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ABSTRACT. This paper presents a new theory of the development of angle concepts. It
is proposed that children progressively recognise deeper and deeper similarities between
their physical angle experiences and classify them firstly into specific situations, then into
more general contexts, and finally into abstract domains. An angle concept is abstracted
from each class at each stage of development. We call the most general angle concept the
standard angle concept.To investigate the role of the standard abstract angle concept in
conceptual development, 192 children from Grades 2 to 8 were tested to find how they used
it in modelling 9 physical angle situations and in expressing similarities between them. It
was found that the standard angle concept first develops in situations where both arms of
the angle are visible. Even at Grade 8, there are still significant proportions of students
who do not use standard angles to represent turning and sloping situations. Implications
for theory and practice are explored.

KEY WORDS: abstraction, angle, concepts, conceptual development, Grades 2–8, phys-
ical angle situations

1. INTRODUCTION

There is no doubt that angle is a multifaceted concept. Strehl (1983) noted
the wide variety of definitions of angle given in German school textbooks
of the time, and Lo, Gaddis and Henderson (1996) reported a similar phe-
nomenon in textbooks intended for US preservice elementary teachers.
Close (1982) and Krainer (1989) have surveyed the various angle defin-
itions from a historical perspective, and others (Mitchelmore, 1989; Freu-
denthal, 1983; Krainer, 1989; Roels, 1985; Schweiger, 1986) have clas-
sified these definitions on mathematical grounds. Three particular classes
of angle definition occur repeatedly: an amount of turning about a point
between two lines; a pair of rays with a common end-point; and the region
formed by the intersection of two half-planes. Other authors have preferred
to base their classifications on physical properties of angle, noting in par-
ticular the difference between dynamic (involving movement) and static
(configurational) aspects of the concept (Close, 1982; Kieran, 1986; Scally,
1986).
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It is clear from the research literature that school students have great
difficulty coordinating the various facets of the angle concept. For ex-
ample, students do not readily incorporate turning into their angle con-
cepts: Mitchelmore and White (1998a) found that less than 10% of Grade
4 students mentioned turning when asked to give examples of angles, and
Foxman and Ruddock (1983) reported that only 4% of 15 year olds spon-
taneously mentioned rotation when asked to define an angle. Students also
do not find it easy to relate turning around a point to turning along a
bent path: Clements, Battista, Sarama and Swaminathan (1996) found that
many Grade 3 children could not link their body turns to the LOGO turn
parameter, and Mitchelmore (1998) found many indications that students
in Grades 2–6 did not relate bending to turning. The consistent finding
that activities with LOGO have little effect on other aspects of children’s
angle knowledge (Clements and Battista, 1989; Cope, Smith and Sim-
mons, 1992; Horner, 1984; Hoyles and Sutherland, 1989; Kelly, Kelly
and Miller, 1986; Kieran, 1986; Noss, 1987; Scally, 1987) confirms the
separation of turning and bending in students’ conceptualisations of angle.

Another aspect which students find difficult to link to their other angle
concepts is that of slope. For example, Douek (1998) recently described
how students in Grades 3 and 4 learned to analyse the inclination of the
sun in terms of angles. She writes, “it is astonishing how often inclination
and plane angles intervened in. . . similar situations, and how difficult they
were to integrate” (p. 271). Secondary school mathematics teachers would
probably echo this sentiment in relation to the difficulties of applying
trigonometry to angles of inclination.

Despite much research on conceptual development and the formulation
of a number of general theories, “the key issue that has plagued work on
angles is the lack of a theoretical framework from which to consider the
results of various studies” (Davey and Pegg, 1991, p. 1). The only example
we have been able to find of an attempt to develop a specific theory of
angle concept development is Scally’s (1986, 1987) application of van
Hiele theory. However, her approach is limited to features of abstract angle
diagrams and does not deal with the genesis of these abstractions.

The purpose of the present paper is to present a new theory which at-
tempts to relate children’s angle concepts explicitly to their physical angle
experiences and to account specifically for their difficulties in coordinating
different aspects of the angle concept. Our theoretical basis will be the
process of concept formation by abstraction, and we shall describe angle
conceptual development as a three-stage sequence of abstractions. We shall
also describe an empirical study intended to use the theory to throw light
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on the path by which students might come to integrate their various angle
concepts.

2. CONCEPT FORMATION BY ABSTRACTION

The key ideas underlying our approach to concept formation are classific-
ation, similarity, abstraction and concept. The relation between these ideas
has been concisely summarised by Skemp (1986):

Abstractingis an activity by which we become aware of similarities. . . among
our experiences.Classifyingmeans collecting together our experiences on the
basis of these similarities. Anabstractionis some kind of lasting change, the
result of abstracting, which enables us to recognise new experiences as having the
similarities of an already formed class.. . . To distinguish between abstracting as
an activity and abstraction as its end-product, we shall. . . call the latter aconcept.
(p. 21, italics in original)

We shall also argue that the formation of everyday concepts, elementary
mathematical concepts, and advanced mathematical concepts proceeds in
similar but clearly different ways. In the following sections, we summarise
some general aspects which will be crucial to our theory of angle concept
formation.

2.1. Everyday concepts

Children learn to classify objects at an early age. The similarities which
link objects in everyday classes frequently relate to the objects’ purpose
and are not usually definable in terms of single attributes. “Real-world
attributes, unlike the sets often presented laboratory subjects, do not occur
independently of one another” (Rosch, 1977, p. 213). Everyday objects are
classified on the basis of a cluster of attributes. Some objects (prototypes)
clearly possess all the most important attributes of the class; others possess
enough of the relevant attributes to a sufficient degree to be judged a mem-
ber of that class. Yet other objects have a weak selection of the relevant
attributes, and there may be arguments as to how they should be classified.

At some point, children start to treat classes of objects as single entities.
Children who say ‘A cup holds water’, or play the ‘scissors, paper, stone’
game with their hands, are operating with classes and not with individual
objects. Words such ascupandscissorsnow denote concepts – new mental
objects, created out of classes of concrete objects, which can be related to
each other without reference to specific, concrete objects (Greeno, 1983).

Piaget calls the process of forming everyday concepts from a class of
everyday objectsempirical abstraction. Piaget’s view of concept formation
as abstracting or detaching the essential qualities of a class of objects from
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the individual objects (Piaget, 1970) has been common since Aristotle
(Damerow, 1996). It is difficult to reconcile this view with the finding that
everyday concepts are not definable in terms of clear attributes. We shall
simply regard abstraction as the formation of a new mental object that rep-
resents a class of objects or experiences, consistent with von Humboldt’s
view of abstraction as “grasping as a unit what was just presented” (cited
by von Glasersfeld, 1991, p. 47).

Everyday classes may be formed at various levels, and may be separ-
ated into subclasses or combined into superordinate classes. The concept
associated with a superordinate class (e.g., colour) is said to be a higher
order than the concepts associated with the component classes (e.g., red,
blue, . . .), which are in turn of a higher order than the subconcepts (e.g.,
red shoe, red tie,. . .). In this way, hierarchies of everyday concepts may
be formed.

Classes may also grow by accretion. For example, having formed the
concept ofcolour by abstraction from familiar examples such as red, blue,
green and yellow, a child may later add new examples such as turquoise,
magenta and mauve. As a result, the initial concept becomes richer without
changing in any substantial manner. Such a process is calledgeneralisa-
tion.

We note that the terms generalisation and abstraction are often used in-
terchangeably in the literature. The essential difference, as we see it, is that
abstraction creates a new mental object (a concept) whereas generalisation
extends the meaning of an existing concept.

2.2. Elementary mathematical concepts

Elementary mathematical concepts are formed through the same process
of classification and abstraction as everyday concepts, but with one im-
portant difference: the objects which are classified are not only concrete
objects nor even mental objects (everyday concepts), but also relations
between everyday objects or concepts. For example, the number concept
is the result of abstracting, not only properties of sets of objects, but also
properties of operations on those sets. Piaget wrote extensively on the
resulting difference between logico-mathematical and everyday concepts,
referring particularly to the child’s (physical or mental) action in manip-
ulating (concrete and mental) objects in order to bring them into relation:
“The [mathematical] abstraction is drawn not from the object that is acted
upon, but from the action itself” (Piaget, 1970, p. 16). Piaget called this
kind of abstractionreflective abstraction, and emphasised that it was es-
sentially a constructive process – not only constructing new mental objects
but also building up a structure relating them (Piaget, 1975, p. 206). Vy-
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gotsky (1987) makes a similar distinction between everyday concepts and
scientific concepts.

As with everyday concepts, generalisation plays an important role in the
formation of elementary mathematical concepts. For example, children’s
first experience of fractions is limited to the familiar half and quarter.
At some point, a generalisation to unitary fractions with an arbitrary de-
nominator occurs, followed later by a further generalisation to composite
fractions. Progressive abstraction also plays an important role as higher-
level mathematical concepts are formed by abstraction from existing con-
cepts. For example, young children often form separate concepts ofwhole
numberand fraction; they make a significant advance when they form a
superordinate concept ofnumberwhich includes both whole numbers and
fractions. In both cases, the difference between mathematical and everyday
concept formation is that concepts and relations are abstracted simultan-
eously.

Another difference is the increasing use of definitions in elementary
mathematics. For example, young children may only be taught to recognise
a circle visually – but by secondary school they are expected to be able to
define it in terms of its centre and its radius. As analysis proceeds, the
essential attributes of existing mathematical concepts begin to be embed-
ded in definitions. However, verbal definitions are ineffective in teaching
new concepts – not only in mathematics (Miller and Gildea, 1987; Vinner,
1991). As Skemp (1986, p. 25) puts it, “concepts of a higher order than
those which people already have cannot be communicated to them by a
definition”.

2.3. Formal mathematical concepts

Advanced mathematical concepts can be regarded as abstractions from
elementary mathematical concepts. For example,group, ring andfieldmay
be regarded as abstractions from structured sets of numbers, functions,
permutations and other transformations. However, these objects are now
defined in terms of properties of undefined operations on undefined ele-
ments. We shall call such a construction a formal mathematical concept.

It is important that the definition of a formal mathematical concept cap-
tures the essence of the elementary mathematical concepts from which it is
abstracted. “An abstract definition of a concept. . . provides no more than a
starting point – a starting point, furthermore, that must already have proved
its usefulness in concrete situations in order to serve as a truly useful point
of departure” (Damerow, 1996, pp. 77–78).
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2.4. Summary

We have outlined a constructivist theory of mathematics learning by pro-
gressive abstraction. In our view, concepts which occur late in this pro-
gression supplement and do not replace concepts acquired earlier: the links
between a concept, relations involving that concept, and the class of objects
from which it is abstracted remain crucial. Our theory therefore has much
in common with the idea ofsituated abstractiondescribed by Noss and
Hoyles (1996).

A fuller description of concept learning would require, in addition to
our theory, a complementary sociocultural perspective which describes
“the conditions for the possibility of learning” (Cobb, 1994, p. 13). Nev-
ertheless, we believe that progressive abstraction provides an adequate
framework for describing cognitive growth and hence for interpreting learn-
ing in any particular social, cultural or pedagogical environment. In partic-
ular, we shall now show how it provides a framework for describing the
development of students’ angle concepts.

3. ANGLE LEARNING BY PROGRESSIVE ABSTRACTION

Our theory (Mitchelmore and White, 1998a) describes angle concept de-
velopment in terms of three, overlapping stages of abstraction which rep-
resent a progressively more refined classification of students’ experience.
We shall briefly describe the three stages below and then show how the
theory allows an integration of the research literature.

3.1. Stage 1: Situated angle concepts

Many of the everyday concepts preschool children learn (e.g., scissors,
tile, cross, merry-go-round, slide, hill, roof, pencil point, bent stick and
crane) can be seen by an adult to involve angles. We call thesesituated
angle concepts, since they derive from children’s mental classification of
situations they have experienced. We call the corresponding experiences
physical angle situations. The term ‘situated’ is intended to have the same
meaning as its use in the term ‘situated knowing’ (Greeno, 1991). A situ-
ated angle concept is strictly limited to situations which look alike, involve
similar actions, and are experienced in similar social circumstances.

Situated angle concepts may generalise a little over time as the initial
similarity changes to focus more on the physical situation and the actions
performed and less on the social circumstances. For example, the concept
of a hill may initially be restricted to paths which children have walked up
but may be extended later to include roads they have driven up. But there
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are limits to this development. Children never call a roof a hill – even if
they see a tradesman walk up one.

Our investigations (Mitchelmore, 1997; Mitchelmore and White, 1998a)
have confirmed that children have formed many situated angle concepts by
the start of schooling. For example, 6 year olds readily recognise a model
of a hill and show an excellent understanding of the effect of variations in
its steepness.

3.2. Stage 2: Contextual angle concepts

Our investigations also show that during early elementary school most
children learn to use words such as ‘slope’ and to classify physical angle
situations into what we callphysical angle contextsusing these terms. For
example, when they are asked to given examples of ‘things which slope
like this hill’, they mention a wide range of sloping situations – including
roofs. We interpret this to mean that children have at some stage recognised
a similarity between hills, roofs and so on, and have come to call this
similarity ‘slope’. (No doubt they first recognised the similarity between
a small number of situations and then generalised it to others.) We have
also found some evidence that children can reason about slopes in general,
thus indicating that ‘slope’ has become a mental object in its own right – a
concept. We call such conceptscontextual angle concepts.

We initially hypothesised the existence of 14 physical angle contexts
involving slopes, turns, intersections, corners, bends, directions and open-
ings (Mitchelmore and White, 1998a). Subsequent empirical investigations
(Mitchelmore, 1997, 1998; Mitchelmore and White 1998a) have confirmed
the existence of many of these contexts. They have also indicated that some
physical angle contexts overlap to an extent which diminishes with age,
whereas others never overlap. For example, children often fail to distin-
guish plane corners (such as the corner of a table top) from solid corners
(such as the edge of a table top); X-shaped from V-shaped intersections;
and limited from unlimited turns. But no child has ever suggested that a
bent object (such as a bend in the road) turns in the same way as a fan
and a door. Our findings suggest that most children have formed clear and
distinct contextual angle concepts of slope, turn, intersection and corner
by the age of 9 years but that their concept of bend is still vague.

Physical angle contexts are formed on the basis of a common geomet-
rical configuration and similar physical actions, and not on similarities
between physical or mental operations on these configurations. For ex-
ample, the concept of turn is abstracted from the movement of turning –
but this is an action of a physical object and not an action imposed by
the learner on a physical object. Contextual angle concepts are therefore
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formed by empirical abstraction and are best regarded as second-order
everyday concepts. There is little to indicate a mathematical concept of
angle at this stage. For example, children rarely need to define terms such
ascorner, slopeandturn.

3.3. Stage 3: Abstract angle concepts

Although children regard angle contexts as distinct, they also recognise
similarities between them. Studies with small samples of Grade 4 children
(Mitchelmore, 1997; Mitchelmore and White, 1998a) have indicated that
most recognise a similarity between intersections and bends, and about
half recognise similarities between slopes and corners or between turns,
intersections and bends.

We claim that the recognition of similarities between angle contexts is
the beginning of an elementary mathematical concept of angle. For, unlike
similarities between situations in a physical angle context, the similarities
between contexts in an abstract angle domain may not be at all obvious.
Recognition of such a similarity often requires a physical or mental action
on the part of the learner. For example, students often demonstrate the sim-
ilarity between a tile and a ramp by physically moving a corner of the tile
to fit into the space between the ramp and the horizontal base. Again, a turn
is seen to be similar to a corner by holding the initial position of the turning
object in memory. The recognition of similarities between different angle
contexts is therefore a constructive process requiring reflective abstraction.

We call a class of physical angle contexts which a child recognises as
similar anabstract angle domain. If the similarity becomes abstracted to
form a concept, we call it anabstract angle concept. Table I represents
a hypothetical cognitive structure resulting from such abstractions. This
child recognises (1) a similarity between intersections, corners, bends and
slopes, and (2) a similarity between limited and unlimited turns. This hy-
pothetical child thus recognises two abstract angle domains – but, at this
point in time, sees no relation between them.

By asking children to show or tell us what they find similar between dif-
ferent physical angle contexts, we have found evidence of several abstract
angle concepts. One is that of a point, sometimes used by young children
to relate corners and intersections. Another is that of a single sloping line,
sometimes used to relate sloping and turning objects. But by far the most
common is that of two inclined lines meeting at a point, used to relate a
wide variety of contexts. This angle concept is implied, for example, in the
first abstract angle domain in Table I.

We shall call the last-mentioned concept thestandard angle concept
and the class of contexts it relates thestandard angle domain. The signi-
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TABLE I

Hypothetical example of a student’s abstract angle domains

Domain Physical angle contexts Sample physical angle situations

1 Intersection Road junction, scissors, hands of a clock

Corner Table top, pattern block, pencil point, table edge

Bend Road bend, boomerang, bent limb

Slope Slanting pole, railway signal, roof, hillside

2 Limited rotation Door, windscreen wiper, water tap

Unlimited rotation Ceiling fan, revolving door, lighthouse beam

ficance of this concept is that it has the potential to effectively relate all
physical angle contexts. In different angle contexts, the two lines forming
the angle may be indicated by linear objects, by straight edges, or by
imaginary lines – but there are always two lines. Also, the inclination
between the two lines represents different things in different contexts –
for example, sharpness, steepness or amount of turning – but there is al-
ways some significance attached to the relative inclination. The standard
angle concept is also the most general in the sense that, apart from these
two features (two lines meeting at a point and their relative inclination),
there is nothing else which is common to all physical angle contexts. The
other abstract angle concepts we have found (angle-as-point and angle-as-
sloping-line) are ineffective because they cannot always relate the sizes of
angles in different contexts.

It would appear that the standard angle concept develops slowly. For
example, we have found (Mitchelmore, 1998) that about a third of Grade
6 students are unable to recognise any angular similarity between turns
and bends; so their standard angle domain must be rather limited in scope.
We conjecture that the students’ standard angle concept generalises during
secondary school, and by adulthood may or may not include all common
physical angle contexts.

We claim that the angle concept dealt with in elementary mathematics
is the standard angle concept we have defined above. The construction of
the corresponding formal mathematical concept could be considered as the
fourth stage of angle concept development, but that would take us beyond
the confines of this paper.

3.4. Summary

Our theory comprises three successive stages of abstraction. Similarities
between experiences are abstracted to form situated angle concepts, sim-
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ilarities between situated angle concepts are abstracted to form contextual
angle concepts, and similarities between contextual angle concepts are
abstracted to form abstract angle concepts. These are not exclusive stages:
children may still be in the process of forming contextual angle concepts at
the time they form their first abstract angle concept. Further, each concept
is in a constant state of generalisation as new experiences, situations, or
contexts are recognised as similar.

4. INTERPRETING THE LITERATURE

Our theory allows us to view the multifaceted nature of the angle concept
in a new light. The standard angle concept is that which is common to a
large number of angle contexts which are superficially not at all similar.
Each facet of the concept is a set of related contexts.

Each of the various textbook definitions of angle seems to correspond
to a different physical angle context. For example, the turning definition of
angle clearly models the turns context, the ray pair definition models the
intersections context, and the region definition models the corners context.
The reason why each definition can also be applied to other angle contexts
is that all the definitions embody the standard angle concept, although it
is expressed in different ways. The fact that no one definition appears to
match all physical angle contexts emphasises the difficulty of forming a
general standard angle concept. The reason why several definitions exist is
that each one must fit into a different formal mathematical structure.

Children’s definitions and examples of angles also appear to describe
various angle contexts or domains. For example, Davey and Pegg (1991)
obtained a sequence of four definitions of angle: (a) a corner which is
pointy or sharp; (b) a place where two lines meet; (c) the distance or area
between two lines; and (d) the difference between the slope of the two
lines. Clements and Battista (1989) found that Grade 3 children most com-
monly described an angle as a sloping line, a place where two lines meet, or
the two lines themselves; children who had studied LOGO also said it was
a turn. Matos (1994) reports that Grade 4–5 children conceived of angles
as points, as turning bodies, as a source of two rays, as a bent path, and
as two lines connected at their end-points. The point and line conceptions
may be non-standard abstract domains or single angle contexts – it is not
possible to tell without eliciting examples. The turns and paths conceptions
are very likely contexts. The two lines conceptions seem to refer to the
standard angle domain, but may be limited to contexts where both lines
are physically present (e.g., including corners but excluding slopes).
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Our theory also provides a definite answer to Douek’s (1998, p. 271)
question, “Does embodiment constitute a negative element in the perspect-
ive of building decontextualised concepts, or rather an inevitable, and pos-
itive, phase on the road towards complex and long concept building?” The
difficulties which students experience in coordinating various angle con-
cepts are part of a natural developmental process. The initial links between
different angle contexts may be very weak or non-existent, and developing
a mature abstract angle concept dependsessentiallyon learning to link
them together.

In particular, the failure of LOGO training to ‘transfer’ to other angle
contexts suggests a weak linkage of the bent path context to other physical
angle contexts. If our theory is correct, conceptual development consists
of strengthening the links between different contexts. Providing vivid ex-
periences in one angle context cannot therefore be expected to transfer to
another context unless the link is already present – or is constructed as a
central part of the instruction. Most of the LOGO training studies neglect
this link and may be regarded as attempting the impossible.

A number of studies have attempted to measure children’s abstract angle
understanding by posing contextual tasks. For example, Piaget and In-
helder (1946) used lazy tongs, Beilin (1984) used biscuit cut-outs, Kieran
(1986) and Noss (1987) used bends in a road, and Mitchelmore (1992) used
colliding children. The present theory suggests that the findings of these
studies gave interesting information on children’s understanding of various
angle situations (or possibly contexts), but – in the absence of any in-
formation on how the children linked various angle situations and contexts
together – say absolutely nothing about their abstract understanding.

The converse criticism can be made of studies which have investig-
ated children’s understanding of angle diagrams (e.g., Piaget and Inhelder,
1946; Piaget, Inhelder and Szeminska, 1960; and studies following the van
Hiele model). These studies all assume that they are investigating chil-
dren’s abstract angle concepts. But without any evidence as to the current
structure of students’ angle concepts, the results may be completely un-
interpretable. At worst, when students have a poorly developed abstract
angle concept, the findings may be limited to the specific context of angle
diagrams and say absolutely nothing about their understanding of physical
angle contexts.

4.1. The present study

Angle research is interested in the general question, how does the structure
of children’s angle concepts develop? The theory outlined above enables us
to refine this question into specific questions such as the following: How do
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situations tend to cluster together into contexts, which contexts cluster into
domains, and at what ages? Do contexts cluster into multiple domains (e.g.,
contexts containing fixed situations might merge together in one cluster
and moveable situations in another) before these merge into one, or do
they develop in some other pattern? What characteristics of angle contexts
determine how well children tend to recognise their similarity? How can
we design ways of helping children to recognise similarities between angle
contexts? We can find no research apart from our own which has addressed
such questions.

For the present study, the following research questions were posed:

• How well do children of various ages recognise the standard angle
concept in various contexts?

• How well do children of various ages recognise standard angle-related
similarities between different contexts?

• What factors determine whether children find angle contexts easy or
difficult to relate in terms of the standard angle concept?

Our previous studies (Mitchelmore, 1997, 1998; Mitchelmore and White,
1998a) have included only small numbers of contexts and have had either
a very small sample size for each pair of contexts or few pairs of contexts.
The present study was conducted with a sufficiently large sample to obtain
an adequate sample size for all the pairwise comparisons between a larger
number of physical angle contexts.

5. METHOD

5.1. Sample

The sample was gender-balanced and consisted of 144 children in each of
Grades 2, 4 and 6 chosen from six schools in Sydney. A further 48 Grade
8 students from two high schools were also interviewed.

5.2. Materials

Nine situations were used, chosen from a variety of physical angle con-
texts: wheel, door, scissors, hand fan, signpost, hill, road junction, tile
and wall. The first four situations are movable, while the last five are
fixed. Each situation was represented by one or more models, illustrated
in Figure 1. Each movable situation (wheel, door, scissors and fan) was
represented by a single adjustable model. Each of the fixed situations (sign-
post, hill, road junction, tile and wall) was represented by a set of three
models representing a ‘neutral’ configuration (angle 0◦ or 90◦), an angle
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Figure 1. Models used to represent the nine physical angle situations.

of 45◦, and a ‘middle’ angle (22.5◦ or 67.5◦). Only one of the three mod-
els is shown in Figure 1. Adjustable models of the fixed situations were
deliberately not used, in order to avoid artificially suggesting a dynamic
interpretation.

A drinking straw which could be bent at various angles was used as an
abstract angle model. A second straw fixed at 45◦ was also used.

5.3. Procedure

Each student was shown one of the following combinations of the situ-
ations shown in Figure 1:
Wheel, door, scissors Door, signpost, tile

Fan, signpost, hill Door, hill, junction

Junction, tile, wall Door, fan, wall

Wheel, fan, junction Scissors, hill, wall

Wheel, signpost, wall Scissors, fan, tile

Wheel, hill, tile Scissors, signpost, junction
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These combinations were chosen is such a way that each of the 36 possible
pairs of situations occurs exactly once. (Each individual situation occurs 4
times.) Each of the 12 combinations was presented to 12 students in each
of Grades 2, 4 and 6, with order counterbalanced. Thus 144 students were
interviewed at each grade level, giving 48 responses for each situation and
12 responses for each situation pair.

When a preliminary data analysis showed that the wheel, door and hill
were still causing difficulty to Grade 6 students, these three situations were
also administered to 48 students in Grade 8.

Individual interviews were conducted in a quiet room by a trained re-
search assistant. She followed a fixed protocol, using neutral prompts such
as ‘Good; anything else?’ or ‘OK; show me how’ whenever necessary to
obtain a better understanding of children’s responses. The word ‘angle’
was used only if students introduced it. All interviews were audiotaped
and transcribed the same day on to a response sheet; the authors later
categorised and coded non-quantitative responses.

Each interview proceeded as follows. Firstly, the interviewer presented
the three physical models separately. For each model, she briefly described
the situation the model was intended to represent and then administered
three angle recognition tasks (Tasks 1–3 in Figure 2). She then presen-
ted the models again in pairs. For each of the three pairs of models, she
administered three angular similarity tasks (Tasks 4–6).

5.4. Scoring

Task responses were scored according to whether they showed an inter-
pretation of the given situation(s) in terms of the standard angle concept
– that is, with the vertex and the two arms of the abstract angle model
appropriately matching a point and two lines on the physical model. For
the movable situations, the vertex is the point of rotation and the opening
of the arms represents the amount of rotation. For the fixed situations, the
two arms represent two specific lines and the vertex is the point where
these two lines meet.

Task 1 was scored correct if students used both arms of the abstract
angle model and explained what they represented in general terms which
clearly indicated use of the standard angle concept. In Tasks 2 and 5, an
error of±15◦ in setting the movable models was allowed. In Tasks 3 and 6,
specific error limits were defined for each model; for example, a placement
of the straw on the scissors was scored as correct if the arms were placed
anywhere along the blades with the vertex in the region where the blades
crossed.
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Figure 2. Interview tasks.

Task 4 evoked two standard angle similarity interpretations: dynamic
and static. A response was judged to indicate a dynamic similarity if it
referred to the same angular movement in both situations, such as turning
or opening. A response was judged to indicate a static similarity if it re-
ferred to a common geometrical configuration. In both cases, a response
was only scored correct if it implicitly or explicitly related two appropriate
lines. For example, in relation to the tile and the scissors, many students
said “they both have two lines” or “you can put the tile in between the
scissors”, both of which were clearly static similarities. Responses such
as “the scissors can be opened to show the corners of the tile” were also
classified as static because (a) they referred to the resulting position of the
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movable model and not to the movement which produced it, and (b) there
was no implication that the fixed situation had any movement associated
with it.

6. RESULTS

6.1. Standard angle recognition

Table II shows the rates of standard angle usage in Tasks 1 to 3. It appears
that students interpreted the nine situations quite differently.

Five situations were most frequently interpreted using standard angles:
scissors, fan, junction, tile and wall. With a few exceptions (notably size
matching in the junction, tile and wall situations in Grade 2), standard
angles were used by at least 80% of the students on all these tasks at all
grade levels – in many cases over 95%. A sixth situation, the signpost, was
not often interpreted using standard angles in Grade 2 but by Grade 6 rose
to similar levels as the other five situations.

Two situations, wheel and door, showed a different pattern: mostly
frequent use of standard angles (over 85%) on Tasks 1 and 2, but much
less frequent use on Task 3 (from an average of about 30% in Grade 2 to
about 55% in Grade 8). On Task 3, many students had difficulty identifying
the center of rotation on the wheel, despite the fact that it was marked
with a prominent bolt; and several used only one arm of the bent straw to
represent the rotation. For the door, the main difficulty lay in identifying
its initial position as one arm of the standard angle.

In the ninth situation, the hill, standard angles were used with similar
frequencies on all three tasks, varying from about 45% in Grade 2 to about
80% in Grade 8. The most common non-standard methods of representing
the hill in Task 1 were to use only one, sloping arm of the bent straw (only
in Grade 2) or both arms in an inverted V-shape. Furthermore, only 19%
of students in Grade 4, 27% in Grade 6, and 17% in Grade 8 represented
the angle between the horizontal and the slope of the hill (as most math-
ematics teachers probably would). The rest of the students who correctly
represented the slope using a standard angle indicated the angle between
a sloping edge and one of the vertical edges on the hill model. In Task
2, almost all of the errors consisted of choosing the hill with a slope of
22.5◦; students seemed to be sure that the bent straw represented a sloping
hill, but were uncertain as to the amount of slope. In Task 3, most standard
interpretations again used a sloping edge and a vertical edge of the hill
model.
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TABLE II

Percentage of recognition task responses showing standard angle usage, by grade and
situation

Grade Wheel Door Scissors Fan Signpost Hill Junction Tile Wall

Task 1: Global angle representation

2 17 90 100 98 24 48 77 96 96

4 90 96 90 88 67 50 85 100 98

6 94 92 94 92 83 67 96 100 100

8 94 94 – – – 59 – – –

Task 2: Size matching (recognition)

2 49 77 87 87 47 43 60 64 64

4 85 100 100 100 88 58 92 96 98

6 98 98 98 98 96 65 96 98 100

8 94 100 – – – 75 – – –

Task 3: Angle matching (recognition)

2 21 44 87 79 43 45 94 100 92

4 31 50 89 81 75 60 98 98 92

6 56 65 92 85 88 69 100 96 100

8 42 65 – – – 81 – – –

Note: In each cell,n = 48.

6.2. Standard angle similarity

Table III summarises the responses to Tasks 4 to 6. Responses to Task
4 have been separated into dynamic responses (Task 4a) and static re-
sponses (Task 4b). To reduce the number of situation pairs to a manageable
number, averages have been taken over 6 movable-movable pairs, 20 fixed-
movable pairs and 10 fixed-fixed pairs. Variation between individual pairs
of situations will be discussed separately below.

On Task 4, students almost never reported a dynamic similarity between
a fixed situation and another situation. Also, the dynamic similarity re-
cognition rate between movable situations was fairly constant at about
two-thirds. By contrast, static similarities were readily recognised not only
between fixed situations but (especially after Grade 2) also between fixed
and movable situations and even between movable situations. Within each
category of situation pair, the static similarity recognition rate increased
monotonically from Grade 2 to Grade 6.

In both Tasks 5 and 6, the percentage of standard angle responses in-
creased steadily from Grade 2 to Grade 6 in all three categories. Also,
at each grade level, the order of the standard recognition rates was al-
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TABLE III

Percentage of similarity task responses showing standard
angle usage, by grade and situation pair

Grade Movable-movable Fixed-movable Fixed-fixed

(n = 72) (n = 240) (n = 120)

Task 4a: Global angular similarity (dynamic)

2 64 2 0

4 60 0 0

6 68 0 0

Task 4b: Global angular similarity (static)

2 4 32 50

4 74 63 81

6 86 79 89

Task 5: Size matching (similarity)

2 56 43 73

4 89 75 91

6 90 89 97

Task 6: Angle matching (similarity)

2 36 61 81

4 61 68 82

6 81 80 89

most always the same: Fixed-fixed similarities were most frequently recog-
nised, then movable-movable, then fixed-movable. It is notable that, with
one exception, the same patterns also occur in the similarities reported in
response to Task 4b.

The similarities between the patterns of responses to Tasks 4b, 5 and 6
suggested that all three tasks might be measuring a common construct. To
investigate this possibility further, three similarity scores were calculated
for each pair of situations: the percentage of students making standard
angle responses on each task. The correlations between these three scores
in Grade 2 (0.61, 0.68 and 0.72), and the correlations between the first and
the third scores in Grades 4 and 6 (0.82 and 0.83) supported the hypothesis
of a common construct. (The remaining inter-correlations were somewhat
smaller, partly due to a ceiling effect in Task 5.) Tasks 4b and 6 clearly
involve the recognition of a common configuration, indicating that the
common construct is static similarity recognition. We infer, therefore, that
Task 5 also measures static similarity recognition – even in the case of
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TABLE IV

Average similarity indices (percentages) for each pair of physical angle situations

Wall Junction Tile Scissors Fan Signpost Door Hill Wheel

Wall – 0 0 0 3 0 0 0 0

Junction 94 – 0 0 3 0 0 0 6

Tile 95 94 – 0 0 0 0 0 0

Scissors 94 74 86 – 83 0 72 3 56

Fan 82 80 67 74 – 0 78 0 50

Signpost 77 76 76 63 59 – 0 0 0

Door 69 58 59 67 68 53 – 0 47

Hill 70 70 69 65 43 60 47 – 0

Wheel 57 53 41 62 62 51 53 38 –

Note. Dynamic similarities are given above the diagonal and static similarities below.

moveable situations. For example, students may match the angle sizes on
a wheel and a fan not by comparing the two movements but by comparing
the resulting configurations.

The identification of a common construct across the three tasks justi-
fied averaging the three similarity scores to obtain astatic similarity index
for each pair of situations at each grade level. For most pairs, the static
similarity index increased monotonically from Grade 2 to Grade 6; the
average indices were 41%, 74% and 86% respectively. Table IV shows
(below the diagonal) the average static similarity indices for each pair,
arranged in decreasing order of their average static similarity to the other
situations. (Space considerations prohibit presentation of separate tables
for each grade level. They are available from the authors.) Table IV also
shows averagedynamic similarity indicescalculated in a similar manner
from the Task 4a results.

Hierarchical cluster analysis of the static similarity indices in Table IV
indicated one main cluster of similar situations at each grade level:

• In Grade 2, there were three situations in the main cluster (junction,
tile and wall) with scissors nearby.

• In Grade 4, the main cluster consisted of junction, tile, wall and scis-
sors. There were also two secondary clusters: door and fan, and hill
and signpost.

• In Grade 6, there was only one cluster consisting of junction, tile,
wall, scissors, fan and signpost.

The static similarity indices were also subjected to multidimensional scal-
ing analysis using a euclidean distance metric, with the following results:
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Figure 3. Modulating facet model of static similarity between the nine situations.

• The Grade 2 pattern showed no clear clustering.

• In Grade 4, junction, tile, wall and scissors clustered near the centre of
the diagram with fan and signpost further away, door and hill further
still (with door near to fan and hill near to signpost), and wheel far
away.

• In Grade 6, junction, tile, wall, scissors, fan and signpost formed a
central cluster with door, hill and wheel far outside.

These results suggest a core of similar situations gradually expanding to
include more situations at successive grade levels. The results are well
described by the five-partition model shown in Figure 3, suggested by facet
theory (Levy, 1985).1 We note that the order in which the various situations
are absorbed as one moves outward in Figure 3 is precisely the order of
situations in Table IV.

The dynamic similarity indices, which in effect only relate the movable
situations, showed little variation from grade to grade. The door, scissors
and fan situations formed one cluster, with the wheel separate. Only about
a half of the students thought that the wheel turned like the other movable
situations. In fact, students often referred to the door, scissors and fan as
‘opening’, not ‘turning’.
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7. DISCUSSION

We now review our findings in terms of the research questions posed earlier.

7.1. Standard angle recognition

Students of all ages found it easy to represent the scissors, fan, junction,
tile and wall situations using the standard angle model and to identify the
standard angles on the physical models. By Grade 6, the signpost situation
had joined this group. From Grade 2, all students matched the sloping
signpost to one arm of the abstract angle model; between Grade 2 and
Grade 6, they evidently learned to identify a line in the base of the signpost
model to match the second arm.

Students also found it easy to represent the wheel and door situations
using the abstract angle model, even to the extent of matching sizes cor-
rectly. However, a large proportion of students (among the older students,
still about a half for the wheel and a third for the door) could not identify
the two lines which make up the standard angle. These results suggest that,
in Tasks 1 and 2, students were using the arms of the abstract angle model
to represent the rotation rather than a standard angle – even though they
appeared to use both arms of the model. Rather than interpreting turning
in terms of angles, it would seem that students intuitively treat rotation
globally, simply as a particular kind of movement. It is impressive that
students were able to represent the size of a rotation so accurately without
interpreting it as an angle.

The hill showed a third pattern of results. Many students (still about
a third in Grade 8) found it difficult both to represent the hill using the
abstract angle model and to identify the abstract angle on the physical
model. The responses to Tasks 1 and 2 suggest that most students had
some global concept of slope but that many did not quantify it by relating
the sloping line to a fixed reference line. Unlike the wheel and door, where
the second line may be suggested by the initial position and there is a
global movement which can be copied, there is in fact very little to help a
naïve student interpret a slope in terms of a standard angle. When students
placed one arm of the abstract angle model on a sloping edge and one
on a vertical edge in Task 3, they could simply have been choosing an
available visible line to match the second arm of the straw. Such responses
do not necessarily imply any awareness of the significance of the vertical
edge as an appropriate reference line. We conjecture that many students
have a global conception of slope as a single line and do not conceive it
in terms of angles. Had the physical model of the hill consisted simply
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of a sloping plane without any supporting edges, it is likely that far fewer
students would have indicated a standard angle interpretation.

7.2. Standard similarity recognition

Children appear to recognise two types of similarity between angle con-
texts: dynamic and static. However, they only recognise dynamic similarity
between moveable situations and therefore cannot use it to classify angle
situations in general. We shall, therefore, concentrate on static similarity.
By definition, static similarity involves recognition of both lines of the
standard angle in both situations and is therefore applicable to all physical
angle contexts.

On the basis of the static similarity results summarised in Figure 3, the
general development of children’s standard angle domain is best described
as consisting of one cluster which gradually expands by accretion. We may
expect most Grade 2 children to recognise the standard angle similarity
between junction, tile and wall, with smaller percentages recognising the
similarity between these and other situations. By Grade 6, most children
will recognise the standard angle similarity between junction, tile, wall,
scissors, fan and signpost, with fewer recognising the similarity between
these situations and hill, door and wheel.

Of course, there is individual variation. There are no doubt some Grade
2 children who would recognise the standard angle similarity between
all nine situations and some Grade 6 children who would only recognise
the standard angle similarity between two or three situations. However, it
seems reasonable to assume that individual children would tend to follow
the same expanding pattern of development – first junction, tile and wall;
then scissors, fan and signpost; then hill, door and wheel – but at varying
rates.

We note that the main cluster consists initially of only fixed situations
(junction, tile and wall); but by Grade 6, it includes two moveable situ-
ations (scissors and fan) as well as a further fixed situation (signpost). Of
the situations not in the cluster by Grade 6, two are moveable (wheel and
door) and one is fixed (hill). There is therefore absolutely no evidence for
clustering of moveable and fixed contexts into separate angle domains.

Two minor clusters were observed in Grade 4: one linking linear and
plane slopes (hill and signpost) and one linking two moveable objects
(door and fan). However, the fact that neither cluster persisted into Grade
6 suggests that each of them was strongly influenced by global similarities
(slope or rotation).
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7.3. Factors influencing standard angle interpretation

The results of both the recognition and similarity tasks strongly suggest
that the major factor influencing students’ use of standard angles is the
physical presence or absence of the lines which make up its arms.

In all the situations in the central cluster (scissors, fan, signpost, junc-
tion, tile and wall), the two arms are physically present. They are not quite
so easily identified in the case of the scissors and fan situations (both move
and have thick arms), nor in the signpost.

In the three situations outside the central cluster (door, hill and wheel),
one or both arms of the physical model are not physically present but have
to be constructed by the student. The fact that the standard angle was used
more frequently for the door and hill (where one arm must be constructed)
than the wheel (where both arms must be constructed) supports the view
that the crucial factor accounting for the rate of use of standard angles is
the physical presence of the angle arms.

Quantitative information on the effect of this factor may be obtained
from the data in Tables III and IV. On Task 3 (preferred to Tasks 1 and
2 because of the possibility that the results on Tasks 1 and 2 might be
affected by global recognition of turning or sloping without the use of the
standard angle), 88% of the students used standard angle modelling when
both lines were visible, 55% when only one was visible, and 36% when
no line was visible. Also, the average similarity index between pairs of
situations where both lines are visible was 79%. Where one situation had
two lines visible and the other only one, the average similarity index was
63%. Other combinations of numbers of visible lines gave similar average
similarity indices averaging 46%.

8. IMPLICATIONS

The results of the present study need cautious interpretation for at least
three reasons. Firstly, the findings are undoubtedly influenced by children’s
previous experience, including their school geometry. In particular, the
similarity of junction, tile and wall which Grade 2 students report may be
attributable to their study of polygons – including activities with pattern
blocks (P. Boero, personal communication, 15 July 1998). The develop-
mental pattern we have found cannot therefore be regarded as ‘natural’.
However, since the curriculum followed by the children in the present
study (New South Wales Department of Education, 1989) is in no way
exceptional, we could expect the results to be replicable in other systems.



232 MICHAEL C. MITCHELMORE AND PAUL WHITE

A second limitation lies in the specific physical angle situations used
in the present study. In particular, there was only one situation with no
lines of the standard angle visible and only two with one line. A different
choice of situations may have led to different results. On the other hand,
the results are consistent with our previous findings, and replication with
other situations is relatively easy.

A third limitation lies in the fact that this was a cross-sectional study.
Only a longitudinal study can confirm whether the development of an in-
dividual student’s standard angle domain tends to follow the path inferred
from the averages we have obtained.

Despite these limitations, the results would appear to have some clear
implications for both theory and practice.

8.1. Theoretical implications

Our results show that, during development, several clusters of physical
angle contexts are formed. One cluster (including junction, tile, wall, scis-
sors, fan and signpost) consists of contexts where both angle arms are
visible. Another cluster (including hill and signpost) consists of sloping
contexts. A third cluster (including wheel, door, scissors and fan) consists
of turning and opening contexts. Note that these clusters overlap, and that
none of them includes all angle contexts. Children’s various angle con-
ceptions, as reported by Davey and Pegg (1991), Clements and Battista
(1989) and Matos (1994) and discussed earlier, seem to consist of such
clusters and a few others.

The three clusters we have found correspond to the everyday concepts
of corner, slopeandturn, respectively. They are based on superficial sim-
ilarities (two visible lines, a single sloping line and rotation) and distin-
guished from one another by the number of arms of the abstract angle
which are visible. All three clusters are therefore most likely formed by
empirical rather than reflective abstraction. So, although these clusters re-
late different angle contexts, it does not seem appropriate to call them
abstract angle domains. Instead, we shall call themphysical angle do-
mains.

Our findings strongly suggest that the standard abstract angle domain
develops from the corner physical angle domain. For most children, the
corner domain is formed during elementary school as they come to recog-
nise the two arms in confusing situations such as fan and signpost. But
even at the beginning of elementary school, there are some children who
recognise the standard angle similarity to other contexts – some moveable
and some fixed. The proportion grows steadily until, towards the end of
elementary school, at least half the children can recognise the more obcure



DEVELOPMENT OF ANGLE CONCEPTS 233

similiarities. Such children can be said to have formed a general (standard)
abstract angle concept.

Our results show clearly the significance of constructive activity in the
formation of an abstract angle concept: the fewer arms that are present
in a particular angle context, the more that has to be constructed to bring
it into relation to other angle contexts and, therefore, the more difficult
it is to recognise the standard angle. It is only in exceptional cases that
the relevant line has to be discovered. In most cases, it has to be invented
through conscious mental activity.

The question this poses is, what is the motivation for relating two con-
texts from different physical angle domains? Physical angle situations,
contexts and domains are presumably formed for the sake of economy
of communication in everyday circumstances where the individual exper-
iences, situations or contexts need not be distinguished. It is difficult to
think of everyday circumstances where corners, slopes and turns would be
indistinguishable. They can only be brought into relation by mathematical
activities such as measuring and drawing, activities which simultaneously
lead to other abstract concepts such as point and line, congruence and sim-
ilarity. This is the other constructive aspect of reflective abstraction which
Piaget refers to: the construction of a system of relations between concepts.
A general standard abstract angle concept can only arise as one outcome of
a systematic attempt to investigate our spatial environment mathematically.

8.2. Pedagogical implications

Our findings show that many children form a standard angle concept as
early as Grade 2, but that this concept is likely to be limited to situations
where both arms of the angle are visible (the corner domain). If the concept
is to develop into a general abstract angle concept, children will need more
help than is presently given to identify angles in slope, turn and other
contexts where one or both arms of the angle are not visible. The slope
and turn domains are particularly important for the secondary mathematics
curriculum, the former because of the frequency of angles of inclination in
trigonometrical applications and the latter because it provides a valuable
aid in teaching angle measurement.

Because the logic for the construction of the missing line(s) varies
from context to context, it is probably most effective to treat each slope
or turn context separately. We support the idea of organising teaching
aroundfields of experience(Boero et al., 1995). For example, the teaching
experiment reported by Douek (1998) shows how difficult it can be for
students to recognise any similarity between inclination and more familiar
physical angle situations. Only repeated practical investigation and intense
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reflection can relate the height of the sun to an angle and identify the ho-
rizontal as the missing line. Similar treatment of other ‘difficult’ situations
is probably necessary to incorporate them into the evolving standard angle
domain.

Guided investigations of the similarity between different angle contexts
or domains could be most beneficial. For example, a student who says that
a corner and a hill are similar because “you can fit a corner into the hill”
is already on the way to identifying the second line needed for a standard
angle conceptualisation of slopes. A teacher could use a tilting window to
illustrate corners, slopes and turns, thus illustrating the similarity between
the three domains. Anecdotal evidence (Wilson and Adams, 1992) sug-
gests that teaching designed to help young children link different angle
contexts can be most successful. Indeed, our theory suggests that it isonly
by recognising the similarity between angle situations with and without
both arms visible that the standard angle concept can be generalised to
cover the latter type of situation.

A further place where an emphasis on similarity could prove helpful is
in the teaching of angle measurement in secondary school. This has always
been a difficult topic to teach (Mitchelmore, 1983; Close, 1982). Using a
protractor requires the student to identify two lines on the protractor and
match them to lines on a given angle diagram. This is already problematic;
not only are there several choices for the base line on the protractor, but
the second line has to be imagined. Many teachers and textbooks attempt
to help students find this second line by interpreting the angle diagram as
representing a turn. Given the consistent finding in the present and previous
studies that many students are unable to conceive of turning as a relation
between two lines, it is not surprising that this is ineffective – although
it is more effective if a 360◦ protractor, which more clearly represents a
full turn, is used (Close, 1982). It would seem that the ability to interpret
a turn as a relation between two lines, and hence to recognise the angular
similarity between a turn and a corner, is an essential prerequisite to angle
measurement using a protractor.

A third implication of our study is that verbal definitions of angle are
unlikely to be helpful to young children. It is only when students have
learned to recognise the similarity between many angle contexts that they
are likely to accept a definition which is expressed in terms of a single
context as applicable to all angle contexts. The tendency to define an angle
as “an amount of turning about a point between two lines” would seem
to be particularly inappropriate. If a definition must be used, we would
propose “two lines meeting at a point with an angular relation between
them”. This is, of course, a circular definition. But, to echo Skemp (1986,
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p. 25), the meaning of ‘angular’ – since it relates to a higher-order concept
– cannot be communicated through a definition but only through specific
characteristics such as sharpness, inclination, rotation, slope and direction
which are embedded in the various contextual angle concepts.
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