameters can overcome

this problem. Selection of genetic algorithm and genetic parameters for designed

algorithm is based on DeJong’s work on genetic algorithms and comparison of

computation time.

Literature for renewable energy supply/demand match evaluation criteria has provided

two most useful match evaluation criterias which are inequality coefficient(IC) and

correlation coefficient (CC). For getting good match between supply and demand IC must

be as low as possible. Analysis is done with single and multi objective optimization

methods using these two coefficients as objective function.

Single objective optimization method using IC only provided good match results but

ignored correlation coefficient completely. On the other hand, single objective

optimization method using CC only showed that it deals with trend matching only

between supply and demand and magnitude match can’t be guaranteed. Multi objective

optimization using both coefficients (IC to be minimized and CC to be maximized) deals

with results which were dealing with very high value of IC because multi objective

optimization provide equal weightage to all of its objectives. Some results with high CC

may not deal with low IC values. So single objective optimization (using IC or CC) as

78

well as multi objective optimization (using IC and CC both) have not proved to be

suitable for designing auto sizing algorithm for renewable/low carbon energy problems.

IC has proved to be more importantly desirable as compared to CC and must be main

objective of optimization.

Thus, the designed algorithm is based on single objective genetic algorithm with

objective of minimizing inequality coefficient only and then GA is called several times to

achieve several results from which one solution is selected with maximum correlation

coefficient. Work also represented that 10-20 times GA must be called to avoid chances

of missing global solution and for reasonable computation time of program. This design

algorithm is overcoming problems of early convergence of GA and of situation of getting

more than one solution in case when energy profile deals with multiple absolute extrema.

Designed optimization method will work for maximizing match b/w supply and demand

and utilizes hourly data of supply and demand profiles as its input.

The developed algorithm is successfully verified by Matlab genetic algorithm solver. A

case study done has shown designed algorithm works nicely for different time spans

considered (weeks, months or years) with low values of resulting inequality

coefficients and positive correlation coefficient values. It can provide optimum

capacity of as many numbers of supplies as required to match with a single demand so

it can handle large scale design problems. Case study also showed that results of

optimum capacities obtained from designed algorithm when used in Merit to counter

check them then they provided exactly same values of IC and CC which are obtained

from designed algorithm. Also optimum capacity achieved from developed algorithm

is providing good match rates and deals with good balance of surplus and deficit

energy when checked with Merit. As the code of developed algorithm is made in C++

which is integrated development environment of Merit and results are same when

counterchecked with Merit so developed algorithm can be embedded successfully

with Merit thus will overhaul Merit capabilities. Developed algorithm is useful for

better energy utilization, good for eliminating exhaustive search and work in

reasonable computation time. It can also provide useful basis for analysts in further

requirements e.g. economics, payback time, connection to grid, reliability and

accommodation of any future increases in energy demand.

6.2. Further work:

The further work may include

79

 The developed optimization algorithm for auto sizing capacity of renewable/low

carbon energy deals with searching optimum capacity combination of different

supply options available to match with one single demand. However there is an

area of further improvement in which there is more than one demand options are

to be matched with different supply options and one has to find which supply

optimum capacity is best matched with which demand option.

Figure 37: More demand options with more supplies options

 Auxiliaries are of great importance in any renewable energy design problem

however in this developed algorithms, number of auxiliaries are not optimized.

So in order to improve this algorithm, there could be an addition of auxiliaries’

capacity optimization.

 The developed optimization algorithm search for an optimum point on the basis of

maximizing match rate and completely ignores the economics and cost. So

another possible improvement can be to insert cost as a constraint in the working

of genetic algorithm.

 Also performance of genetic algorithms can be improved by using the concepts of

hybrid genetic algorithms, global elitism and dynamic adaptability of crossover

probabilities, mutation probabilities and other genetic parameters. So the

performance of developed algorithm can be further analysed by involving

different types of improvement in genetic algorithm.

 The optimization algorithm is based on maximizing electricity match between

supply and demand. However work can be extended to match ‘heat’ or ‘heat and

supply both’ for supplies and demand with a CHP.

80

 Finally after finding good results of developed algorithm from case study done in

Merit, further work also includes its embedment with merit.

81

Appendix:

A. Program code generated for Matlab

Matlab global optimization toolbox.

 Code written in Matlab for example 2 section ____.

function y = project_fitness(x,d,a,b,c)

d = [11.0,11.0,11.0,11.0,11.0];

a = [1.0,1.0,1.0,1.0,1.0];

b = [2.0,2.0,2.0,2.0,2.0];

c = [4.0,4.0,4.0,4.0,4.0];

y=((dot((d-(x(1)*a+x(2)*b+x(3)*c)),(d-

(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5/(((dot(d,d))/5)^0.5+((dot((d-

(x(1)*a+x(2)*b+x(3)*c)),(d-(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5);

 Code written in Matlab for example 1 section

function y = project_fitness(x,d,a,b,c)

d = [10.0,20.0,30.0,40.0,50.0];

a = [2.0,5.0,4.0,6.0,7.0];

b = [3.0,7.0,3.5,4.5,5.0];

c = [1.0,2.0,3.0,4.0,5.0];

y=((dot((d-(x(1)*a+x(2)*b+x(3)*c)),(d-

(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5/(((dot(d,d))/5)^0.5+((dot((d-

(x(1)*a+x(2)*b+x(3)*c)),(d-(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5);

 Code written in Matlab for multiobjective optimization

function y =simple_multiobjective(x,d,a,b,c)

d = [10.0,20.0,30.0,40.0,50.0];

a = [2.0,5.0,4.0,6.0,7.0];

b = [3.0,7.0,3.5,4.5,5.0];

c = [1.0,2.0,3.0,4.0,5.0];

y(1)=((dot((d-(x(1)*a+x(2)*b+x(3)*c)),(d-

(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5/(((dot(d,d))/5)^0.5+((dot((d-

(x(1)*a+x(2)*b+x(3)*c)),(d-(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5);

y(2)=-(dot((d-((sum(d))/5)),((x(1)*a+x(2)*b+x(3)*c)-

((sum(x(1)*a+x(2)*b+x(3)*c))/5))))/(dot((d-((sum(d))/5)),(d-

((sum(d))/5)))*dot(((x(1)*a+x(2)*b+x(3)*c)-

((sum(x(1)*a+x(2)*b+x(3)*c))/5)),((x(1)*a+x(2)*b+x(3)*c)-

((sum(x(1)*a+x(2)*b+x(3)*c))/5))))^0.5;

82

B. List of available GA Software Packages

Sr No. Name of GA Package Type

1 EO Evolut ionary Computat ion Framework

by Geneura Team

A C++ genet ic algorithm library

2 GAlib by M atthew Wall A C++ genetic algorithm library

3 GAGS by J. J. M erelo A C++ genetic algorithm library

4 GAJIT - A Simple Java Genet ic Algorithms by

M atthew Faupel

A java genet ic algorithm library

5 GA Playground by Ariel Dolan A java genet ic algorithm library

6 PGAPack Parallel Genet ic Algorithm Library by

David Levine

A Ansi C genet ic algorithm library

7 GAUL by Stewart Adcock A Ansi C genet ic algorithm library

8 Sugal 2.1 Genet ic Algorithms Simulator by

Andrew Hunter

A Ansi C genet ic algorithm library

9 GENOCOP III By Zbigniew M ichalewicz Genet ic Algorithm for constrained

problems in C

10 DE by Rainer storn Different ial Evolut ion Genet ic

Algorithm in C and M at lab

11 PGAPack from Argonne Nat ional Laboratory Parallel genetic algorithm in

Fortran and C

12 PIKAIA by Charbonneau, Knapp an d M iller Genet ic Algorithm in Fortran 77/ 90

13 GAGA by Ian Poole Genet ic algorithm for general

applicat ion in C

14 GAS by Jelasity and Dombi Genet ic Algorithm in C++

15 Genet ic algorithm in M at lab by M ichael B. Gordy N/ A

16 GADS from M athworks Genet ic Algorithm and Direct

search Toolbox in M at lab

17 GEATbx by Hartmut Pohlheim Genet ic and Evolut ionary algorithm

for M at lab

18 GAOT by Jeffrey Joines Genet ic Algorithms Opt imizat ion

toolbox in M at lab

19 Genet ic Algorithm for global opt imizat ion by

M athworks

Global Opt imizat ion Toolbox in

M at lab

83

C. Results for case study with 1 WT and different numbers of PV panels from

Merit

No of PV panels
%age M atch

Surplus

energy

Deficit

Energy
CC IC

1PV 60.3 661.55 918.55 0.09 0.4

2PV 60.99 699.76 864.71 0.12 0.39

3PV 61.42 741.94 815.84 0.15 0.39

4PV 61.61 789.31 772.43 0.17 0.38

5PV 61.57 842.97 734.33 0.2 0.381

6PV 61.33 901.24 702.75 0.22 0.39

7PV 60.92 965.2 675.26 0.24 0.39

8PV 60.36 1030 651.96 0.26 0.4

9PV 59.69 1100 632.74 0.27 0.4

10PV 58.92 1180 616.55 0.28 0.41

11PV 58.08 1260 603.38 0.3 0.42

12PV 57.19 1330 592.12 0.31 0.43

13PV 56.26 1410 581.58 0.32 0.44

14PV 55.3 1500 572.5 0.33 0.45

15PV 54.33 1580 564.46 0.33 0.46

16PV 53.36 1660 557.4 0.34 0.47

84

D. Example of code generated in C++ for designed algorithm (with week data)

/*---

This is the program finding the number of supplies of particular

capacity

using genetic algorithm with the objective function of minimizing

Inequality

coefficient. Further it take 100 results for the optimum combinations

by

running Genetic algorithm 100 times for minimum Inequality and then

look for

the one optimum combination which is having maximum correlation

coefficient.

-------*/

#include <stdio.h>

#include <iostream>

#include <fstream>

#include <ga/ga.h>

#include <math.h>

#define cout STD_COUT

using namespace std;

void geneticalg(unsigned int &,int &,int &,double &,double

&);//seed,sn1,sn2,Ic,cc

float objective(GAGenome &); //Declation of objective function

int main(int argc, char **argv)

{

 int Totalsupplies=2; // Showing the number of

provided supplies

 double IC;

 double CC;

 int Sn1;

 int Sn2;

 unsigned int seed = 0;

 float ICarray[100];

 float CCarray[100];

 float n1array[100];

 float n2array[100];

 for(int i=0;i<5;i++)// Number of runs of ga are selected here

 {

 for(int i=1; i<argc; i++) // Code for selecting random seed

 {

 if(strcmp(argv[i++],"seed") == 0)

 seed = atoi(argv[i]);

 }

 geneticalg(seed,Sn1,Sn2,IC,CC);//Calling galib genetic

algorithm

85

 //Filling the arrays

 n1array[i]=Sn1;

 n2array[i]=Sn2;

 ICarray[i]=IC;

 CCarray[i]=CC;

 cout<<"the n1 n2 and IC are

"<<Sn1<<","<<Sn2<<","<<IC<<".\n";

 }

 //Finding maximum element position in CC array

 int maxIndex =0;

 int size=100;

 for (int j=1; j<size; j++)

 {

 if (CCarray[j] > CCarray[maxIndex])

 maxIndex = j;

 }

 cout<<" The optimized combination of 2 supplies PV and wind

is ("<<n1array[maxIndex]<<" and "<<n2array[maxIndex]<<").";

 cout<<"\n For which IC is "<<ICarray[maxIndex]<<"and CC is

"<<CCarray[maxIndex];

 return 0;

}

void geneticalg(unsigned int &seed,int &n1,int &n2,double &IC,double

&CC)

{

 int S=2;

 int n=192;

 /*Supply and demand detas*/

double

supply2[]={0.115,0.213,0.213,0.145,0.145,0.115,0.213,0.366,0.366,0.54

8,0.548,0.548,0.666,0.682,0.666,0.548,0.366,0.548,0.548,0.424,0.25,0.

213,0.145,0.175,0.145,0.025,0.087,0.06,0.06,0.087,0.115,0.175,0.25,0.

213,0.175,0.25,0.213,0.115,0.115,0.213,0.115,0.145,0.145,0.087,0.043,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.025,0.025,0.025,0.06,0.087,0.175,0.06

,0.06,0.025,0.06,0.043,0.115,0.115,0.115,0.06,0.025,0.087,0.115,0.087

,0.06,0.043,0.087,0.175,0.213,0.25,0.303,0.424,0.548,0.482,0.424,0.30

3,0.213,0.06,0.025,0,0.025,0,0,0,0,0,0,0.087,0,0.213,0.303,0.25,0.145

,0.145,0.25,0.613,0.548,0.482,0.366,0.115,0.06,0.087,0.06,0,0.115,0.1

15,0.06,0.06,0.087,0.115,0.087,0.175,0.213,0.424,0.366,0.548,0.672,0.

672,0.482,0.482,0.482,0.482,0.613,0.613,0.482,0.613,0.175,0.115,0.213

,0.25,0.175,0.213,0.175,0.06,0.06,0.087,0,0.043,0.025,0.087,0.175,0.2

13,0.303,0.25,0.303,0.366,0.482,0.213,0.213,0.115,0.115,0.175,0.175,0

.06,0,0.025,0.043,0,0,0,0,0.087,0.175,0.175,0.25,0.303,0.25,0.303,0.1

75,0.213,0.175,0.303,0.145,0.115,0.043,0.087,0.06};

double

supply1[]={0,0,0,0,0.001,0.002,0.008,0.016,0.018,0.027,0.042,0.045,0.

046,0.044,0.044,0.034,0.035,0.027,0.018,0.019,0.012,0,0,0,0,0,0,0,0.0

06,0.012,0.023,0.029,0.034,0.034,0.035,0.038,0.038,0.035,0.029,0.012,

0.009,0.009,0.006,0.004,0.002,0,0,0,0,0,0,0,0.002,0.007,0.017,0.022,0

.024,0.023,0.022,0.023,0.027,0.025,0.027,0.019,0.008,0.008,0.013,0.01

86

4,0.003,0,0,0,0,0,0,0,0.002,0.006,0.011,0.009,0.01,0.013,0.014,0.026,

0.04,0.031,0.036,0.035,0.029,0.013,0.01,0.01,0.004,0,0,0,0,0,0,0,0.00

1,0.001,0.004,0.01,0.008,0.005,0.006,0.006,0.01,0.007,0.015,0.031,0.0

16,0.007,0.006,0.003,0.011,0,0,0,0,0,0,0,0.002,0.003,0.007,0.005,0.00

3,0.007,0.017,0.023,0.018,0.022,0.023,0.013,0.02,0.027,0.012,0.01,0.0

04,0,0,0,0,0,0,0,0,0.001,0.003,0.004,0.006,0.004,0.006,0.007,0.008,0.

008,0.007,0.008,0.003,0.005,0.009,0.006,0.003,0,0,0,0,0,0,0,0.002,0.0

04,0.006,0.009,0.009,0.007,0.01,0.016,0.031,0.036,0.036,0.032,0.029,0

.024,0.019,0.007,0.002,0,0,0};

double

Demand[]={14.065,13.96,13.615,14.44,13.295,14.135,12.93,13.795,13.835

,14.145,13.985,14.615,14.675,14.435,14.86,13.685,13.91,13.96,13.795,1

3.89,13.895,14.125,14.145,14.205,14.815,13.955,13.91,13.6,13.335,13.1

7,13.3,14.095,13.87,14.025,14.935,14.555,13.935,13.52,14.115,14.345,1

4.05,13.775,13.3,13.36,14.39,13.875,14.355,14.28,14.8,14.995,14.73,14

.515,14.82,17.74,23.815,26.24,27.66,29.98,28.23,28.745,28.8,25.99,25.

995,22.175,21.45,16.64,16.045,15.535,14.315,15.5,15.235,15.765,14.58,

14.88,14.985,14.96,16.275,18.235,24.74,27.14,27.415,28.495,28.49,27.6

15,29.02,27.185,26.53,23.415,19.655,17.375,16.3,15.545,15.955,15.43,1

6.885,14.42,15.055,14.49,14.735,14.99,15.45,18.09,24.035,25.99,27.02,

29.335,30.14,27.555,26.85,27.305,25.695,23.51,20.91,17.15,16.825,15.2

35,14.65,15.59,14.68,15.54,14.82,15.685,14.9,14.545,16.07,19.215,22.6

45,26.48,27.125,29.35,27.88,28.745,28.12,27.3,26.69,23.96,20.585,17.4

75,17.545,15.625,15.175,15.32,14.915,15.38,15.13,14.9,14.515,14.465,1

5.45,18.88,21.82,26.42,28.325,28.9,28.2,28.335,27.755,26.68,25.545,23

.675,21.465,17.28,16.405,15.705,15.595,15.29,15.365,14.335,13.9,13.23

5,13.87,13.29,14.135,13.3,13.2,13.4,13.95,14.24,13.795,14.315,14.645,

14.235,14.425,14.66,14.525,13.705,13.54,13.54,14.37,14.725,14.82,14.4

4};

 /*----Declare variables for the GA parameters----*/

 int popsize = 50;

 int ngen = 1000;

 float pmut = 0.01;

 float pcross = 0.6;

 float pconv = 0.99; // threshhold for when we have

converged

 int nconv = 50; // how many generations back to

look

 /*Create a phenotype for two variables. The number of bits you

can use to

 represent any number is limited by the type of computer you are

using. In

 this case, we use 16 bits to represent a floating point number

whose value

 can range from 1 to 100, inclusive. The bounds on supplies can

be applied

 here and/or in the objective function.*/

 GABin2DecPhenotype map;

87

 for (int i=0;i<S;i++)

 map.add(16,1,100);

 GABin2DecGenome genome(map, objective); //Create

the template genome using the phenotype map we just made and

objective function.

 /*--create the GA using the genome and run it.--*/

 GASteadyStateGA ga(genome);

 GASigmaTruncationScaling scaling;

//Reference to page 78 of documentation of galib

 ga.minimize(); //Code to

show that objective function is to be minimized

 ga.populationSize(popsize);

 ga.nGenerations(ngen);

 ga.pMutation(pmut);

 ga.pCrossover(pcross);

 ga.scaling(scaling);

 ga.scoreFilename("bog.dat");

 ga.scoreFrequency(10); //Reference

to page 25-27 of documentation of galib

 ga.flushFrequency(50);

 ga.evolve(seed);

 /*-------Saving Results as integer-----------*/

 genome = ga.statistics().bestIndividual();

 n1=static_cast<int>(genome.phenotype(0)+0.5);

//Converting decimal points to closest Integers

 n2=static_cast<int>(genome.phenotype(1)+0.5);

 /*----Finding Inequality coefficient-------*/

 double x=0;

 double y=0;

 double z=0;

 double aa;

 double bb;

 double cc;

 for(int j=0; j<n; j++) //summation of supplies and difference

at all n time steps

 {

 double a;

 double b;

 a=supply1[j]*n1+supply2[j]*n2;

 b=Demand[j]-(supply1[j]*n1+supply2[j]*n2);

 x += a*a;

 y += b*b;

 }

 for (int i=0;i<n ;i++) //Summation

of demand at all n time steps

88

 {

 z += Demand[i]*Demand[i];

 }

 aa=y/n;

 bb=z/n;

 cc=x/n;

 IC=sqrt(aa)/(sqrt(bb)+sqrt(cc));

 /*----Finding correlation coefficient-------*/

 double xCC=0;

 double yCC=0;

 double zCC=0;

 double meandemand=0;

 double meansupply=0;

 for(int i=0;i<n;i++)

 meandemand=Demand[i]+meandemand;

 meandemand=meandemand/n;

 for(int j=0;j<n;j++)

meansupply=supply1[j]*genome.phenotype(0)+supply2[j]*genome.phenotype

(1)+meansupply;

 meansupply=meansupply/n;

 for(int j=0; j<n; j++) //summation

of products(Dt-d)(St-s)

 {

 xCC += (Demand[j]-

meandemand)*(supply1[j]*genome.phenotype(0)+supply2[j]*genome.phenoty

pe(1)-meansupply);

 }

 for (int i=0;i<n ;i++) //Summation

of demand at all n time steps

 {

 double f;

 double t;

f=supply1[i]*genome.phenotype(0)+supply2[i]*genome.phenotype(1)-

meansupply;

 t=(Demand[i]-meandemand);

 yCC += (f*f);

 zCC += (t*t);

 }

 double aCC;

 double bCC;

 aCC=zCC*yCC;

 bCC=sqrt(aCC);

 CC=(xCC/bCC);

}

float objective(GAGenome & c)

{

 GABin2DecGenome & genome = (GABin2DecGenome &)c;

 int S=2;

 int n=192;

89

 /*Supply and demand detas*/

double

supply2[]={0.115,0.213,0.213,0.145,0.145,0.115,0.213,0.366,0.366,0.54

8,0.548,0.548,0.666,0.682,0.666,0.548,0.366,0.548,0.548,0.424,0.25,0.

213,0.145,0.175,0.145,0.025,0.087,0.06,0.06,0.087,0.115,0.175,0.25,0.

213,0.175,0.25,0.213,0.115,0.115,0.213,0.115,0.145,0.145,0.087,0.043,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.025,0.025,0.025,0.06,0.087,0.175,0.06

,0.06,0.025,0.06,0.043,0.115,0.115,0.115,0.06,0.025,0.087,0.115,0.087

,0.06,0.043,0.087,0.175,0.213,0.25,0.303,0.424,0.548,0.482,0.424,0.30

3,0.213,0.06,0.025,0,0.025,0,0,0,0,0,0,0.087,0,0.213,0.303,0.25,0.145

,0.145,0.25,0.613,0.548,0.482,0.366,0.115,0.06,0.087,0.06,0,0.115,0.1

15,0.06,0.06,0.087,0.115,0.087,0.175,0.213,0.424,0.366,0.548,0.672,0.

672,0.482,0.482,0.482,0.482,0.613,0.613,0.482,0.613,0.175,0.115,0.213

,0.25,0.175,0.213,0.175,0.06,0.06,0.087,0,0.043,0.025,0.087,0.175,0.2

13,0.303,0.25,0.303,0.366,0.482,0.213,0.213,0.115,0.115,0.175,0.175,0

.06,0,0.025,0.043,0,0,0,0,0.087,0.175,0.175,0.25,0.303,0.25,0.303,0.1

75,0.213,0.175,0.303,0.145,0.115,0.043,0.087,0.06};

double

supply1[]={0,0,0,0,0.001,0.002,0.008,0.016,0.018,0.027,0.042,0.045,0.

046,0.044,0.044,0.034,0.035,0.027,0.018,0.019,0.012,0,0,0,0,0,0,0,0.0

06,0.012,0.023,0.029,0.034,0.034,0.035,0.038,0.038,0.035,0.029,0.012,

0.009,0.009,0.006,0.004,0.002,0,0,0,0,0,0,0,0.002,0.007,0.017,0.022,0

.024,0.023,0.022,0.023,0.027,0.025,0.027,0.019,0.008,0.008,0.013,0.01

4,0.003,0,0,0,0,0,0,0,0.002,0.006,0.011,0.009,0.01,0.013,0.014,0.026,

0.04,0.031,0.036,0.035,0.029,0.013,0.01,0.01,0.004,0,0,0,0,0,0,0,0.00

1,0.001,0.004,0.01,0.008,0.005,0.006,0.006,0.01,0.007,0.015,0.031,0.0

16,0.007,0.006,0.003,0.011,0,0,0,0,0,0,0,0.002,0.003,0.007,0.005,0.00

3,0.007,0.017,0.023,0.018,0.022,0.023,0.013,0.02,0.027,0.012,0.01,0.0

04,0,0,0,0,0,0,0,0,0.001,0.003,0.004,0.006,0.004,0.006,0.007,0.008,0.

008,0.007,0.008,0.003,0.005,0.009,0.006,0.003,0,0,0,0,0,0,0,0.002,0.0

04,0.006,0.009,0.009,0.007,0.01,0.016,0.031,0.036,0.036,0.032,0.029,0

.024,0.019,0.007,0.002,0,0,0};

double

Demand[]={14.065,13.96,13.615,14.44,13.295,14.135,12.93,13.795,13.835

,14.145,13.985,14.615,14.675,14.435,14.86,13.685,13.91,13.96,13.795,1

3.89,13.895,14.125,14.145,14.205,14.815,13.955,13.91,13.6,13.335,13.1

7,13.3,14.095,13.87,14.025,14.935,14.555,13.935,13.52,14.115,14.345,1

4.05,13.775,13.3,13.36,14.39,13.875,14.355,14.28,14.8,14.995,14.73,14

.515,14.82,17.74,23.815,26.24,27.66,29.98,28.23,28.745,28.8,25.99,25.

995,22.175,21.45,16.64,16.045,15.535,14.315,15.5,15.235,15.765,14.58,

14.88,14.985,14.96,16.275,18.235,24.74,27.14,27.415,28.495,28.49,27.6

15,29.02,27.185,26.53,23.415,19.655,17.375,16.3,15.545,15.955,15.43,1

6.885,14.42,15.055,14.49,14.735,14.99,15.45,18.09,24.035,25.99,27.02,

29.335,30.14,27.555,26.85,27.305,25.695,23.51,20.91,17.15,16.825,15.2

35,14.65,15.59,14.68,15.54,14.82,15.685,14.9,14.545,16.07,19.215,22.6

45,26.48,27.125,29.35,27.88,28.745,28.12,27.3,26.69,23.96,20.585,17.4

75,17.545,15.625,15.175,15.32,14.915,15.38,15.13,14.9,14.515,14.465,1

5.45,18.88,21.82,26.42,28.325,28.9,28.2,28.335,27.755,26.68,25.545,23

.675,21.465,17.28,16.405,15.705,15.595,15.29,15.365,14.335,13.9,13.23

5,13.87,13.29,14.135,13.3,13.2,13.4,13.95,14.24,13.795,14.315,14.645,

14.235,14.425,14.66,14.525,13.705,13.54,13.54,14.37,14.725,14.82,14.4

4};

90

 double x=0;

 double y=0;

 double z=0;

 double IC=0;

 double aa;

 double bb;

 double cc;

 for(int j=0; j<n; j++) //summation

of squares of supplies and difference at all n time steps

 {

 double a;

 double b;

a=supply1[j]*genome.phenotype(0)+supply2[j]*genome.phenotype(1);

 b=Demand[j]-

(supply1[j]*genome.phenotype(0)+supply2[j]*genome.phenotype(1));

 x += a*a;

 y += b*b;

 }

 for (int i=0;i<n ;i++) //Summation

of square of demand at all n time steps

 {

 z += Demand[i]*Demand[i];

 }

 aa=y/n;

 bb=z/n;

 cc=x/n;

 IC=sqrt(aa)/(sqrt(bb)+sqrt(cc));

 return(IC);

}

// stop when pop average is 95% of best

const float desiredRatio = 0.95;

GABoolean

GATerminateUponScoreConvergence(GAGeneticAlgorithm & ga){

if(ga.statistics().current(GAStatistics::Mean) /

ga.statistics().current(GAStatistics::Maximum) > desiredRatio)

return gaTrue;

else

return gaFalse;

}

91

References:

Anagnostopoulos, J.S. & Papantonis, D.E., 2007. Optimal sizing of a run-of-river

small hydropower plant. Energy Conversion and Management, 48(10), pp.2663-70.

Anagnostopoulos, J.S. & Papantonis, D.E., 2008. Simulation and size optimization of

a pumped–storage power plant for the recovery of wind-farms rejected energy.

Renewable Energy, 33(7), p.1685–1694.

Antoniou, A. & Lu, W., 2007. Practical optimization: algorithms and engineering

applications. New York, United States of America: Springer Science+Business

Media,LLC.

Bagul, A.D., Salameh, Z.M. & Borowy, B., 1996. Sizing of a stand-alone hybrid

wind-photovoltaic system using a three-event probability density approximation.

Solar Energy, 56(4), pp.323-35.

Banos, R. et al., 2011. Optimization methods applied to renewable and sustainable

energy: A review. Renewable and Sustainable Energy Reviews, 15, pp.1753-66.

Bilal, B.O. et al., 2010. Optimal design of a hybrid solarewind–battery system using

the minimization of the annualized cost system and the minimization of the loss of

power supply probability (LPSP). Renewable Energy, 35(10), pp.2388-90.

Born, F.J., 2001. Aiding renewable energy integration through complimentary

demand supply matching. PhD Thesis. Glasgow: Univeristy of Strathclyde.

Celik, A.N., 2003. Techno-Economic Analysis of Autonomous PV-Wind Hybrid

Energy Systems Using Different Sizing Methods. Energy Conversion and

Management, 44, pp.1951-68.

92

Collette, Y. & Siarry, P., 2004. Multiobjective optimization: principles and case

studies. 1st ed. New York: Springer-Verlag.

De Jong, A.K. & Spears, M.W., 1990. An Analysis of the Interacting Roles of

Population Size and Crossover in Genetic Algorithms. In First Workshop Parallel

Problem Solving from Nature., 1990. University of Dortmund.

Deb, K., 2005. Optimization for engineering design: algorithms and examples. New

Delhi: Prentice Hall of India Private limited.

Fahimuddin, A.K.M., 2003. PLATON Optimisation Using GALib. Project work.

Brunswick, Germany: Technical University Braunschweig.

Forrest, S., 1993. Genetic algorithms: principles of natural selection applied to

computation. Science, 261, pp.872-78.

Gen, M. & Cheng, R., 1997. Genetic algorithms and engineering design. Wiley-

IEEE.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine

Learning. Boston, MA, United States of America: Addison-Wesley Longman

Publishing Co., Inc.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley Pub. Co.

Gordon, V.S. & Whitely, D., n.d. Series and parallel genetic algorithms as function

optimizer. Paper. Fort Collins: Colorado State University.

Gray, P. et al., 1997. Evolutionary Algorithms:Genetic Algorithms, Evolutionary

Programming and Genetic Programming. [Online] Sandia National Laboratories

Available at: http://www.cs.sandia.gov/opt/survey/ea.html [Accessed 6 August 2011].

93

Hakimi, S.M. & Moghaddas-Tafreshi, S.M., 2009. Optimal sizing of a stand-alone

hybrid power system via particle swarm optimization for Kahnouj area in south-east

of Iran. Renewable Energy, 34(7), pp.1855-62.

Haupt, R.L. & Haupt, S.E., 2004. Practical Genetic Algorithm. 2nd ed. New Jersey: A

John Wiley & Sons, Inc., Publication.

Haupt, R.L. & Haupt, S.E., 2004. Practical genetic algorithms. 2nd ed. A John Wiley

and Sons Inc.

Jebaraj, S. & Iniyan, S., 2006. A riview of energy models. Renewable and Sustainable

Energy Reviews, 10(4), pp.281-311.

Jones, K.O., 2005. COMPARISON OF GENETIC ALGORITHM AND PARTICLE

SWARM OPTIMIZATION. In International Conference on Computer Systems and

Technologies - CompSysTech., 2005.

Kornelakis, A. & Marinakis, Y., 2010. Contribution for optimal sizing of grid-

connected PV-systems using PSO. Renewable Energy, 35(6), pp.1333-41.

Koutroulis, E., Kolokotsa, D., Potirakis, A. & Kalaitzakis, K., 2006. Methodology for

optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic

algorithms. Solar Energy, 80(9), pp.1072-88.

Mahdavi, A., Hartkopf, V. & Mathew, P., 1999. Towards the Building as a Power

Plant: Computational Analysis of Building Energy Self-Sustenance. Pittsburgh,

Pennsylvania: Carnegie Mellon University.

Man, K.F., Kwong, S. & Tang, K.S., 1999. Genetic algorithms: concepts and designs.

1st ed. Springer.

Marczyk, A., 2004. Genetic Algorithms and Evolutionary Computation. [Online]

Available at: http://www.talkorigins.org/faqs/genalg/genalg.html#strengths [Accessed

12 August 2011].

94

McConnell, J.J., 2007. Analysis of algorithms: an active learning approach. 2nd ed.

London: Jones and Bartlett Publishers.

Mellit, A., Kalogirou, S.A. & Drif, M., 2010. Application of neural networks and

genetic algorithms for sizing of photovoltaic systems. Renewable energy, 35(12),

pp.2881-93.

Mellit, A., Kalogirou, S., Hontoria, L. & Shaari, S., 2009. Artificial intelligence

techniques for sizing photovoltaic systems: A review. Renewable and Sustainable

Energy Reviews, 13(2), pp.406-19.

Mitchell, M., 1998. An introduction to genetic algorithms. MIT Press.

Obitko, M., 1998. Encoding. [Online] Available at:

http://www.obitko.com/tutorials/genetic-algorithms/encoding.php [Accessed 14

August 2011].

Parker, M. & Parker, G.B., n.d. Using a Queue Genetic Algorithm to Evolve Xpilot

Control Strategies on a Distributed System. Paper. Computer Science, Indiana

University.

Pohlheim, H., 2006. Evolutionary Algorithms 1 Introduction. [Online] (3.80)

Available at: http://www.geatbx.com/docu/algindex.html [Accessed 9 August 2011].

Pohlheim, H., 2006. Evolutionary Algorithms 2 Overview. [Online] (3.80) Available

at: http://www.geatbx.com/docu/algindex-01.html#P153_5403 [Accessed 9 August

2011].

Rieger, H. & Hartmann, A.K., 2002. Optimization algorithms in physics. 1st ed.

Berlin: Wiley-VCH Verlag.

Scheaffer, R.L. & McClave, J.T., 1982. Statistics for engineers. Duxbury Press.

95

Solomatine, D.P., 1998. Genetic and other global optimization algorithms -

comparison and use in calibration problems. In Proc. 3rd Intern. Conference on

Hydroinformatics. Copenhagen, 1998. Balkema Publishers.

The MathWorks, I., 1994-2011. Global Optimization Toolbox: Performing a

Multiobjective Optimization Using the Genetic Algorithm. [Online] Available at:

http://www.mathworks.com/products/global-

optimization/demos.html?file=/products/demos/shipping/globaloptim/gamultiobjfitne

ss.html [Accessed 15 August 2011].

The Mathworks, I., 1994-2011. Global Optimization Toolbox:Solve multiple maxima,

multiple minima, and nonsmooth optimization problems. [Online] Available at:

http://www.mathworks.com/products/global-optimization/index.html [Accessed 4

July 2011].

Thiaux, Y., Seigneurbieux, J., Multon, B. & Ahmed, H.B., 2010. Load profile impact

on the gross energy requirement of stand-alone photovoltaic systems. Renewable

Energy, 35(3), pp.602-13.

Wall, M., 1996. GAlib: A C++ Library of Genetic Algorithm Components.

Cambridge: Mechanical Engineering Department: Massachusetts Institute of

Technology.

Wall, M., n.d. GAlib:A C++ Library of Genetic Algorithm Components. [Online]

(2.4.7) Available at: http://lancet.mit.edu/ga/ [Accessed 20 May 2011].

Water, A.A., Abebe, A.J. & Solomatine, D.P., 1998. Application of Global

Optimization to the Design of Pipe Networks. In Proc. Int. Conf. Hydroinformatics-

98., 1998.

Weise, T., 2009. Thomas Weise. 2nd ed. Free Software Foundation. Available at:

http://www.it-weise.de/ [accessed July 2011].

96

Wikipedia, the free encyclopedia, 2011. Deterministic Algorithms. [Online] Available

at: http://en.wikipedia.org/wiki/Deterministic_algorithm [Accessed 5 August 2011].

Wikipedia, the free encyclopedia, 2011. Monte Carlo algorithm. [Online] Available

at: http://en.wikipedia.org/wiki/Monte_Carlo_algorithm [Accessed 5 August 2011].

Wikipedia, the free encyclopedia, 2011. Randomized algorithm. [Online] Available

at: http://en.wikipedia.org/wiki/Randomized_algorithm [Accessed 5 August 2011].

Wikipedia, 2011. Pareto efficiency. [Online] Available at:

http://en.wikipedia.org/wiki/Pareto_front [Accessed 18 Augustus 2011].

Yang, X.-S., 2010. Engineering Optimization: An Introduction with Metaheuristic

Applications. Hoboken: John Wiley & Sons, Inc.

Yang, H., Zhou, W., Lu, L. & Fang, Z., 2008. Optimal sizing method for stand-alone

hybrid solar–wind system with LPSP technology by using genetic algorithm. Solar

Energy, 82(4), pp.354-67.

