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Abstract 

Hybrid renewable energy systems can help in improving the economics and 

environmental sustainability of renewable/low carbon energy systems. For better 

utilization of renewable/low carbon energy systems, design of hybrid systems in terms 

of correct size and selection is very important. Finding optimum capacity of each 

component of hybrid systems in large scale problems will be time taking associated 

with exhaustive search and it will requires complex computer program/package. The 

main goal of this study is to research and develop optimization algorithm for auto 

sizing capacity of renewable/low carbon energy systems to assist in development of 

hybrid energy systems. The developed algorithm is mainly designed for 

implementation into MERIT, an energy systems evaluation simulation computer 

package that supports the analysis of new and renewable energy schemes. Merit lacks 

this capability, thus this developed algorithm will work as Merit improvement.  

Existing literature about auto sizing capacity of renewable/low carbon energy, their 

match evaluation criteria’s and optimization algorithms was reviewed. Genetic 

algorithms and inequality along with correlation coefficients of supply/demand profile 

have proved to be most suitable algorithm and main objective function respectively 

for the particular problem. The particular auto sizing problem is then formulated 

mathematically and designed in C++ which is integrated development environment of 

Merit. Particular design of algorithm deals with single objective optimization using 

genetic algorithm and inequality coefficient as main objective to find several results 

from which one is selected with maximum correlation coefficient as best optimized 

solution. Analysis of particular nature of genetic algorithm, optimization methods, 

and renewable energy match criterias provide the reasons behind the particular design. 

The developed algorithm is verified by global optimization toolbox of Matlab 

software.  

An actual case study is done with help of Merit by using actual hourly supplies and 

demand data based on climatic conditions. Results show that developed algorithm can 

handle large scale problems, works in a reasonable computation time, good in 

eliminating exhaustive search and can be successfully embedded with Merit. Further 

work areas are also discussed at end.   
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1. Introduction: 

1.1. Introduction: 

The environmental effects related to energy production have attained global attention 

since 1970 when the world major industries faced the shortage of Petroleum and 

worst energy crises. Along with the scarcity problems associated with fossil fuels, 

they are also related to severe environmental problems which include mainly green 

house gas emissions and global warming. The world started looking for the ways to 

get energy from the sources which will be emissions free as well as sustainable i.e. 

will also be available for the future needs so renewable energy resources started 

gaining attraction. Researches and development were started in order to achieve their 

best utilization to find the most efficient conversion technologies to convert them into 

the form which can be used for useful purposes. The renewable energy resources are 

present naturally, have huge potential to achieve the goals like diversity in energy 

production technologies, movement towards clean energy resources, balancing the use 

of fossil fuel, saving them for other applications in future, and reducing emissions. 

Renewable energy sources are highly unpredictable, variable with time and dependant 

on climatic conditions. Renewable energy system is competitive and feasible for off-

grid application; single source renewable usually leads to component over sizing, 

which increases the operating and life cycle costs (Bagul et al., 1996). Single 

renewable energy supply do not provide same amount of energy all the time so 

concept of combined utilization of more than one supply is presented which is known 

as hybrid energy systems concept. Hybrid energy system concept is becoming popular 

because of their high efficiency, high load factor, reliability, low emission and 

acceptable maintenance cost when compared with individual supply options. Design 

of renewable energy hybrid systems requires correct selection and size of different 

options available based on appropriate strategy and here comes main background and 

justification for thesis work which provides the motivation for this report. 
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Figure 1: Background for Project Work             Figure 2: Hybrid system (wind/solar)

There are challenges related to find correct capacity for hybrid energy systems. 

Considering two or three options of supplies to be matched with a single demand can 

lead towards a simple hit and trial method to find optimum size or capacity of each 

supply but dealing with finding optimum capacity of 1000’s of supplies to satisfy a 

demand would be difficult and exhaustive with manual search keeping in mind 

variable nature of renewable energy. For this purpose complex computer programs 

and optimization algorithms are required to find optimum solution in a reasonable 

time.  

Extensive research has been done in the field of optimizing renewable energy supplies 

with different objectives for example minimizing cost, maximizing match or 

reliability. Initial optimization and component sizing methods are based on worst 

month scenario leads to non-optimal design with excess capacity (Celik, 2003). This 

report represents a new design of optimization process for finding optimum capacity 

of renewable/low carbon energy supplies with objective of maximizing electricity 

match rate between demand and supplies by utilizing concept of genetic algorithms. 

Genetic algorithms are search heuristic that mimics the process of natural evolution. 

Genetic Algorithms are selected after reviewing extensive literatures related to 

optimization algorithms, current researches done in field of optimization of renewable 

energy, advantages of genetic algorithm and their good match with nature of 

renewable/low carbon energy. The designed optimization process is made mainly to 

implement and use in Merit tool. Merit is a computer program developed by 
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University of Strathclyde to support the development of new and renewable energy 

schemes and is a quantitative evaluation tool that allows user to determine match 

between supply and demand in order to make right decisions.  

 

Figure 3: Merit Tool environment 

 

Merit tool has already option available for auto searching optimum capacity of a 

single renewable energy supply to match with a single supply but if more than one 

supply options are to be matched with a single demand then Merit cannot provide 

optimum capacity of each supply to be best suited with demand. This thesis is 

showing work for auto sizing capacity of number of supplies available to match with 

single demand to overhaul Merit capabilities and hence will prove to be a further 

improvement to Merit tool. 

1.2. Objectives: 

The main purpose of this thesis is to research and generate an optimization algorithm 

for auto sizing capacity of different renewable/low carbon energy supplies to assist 

creation of new option available for Merit tool which would prove to be useful in 

analysis of hybrid energy systems.    

Particular objectives of thesis include  

• To research best suited optimization algorithm which match finely with 

nature of renewable/ low carbon energy systems.  
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• To analyse different match evaluation criterias used for renewable/low 

carbon energy systems for finding best suited objective function for 

development of algorithm.  

• To develop a method of optimization best suited for particular auto sizing 

problem utilizing selected optimization algorithm and objective functions. 

• To develop a C++ programming code using Microsoft visual studio which 

is integrated environment of Merit tool for selected optimization algorithm 

with help of appropriate mathematical model. 

• To verify, analyse and discuss results obtained from developed 

optimization method.  

1.3. Methodology: 

Theses work methodology is provided in figure 4. Report will first present literature 

review about match evaluation criteria’s, optimization algorithms and current 

researches on particular auto sizing problem. From literature review, best suitable 

match evaluation criteria and optimization algorithms are selected for use in design of 

optimization algorithm. Design of optimization algorithm also involves selection of 

design variables, variable bounds and mathematical formulation of particular auto 

sizing problem. Then programming codes are produced for Microsoft visual studio 

C++ and Matlab designed optimization process. C++ with a special library of genetic 

algorithm named as GAlib is used for designing optimization algorithm because 

integrated environment of Merit tool is C++ and Matlab is used for verification of 

designed algorithm. After designing, a detailed analysis is done on the basis of 

different objective functions, different combinations of objective functions, genetic 

parameters, genetic nature and mathematical function behaviour. A case study is done 

by using actual profiles of hourly supply and demand data which are exported from 

Merit tool to conclude about the behaviour of designed algorithm when it will be 

implemented in Merit tool. At the end conclusions and further work is presented.   
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Figure 4: Methodology of Thesis Work 

1.4. Report Layout: 

This work has six chapters. Chapter 1 starts with introduction of thesis work and 

provide information about background, motivation, objectives and methodology for 

thesis work along with report layout.  

Chapter 2 provides a review of existing literature on optimization process. It includes 

optimal problem formulation process in detail along with classification of 

optimization algorithms after which working of genetic algorithms for single and 

multi objective optimization is presented. Introduction about global optimization 

toolbox of Matlab as well as of C++ genetic Library ‘GAlib’ is also given in this 

chapter. 

Chapter 3 is written mainly for understanding of optimization for renewable/low 

carbon energy auto sizing capacity problem. It first looks on nature of renewable/low 

carbon energy systems and currently used optimization methods for its auto sizing 

problem and then move towards reasons for selection of genetic algorithm for this 

problem. It also includes existing literature on different match evaluation criteria for 

renewable/low carbon energy systems. 
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Chapter 4 deals with formation and design of algorithm. Mathematical details of 

problem are given in detail after which flow charts of designed process and genetic 

algorithms are presented.  Analysis of designed algorithm process is also given in this 

chapter based on different genetic parameters, different objective functions, nature of 

genetic algorithm and objective function behaviour. Detail discussion on reason 

behind design of particular generated design with its benefits is also provided in this 

chapter. 

Chapter 5 deals with the information about verification and case study for the 

designed algorithm method while Chapter 6 provides conclusion as well as possible 

further work area for this thesis work. 
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Chapter  2 
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2. Background on Optimization Process: 

The process of optimization is of concern for man from many ages. Previously there 

were no defined and scientific rules for optimum conditions. But with the passage of 

time and advancement in science and technology, everything was considered to be 

based on certain reason or logic. Mathematical calculations involving process of 

optimization have become more famous in recent years. True meaning of optimization 

is to find the best answer for a particular problem. For example, problems dealing 

with the cost will require the best cost to be as less as possible. On the other hand, 

problems dealing with profit will see the maximum value as the best answer. So 

‘Optimum’ is the word which is used to demonstrate the meaning of best and the 

process of finding best solution to a particular problem is known as process of 

optimization (Antoniou & Lu, 2007) . 

2.1. Optimal problem formulation: 

To solve an optimization problem, there is a particular optimal formulation procedure. 

It is not possible to apply single optimal formulation procedure for every design 

problem because objective functions and the associated parameters in optimization are 

different for different problems. The main purpose of formulation procedure is to 

make the mathematical model of optimal design problem which is then solved by 

using some optimization algorithm. Optimization algorithm accepts the optimization 

problem in a particular format. Deb (2005) has provided this format in his book which 

is shown in figure 5.  
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Figure 5: A flow chart of optimal design procedure (Deb, 2005, p.3) 

The first step in designing an algorithm is to understand the need and purpose of 

optimization. After which design variables, constraints, objective function, variable 

bounds, and algorithms are selected for that particular problem. These steps are 

explained below.  

2.1.1. Design variables: 

A design problem is associated with many variables some of which are more sensitive 

to the problem. Design variables selection is dependent on user. These are the 

variables which are primarily varied in optimization process.   Efficiency and speed of 

the optimization algorithm is largely dependent on number of design variables. So the 

efficiency can be improved by selectively choosing design variables. Deb (2005) says 

that first thumb rule is to select as few design variables as possible then outcome of 

optimization must be analysed to check that weather number of variables should be 

increased or decreased.  
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2.1.2. Constraints: 

After selecting design variables, next step is to choose constraints. Constraints show 

some type of relationship with design variables and other design parameters satisfying 

some physical phenomena or resource limitations. Some of these considerations 

include design to stay within static or dynamic equilibrium. For example in many 

Mechanical engineering problems there are some limitations on stress and deflection. 

There is no particular format for defining the constraints as they vary from problem to 

problem and depend on the user.  

There are two types of constraints; equality and inequality. Most of the constraints in 

the design problems are of inequality type. They state a design variable is either 

smaller than, greater than, or equal to a resource value. Example of inequality 

constraint is “σ(x) ≤ Sallowable” which shows that stress developed “σ(x)” in the 

component anywhere must be smaller than and equal to allowable length “Sallowable”. 

Other type of constraint is of equality type and they state that functional relationship 

must exactly match the resource value. Example of equality constraint is “δ(x) =5” 

which shows that deflection “δ(x)” at some point must be exactly equal to 5mm. 

Equality constraints are more difficult to handle as compared to inequality constraints. 

Deb (2005) states in his work that second thumb rule  in the formulation of 

optimization problems is to keep number of complex equality constraints as low as  

possible.  

2.1.3. Objective Function: 

The third step in optimal problem formulation is to select objective function in terms 

of design variables and other problem parameters. There can be more than one 

objective function for real problems of optimization but due to their complex nature 

high number of objective functions is mostly avoided. Objective functions are of two 

types. Either they have to be maximized or to be minimized. If algorithm is developed 

with the objective of minimization then it can be converted to maximization by just 

simply multiplying the objective function by -1. For example, f(x) = x
2
+1 is the 

objective function of maximization then the duality principle suggests that this 

problem is equivalent to minimization of f(x) = -(x
2
+1) but once the solution is 

obtained then the original function value must be obtained by multiplying solution 

with -1 (Deb, 2005, p.7). The duality principle is shown in figure 6. 
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Figure 6: Duality principle show maximum point of f(x) is same point as the minimum 

of F(x) (Deb, 2005, p.8) 

2.1.4. Variable bounds: 

To define variable bounds is next step in which minimum and maximum bounds are 

set on design variables. This information is not necessary in some algorithms but 

some others need it. Variable bounds describe that solution points must be between 

them.  

After these steps of formulation, optimization algorithms is selected based on above 

information and problem is written in a special mathematical form known as non 

linear programming format (NLP) which is then solved. All above written tasks are 

dependent on each other. 

2.2. Review of optimization Algorithms: 

An algorithm is assumed to be a sequence of statements which can be readable by 

computer and has some unambiguous meaning and it always has some input and 

output. Graphical representation of an algorithm is shown in figure 7. (Rieger & 

Hartmann, 2002, p.9).  

 

Figure 7: Graphical Representation of an algorithm (Rieger & Hartmann, 2002) 
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In mathematics, the procedure of generating the sequence of solutions for a particular 

problem is known as iterative method and an algorithm is a specific form of iterative 

method. An optimization algorithm is the algorithm which is used to define an 

optimized solution for a particular function. For example, for a function f(x), 

optimized solution would be the value of x for which f(x) is as small as possible or as 

large as possible where x has some constraints on it. The value of x could be scalar or 

a vector consisting of continuous or discrete values. 

2.2.1. General classification: 

The optimization problems can be classified in various ways and a simple 

classification is shown in figure 8 (Collette & Siarry, 2004, p.17)  

 

Figure 8: Classification of optimization algorithms 

Apart from this classification described above, classification of optimization 

algorithms can also be given as based on method of operations (Weise, 2009, pp.22-

24).  

2.2.2. Classification based on method of operations: 

For global optimization problems, classification of optimization algorithms according 

to method of operation is given by Weise (2009) shown in the figure 9. 

 

•Monovariable

•Multi variable
Based on number of 
decision variable

•Function is linear with respect to decisions variables: Linear

•Function is quadratic with respect to decision variables: Quadratic

•Function is nonlinear with respect to decision variables:Nonlinear

Based on type of 
objective function

•With constraints: Constrained

•Without constraints: Unconstrained
Based on form of 
problem

•Continuous real number: Continuous

•Integer number: Integer or Discrete

•Permutations on a set of numbers of finite size: Combinatorial

Based on type of 
decision variable

• Online opt imizat ion: t ime of opt imizat ion is very short  of order of 

milli second

• Offline opt imizat ion: t ime of opt imizat ion is not  given importance 

Based on properties



24 

 

Figure 9: The taxonomy of Global Optimization Algorithms (Weise, 2009, p.23) 

According to this classification, there are two main types of optimization algorithms 

which are known as Deterministic and Probabilistic Algorithms. 

2.2.2.1. Deterministic Algorithms: 

If there exists a clear relationship between the characteristics of the possible solutions 

and their utility for a given problem then most often these algorithms are used. In 

formal words, it is an algorithm which behaves predictably. For a particular input, it 

will always produce the same output. The machine under this type of algorithms will 

undergo same sequence of steps. The existing state of the machine is determining 
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what would be the nest stage for machine (Wikipedia, the free encyclopedia, 2011). 

“In each execution step of a deterministic algorithm, there exists at most one way to 

proceed. If no way to proceed exists, the algorithm has terminated.” (Weise, 2009). 

One example of deterministic algorithms is hill climbing in which for the same 

starting point it will follow the same path always when it is run.     

2.2.2.2. Probabilistic Algorithms: 

If the relationship between solution candidate and its fitness is complicated or not 

obvious then they cannot be solved deterministically. Then to deal with such type of 

problems probabilistic algorithms are used. They use some kind of randomness in 

their logic. They include input which is consisted of uniformly random bits in hope of 

achieving good performance. Either running time of algorithm or the output or both 

are the random variables in these algorithms (Wikipedia, the free encyclopedia, 2011). 

They can be referred to stochastic or randomized algorithms. “A randomized 

algorithm includes at least one instruction that acts on the basis of random numbers. 

In other words, a randomized algorithm violates the constraint of determinism.” 

(Weise, 2009). 

However these algorithms have the chance to produce incorrect results based on the 

random inputs by signalling the type of error or by showing its failure to termination 

but still in many practical problems they are the only way to solve a problem. One 

example of these algorithms is genetic algorithm in which strings or solutions in the 

program will be different every time when the program is run. Though their final 

results do not have much difference but the path of each individual is not exactly 

repeatable. There are two main types of probabilistic algorithms. One is Las Vegas 

algorithms and other is Monte Carlo algorithms.  

 Las Vegas algorithms: These algorithms never return a false value. Either 

they show the failure to proceed or do not return any value at all. If it returns 

some value then its output is deterministic. Their termination cannot be 

guaranteed and they usually have an expected runtime limit because their 

actual execution may be very long (McConnell, 2007). Weise (2009)  stated 

that a Las Vegas algorithm terminates with a positive probability and is 

(partially) correct. 
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 Monte Carlo algorithms: These algorithms are the randomized algorithms 

whose running time is deterministic but whose output may be incorrect with 

certain small probability. (Wikipedia, the free encyclopedia, 2011). Weise 

(2009, p.552) stated that it is an algorithm which terminates always which is 

its main difference from Las Vegas algorithms.  

However, sometimes probabilistic algorithms are classified as heuristic and 

metaheuristic algorithms (Weise, 2009).  

 Heuristic: A heuristic is a part of an optimization algorithm that uses the 

information currently gathered by the algorithm to help to decide which 

solution candidate should be tested next or how the next individual can be 

produced. They can also be referred as to find and discover solution by trial 

and error. One example of Heuristics is travelling salesman problem.  

 Metaheuristic: A metaheuristics is a method for solving very general classes 

of problems. It combines objective functions or heuristics in an abstract and 

hopefully efficient way, usually without utilizing deeper insight into their 

structure i.e., by treating them as black-box-procedures.  The examples of 

metaheuristics are hill climbing/greedy search, tabu search, simulated 

annealing, genetic algorithms and ant colony optimization. It can be applied to 

all problems as these algorithms do not actually know what problems they are 

solving for.  

There is a third type of algorithm which is the mixture of deterministic and 

probabilistic algorithms. For example hill climbing with a random restart where the 

basic idea is to use deterministic algorithm but it starts with different initial points. 

This hybrid algorithm is obviously having some advantages on simple techniques. 

However as they include randomness so they are put under probabilistic algorithms 

(Yang, 2010).  

2.3. Evolutionary Algorithms: 

“Evolutionary algorithms are population-based metaheuristic optimization algorithms 

that use biology-inspired mechanisms like mutation, crossover, natural selection, and 

survival of the fittest in order to refine a set of solution candidates iteratively” (Weise, 

2009).  Main advantage of evolutionary algorithms to other optimization method is 
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their “black box” character that makes only few assumptions about the underlying 

objective function. They are utilizing some phenomena of biological evolution for 

example reproduction, mutation, recombination and selection. They operate on a 

population of potential solutions and apply the principle of survival of the fittest to get 

close to solution gradually. Solution is improved at each generation and the process 

leads to evolution of population that is best suited for particular environment.  

 

Figure 10: Solution of problem using evolutionary algorithms (Pohlheim, 2006) 

Figure 9 show that there are five subtypes of evolutionary algorithms. The family of 

evolutionary algorithm include Genetic Programming (GPs), Learning classifier 

systems (LCS), Evolutionary strategy (ES), Evolutionary programming (EPs) and 

Genetic algorithms (GAs). 

Genetic Programming (GPs) includes all evolutionary algorithms that grow program 

and algorithms and things like that. Evolutionary programming is an approach that 

treats the instances of genomes as different species rather than as individuals. Also it 

has now more or less merged in genetic programming and other evolutionary 

algorithms.  LCS (Learning classifier systems) are online learning approaches that 

assign output values to the given input values. They internally use a genetic algorithm 

to find new rules for this mapping. Here it can be stated that GPs (Genetic 

programming) are well suited for problems that require the determination of a 

function that can be simply expressed in a function form. Also ES (Evolutionary 

strategy) and EPs (Evolutionary programming) are well suited for optimizing 

continuous functions and finally GAs (Genetic algorithms) are well suited for 

optimizing combinatorial problems (though they have occasionally been applied to 

continuous problems) (Gray et al., 1997). 

2.3.1. Genetic Algorithms (GA): 
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Genetic algorithms are subtype of evolutionary algorithms and inspired by Darwin’s 

theory about evolution. GAs are adaptive heuristic search based on evolutionary ideas 

of natural selection and genetics. GAs are intelligent exploitation of random search 

used in optimization problems. Genetic algorithms start with a set of solutions called 

population. Solutions from one population are taken and used for to create new 

population. New population is considered better than old one. Solutions are selected 

to form new population on basis of their fitness. More is their fitness; more will be the 

chances to get selected for reproduction. This process is repeated until some 

termination condition (number of populations, improvement of best solution) is 

reached.  

Before genetic algorithm is used in a real problem, there is need of encoding the 

solutions in the form which can be processed by computer. There are four types of 

coding available based on type of representation given in figure 11.  

 

Figure 11: Types of encoding 

Binary encoding is most commonly used in which every chromosome is a string of 

bits 0 or 1. Its example is Knapsack problem. Permutation encoding is used in 
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ordering problems e.g. travelling sales man problem and in this encoding every 

chromosome is a string of numbers and numbers are represented in sequence. For 

problems in which complex values e.g. real number are involved, such as in finding 

weights of neural network, value encoding is used in which every chromosome is a 

string of some value which could be characters, real numbers or form numbers. Tree 

encoding is used for evolving programs, for example finding some value from a 

function, in which every chromosome is a tree of some object. 

Initial population is chosen randomly then following steps are repeated until a 

termination criterion is met.  

i. Evaluate fitness in order to maintain genetic diversity or differentiate between 

similar individuals raw objective scores are scaled to produce final fitness 

scores. There are different types of scaling schemes e.g. rank scaling, sigma 

truncation scaling, linear scaling and sharing (similar sharing). 

ii. Prune population (typically all; if not then the worst) 

iii. Select pairs to mate from best ranked individuals. There are various selections 

schemes defined e.g. rank selection, roulette wheel selection, tournament 

selection, Boltzman selection, and steady state selection. 

iv. Replenish population by applying crossover and mutation operators.  There 

are number of techniques available for cross over e.g. one point crossover, two 

point crossover, multipoint crossover, uniform crossover, arithmetic crossover, 

and heuristic cross over. All types involve swapping genes, sequences of bits 

in the strings, between two individuals (or between two strands of a diploid 

individual). Mutation alters one or more gene values in a chromosome from its 

initial state. Various types of mutation include Flip bit, boundary, non 

uniform, uniform and Gaussian etc. 

v. Checking for termination criteria which can be number of generations, amount 

of time, minimum fitness threshold satisfied, fitness has reached a plateau, 

other. 

Further detail of all these steps including parameters about GA can be found in books 

of Goldberg (1989), Mitchell (1998), Man et al.  (1999), Gen & Cheng (1997) and 

Haupt & Haupt (2004).  
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2.3.2. Multi Objective Genetic algorithms (MOGA): 

When there are more than one objectives involved in optimization then multi 

objective optimization is used. Fonseca and Fleming (1993) have first introduced the 

concept of multi objective genetic algorithm which used the non dominated 

classification of a GA population. MOGA differs from GA in a way fitness is 

assigned to each solution in the population. The rest of algorithm works in the same 

way as classical GA. Multi objective optimization provides a Pareto front which is 

non dominated set of solutions with regard to all objective functions. All solutions in 

Pareto front are optimal.  Consider the plots of two functions in figure 12 which have 

their minima at point x=-2 and x=2 respectively.  But in a multi objective problem, x 

= -2, x = 2, and any solution in the range -2 <= x <= 2 is equally optimal. The goal of 

the multi objective genetic algorithm is to find a set of solutions in that range (ideally 

with a good spread). The set of solutions is also known as a Pareto front (The 

MathWorks, 1994-2011).  

 

Figure 12: Concept of optimal solution in multi objective optimization 

 

Figure 13 show Pareto front by red line and all points on Pareto front are more 

efficient as compared to any other point which is not on Pareto front. (Point C is not 

on the Pareto Frontier because it is dominated by both point A and point B. 

Points A and B are not strictly dominated by any other, and hence do lie on the 

frontier) (Wikipedia, 2011).  
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Figure 13: Concept of Pareto Front 

 

2.3.3. Software packages available for GA analysis: 

Due to increase in researches and development in field of genetic algorithms, there are 

many software packages available in market which can be used to analyse genetic 

algorithms behaviour. List of available GA packages is given in appendix B. Two 

packages are used for this thesis work as given below in detail. 

1. GA package in Matlab: 

GA package in Matlab is used for purpose of verification of designed algorithm. 

Global optimization tool box of Matlab (The Mathworks, 1994-2011) provide the 

solutions for those problems that have multiple maxima and minima involved and 

need global solutions. Matlab Global Optimization deals with optimizations where 

objective functions are continuous, discontinuous, stochastic, does not possess 

derivatives, or includes simulations or black-box functions with undefined values for 

some parameter settings (The Mathworks, 1994-2011). In Global Optimization tool 

box, genetic algorithm solver as well as multi objective genetic algorithm solver is 

used to analyse the behaviour of single objective genetic algorithm and multi 

objective genetic algorithm. Global Optimization tool box view is shown in figure 14. 
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Figure 14: Global Optimization tool box of Matlab (The Mathworks, 1994-2011) 

The following tables 1 and 2 provide the information of standard genetic algorithm 

options and standard multi objective genetic algorithm solver options which can be 

used in global optimization tool box. 

Table 1: Option of genetic algorithm available in Matlab (The Mathworks) 

Step Genetic Algorithm Option 

Creation Uniform, feasible 

Fitness 
scaling 

Rank-based, proportional, top (truncation), shift linear 

Selection Roulette, stochastic uniform selection (SUS), tournament, uniform, 

remainder 

Crossover Arithmetic, heuristic, intermediate, scattered, single-point, two-point 

Mutation Adaptive feasible, Gaussian, uniform 

Plotting 

 

Best fitness, best individual, distance among individuals, diversity of 

population, expectation of individuals, max constraint, range, selection 

index, stopping conditions 

 

Table 2: Option of multi objective genetic algorithm solver available in Matlab (The 

Mathworks) 

Step Multi objective Genetic Algorithm Option 

Creation Uniform, feasible 

Fitness scaling Rank-based, proportional, top (truncation), linear scaling, shift 
Selection Tournament 

Crossover Arithmetic, heuristic, intermediate, scattered, single-point, two-point 

Mutation Adaptive feasible, Gaussian, uniform 

Plotting 
 

Average Pareto distance, average Pareto spread, distance among 

individuals, diversity of population, expectation of individuals, 
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Pareto front, rank histogram, selection index, stopping 

conditions 

 

Global Optimization Toolbox can also allow changing population size, number of 

elite children (not in case of multi objective genetic algorithm), crossover fraction, 

migration among subpopulations (using ring topology), Pareto front (not in case of 

genetic algorithm) and bounds, linear, and nonlinear constraints for an optimization 

problem. Stopping criteria can also be selected based on time, stalling (not in case of 

multi objective genetic algorithm), fitness limit, or number of generations. 

2. GAlib: A C++ library of Genetic Algorithms  

GAlib provides object oriented C++ classes and objects to implement genetic 

algorithms. It basically works with two classes, genome and genetic algorithm where 

genome represents the single solution to problem and genetic algorithm defines how 

evaluation must take place. The library contains different types of genomes 

(GAListGenome, GATreeGenome, GAArrayGenome and GABinaryStringGenome 

etc.) and different types of genetic algorithm (simple, steady-state, and incremental). 

It has many built in genetic parameters including elitism, selection strategies and 

replacement strategies and has the possibility to customize them as well according to 

need of user. New genetic algorithms can be quickly tested by deriving from base 

genetic algorithm classes in the library (Fahimuddin, 2003). Built in options available 

in galib library is listed in table 3. Further detail of GAlib can be found out from its 

website (Wall, n.d.).   

Table 3: Built in options in GAlib 

Step GALib Genetic Algorithm Option 

Built-in chromosome 
type  

Real number arrays, list, tree, 1D, 2D, and 3D arrays, 1D, 2D, and 
3D binary string. 

Built-in initialization 

operators 

Uniform random, order-based random, allele-based random, and 

initialize-to-zero. 

Built-in selection 

methods 

Rank, roulette wheel, tournament, stochastic remainder sampling, 

stochastic uniform sampling, and deterministic sampling. 

Built-in crossover 
operators 

arithmetic, blend, partial match, ordered, cycle, single point, two 
point, even, odd, uniform, node- and subtree-single point 

Built-in mutation 

operators 

Random flip, random swap, Gaussian, destructive, swap subtree, 

swap node. 

Type of objective 
function 

 

Population- or individual-based. 
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Chapter  3 
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3. Optimization of Renewable/Low Carbon Energy Systems: 

This chapter is presenting literature for currently used optimization methods in field 

of renewable/low carbon energy and scope of present and future researches for sizing 

problems of hybrid renewable energy systems. In the light of already employed 

optimization methods for RE, nature of RE, and type of particular problem of auto 

sizing, genetic algorithms are selected for developing optimization algorithm for auto 

sizing problem of renewable/ low carbon energy and benefits of genetic algorithms 

are provided in detail. Then different available match evaluation criteria (especially 

available in Merit tool) are discussed for renewable energy supply and demand 

matching along with their advantages and disadvantages to select best one to be used 

as objective function in optimization algorithm for auto sizing problem of renewable/ 

low carbon energy for match evaluation. Inequality coefficients ideally and 

correlation coefficients to some extents are proved to be good match evaluation 

criteria in light of literature review. 

3.1. Currently used optimization methods for Renewable Energy systems: 

Improvement in renewable/low carbon energy technologies is required for sustainable 

development and to reduce energy problems. Optimization algorithms are a suitable 

tool for solving problems related with complex nature of renewable/low carbon 

energy systems. There are several methods available for renewable energy systems 

using optimization methods e.g. renewable energy models, energy supply models, 

energy planning models, emission reduction models, energy supply demand models, 

control models etc (Jebaraj & Iniyan, 2006). Banos et al. (2011) provided list of all 

researches which have been done related to use of optimization algorithms for design, 

planning and control problems associated with renewable energy. Initially 

optimization methods were based on traditional approaches e.g. mixed-integer and 

interval linear-programming, Lagrangian relaxation, quadratic programming, and 

Nelder–Mead Simplex search. But in recent years, non traditional approaches i.e. 

heuristic optimizations have become more famous which include especially genetic 

algorithms and practical swarm optimization. There are also multi-objective problems 

related to renewable energy systems using Pareto-optimization techniques. It can be 

concluded that the use of heuristic approaches, Pareto-based multi-objective 
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optimization and parallel processing are promising research areas in the field of 

renewable and sustainable energy (Banos et al., 2011).  

The researches about sizing problems related to renewable energy include most of 

work related to wind and solar energy systems. For sizing standalone photovoltaic’s, 

grid connected photovoltaic’s and for photovoltaic-wind hybrid systems, Mellit   

(2009) studies performance of artificial intelligence techniques. ANN and Genetic 

Algorithms were used by Mellit et al (2010) for sizing problems of photovoltaics. 

Thiaux et al. (2010) applied NSGAII which is a fast multi objective GA to optimize 

stand-alone photovoltaic systems while Kornelakis and Marinakis (2010) applied PSO 

to such problems. Anagnostopoulos and Papantonis (2007) utilized a stochastic EA 

for the optimal sizing of a small hydropower plant with objective of maximizing the 

economic benefit and the energy produced. A GA was used for optimal sizing of 

stand-alone photovoltaic-wind generator systems, which selects the optimal number 

and type of units to minimize the cost subject to the constraint that the load energy 

requirements are completely covered (Koutroulis et al., 2006). GA are also employed  

for optimal sizing to optimize the configurations of a hybrid solar–wind system 

employing battery banks, where the decision variables are the number of photovoltaic 

modules, wind turbines and batteries, the photovoltaic module slope angle and wind 

turbine installation height (Yang et al., 2008).  Bilal et al. (2010)  used multi objective 

GA for sizing a hybrid solar–wind-battery system with objective of minimizing the 

annualized cost system and the loss of power supply probability while Moghaddas-

Tafreshi (2009) used PSO for sizing problems. Papantonis (2008) combined an 

evaluation algorithm that simulates in detail the plant operation and an automated 

optimization software based on EA for optimum sizing of the various components of 

a reversible hydraulic system, i.e. turbine size, the size and the number of the pumps, 

the penstock diameter and thickness, the capacity of the reservoirs and some financial 

parameters. 

3.2. Genetic algorithm & auto sizing of Renewable/low carbon Energy: 

Literature review on classification of optimization algorithms is analysed with 

particular nature of auto sizing problem of renewable/low carbon energy systems. The 

particular problem lies under  
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 Multi variable optimization as problem deals with finding optimum capacity 

of more than one supply options available. 

 Non linear optimization as renewable energy supply and demand profiles are 

non linear involving many maxima and minima.  

 Constrained optimization as auto sizing of renewable/low carbon energy 

supply deals with finding capacity in some particular constraint e.g. cost. 

 Dynamic optimization as renewable/low carbon energy profiles change their 

value at each time step and hence can be represented as a function of time 

 Discrete as the considered sizes of each supply can take only discrete values.  

 Combinatorial optimization as sizes of particular supplies can only take 

specific values and sizing problem is to deal with only finite number of 

possible values. 

 Probabilistic optimization as renewable/ low carbon energy is variable and 

stochastic in nature because of their high dependency on climatic conditions. 

It is clear that problem lies under probabilistic optimization. Under probabilistic 

algorithms, metaheuristics produce high quality results as compared to heuristic and 

as described by Yang (2010) that metaheuristics are suitable for global optimization 

problems. Also under probabilistic algorithm, Monte Carlo algorithms are better than 

Las Vegas because they always terminate and produce some results. Evolutionary 

algorithms are type of metaheuristics as well as of Monte Carlo algorithms. 

Evolutionary algorithms further consisted of five types from which genetic algorithm 

are the one which are well suited for combinatorial problems (Gray et al., 1997).  So 

selection of algorithms well suited for renewable energy problems is given in 

following figure. 

 

Figure 15: Step by step selection of algorithm 
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It can be noted from figure 9 that there are also other algorithms along with 

evolutionary algorithm which comes under Monte Carlo and Meta heuristics for 

example Hill climbing, simulated annealing, tabu search and swarm intelligence etc. 

The reasons behind selection of GA which comes under evolutionary algorithms are 

provided here. Hill climbing simulated annealing and tabu search deal with a single 

solution rather than with populations of solutions and therefore can’t explore the 

neighbourhood of the whole population. They are also termed as local search methods 

and their main disadvantage is that they get stuck in local optima.  

GA is population based, inspired by nature and search globally. However swarm 

intelligence algorithms (PSO and ACO) are also inspired by nature and proved good 

for optimization problems but researches show that GA approach is superior to PSO 

approach in terms of its computational time/efforts (Jones, 2005). Artificial neural 

network (ANN) is also effected by problems of local optima and to get good results 

from them they must be used combine with other methods such as GA.  

Also current researches in field of renewable energy optimization problems related to 

sizing are mostly about evolutionary algorithms (genetic algorithms and multi 

objective genetic algorithms). Initially, applications of genetic algorithm were mainly 

theoretical. With the increase in research, growth of computing power and 

development of internet, they moved in commercial sector. Now they are solving 

problems of every day interest and found wide applications in areas of acoustics, 

aerospace engineering, astronomy and astrophysics, chemistry, electrical engineering, 

financial markets, game playing, geophysics, materials engineering, mathematics and 

algorithmics, Military and law enforcement, molecular biology, pattern recognition 

and data mining, robotics, routing and scheduling and systems engineering.  

Further benefits of genetic algorithm explained by Haupt & Haupt (2004, p.23) and 

Marczyk (The talk origin archives, 2004) which are in favour of particular auto sizing 

problems include  

 It can deal with problems with continuous as well as discrete variables. Some 

experimental works (Water et al., 1998) show that for some class of problems 

which deal with highly discrete variables, GA , because of their inherent 

discrete nature, can be more accurate than other algorithms built originally for 

continuous variables (Solomatine, 1998).  
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 They can perform well on a wide variety of test functions, including noisy, 

discontinuous, and multimodal search landscapes (Goldberg, 1989, p.107). 

 Compared with traditional methods (the direct exhaustive search method and 

the gradient-directed search method) for function optimization, one of the 

main advantages of the GA is that it is generally robust in finding global 

optimal solutions, particularly in multimodal and multi-objective optimization 

problems (Yang et al., 2008). However, even if a GA does not always deliver 

a provably perfect solution to a problem, it can almost always deliver at least a 

very good solution (Marczyk, 2004). 

 Genetic algorithms are intrinsically parallel. Instead of exploring solution 

space in one direction, they explore in multiple direction at once as they have 

multiple offsprings. If one path is turn out to be dead, they eliminate that one 

and move towards other direction which is more promising in finding optimal 

solution in each run. More over by evaluating one particular string, they 

sample each of its spaces to which it belongs due to which they build up an 

increasingly accurate value for the average fitness of each of these spaces, 

each of which has many members. Therefore, a GA that explicitly evaluates a 

small number of individuals is implicitly evaluating a much larger group of 

individuals. This phenomenon is known as schema theorem and is main 

advantage over other problem solving techniques (Goldberg, 1989). 

 They are suitable for solving problems in which search space is really huge 

which is usually the case of non linear problems. In case of linear problems, 

improvement in one part will improve the systems as a whole while in case od 

non linear problems, improvement at one point is not having much effect on 

the entire system. Search space of non linear systems is require search 1000 of 

times more than that of the linear systems resulting in exhaustive search. But 

GA due to producing multiple schemas at once and parallelism complete such 

tasks in reasonable amount of time. So they can optimize variables with 

extremely complex cost surfaces. 

 GA has ability to deal with many parameters simultaneously (Forrest, 1993). 

So they behave very well for multi objective problems. 



40 

 Another quality of genetic algorithm is that they solve the problem about 

which they never know before. They start with random solutions and use 

fitness function to find improvement which means all possible search 

pathways are theoretically open to a GA. 

 It does not need the objective functions to be differentiable or continuous and 

can deal with a large number of variables. 

 It provides a list of optimum number instead of single solution and can encode 

the variables so that the optimization is done with encoded variables.  

 It works with numerically generated data, experimental data, or analytical 

functions and can solve different types of problems including bound-

constrained and general optimization problems.  

Based on above description, GA’s are considered to be most suitable algorithms in 

terms of global optimization, particular nature of renewable energy and particular 

problem of auto sizing. 

 “Genetic Algorithms are good at taking large, potentially huge search spaces and 

navigating them, looking for optimal combinations of things, solutions you might not 

otherwise find in a lifetime.” - Salvatore Mangano Computer Design, May 1995  

3.3. Match Evaluation Methods for Renewable/Low carbon Energy: 

Objective function in case of Renewable/ Low carbon energy systems is to maximize 

match between supplies and demands i.e. to ensure that period of generation is 

matched with period of consumption. In particular case of renewable/low carbon 

energy systems, the accuracy of match is dependent on supply and demand profiles. 

Born in his work says that match is also effected by data resolution. For example a 

data obtained at very high frequency that is order of seconds can lead to poor match 

while time averaged over half hourly intervals can give improved results. 

Mathematical formula is required for computing objective function for its use in 

optimization algorithm (Born, 2001). Many match evaluation methods along with 

their mathematical relationships are given below.  

‘A building’s self-sustenance is the ratio of the demand displaced by on-site 

generation, to the demand without generation. The optimal value for self-sustenance 
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is taken to be unity, whereby all the sites demand could be displaced by on site 

generation’ (Mahdavi et al., 1999). The self sustenance index is given by the 

following equation. 

         -------------EQ 1 

Where ESSx = site energy self sustenance for energy type x, dispx,t = energy 

displacement by generation system, for energy type x, at time t, demx,t = energy 

demand of  building without generation, for energy type x, at time t, n = total number 

of time steps 

Shared area between supply and demand profiles can also be used for match 

evaluation. This value can be approximated by evaluating the area between the x-axis 

and the lowest value between supply and demand for every time step. For a perfect 

match %SA would equal 100 where shared area can be evaluated by following 

equation. 

        -------------EQ 2 

Where D (t) = demand profile, S (t) = supply profile, n = time period. 

Excess supply is another criterion to describe match rate and must be 0 for perfect 

match where it can be given by following relationship. 

              -------------EQ 3 

The residual, r (t), of two profiles can be used to represent the combined profile and 

can be obtained by subtracting the supply at each time step from the demand. 

          -------------EQ 4 
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‘The least-squares approach can be used to quantify the magnitude of deviation 

between two sets of data variables’ (Born, 2001). The answer will always be a 

positive value, with a lower limit of zero indicating a perfect match and without an 

upper limit. The following equation defines this method. 

         -------------EQ 5 

Spearman’s Rank Correlation Coefficient describes the correlation between any pair 

of variables by calculating the degree to which the variables fall on the same least 

square line (Scheaffer & McClave, 1982). Its value varies from ‘-1’ to ‘1’. ‘1’ shows 

the perfect positive correlation and ‘-1’ show the perfect negative match where ‘0’ 

represents no match. Correlation coefficient can be given by the following equation. 

       -------------EQ 6 

Where Dt = demand at time t, St = supply at time t, d = mean demand over time period 

n, s = mean supply over time period n 

‘The Inequality Coefficient, IC, describes the inequality in a time-series due to three 

sources: unequal tendency (mean), unequal variation (variance) and imperfect co-

variation (co-variance)’ (Born, 2001). The value of Inequality coefficient varies from 

0 to 1 where 0 shows good match and 1 show no match.  

       -------------EQ 7 

Born (2001) in his work has used an example to show different merits and demerits 

for these match criteria. Energy self-sustenance index accounts for displaced energy 

but neglects excess energy production which can also affect the quality of match. 

When comparing scenarios where one of the profiles is common, i.e. a demand profile 
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matched to a number of supplies or vice-versa, the shared area can be used to compare 

the individual matches. However Shared area can provide information about the 

demand portion satisfied by renewable energy but cannot give any indication of 

excess energy. Shared area and excess energy both are very important to describe a 

match. For a perfect match %SA would equal 100 and %ES zero and addition of these 

terms yields an optimum value of 100, however non-perfect match values could range 

above and below this figure, making judicious comparisons difficult. Similarly, 

residual cannot describe match between supply and demand accurately. Due to lack of 

an upper limit in case of least square method quality of match is difficult to find. 

Where numerous profile pairs are to be compared, bands defining the quality of match 

are useful in processing various possibilities, although establishing such bands is 

extremely difficult where a worst case cannot be defined. Correlation coefficient is 

describing trend between two data sets but ignores relative magnitude of the two. For 

example if two profiles are exactly in phase but of very different magnitude would 

result in perfect correlation. For a perfect match, magnitude and phase, both must be 

considered. Still importance of CC cannot be ignored as it provides ‘a measure of the 

potential match that could exist given changes to the relative capacities, i.e. through 

energy efficiency or altering the size of the RE system’. However, Inequality 

coefficient is the one which can be ideally used to describe match rate. Smaller the 

inequality, larger will be the match. Values of Inequality Coefficient (IC) between 0-

0.4 represent good matches and values above 0.5 show bad matches. 

To sum up, for defining match between supply and demand profiles of renewable 

energy systems, inequality coefficient can prove to be best criteria and correlation 

coefficient is also good but up to some extent.   
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Chapter  4 
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4. Formation of Optimization Algorithm for Auto sizing: 

4.1. Introduction: 

This chapter deals with the development of optimization algorithm for auto sizing 

capacity of renewable/low carbon energy systems. The auto sizing problem is first 

mathematically formulated and most suitable genetic parameters are selected. And 

then analysis of objective function IC and CC, optimization method and working of 

algorithm leads towards a particular design for particular auto sizing problem. 

4.2. Developed optimization algorithm 

An optimization algorithm is developed for auto sizing capacity of renewable/ low 

carbon energy systems. The optimization algorithm is developed for the purpose of 

finding optimized capacities of each supply while there is n number of supplies 

available to satisfy a single demand. Optimization algorithm is designed and run in 

C++ computer language utilizing genetic algorithms. Flow chart of algorithm is 

shown in figure 16. 
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Figure 16: Flow chart for optimization Process 
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The designed program starts with taking input values of hourly data for different time 

spans e.g. days, weeks, months or year etc. of demand and each renewable energy 

supply and storing them in form of arrays. Data base for hourly supply and demand 

profiles for different climates are exported from Merit. Then a for loop is run in 

program to call genetic algorithm several times with objective of minimizing 

inequality coefficient (IC). The results of optimum capacity generated by GA in 

decimal values are then converted to closest integer values in order to get whole value 

of each supply capacity.  Optimum capacity results along with corresponding IC and 

CC value are recorded for each GA run and stored in arrays. From all stored results 

obtained, one result is selected as best optimized one which has maximum correlation 

coefficient.  

The design of algorithms first needs optimal design formulation process (Deb, 2005) 

which is described in detail under section 4.2.1 and provides mathematical details and 

non linear programming format of auto sizing problem according to figure 5. Details 

of genetic algorithm (GA) used and selection of its parameters are given under section 

4.2.2. Reasons for using inequality coefficient and correlation coefficient as 

objectives for match evaluation in a particular order as given in flow chart along with  

how many times GA is called/run is discussed in detail under section 4.2.4. 

4.2.1. Optimal design of auto sizing Problem:  

According to problem formulation procedure provided by Deb (2005), Particular 

problem for auto sizing of renewable/low carbon energy systems is defined first as 

shown graphically in figure 17. 

 

Figure 17: Graphical representation of auto sizing problem 
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Demand (D) is required to be matched with different supplies in a way that Resultant 

Supply (RS) = n1 (S1) + n2 (S2) + n3 (S3) + ----------------+ nn (Sn) where main 

objective of required auto sizing algorithm is to find the optimized values of “n1, n2, 

n3, -----, nn” to maximise match between demand and resultant supply where S1, S2, 

S3… Sn represents unit capacities of supplies. After defining problem, next step is to 

choose design variables. In this case, design variables are n1, n2, n3, -----, nn which 

describes how many number/units of different supplies of particular capacities are 

needed. When there are five supplies available to be matched with a demand then n=5 

meaning that there are five design variables (n1, n2, n3, n4, n5).  

After defining design variables, variable bounds are selected. Variable bounds include 

minimum and maximum limits on a particular supply capacity in order to generate a 

solution (size of each capacity) between certain ranges. There must be utilization of 

each considered renewable energy supply at least once so minimum value (lower 

bound) of design variables (n1, n2, n3, ---, nn) is selected as 1. For case of maximum 

bound on design variables, there is a flexibility which varies with case to case. If 

demand is in 10,000 of watts then maximum value of design variables (number of 

supplies) could be in 1000’s. However in this particular auto sizing algorithm, a 

simple procedure is adopted to find upper bound on each design variables which 

depends on supply and demand hourly profiles data. Since data base of hourly 

demand and supplies profiles are stored in form of arrays so upper bound of design 

variables are found by dividing maximum value in demand array with minimum value 

of each supply array.  

Non linear programming format of problem which is suitable for solving by utilizing 

some kind of optimization algorithm is given as below. 

  ℎ ℎ   =
√[ .∑  { ( . . . ⋯ . ) }√[ .∑  ( ) √[ .∑  ( . . . ⋯ . )

  

                -------------EQ 8          

Where if time span considered is n then Dt = Demand at time t and St1, St2, St3, … , 

Stn are values of S1, S2, S3, … , Sn at time t 

   

1 ≤ 1 ≤ 1 Where 1 =
( )

( )
                    -------------EQ 9 

1 ≤ 2 ≤ 2 Where 2 =
( )

( )
                  -------------EQ 10 
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1 ≤ 3 ≤ 3 Where 3 =
( )

( )
                  -------------EQ 11 

............  

……… 

1 ≤ ≤  Where =
( )

( )
                             -------------EQ 12 

Where max (D) is the maximum value of demand over considered time period and 

min (S1), min (S2), min (S3)… min (Sn) are the minimum values over considered 

time period of S1, S2, S3 … Sn respectively. 

IC and CC are computed as follow 

     

 =
√[ .∑  { ( . . . ⋯ . ) }√[ .∑  ( ) √[ .∑  ( . . . ⋯ . )

   -------------EQ 13 

 

=
∑ ( ) .{( . . . ⋯ . ) }√[  ∑  ( )  ∑  {( . . . ⋯ . ) } ]

    -------------EQ14

  

 

Where s=mean supply over time period n and d= mean demand over time period n  

Also s and d are computed as follow 

= ∑ {(n1.St1 + n2.St2 + n3.St3 + ⋯ + nn.Stn)}    -------------EQ 15 

= ∑ (Dt)         -------------EQ 16 

4.2.2. Details of genetic algorithm used: 

Genetic algorithm is used for optimization purposes and body of genetic algorithm is 

given in flow chart in figure 18. 
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Figure 18: Flow chart of genetic algorithm 
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The body of genetic algorithm starts with initializing population by randomly 

generating genes within particular range between lower and upper limit on design 

variables determined by a method as described in mathematical details under section 

4.2.1. Fitness value of each gene is evaluated using specific sigma truncation scaling 

scheme based on objective function (inequality coefficient as given in equation 7). If 

any fitness value reaches to desired results of population convergence then genetic 

algorithms is exited otherwise a new population is generated and crossover and 

mutation are applied until termination criteria is met.  

Microsoft visual studio C++ 2008 was used for writing code of this algorithm by 

installing a special library of genetic algorithm named as Galib (Wall, n.d.) to utilize 

specific functions of genetic algorithm.  In Galib, there are three kinds of genetic 

algorithms which are built in based on Genitor model, Goldberg’s work and DeJong’s 

method. Goldberg’s work is based on simple GA while Genitor model and DeJong’s 

method is based on steady state GA (SSGA). In a SSGA only one or two individuals 

are replaced in a population at each iteration. These new individuals become part of 

the population and are now available for selection. This is in contrast to the standard 

GA where the entire population (with the possible exception of an elite group of 

individuals carried over from the previous generation) is replaced each iteration 

(referred to as a generation in this case) (Parker & Parker, n.d.).  So SSGA deals with 

overlapping populations while simple GA deals with non overlapping populations. 

The selection of type of GA for desired algorithm is done by analysing computation 

time of program with these algorithms. The computation time with different GA is 

given in table 4. 

Table 4: Computation time based on different types of GA 

Sr No. Type of GA Computation time in seconds 

1 Simple GA based on Goldberg’s work 3.65 

2 SSGA based on Genitor method 1.30 

3 SSGA based on DeJong’s method 1.65 

 

It has been seen that both SSGA (DeJong’s method and Genitor model) have lower 

computation time as compared to simple GA based on Goldberg’s work.  Also other 

researches for optimization problems have proved that simple GA has poor 

performance as compared to steady state GA (SSGA) (Gordon & Whitely, n.d.). Two 
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SSGA methods though have more or less same computation time but it has been 

analysed by results obtained that SSGA based on Genitor method converges 

prematurely at a local optimum. They require large pool size and many trials to ensure 

the best solution is found (Parker & Parker, n.d.). So finally SSGA based on DeJong’s 

method is selected for design of required optimization algorithm. 

Genetic algorithm from GAlib named as “GASteadyStateGA” (Wall, 1996, p.32) is 

selected according to DeJong’s method. It uses overlapping populations with a user-

specifiable amount of overlap. The algorithm creates a population of individuals by 

cloning the genome or population that is passed to it. Each generation the algorithm 

creates a temporary population of individuals, adds these to the previous population, 

then removes the worst individuals in order to return the population to its original 

size. 

Type of encoding selected is binary encoding. It is considered as natural for many 

problems (Obitko, 1998).This type of encoding can provide many no of chromosomes 

with small number of alleles and Binary GAs are preferred when the problem consists 

of discrete variables which is the case with renewable/low carbon energy optimization 

problems.   

In Galib, GABin2DecGenome (Wall, 1996, p.54) is used for purpose of creating 

genome/initial population. This genome uses conventional methods of converting 

binary strings to decimal values and vice versa. This genome is selected because 

supply and demand profiles of renewable/low carbon energy are consisted of decimal 

values. A phenotype is made before instantiating this genome where phenotype 

defines how bits should map in decimal values and vice versa. Number of bits and 

minimum/maximum limit for initialization of genome are user defined and for 

purpose of this algorithm, program reads upper and lower bound itself for each supply 

and numbers of bits used are 16. This genome first encode input decimal value to 

binary values and after terminating GA, binary values are decoded to decimal values 

to display results.  

Sigma truncation scaling scheme is used because it eliminates negative fitness scores 

during GA run which is most common problem in minimization problems where other 

scaling method fail in dealing with them. Sigma truncation scaling utilizes population 

mean and standard deviation to set negative results arbitrarily to zero. Objective 

scores are converted to fitness scores using the following relation (Wall, 1996, p.75). 

 f = obj - (obj_ave - c • obj_dev)        -------------EQ 17 
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Roulette wheel selection method is used to select chromosomes to become parent for 

crossover. It is most commonly used for GAs and in this selection; wheel is spin N 

times to get N individuals. Better fitness chromosomes are given more chances to be 

selected.  

 

Figure 19: Roulette wheel selection 

Genetic algorithm termination criteria settings vary from problem to problem. For this 

particular auto sizing problem of highly non linear and random nature, main objective 

of optimization is to reach towards global optimum. A simple analysis is done by 

comparing four different termination criteria i.e. number of generations, diversity, 

population convergence and population standard deviation. Termination of GA when 

specific numbers of generations are achieved has some disadvantages. It is difficult to 

know whether global minimum is achieved or not even when specified numbers of 

generations for termination are reached. Also since GA can run until many numbers 

of generations to search and reach towards global optimum in case of different data 

with different search spaces so one single general value of number of generation for 

stopping can’t be defined for every type of data.  A better usual way of termination is 

to stop when population diversity drops below a specified threshold. Again best 

threshold can be different for different data profiles considered (for supply and 

demand match) so it is difficult to design a single value. Termination can also be done 

by using the population's standard deviation as the stopping criterion. This type of 

termination is good when GA run time or cost control is of more importance than to 

reach towards global optimum so it is also not appropriate for auto sizing problem 

where there is a need of best global solution and user is willing to wait for finding 

best optimum match. Another good way to terminate is to find out that entire 

population has converged to good score and this can be accomplished by comparing 

the average score in the current population with the score of the best individual in the 
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current population. However, the optimization algorithm is tested by using all above 

termination criteria in term of their computation time and results are given in table 5 

showing that there is not a big difference in computation time for all of these 

termination criteria.  

Table 5: Computation time of algorithm with different termination criteria 

Termination criteria Computation Time in seconds 

Diversity 3.7 

Generation 3.9 

ScoreConvergence 3.6 

Standard Deviation 3.8 

 

So the suitable stopping criteria selected for this particular optimization problem is the 

termination based on score convergence. The desired ratio for population convergence 

is selected as 0.99 which means to stop when population average is 99% of best.    

The efficiency of GA is largely dependent on its parameters. For the choice of 

parameters, either standard parameters defined by different authors can be used or 

parameters can be customized according to specific problem. There are several 

recommended settings for these parameters but genetic parameters are selected 

according to DeJong’s standard settings because type of genetic algorithm used is also 

based on DeJong’s work.  DeJong's settings (De Jong & Spears, 1990) are the de facto 

standard for most GAs and DeJong stated that his defined parameters (Pop size, no of 

generations, mutation rate, mutation type, crossover rate, crossover type)  setting 

work very good for many GAs  used for specifically function optimizations. Other 

parameters which are not available from DeJong’s work are selected according to 

their most common use. The parameters of genetic algorithm which were used for 

defined optimization algorithm are given in table 6 with detail. 

Table 6: Detail of selected genetic parameters for design of algorithm 

Genetic Parameter name Selected parameter values 

Population size 50 

Number of generations 1000 

Encoding Binary 

Mutation rate 0.001 
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Mutation type Flip bit 

Crossover probability 0.6 

Crossover type Single point crossover 

Elitism Yes 

No of generations for convergence test 50 

Convergence %age 0.99 

Selection method Roulette wheel selection 

Scaling scheme  Sigma truncation scaling 

Termination criteria Population diversity 

Genetic Algorithm Steady state GA 

Genome Decimal values 

 

Parameters such as population size, number of generations, mutation rate, mutation 

type, crossover rate and crossover type are selected according to DeJong’s defined 

standards. Very big population size does not improve efficiency of GA. Usually from 

many researches 50-100 is reported as best (Obitko, 1998). In this optimized 

algorithm, stopping criteria is not based on specific number of generations so number 

of generations will not have much effect on solution improvement. Mutation rate must 

be as low as possible otherwise it will alter the solution from originality. Cross over 

rate must be very high as compared to mutation rate and usually 0.6 is reported best. 

Flip bit mutation is used and is specific for binary operators in which value of chosen 

genes are simply inverted.  

 

11001001 => 10001001 

Figure 20: Flip bit mutation 

Single point crossover is used which is very common for binary encoding. In single 

point crossover, everything after the crossover point is taken from other parent. 

 

11001011+11011111 = 11001111 

Figure 21: Single point cross over 
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Elitism is selected in order to eliminate the chances of loosing best chromosome. 

Elitism is name of method, which first copies the best chromosome (or a few best 

chromosomes) to new population. The rest is done in classical way. Elitism can very 

rapidly increase performance of GA, because it prevents losing the best found 

solution (Obitko, 1998). Elite count is selected as 2. 

4.2.3. Details of objective functions used: 

Literature review on match evaluation criteria for renewable energy has shown that 

inequality coefficient (IC) has proved to be best match evaluation function so far and 

it must be as low as possible with minimum value of 0. Lower is inequality means 

larger is the match between supply and demand. However values of IC between 0-0.4 

shows good match between supply and demand. It must be stated that importance of 

correlation coefficient (CC) in renewable energy match evaluation cannot be ignored 

and it must be as large as possible with maximum value of 1. Flow chart shown in 

figure 16 describes genetic algorithm with objective of minimizing IC only. CC is 

also involved in designed optimization algorithm but not as an objective function of 

genetic algorithm but as a second filter on the results obtained from genetic 

algorithms with objective of IC. For providing reasons for this method, an analysis is 

done with different objective functions for optimization along with their merits and 

demerits. For purpose of this analysis, a simple example is used with three number of 

supplies which means that n=3 i.e. design variables are n1, n2 and n3. Analysis 

includes different cases as given below. 

Genetic algorithm using IC only (Single objective): 

An optimization algorithm was written in C++ language using single objective genetic 

algorithm with IC, as objective function to be minimized. Five time steps data was 

assumed for supplies and demand as given below in equations 18 to21.  

= {10.0,20.0,30.0,40.0,50.0}        -------------EQ 18 

1 = {2.0,5.0,4.0,6.0,7.0}         -------------EQ 19 

2 = {3.0,7.0,3.5,4.5,5.0}         -------------EQ 20 

3 = {1.0,2.0,3.0,4.0,5.0}         -------------EQ 21 

Results from genetic algorithm produced an optimum capacity (n1, n2, n3) of unit 

supplies (S1, S2, S3) at (1, 1, 7) which show that 1 unit of supply S1 and S2 each 

along with 7 units of S3 will be optimum combination for satisfying demand D.  By 



57 

using these optimum capacities of supplies, inequality coefficient comes out to be 

0.048, correlation coefficient is 0.984 and resultant supply (RS) is evaluated at each 

time step which comes out to be  

= {12.0,26.0,29.0,39.2,48.0}        -------------EQ 22 

IC value is less than 0.3 and there is very low difference at each time step between 

demand D and resultant supply RS in terms of magnitude as well which shows a good 

match between demand and resultant supply. CC value is also very high which tells 

about good correlation between resultant supply and demand.  Hence IC has proved to 

be a good objective function for match evaluation purposes of renewable/ low carbon 

energy profiles.  

Genetic algorithm using CC only (Single objective): 

When same program is run with CC only, as objective function to be maximized then 

genetic algorithm produced optimum capacity (n1, n2, n3) of unit supplies (S1, S2, 

S3) at (1, 1, 98) which describes 1 unit of S1 and S2 each along with 98 units of S3. 

By using this optimum capacities correlation coefficients come out to be 0.99985, 

value of IC is 0.8194 and resultant supply at each time step is 

= {104.0,209.0,302.0,403.0,503.0}       -------------EQ 23 

So by maximizing CC as objective function, although good value of correlation 

coefficient is achieved but value of inequality is very high and magnitude of resultant 

supply (RS) at each time step is showing large difference with demand D depicting 

very bad match. It can be seen that correlation coefficient deals with trend matching 

but magnitude match is not guaranteed. Good matches must deal with matching of 

magnitude as well as trend both. Hence, it can be stated that CC alone will not prove 

as good match evaluation criteria for renewable/low carbon energy systems  

 

Genetic algorithm using IC and CC both (Multi objective genetic algorithm): 

In order to involve both IC and CC in an optimization algorithm for match evaluation, 

multi objective genetic algorithm is analysed by considering two objective functions; 

IC and CC. (IC to be minimized and CC to be maximized).  

This method is analysed by using same data as given in equations 18 to21. The results 

obtained for optimal capacities of S1, S2 and S3 from multi objective optimization 

algorithm i.e. Pareto front is recorded in the table 7 which show 16 optimal solutions 

on Pareto front i.e. 16 optimum capacity combinations for 3 supplies along with 
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values of IC and CC for them. If this Pareto front is plotted for IC and CC then a 

curve is obtained shown in figure 22. 

Table 7: Pareto front/optimal solutions obtained from multi objective optimization 

 S.No f1(IC) f2(CC) S1 S2 S3 

1 0.088278 0.98465 1.013309 1 7.15625 

2 0.741079 0.99919 1.013309 1 35.79447 

3 0.680111 0.99874 1.013309 1 28.42777 

4 0.429439 0.99563 1.013309 1 14.65315 

5 0.549349 0.99739 1.013309 1 19.34065 

6 0.460176 0.99611 1.013309 1.003906 15.65315 

7 0.89221 0.99987 1.013309 1 89.95592 

8 0.239589 0.99161 1.013309 1 10.1875 

9 0.60388 0.99802 1.013309 1 22.40315 

10 0.759733 0.99931 1.013309 1 38.79447 

11 0.162758 0.98934 1.013309 1 8.875 

12 0.175685 0.98951 1.013309 1.015625 9.0625 

13 0.89221 0.99987 1.013309 1 89.95592 

14 0.876895 0.99982 1.013309 1.015625 78.39342 

15 0.088278 0.98465 1.013309 1 7.15625 

16 0.088287 0.98474 1.013309 1.000977 7.1875 

      

 

 

Figure 22: Pareto front obtained in multi objective genetic algorithm 
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It is clear from figure 22 that the Pareto front includes those points for which IC value 

is reaching to 0.9. IC must be as low as possible for being first preference in match 

evaluation and its values more than 0.4 are not acceptable for providing good match. 

The optimal solutions with high correlation coefficient reaching to 1 enclosed in red 

line are not associated with low values of IC. On the other hand, optimal solutions 

enclosed in pink circle are dealing with low IC values i.e. less than 0.3 and still have 

good correlation coefficients. Results show that multi objective genetic algorithm is 

providing equal importance to both of its objective function and there is a need of 

another filter which would remove solutions with high IC values. So it can be stated 

that multi objective optimization using IC and CC both as its objectives has not 

proved to be good for development of auto sizing algorithm because correlation 

coefficients can’t be given equal or more importance when compared with IC in 

match evaluation.   

4.2.4. Discussion on developed algorithm: 

As above analysis show that IC must be used as main objective for match evaluation 

but CC cannot be ignored completely in defining optimization algorithm, so there 

must a method which can involve both objectives i.e. IC and CC but IC must be given 

first and main preference. Optimization algorithm shown in flow chart of figure 16 is 

designed for particular auto sizing problem in which main objective function of 

genetic algorithm is IC (Inequality Coefficient) that is to be minimized and then CC 

acts as a second filter on results which are already satisfying criteria of minimum IC. 

This method is designed to avoid problems with single objective genetic algorithm 

(using IC only as objective function and CC only as objective function) and multi 

objective genetic algorithms (using IC and CC both as objective functions together).   

This method is also based on some other important facts which must be considered in 

finding global minima. First of all sometimes, there are some functions which have 

their extrema (maxima/minima) occurring at more than one point. For example, the 

graph of cosine function i.e. f(x) =Cos(x) as shown in figure 23 has its extrema 

(absolute and relative) that occurs at many points. Maximum value of 1 is at 

and minimum value of -1 at .   
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Figure 23: Graph of cosine function with more than one extrema 

In case of renewable/low carbon energy systems that deal with highly non linear 

supplies and demand profiles, there is also a possibility that there a number of same 

absolute/global minima or maxima which in turn can result in more than one 

optimized solution which means that good match criteria could be satisfied by 

different optimized combinations of capacities. Also considering nature of genetic 

algorithm which selects random number from its search space every time when it is 

run, it can be possible to get any of these different optimized results on different runs 

of GA.  

Another fact related to genetic algorithm is that it can converge sometimes on local 

minima but its convergence at local minima can be avoided by careful selection of 

genetic parameters. So although rare but still there are chances of getting such results. 

Consider an example in which a very simple data is assumed for three supplies and a 

demand for five time steps as given below in equations 24 to 27.  

= {11.0,11.0,11.0,11.0,11.0}        -------------EQ 24 

1 = {1.0,1.0,1.0,1.0,1.0}         -------------EQ 25 

2 = {2.0,2.0,2.0,2.0,2.0}         -------------EQ 26 

3 = {4.0,4.0,4.0,4.0,4.0}        -------------EQ 27 

 

When this data is provided to genetic algorithm with objective of minimizing 

inequality coefficient then it is analysed that genetic algorithm provided different 

results in different runs of program though many of these results were same. The 

program is run for 35 times and 35 results are recorded given in table 9.   The results 

for which IC value is minimum of all i.e. 0 are (n1, n2, n3) =(3, 2, 1), (5, 1, 1), (1, 3, 

1) and (1, 1, 2) which shows that global minima occurs at 0 for four different 

optimized capacity solutions which is the case of multiple absolute/global extrema 

with same extreme value just like cosine function. All other results are dealing with 
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IC values which are very close to 0 but not 0 which shows that genetic algorithm 

converged early before reaching to global optimum. Now two questions arise here; 

first is how to filter all results to find global minimum and second is how to find 

single best result in case when multiple global extrema occur. For answer of first 

question, in order to find a global minimum, Program has to search for result which 

gives minimum value of IC. But as far as second question is concerned, there will be a 

need of another evaluation or filter criteria where correlation coefficient can help. 

Considering these reasons, two further methods can be analysed for making of 

renewable energy auto sizing algorithm.  

1. One method can be designed which first look for global minima from all 

results and if situation of multiple global minima arises then one result with 

maximum correlation coefficient can be selected as best optimized one. 

However, in renewable/ low carbon energy problem which deals with highly 

stochastic, random and non linear profiles, chances of multiple global minima 

are very rare. So when there is only one global minimum then after searching 

it, this method is left with nothing to involve correlation coefficient.  

2.  Second possible method can be to filter all results on basis of correlation 

coefficient (to find one with maximum CC) without trying to find global 

minima. It is clear that all results are obtained with objective of minimizing IC 

meaning that every results will try to reach towards minimum value of IC i.e. 

0 and values of IC between 0-0.4 can provide good supply and demand match. 

So even if global minimum is not found, results are already dealing with very 

low value of IC which is pretty acceptable. This method seems to be better 

than first method because it always involve correlation coefficient in its 

working. 

Thus, finally designed optimization method as shown in flow chart of figure 16 

utilizes single objective genetic algorithm with minimization of IC as objective 

function thus fulfilling main criteria for match evaluation. GA is called n number of 

times to get several results and one result with maximum correlation coefficient is 

selected as best optimized one to display.  

The question is still there for how many times GA must be called to look for 

maximum correlation coefficient. By analysing some actual profiles of renewable 

energy cases in designed algorithm, it is noted that 10-20 runs of GA are enough for 
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the method. No of GA runs must not be too small e.g. 1-5 to avoid losing chance of 

analysing every possibility and must not be too large e.g. 100-1000 to avoid slow 

speed and high computation time of overall algorithm working. However by analysing 

some actual profiles of renewable energy cases in designed algorithm, it is also noted 

that most of the time, optimum solutions are coming out to be same for all number of 

GA runs describing single global/absolute extrema and chances of different solution 

in different runs of GA are very rare. This designed optimization algorithm method 

has following advantages. 

 It is using minimization of IC as main objective function which is most 

importantly desirable.  

 It is not completely ignoring CC.  

 Although it is involving CC but is not providing equal importance to CC as 

that of IC thus eliminating problems arising in multi objective optimization 

described above. 

 It is calling GA for n number of times with different random numbers and 

checks for all possible solutions which can fulfil criteria of minimum IC from 

which only one solution i.e. single best optimized capacity is obtained at the 

end of algorithm.  
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Chapter  5 
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5. Verification and Case Study for auto sizing Algorithm: 

5.1. Verification of developed algorithm: 

For the purpose of verification of optimization algorithm made, Matlab software 

global optimization tool box with genetic algorithm solver as described in section 

2.3.3 is used. Optimization algorithm is run with help of C++ program written in 

Microsoft Visual Studio 2008 to obtain results which are then compared with results 

obtained from the Matlab global optimization toolbox genetic algorithm solver. 

Programming codes generated for C++ language with Microsoft Visual Studio 2008 

as well as for Matlab Global Optimization Toolbox genetic algorithm solver are given 

in appendix A and appendix D respectively. In both software (Matlab and C++), same 

genetic algorithm parameters (as explained in table 6) are selected and IC is set as the 

objective function to be minimized. For simplification purposes, single demand and 

three supplies are assumed to be consisted of 5 time steps as given in equations 18-21. 

GA from both software is run for 35 times and the results as given in table 8 which 

came out to be similar for all 35 runs representing absolute minimum at this point. 

This verifies correct working of optimization algorithm. Graphs representing 

behaviour of GA i.e. fitness value at each number of generation and best individual of 

three variables S1, S2 and S3) are plotted with help of Matlab shown in figure 24.  

Table 8: Result of 35 GA runs using supply and demand data from equations 18-21 

No Optimized Algorithm made Matlab genetic algorithm 

Same result for 35 runs n1,n2,n3=1,1,7.18 n1,n2,n3=1,1,7.2 
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Figure 24: Result of GA behaviour from Matlab 

A second example is considered by assuming data of demand and supplies as given in 

equations 24 to 27. Results are recorded in form of table 9 for 35 runs of genetic 

algorithm using optimization algorithm made in C++ and in Matlab. It is visible that 

optimized combinations are coming out to be similar from both verifying correct 

working of generated optimization algorithm code in C++. Results show that 

optimized solutions are repeated many times but specific order of appearance for 

different results in different runs is unpredictable. From all 35 runs, minimum value 

of IC i.e. 0 is coming out for similar combinations which are (3, 2, 1), (5, 1, 1), (1, 3, 

1) and (1, 1, 2) of three supplies S1, S2 and S3 representing absolute minima at theses 

points. It is also noted that all possible results have been appeared in 20-25 runs and 

all are associated with very low value of IC i.e. very close to 0.   

Table 9: Result of 35 GA runs using supply and demand data from equations 24-27 

Serial Optimization Algorithm made in C++ Matlab Software 

No n1 n2 n3 IC n1 n2 n3 IC 

1 2 2 1 0.048 1 1 2 0.000 

2 3 2 1 0.000 1 1 2 0.000 

3 2 2 1 0.048 1 1 2 0.000 
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4 2 2 2 0.120 2 1 2 0.043 

5 5 1 1 0.000 3 2 1 0.000 

6 3 1 1 0.100 2 2 1 0.048 

7 2 2 1 0.048 2 1 2 0.043 

8 4 1 1 0.048 1 2 1 0.100 

9 2 2 1 0.048 1 1 2 0.000 

10 1 2 1 0.100 1 1 2 0.000 

11 3 1 1 0.100 1 1 2 0.000 

12 2 2 1 0.048 3 1 1 0.100 

13 4 1 1 0.048 1 3 1 0.000 

14 4 1 1 0.048 1 3 1 0.000 

15 1 2 2 0.083 3 2 1 0.000 

16 3 1 1 0.100 2 1 1 0.158 

17 3 2 1 0.000 1 2 1 0.100 

18 3 1 1 0.100 1 2 2 0.083 

19 2 2 1 0.048 4 1 1 0.048 

20 2 2 2 0.120 1 3 1 0.000 

21 1 3 1 0.000 1 1 2 0.000 

22 2 1 2 0.043 2 2 1 0.048 

23 2 1 2 0.043 1 2 1 0.100 

24 2 1 2 0.043 1 3 1 0.000 

25 1 2 2 0.083 2 2 1 0.048 

26 2 1 2 0.043 1 1 2 0.000 

27 3 1 2 0.083 5 1 1 0.000 

28 2 2 1 0.048 2 2 1 0.048 

29 4 2 1 0.043 1 1 2 0.000 

30 2 3 1 0.043 3 2 1 0.000 

31 3 1 2 0.083 2 3 1 0.043 

32 1 3 1 0.000 1 1 2 0.000 

33 4 1 1 0.048 3 2 1 0.000 

34 2 2 1 0.048 2 2 1 0.048 

35 2 2 2 0.120 1 1 2 0.000 

 

5.2. Case Study done with Merit: 

After designing and verification of optimization algorithm, a real case study is done 

by running optimization using actual data of supplies and demands database which 

varies with climatic conditions. The case considered is located in Garvaled House 

Estate, five miles from West Linton in the Scottish Borders. Some area surrounding 

Garvald house is subjected for a construction project of sustainable building or Eco 

barn for which electricity is assumed to be supplied by off grid Wind/Solar hybrid 
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system. Developed optimization algorithm is utilized to find optimum capacity of 

wind turbines and solar panels.   

 

 

 

 

The database of demand and supplies over different periods (over months of four 

different seasons and over whole year) for climatic conditions of Glasgow are 

exported from Merit Tool. Hourly energy demand profile named ‘office_A_electrical’ 

in the demand database is scaled down to the predefined peak load (around 0.44kW) 

for the Ecobarn building for use in case study. Supply options include 600W wind 

turbine manufactured by Proven, 100W poly-crystalline PV panels manufactured by 

Siemens (tilt angle @40deg, orientation facing south). 

Discussion and Analysis: 

The optimum capacity of two supplies to fulfil Ecobarn demand is found by using 

designed optimization algorithm. One month hourly data (30 days case: 720 time 

steps and 31 days case: 744 time steps) for four different seasons (winter-January, 

Spring-April, Summer-July and Autumn-October) and yearly hourly data (8760 time 

steps) for supplies and demand is used for optimization. Results of IC values obtained 

for resulting optimum capacities of two different supplies are displayed in form of a 

graph as shown in figure 27 .Optimized capacities of supplies for all months and year 

are coming out with very low value inequality coefficients i.e. less than 0.4 depicting 

Figure 25: Proposed Ecobarn site Figure 26: The location of Garvald House, 

to the South-West of West Linton. 
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good match. So results with low inequality coefficient which was main objective of 

developed algorithm represent fine working of optimization algorithm for different 

time spans (months or years).  

 

Figure 27: IC values for optimized capacities measured using week/month/year data 

Correlation coefficients must be as close to 1 as possible for perfect match. The 

designed optimization algorithm is mainly based on minimization of IC, but still 

resulting optimum capacities for all months and year have positive values of 

correlation coefficients as shown in figure 28 providing information of positive 

correlation of resultant optimum supply with demand.  

 

Figure 28: CC values for optimized capacities measured using week/month/year data 

Optimized capacities results which are obtained for all months and year from 

optimization algorithm are used in Merit tool against above described demand profile 

to analyse results produced by match in merit. Values of IC and CC for these 
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optimized capacities from Merit tool are coming out to be exactly same as obtained 

from designed optimization algorithm shown in figure 27 and 28 depicting proper 

working of optimization algorithm results in Merit. Match rates for all optimized 

capacities are close to 60 % or more than 60 % resulting in reasonable match. Results 

for match rates are given in table 10. 

Table 10: Match rate for optimized capacities 

Climate Site Dundee 1980  Optimized capacity 

(Wind T/b, PV) 

Match rate Match type 

Months data Jan (1, 15) 59.53 5/10 

Apr (1, 1) 63.16 6/10 

July (1,8) 63.8 6/10 

Oct (1, 10) 61.37 6/10 

Yearly data -- (1, 4) 61.61 6/10 

 

Merit tool itself is utilizing inequality coefficient as base for finding match rates. 

Since these optimized capacities are also mainly found with the objective function of 

minimizing IC, so they are providing good match rates when they are checked in 

Merit tool. Also as C++ is integrated development environment of Merit tool so it can 

be stated that designed optimization algorithm can be embedded successfully with 

Merit. 

Optimized capacity is given as (Wind t/b, PV) with some number, for example in case 

of yearly data, optimized capacity is (1, 4) which means that 1 unit of 600W Wind 

turbines and 4 panels of 100W PV (Total requirement is 600 Watts capacity of wind 

turbines and 400 Watts capacity of PV panels) are required to satisfy demand over 

whole year.  

By considering summer case of July only form table 9, there are 8 PV panels 

appearing with 1 wind t/b as optimum capacity and number of PV panels are 15 when 

a winter month of January is considered. This might be because of the fact that in 

summer, there are more solar direct and diffuse radiations as compared to winter so in 

winter more PV panels are required to satisfy demand while as wind speed remains 

equally variable in summer and winter so number of wind turbines required for both 

months are same. This represents logical results obtained from designed optimization 
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algorithm. Graph of solar direct and diffuse radiation along with wind speed is shown 

in figure 29 and 30.  

 

 

Figure 29: Variation of solar radiations over whole year 

 

Figure 30: Variation of wind speed over whole year 

 

In this case study 20 numbers of runs of genetic algorithm are set to obtain 20 

resulting solutions and their CC and IC values are computed. However, when months 

of January and April are considered then all 20 results produced from 20 runs of 

genetic algorithm were same as provided in table 9. When month of July is considered 

then optimized algorithm results for 20 runs of GA are listed in table 11.     

Table 11: Result for 20 runs of genetic algorithm for month of July 

No 

of  

GA 

run 

Optimum 

capacity 

obtained 

(Wind t/b, PV) 

IC CC No of 

GA 

run 

Optimum 

capacity 

obtained 

(Wind t/b, PV) 

IC CC 

1 1,8 0.3622 0.152 11 1,8 0.3622 0.152 

2 1,7 0.3628 0.138 12 1,7 0.3628 0.138 

3 1,8 0.3622 0.152 13 1,8 0.3622 0.152 
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4 1,8 0.3622 0.152 14 1,8 0.3622 0.152 

5 1,8 0.3622 0.152 15 1,7 0.3628 0.138 

6 1,7 0.3628 0.138 16 1,7 0.3628 0.138 

7 1,8 0.3622 0.152 17 1,7 0.3628 0.138 

8 1,7 0.3628 0.138 18 1,8 0.3622 0.152 

9 1,8 0.3622 0.152 19 1,8 0.3622 0.152 

10 1,8 0.3622 0.152 20 1,7 0.3628 0.138 

 

From table it is clear that sometimes GA produced result with optimizes capacity of 1 

t/b, 8 PV and sometimes with 1 t/b, 7 PV. Both of these solutions are resulted by 

using minimization of IC as objective. This is the situation when CC value comes in 

action then from these two solutions one is selected as better one with maximum CC 

value which is optimum capacity of 1 t/b, 8 PV. This show that designed algorithm 

works nicely in case when GA random nature produce different results however 

chances of such cases are very less. 

Optimum capacity obtained from designed algorithm is 1 wind turbine and 4 PV 

panels over period of whole year as given in table 10. In order to analyse validity of 

optimum capacity generated with help of designed algorithm, a simple analysis is 

done for this case study using Merit by recording results of different number of PV 

panels with 1 wind turbine to satisfy demand over whole year.  Values of IC and CC 

are displayed in form of a graph in figure 31 with 16 supply combinations (1 wind t/b 

and number of PV panels varying from 1 to 16). The values of IC show that minimum 

IC value which is 0.38 is appeared when 4 PV panels are used with wind turbine. 

Graph of CC values represent that correlation coefficients increase with increase 

number of PV panels and maximum CC is when 16 PV panels are used with wind 

turbine but this capacity is associated with high inequality which was one reason of 

not using CC as main objective function.  
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Figure 31: Values of IC and CC for 16 supply combination using 1wind t/b and 

varying number of PV panel from 1-16. 

Match percentage for all these optimum combinations (1 wind t/b and varying number 

of PV panels from 1 to16) are displayed in form of graph in figure 32 and % age 

match is maximum for this optimum combination of 1 wind t/b and 4 PV panels. 

 

Figure 32: Values of Match %age for 16 supply combination using 1wind t/b and 

varying number of PV panel from 1-16. 
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Graph of surplus and deficit energy is displayed in figure 33 for all combination of 

these two supplies (1 wind t/b and varying number of PV panels from 1 to16). The 

graph shows that curve of energy surplus and energy deficit cut each other at a point 

with supply of 4 PV panels with 1 wind turbine representing an optimum of energy 

deficit and energy surplus. This optimum point i.e. optimum capacity is same as 

generated by developed optimization algorithm. 

 

Figure 33: Values of surplus and deficit energy for 16 combination using 1wind t/b 

and varying number of PV panel from 1-16. 

Surplus and deficit energy can be managed and match %age can be increased further 

by using auxiliaries. No of auxiliaries are not optimized in this designed algorithm. 

However after finding optimum capacity from algorithm, analysis of different number 

of auxiliaries with optimum capacity can be done to achieve better results. The 

residual graphs with optimum capacity (1 wind t/b and 4 PV panels) for Ecobarn 

obtained from algorithm considering period of whole year are analysed by adding 4, 8 

and 16 batteries (battery reserve sizes with the capacity of 215Ah at 12V). Residual 

graphs are shown in figure 34 to 36 and represents that residual is decreased to great 

extents when number of batteries is increased. Residual is very less when 16 number 

of batteries are used.     
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Figure 34: Graph of residual with optimum capacity for whole year with 4 batteries 

 

Figure 35: Graph of residual with optimum capacity for whole year with 8 batteries 

 

Figure 36: Graph of residual with optimum capacity for whole year with 16 batteries 

 

 

Results proved that generated optimum capacity by designed algorithm is good for 

many criteria including match percentage, deficit and surplus energy, inequality 

coefficient and up to some extent correlation coefficient etc. Algorithm is avoiding 

exhaustive search of analysing different capacity combinations which become more 

ridiculous when there are more than 2 renewable energy supply options and help in 

reducing time for finding optimum match. 
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As results can be generated by considering different periods of time (weeks, months 

or year), so there can be different optimum capacities for different periods of time 

because supply from renewable energy is variable with seasons and climatic 

conditions. Designed algorithm can provide benefit for better energy utilization for 

hybrid energy systems. Different supplies could be turn off and on in different seasons 

according to their optimum requirement to get the best match and better energy 

saving. If fixed numbers of supplies are to be installed to satisfy some demand over 

whole year then optimum capacity obtained by considering whole year data can be 

installed. There is a need a further analysis in order to know which optimum capacity 

is best suited for a particular demand depending on further requirements of demand 

which may include cost, economics, payback time, connection to grid, reliability and 

accommodation of any future increases in energy demand. However, this can be 

stated that optimum capacities generated from designed algorithm can prove to be 

very useful base for any further analysis. Hence developed algorithm can provide 

good benefits to renewable energy analysts. 
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Chapter  6 
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6. Conclusion and further work: 

6.1. Conclusion: 

Current concerns related to energy security and climate change leads toward a lot of 

research and development in renewable energy. Hybrid energy systems can address 

the limitations of cost, reliability, efficiency and emission on individual renewable 

energy supply options for its better utilization. Design of hybrid energy systems need 

correct selection and sizing of renewable energy systems to reduce variability in 

supply and demand. MERIT provides a suitable platform for auto sizing a single 

renewable energy supply source which can be extended to any n number of renewable 

energy supplies to match with a single demand. 

In this thesis, Optimisation Algorithm for Auto-sizing Capacity of Renewable and Low 

Carbon Energy Systems is developed utilizing principles of genetic algorithm. Genetic 

algorithm is selected based on its match with nature of renewable energy auto sizing 

problem. Also existing literature of current research in sizing problems of hybrid energy 

has shown an increasing trend towards evolutionary algorithms (genetic algorithms). 

Genetic algorithms are very good in finding global minima but sometimes they converge 

early at local optimum. However careful selection of genetic parameters can overcome 

this problem. Selection of genetic algorithm and genetic parameters for designed 

algorithm is based on DeJong’s work on genetic algorithms and comparison of 

computation time. 

Literature for renewable energy supply/demand match evaluation criteria has provided 

two most useful match evaluation criterias which are inequality coefficient(IC) and 

correlation coefficient (CC). For getting good match between supply and demand IC must 

be as low as possible. Analysis is done with single and multi objective optimization 

methods using these two coefficients as objective function.  

Single objective optimization method using IC only provided good match results but 

ignored correlation coefficient completely. On the other hand, single objective 

optimization method using CC only showed that it deals with trend matching only 

between supply and demand and magnitude match can’t be guaranteed.  Multi objective 

optimization using both coefficients (IC to be minimized and CC to be maximized) deals 

with results which were dealing with very high value of IC because multi objective 

optimization provide equal weightage to all of its objectives. Some results with high CC 

may not deal with low IC values.  So single objective optimization (using IC or CC) as 
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well as multi objective optimization (using IC and CC both) have not proved to be 

suitable for designing auto sizing algorithm for renewable/low carbon energy problems. 

IC has proved to be more importantly desirable as compared to CC and must be main 

objective of optimization. 

Thus, the designed algorithm is based on single objective genetic algorithm with 

objective of minimizing inequality coefficient only and then GA is called several times to 

achieve several results from which one solution is selected with maximum correlation 

coefficient. Work also represented that 10-20 times GA must be called to avoid chances 

of missing global solution and for reasonable computation time of program. This design 

algorithm is overcoming problems of early convergence of GA and of situation of getting 

more than one solution in case when energy profile deals with multiple absolute extrema. 

Designed optimization method will work for maximizing match b/w supply and demand 

and utilizes hourly data of supply and demand profiles as its input. 

The developed algorithm is successfully verified by Matlab genetic algorithm solver. A 

case study done has shown designed algorithm works nicely for different time spans 

considered (weeks, months or years) with low values of resulting inequality 

coefficients and positive correlation coefficient values. It can provide optimum 

capacity of as many numbers of supplies as required to match with a single demand so 

it can handle large scale design problems. Case study also showed that results of 

optimum capacities obtained from designed algorithm when used in Merit to counter 

check them then they provided exactly same values of IC and CC which are obtained 

from designed algorithm. Also optimum capacity achieved from developed algorithm 

is providing good match rates and deals with good balance of surplus and deficit 

energy when checked with Merit. As the code of developed algorithm is made in C++ 

which is integrated development environment of Merit and results are same when 

counterchecked with Merit so developed algorithm can be embedded successfully 

with Merit thus will overhaul Merit capabilities. Developed algorithm is useful for 

better energy utilization, good for eliminating exhaustive search and work in 

reasonable computation time. It can also provide useful basis for analysts in further 

requirements e.g. economics, payback time, connection to grid, reliability and 

accommodation of any future increases in energy demand. 

6.2. Further work: 

The further work may include 
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 The developed optimization algorithm for auto sizing capacity of renewable/low 

carbon energy deals with searching optimum capacity combination of different 

supply options available to match with one single demand. However there is an 

area of further improvement in which there is more than one demand options are 

to be matched with different supply options and one has to find which supply 

optimum capacity is best matched with which demand option. 

 

Figure 37: More demand options with more supplies options 

 Auxiliaries are of great importance in any renewable energy design problem 

however in this developed algorithms, number of auxiliaries are not optimized. 

So in order to improve this algorithm, there could be an addition of auxiliaries’ 

capacity optimization.  

 The developed optimization algorithm search for an optimum point on the basis of 

maximizing match rate and completely ignores the economics and cost. So 

another possible improvement can be to insert cost as a constraint in the working 

of genetic algorithm.  

 Also performance of genetic algorithms can be improved by using the concepts of 

hybrid genetic algorithms, global elitism and dynamic adaptability of crossover 

probabilities, mutation probabilities and other genetic parameters. So the 

performance of developed algorithm can be further analysed by involving 

different types of improvement in genetic algorithm. 

 The optimization algorithm is based on maximizing electricity match between 

supply and demand. However work can be extended to match ‘heat’ or ‘heat and 

supply both’ for supplies and demand with a CHP. 
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 Finally after finding good results of developed algorithm from case study done in 

Merit, further work also includes its embedment with merit. 
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Appendix: 

A. Program code generated for Matlab 

Matlab global optimization toolbox. 

 Code written in Matlab for example 2 section ____. 

function y = project_fitness(x,d,a,b,c) 

d = [11.0,11.0,11.0,11.0,11.0]; 

a = [1.0,1.0,1.0,1.0,1.0]; 

b = [2.0,2.0,2.0,2.0,2.0]; 

c = [4.0,4.0,4.0,4.0,4.0]; 

y=((dot((d-(x(1)*a+x(2)*b+x(3)*c)),(d-

(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5/(((dot(d,d))/5)^0.5+((dot((d-

(x(1)*a+x(2)*b+x(3)*c)),(d-(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5); 

 

 Code written in Matlab for example 1 section 

 

function y = project_fitness(x,d,a,b,c) 

d = [10.0,20.0,30.0,40.0,50.0]; 

a = [2.0,5.0,4.0,6.0,7.0]; 

b = [3.0,7.0,3.5,4.5,5.0]; 

c = [1.0,2.0,3.0,4.0,5.0]; 

y=((dot((d-(x(1)*a+x(2)*b+x(3)*c)),(d-

(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5/(((dot(d,d))/5)^0.5+((dot((d-

(x(1)*a+x(2)*b+x(3)*c)),(d-(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5); 

 

 Code written in Matlab for multiobjective optimization 

function y =simple_multiobjective(x,d,a,b,c) 

d = [10.0,20.0,30.0,40.0,50.0]; 

a = [2.0,5.0,4.0,6.0,7.0]; 

b = [3.0,7.0,3.5,4.5,5.0]; 

c = [1.0,2.0,3.0,4.0,5.0]; 

y(1)=((dot((d-(x(1)*a+x(2)*b+x(3)*c)),(d-

(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5/(((dot(d,d))/5)^0.5+((dot((d-

(x(1)*a+x(2)*b+x(3)*c)),(d-(x(1)*a+x(2)*b+x(3)*c))))/5)^0.5); 

y(2)=-(dot((d-((sum(d))/5)),((x(1)*a+x(2)*b+x(3)*c)-

((sum(x(1)*a+x(2)*b+x(3)*c))/5))))/(dot((d-((sum(d))/5)),(d-

((sum(d))/5)))*dot(((x(1)*a+x(2)*b+x(3)*c)-

((sum(x(1)*a+x(2)*b+x(3)*c))/5)),((x(1)*a+x(2)*b+x(3)*c)-

((sum(x(1)*a+x(2)*b+x(3)*c))/5))))^0.5; 
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B. List of available GA Software Packages 

Sr No. Name of GA Package Type 

1 EO Evolut ionary Computat ion Framework 

by Geneura Team  

A C++  genet ic algorithm library 

2 GAlib by M atthew Wall  A C++ genetic algorithm library 

3 GAGS by J. J. M erelo  A C++ genetic algorithm library 

4 GAJIT - A Simple Java Genet ic Algorithms by 

M atthew Faupel  

A java genet ic algorithm library 

5 GA Playground by Ariel Dolan  A java genet ic algorithm library 

6 PGAPack Parallel Genet ic Algorithm Library by 

David Levine 

A Ansi C genet ic algorithm library 

7 GAUL by Stewart  Adcock  A Ansi C genet ic algorithm library 

8 Sugal 2.1 Genet ic Algorithms Simulator by 

Andrew Hunter  

A Ansi C genet ic algorithm library 

9 GENOCOP III By Zbigniew M ichalewicz Genet ic Algorithm for constrained 

problems in C 

10 DE by Rainer storn Different ial Evolut ion Genet ic 

Algorithm in C and M at lab 

11 PGAPack from Argonne Nat ional Laboratory Parallel genetic algorithm in 

Fortran and C 

12 PIKAIA by Charbonneau, Knapp an d M iller Genet ic Algorithm in Fortran 77/ 90 

13 GAGA by Ian Poole Genet ic algorithm for general 

applicat ion in C 

14 GAS by Jelasity and Dombi Genet ic Algorithm in C++ 

15 Genet ic algorithm in M at lab by M ichael B. Gordy N/ A 

16 GADS from M athworks Genet ic Algorithm and Direct  

search Toolbox in M at lab 

17 GEATbx by Hartmut Pohlheim Genet ic and Evolut ionary algorithm 

for M at lab 

18 GAOT by Jeffrey Joines Genet ic Algorithms Opt imizat ion 

toolbox in M at lab 

19 Genet ic Algorithm for global opt imizat ion by 

M athworks 

Global Opt imizat ion Toolbox in 

M at lab 
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C. Results for case study with 1 WT and different numbers of PV panels from 

Merit 

 

  

No of PV panels 
%age M atch 

Surplus 

energy  

Deficit 

Energy 
CC IC 

1PV 60.3 661.55 918.55 0.09 0.4 

2PV 60.99 699.76 864.71 0.12 0.39 

3PV 61.42 741.94 815.84 0.15 0.39 

4PV 61.61 789.31 772.43 0.17 0.38 

5PV 61.57 842.97 734.33 0.2 0.381 

6PV 61.33 901.24 702.75 0.22 0.39 

7PV 60.92 965.2 675.26 0.24 0.39 

8PV 60.36 1030 651.96 0.26 0.4 

9PV 59.69 1100 632.74 0.27 0.4 

10PV 58.92 1180 616.55 0.28 0.41 

11PV 58.08 1260 603.38 0.3 0.42 

12PV 57.19 1330 592.12 0.31 0.43 

13PV 56.26 1410 581.58 0.32 0.44 

14PV 55.3 1500 572.5 0.33 0.45 

15PV 54.33 1580 564.46 0.33 0.46 

16PV 53.36 1660 557.4 0.34 0.47 
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D. Example of code generated in C++ for designed algorithm (with week data) 

/*-------------------------------------------------------------------

------ 

This is the program finding the number of supplies of particular 

capacity 

using genetic algorithm with the objective function of minimizing 

Inequality  

coefficient. Further it take 100 results for the optimum combinations 

by  

running Genetic algorithm 100 times for minimum Inequality and then 

look for  

the one optimum combination which is having maximum correlation 

coefficient. 

---------------------------------------------------------------------

-------*/ 

 

#include <stdio.h> 

#include <iostream> 

#include <fstream> 

#include <ga/ga.h> 

#include <math.h> 

#define cout STD_COUT 

using namespace std; 

void geneticalg(unsigned int &,int &,int &,double &,double 

&);//seed,sn1,sn2,Ic,cc 

float objective(GAGenome &);  //Declation of objective function 

 

int main(int argc, char **argv) 

{      

  

   int Totalsupplies=2;                 // Showing the number of 

provided supplies 

      double IC; 

   double CC; 

   int Sn1; 

   int Sn2; 

    

   unsigned int seed = 0; 

   float ICarray[100]; 

   float CCarray[100]; 

   float n1array[100]; 

   float n2array[100]; 

   for(int i=0;i<5;i++)// Number of runs of ga are selected here 

     { 

     

          for(int i=1; i<argc; i++) // Code for selecting random seed 

          { 

          if(strcmp(argv[i++],"seed") == 0)  

       seed = atoi(argv[i]); 

          } 

    geneticalg(seed,Sn1,Sn2,IC,CC);//Calling galib genetic 

algorithm 
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    //Filling the arrays 

       n1array[i]=Sn1; 

       n2array[i]=Sn2; 

       ICarray[i]=IC; 

       CCarray[i]=CC; 

    cout<<"the n1 n2 and IC are 

"<<Sn1<<","<<Sn2<<","<<IC<<".\n"; 

     } 

        //Finding maximum element position in  CC array 

         int maxIndex =0; 

      int size=100; 

         for (int j=1; j<size; j++) 

        { 

           if (CCarray[j] > CCarray[maxIndex])  

     maxIndex = j; 

           } 

         cout<<" The optimized combination of 2 supplies PV and wind 

is ("<<n1array[maxIndex]<<" and "<<n2array[maxIndex]<<")."; 

      cout<<"\n For which IC is "<<ICarray[maxIndex]<<"and CC is 

"<<CCarray[maxIndex]; 

  

         return 0; 

} 

 

void geneticalg(unsigned int &seed,int &n1,int &n2,double &IC,double 

&CC) 

{ 

 int S=2; 

 int n=192; 

    /*Supply and demand detas*/ 

double 

supply2[]={0.115,0.213,0.213,0.145,0.145,0.115,0.213,0.366,0.366,0.54

8,0.548,0.548,0.666,0.682,0.666,0.548,0.366,0.548,0.548,0.424,0.25,0.

213,0.145,0.175,0.145,0.025,0.087,0.06,0.06,0.087,0.115,0.175,0.25,0.

213,0.175,0.25,0.213,0.115,0.115,0.213,0.115,0.145,0.145,0.087,0.043,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.025,0.025,0.025,0.06,0.087,0.175,0.06

,0.06,0.025,0.06,0.043,0.115,0.115,0.115,0.06,0.025,0.087,0.115,0.087

,0.06,0.043,0.087,0.175,0.213,0.25,0.303,0.424,0.548,0.482,0.424,0.30

3,0.213,0.06,0.025,0,0.025,0,0,0,0,0,0,0.087,0,0.213,0.303,0.25,0.145

,0.145,0.25,0.613,0.548,0.482,0.366,0.115,0.06,0.087,0.06,0,0.115,0.1

15,0.06,0.06,0.087,0.115,0.087,0.175,0.213,0.424,0.366,0.548,0.672,0.

672,0.482,0.482,0.482,0.482,0.613,0.613,0.482,0.613,0.175,0.115,0.213

,0.25,0.175,0.213,0.175,0.06,0.06,0.087,0,0.043,0.025,0.087,0.175,0.2

13,0.303,0.25,0.303,0.366,0.482,0.213,0.213,0.115,0.115,0.175,0.175,0

.06,0,0.025,0.043,0,0,0,0,0.087,0.175,0.175,0.25,0.303,0.25,0.303,0.1

75,0.213,0.175,0.303,0.145,0.115,0.043,0.087,0.06}; 

double 

supply1[]={0,0,0,0,0.001,0.002,0.008,0.016,0.018,0.027,0.042,0.045,0.

046,0.044,0.044,0.034,0.035,0.027,0.018,0.019,0.012,0,0,0,0,0,0,0,0.0

06,0.012,0.023,0.029,0.034,0.034,0.035,0.038,0.038,0.035,0.029,0.012,

0.009,0.009,0.006,0.004,0.002,0,0,0,0,0,0,0,0.002,0.007,0.017,0.022,0

.024,0.023,0.022,0.023,0.027,0.025,0.027,0.019,0.008,0.008,0.013,0.01
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4,0.003,0,0,0,0,0,0,0,0.002,0.006,0.011,0.009,0.01,0.013,0.014,0.026,

0.04,0.031,0.036,0.035,0.029,0.013,0.01,0.01,0.004,0,0,0,0,0,0,0,0.00

1,0.001,0.004,0.01,0.008,0.005,0.006,0.006,0.01,0.007,0.015,0.031,0.0

16,0.007,0.006,0.003,0.011,0,0,0,0,0,0,0,0.002,0.003,0.007,0.005,0.00

3,0.007,0.017,0.023,0.018,0.022,0.023,0.013,0.02,0.027,0.012,0.01,0.0

04,0,0,0,0,0,0,0,0,0.001,0.003,0.004,0.006,0.004,0.006,0.007,0.008,0.

008,0.007,0.008,0.003,0.005,0.009,0.006,0.003,0,0,0,0,0,0,0,0.002,0.0

04,0.006,0.009,0.009,0.007,0.01,0.016,0.031,0.036,0.036,0.032,0.029,0

.024,0.019,0.007,0.002,0,0,0}; 

double 

Demand[]={14.065,13.96,13.615,14.44,13.295,14.135,12.93,13.795,13.835

,14.145,13.985,14.615,14.675,14.435,14.86,13.685,13.91,13.96,13.795,1

3.89,13.895,14.125,14.145,14.205,14.815,13.955,13.91,13.6,13.335,13.1

7,13.3,14.095,13.87,14.025,14.935,14.555,13.935,13.52,14.115,14.345,1

4.05,13.775,13.3,13.36,14.39,13.875,14.355,14.28,14.8,14.995,14.73,14

.515,14.82,17.74,23.815,26.24,27.66,29.98,28.23,28.745,28.8,25.99,25.

995,22.175,21.45,16.64,16.045,15.535,14.315,15.5,15.235,15.765,14.58,

14.88,14.985,14.96,16.275,18.235,24.74,27.14,27.415,28.495,28.49,27.6

15,29.02,27.185,26.53,23.415,19.655,17.375,16.3,15.545,15.955,15.43,1

6.885,14.42,15.055,14.49,14.735,14.99,15.45,18.09,24.035,25.99,27.02,

29.335,30.14,27.555,26.85,27.305,25.695,23.51,20.91,17.15,16.825,15.2

35,14.65,15.59,14.68,15.54,14.82,15.685,14.9,14.545,16.07,19.215,22.6

45,26.48,27.125,29.35,27.88,28.745,28.12,27.3,26.69,23.96,20.585,17.4

75,17.545,15.625,15.175,15.32,14.915,15.38,15.13,14.9,14.515,14.465,1

5.45,18.88,21.82,26.42,28.325,28.9,28.2,28.335,27.755,26.68,25.545,23

.675,21.465,17.28,16.405,15.705,15.595,15.29,15.365,14.335,13.9,13.23

5,13.87,13.29,14.135,13.3,13.2,13.4,13.95,14.24,13.795,14.315,14.645,

14.235,14.425,14.66,14.525,13.705,13.54,13.54,14.37,14.725,14.82,14.4

4}; 

 

    /*----Declare variables for the GA parameters----*/ 

 

       int popsize  = 50;        

       int ngen     = 1000;        

       float pmut   = 0.01;       

       float pcross = 0.6;        

       float pconv  = 0.99;  // threshhold for when we have 

converged 

       int nconv    = 50;  // how many generations back to 

look 

   

 

      /*Create a phenotype for two variables.  The number of bits you 

can use to 

      represent any number is limited by the type of computer you are 

using.  In 

      this case, we use 16 bits to represent a floating point number 

whose value 

      can range from 1 to 100, inclusive.  The bounds on supplies can 

be applied 

      here and/or in the objective function.*/ 

   

      GABin2DecPhenotype map; 
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      for (int i=0;i<S;i++) 

      map.add(16,1,100); 

 

   

     GABin2DecGenome genome(map, objective);                //Create 

the template genome using the phenotype map we just made and 

objective function. 

 

     /*--create the GA using the genome and run it.--*/ 

 

     GASteadyStateGA ga(genome); 

  GASigmaTruncationScaling scaling;                

//Reference to page 78 of documentation of galib 

     ga.minimize();                                      //Code to 

show that objective function is to be minimized 

     ga.populationSize(popsize); 

     ga.nGenerations(ngen); 

     ga.pMutation(pmut); 

     ga.pCrossover(pcross); 

     ga.scaling(scaling); 

     ga.scoreFilename("bog.dat"); 

     ga.scoreFrequency(10);                              //Reference 

to page 25-27 of documentation of galib 

     ga.flushFrequency(50); 

     ga.evolve(seed); 

 

 

     /*-------Saving Results as integer-----------*/ 

  

     genome = ga.statistics().bestIndividual();  

  n1=static_cast<int>(genome.phenotype(0)+0.5);       

//Converting decimal points to closest Integers 

  n2=static_cast<int>(genome.phenotype(1)+0.5); 

   

     /*----Finding  Inequality coefficient-------*/ 

     double x=0; 

     double y=0; 

     double z=0; 

  double aa; 

     double bb; 

     double cc; 

     for(int j=0; j<n; j++)  //summation of supplies and difference 

at all n time steps 

       {       

    double a; 

       double b; 

       a=supply1[j]*n1+supply2[j]*n2; 

       b=Demand[j]-(supply1[j]*n1+supply2[j]*n2); 

       x += a*a; 

    y += b*b; 

       } 

     for (int i=0;i<n ;i++)                               //Summation 

of demand at all n time steps 
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       { 

    z += Demand[i]*Demand[i]; 

       } 

     aa=y/n; 

     bb=z/n; 

     cc=x/n; 

     IC=sqrt(aa)/(sqrt(bb)+sqrt(cc)); 

 

     /*----Finding  correlation coefficient-------*/ 

     double xCC=0; 

  double yCC=0; 

  double zCC=0; 

  double meandemand=0; 

  double meansupply=0; 

  for(int i=0;i<n;i++) 

   meandemand=Demand[i]+meandemand; 

   meandemand=meandemand/n; 

  for(int j=0;j<n;j++) 

   

meansupply=supply1[j]*genome.phenotype(0)+supply2[j]*genome.phenotype

(1)+meansupply; 

   meansupply=meansupply/n; 

     for(int j=0; j<n; j++)                               //summation 

of products(Dt-d)(St-s) 

   { 

   xCC += (Demand[j]-

meandemand)*(supply1[j]*genome.phenotype(0)+supply2[j]*genome.phenoty

pe(1)-meansupply); 

   } 

     for (int i=0;i<n ;i++)                               //Summation 

of demand at all n time steps 

   { 

   double f; 

   double t; 

   

f=supply1[i]*genome.phenotype(0)+supply2[i]*genome.phenotype(1)-

meansupply; 

   t=(Demand[i]-meandemand); 

      yCC += (f*f); 

   zCC += (t*t); 

      } 

    double aCC; 

   double bCC; 

  aCC=zCC*yCC; 

  bCC=sqrt(aCC); 

    CC=(xCC/bCC); 

}  

 

float objective(GAGenome & c) 

{ 

    GABin2DecGenome & genome = (GABin2DecGenome &)c; 

 int S=2; 

 int n=192; 
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    /*Supply and demand detas*/ 

double 

supply2[]={0.115,0.213,0.213,0.145,0.145,0.115,0.213,0.366,0.366,0.54

8,0.548,0.548,0.666,0.682,0.666,0.548,0.366,0.548,0.548,0.424,0.25,0.

213,0.145,0.175,0.145,0.025,0.087,0.06,0.06,0.087,0.115,0.175,0.25,0.

213,0.175,0.25,0.213,0.115,0.115,0.213,0.115,0.145,0.145,0.087,0.043,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.025,0.025,0.025,0.06,0.087,0.175,0.06

,0.06,0.025,0.06,0.043,0.115,0.115,0.115,0.06,0.025,0.087,0.115,0.087

,0.06,0.043,0.087,0.175,0.213,0.25,0.303,0.424,0.548,0.482,0.424,0.30

3,0.213,0.06,0.025,0,0.025,0,0,0,0,0,0,0.087,0,0.213,0.303,0.25,0.145

,0.145,0.25,0.613,0.548,0.482,0.366,0.115,0.06,0.087,0.06,0,0.115,0.1

15,0.06,0.06,0.087,0.115,0.087,0.175,0.213,0.424,0.366,0.548,0.672,0.

672,0.482,0.482,0.482,0.482,0.613,0.613,0.482,0.613,0.175,0.115,0.213

,0.25,0.175,0.213,0.175,0.06,0.06,0.087,0,0.043,0.025,0.087,0.175,0.2

13,0.303,0.25,0.303,0.366,0.482,0.213,0.213,0.115,0.115,0.175,0.175,0

.06,0,0.025,0.043,0,0,0,0,0.087,0.175,0.175,0.25,0.303,0.25,0.303,0.1

75,0.213,0.175,0.303,0.145,0.115,0.043,0.087,0.06}; 

double 

supply1[]={0,0,0,0,0.001,0.002,0.008,0.016,0.018,0.027,0.042,0.045,0.

046,0.044,0.044,0.034,0.035,0.027,0.018,0.019,0.012,0,0,0,0,0,0,0,0.0

06,0.012,0.023,0.029,0.034,0.034,0.035,0.038,0.038,0.035,0.029,0.012,

0.009,0.009,0.006,0.004,0.002,0,0,0,0,0,0,0,0.002,0.007,0.017,0.022,0

.024,0.023,0.022,0.023,0.027,0.025,0.027,0.019,0.008,0.008,0.013,0.01

4,0.003,0,0,0,0,0,0,0,0.002,0.006,0.011,0.009,0.01,0.013,0.014,0.026,

0.04,0.031,0.036,0.035,0.029,0.013,0.01,0.01,0.004,0,0,0,0,0,0,0,0.00

1,0.001,0.004,0.01,0.008,0.005,0.006,0.006,0.01,0.007,0.015,0.031,0.0

16,0.007,0.006,0.003,0.011,0,0,0,0,0,0,0,0.002,0.003,0.007,0.005,0.00

3,0.007,0.017,0.023,0.018,0.022,0.023,0.013,0.02,0.027,0.012,0.01,0.0

04,0,0,0,0,0,0,0,0,0.001,0.003,0.004,0.006,0.004,0.006,0.007,0.008,0.

008,0.007,0.008,0.003,0.005,0.009,0.006,0.003,0,0,0,0,0,0,0,0.002,0.0

04,0.006,0.009,0.009,0.007,0.01,0.016,0.031,0.036,0.036,0.032,0.029,0

.024,0.019,0.007,0.002,0,0,0}; 

double 

Demand[]={14.065,13.96,13.615,14.44,13.295,14.135,12.93,13.795,13.835

,14.145,13.985,14.615,14.675,14.435,14.86,13.685,13.91,13.96,13.795,1

3.89,13.895,14.125,14.145,14.205,14.815,13.955,13.91,13.6,13.335,13.1

7,13.3,14.095,13.87,14.025,14.935,14.555,13.935,13.52,14.115,14.345,1

4.05,13.775,13.3,13.36,14.39,13.875,14.355,14.28,14.8,14.995,14.73,14

.515,14.82,17.74,23.815,26.24,27.66,29.98,28.23,28.745,28.8,25.99,25.

995,22.175,21.45,16.64,16.045,15.535,14.315,15.5,15.235,15.765,14.58,

14.88,14.985,14.96,16.275,18.235,24.74,27.14,27.415,28.495,28.49,27.6

15,29.02,27.185,26.53,23.415,19.655,17.375,16.3,15.545,15.955,15.43,1

6.885,14.42,15.055,14.49,14.735,14.99,15.45,18.09,24.035,25.99,27.02,

29.335,30.14,27.555,26.85,27.305,25.695,23.51,20.91,17.15,16.825,15.2

35,14.65,15.59,14.68,15.54,14.82,15.685,14.9,14.545,16.07,19.215,22.6

45,26.48,27.125,29.35,27.88,28.745,28.12,27.3,26.69,23.96,20.585,17.4

75,17.545,15.625,15.175,15.32,14.915,15.38,15.13,14.9,14.515,14.465,1

5.45,18.88,21.82,26.42,28.325,28.9,28.2,28.335,27.755,26.68,25.545,23

.675,21.465,17.28,16.405,15.705,15.595,15.29,15.365,14.335,13.9,13.23

5,13.87,13.29,14.135,13.3,13.2,13.4,13.95,14.24,13.795,14.315,14.645,

14.235,14.425,14.66,14.525,13.705,13.54,13.54,14.37,14.725,14.82,14.4

4}; 

 



90 

  double x=0; 

     double y=0; 

     double z=0; 

  double IC=0; 

     double aa; 

     double bb; 

     double cc;  

 

     for(int j=0; j<n; j++)                              //summation 

of squares of supplies and difference at all n time steps 

       {       

    double a; 

       double b; 

       

a=supply1[j]*genome.phenotype(0)+supply2[j]*genome.phenotype(1); 

       b=Demand[j]-

(supply1[j]*genome.phenotype(0)+supply2[j]*genome.phenotype(1)); 

       x += a*a; 

    y += b*b; 

       } 

     for (int i=0;i<n ;i++)                              //Summation 

of square of demand at all n time steps 

       { 

        z += Demand[i]*Demand[i]; 

       } 

 

     aa=y/n; 

     bb=z/n; 

     cc=x/n; 

     IC=sqrt(aa)/(sqrt(bb)+sqrt(cc)); 

     return(IC); 

} 

// stop when pop average is 95% of best 

const float desiredRatio = 0.95; 

GABoolean 

GATerminateUponScoreConvergence(GAGeneticAlgorithm & ga){ 

if(ga.statistics().current(GAStatistics::Mean) / 

ga.statistics().current(GAStatistics::Maximum) > desiredRatio) 

return gaTrue; 

else 

return gaFalse; 

} 
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