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ABSTRACT Information about correlated color temperature influencing the scene due to the surrounding 

lighting is vital, especially for circadian lighting and photography. This paper proposes a novel image-based 

machine learning model to predict the correlated color temperature in a scene with the help of the Macbeth 

ColorChecker color rendition chart and a DSLR camera. In the proposed technique, the researcher fixes the 

white balance setting in the camera, thereby forcing color difference in the captured image of the Macbeth 

ColorChecker chart placed in the scene. The Bayesian neural network model considers the color difference 

values of the six spectrally neutral patches of the Macbeth ColorChecker chart as inputs for CCT prediction. 

The color differences are calculated using the CIEDE2000 color difference formula. Fours models with 

white balance settings in the camera as 5000 K, 6500 K, 8000 K, and 10000 K were developed and 

analyzed. It is experimentally found that the correlated color temperature prediction error is less than five 

percent by the proposed model with white balance setting in the DSLR camera as 10000 K. The proposed 

model performed consistently during varied lighting levels and mixed CCT lighting conditions set up with 

LED, incandescent, and fluorescent lamps. 

INDEX TERMS Computer vision, Digital photography, Image color analysis, Neural networks, 

Photometry

I. INTRODUCTION 

Correlated color temperature (CCT) expressed in Kelvin (K) 

indicates the color of the influencing light in a scene. The 

knowledge of the CCT value can be used to estimate the 

appearance of a known object in a scene. In various sectors 

like healthcare, industry, and corporate, circadian lighting is 

gaining importance, which demands color tuning of indoor 

artificial light.[1]–[3] This is achieved by varying CCT and 

intensity of the artificial light in sync with outdoor light 

conditions. In photography, knowledge of light source CCT 

is crucial in determining the color output of the photograph. 

The camera setting 'white balance', which can be set by the 

photographer, is associated with the CCT of light governing 

the scene.[4] Hence, CCT information of the light source in a 

location is vital in human-centric lighting and photography 

applications.  

The use of digital cameras as sensors for photometry has 

gained momentum and importance due to their cost-

effectiveness, measurement speed, and accuracy.[5]–[7] 

Techniques of using digital single-lens reflex (DSLR) camera 

for luminance measurement are well explored and 

established.[8]–[10] This motivates to explore further the 

possibility of using a digital camera to estimate photometric 

parameters like CCT, CRI which are helpful to access the 

qualitative aspects of lighting design. 

The traditional approach of CCT measurement involves 

placing the artificial light source in an integrating sphere that 

houses a spectrometer. Handheld spectrometers are now 

available in the market with which CCT of the influencing 
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light source on the work plane can be obtained. But both 

methods require expensive calibrated instruments. 

Professional photographers use standardized target surfaces 

to ensure color reproduction in the resulting photograph.  

CIEDE2000 has been officially adopted as the color 

difference formula by CIE.[11],[12] Software tools are 

available to compute this color difference caused by the 

camera settings during image capture. The approach of using 

standard white balance cards and ColorChecker charts for 

color rectification is enhanced with the help of post-

processing photo editing software commercially 

available.[13] Though these charts help correct color in the 

resulting image, they do not provide the actual numerical 

value of CCT in the captured scene. 

When a camera is used for photometric measurement, the 

white balance setting plays a significant role in deciding the 

pixel values of the resulting image. The user must carefully 

analyze the lighting condition in the scene and set the white 

balance mode. Keeping auto white balance (AWB) mode on 

the camera may lead to unreliable pixel data for photometry. 

The post-processing image manipulation algorithms of the 

camera also contribute to the pixel values. It must be noted 

that the user has limited control over these image 

manipulation steps. A sensor calibration method is suggested 

by Juan Sebastian Botero et al. [14] to address the above 

issue. Sneha Jain et al. [15] photographically obtained CIE 

XYZ values using HDR images. McCamy's method is used 

to calculate CCT values from CIE XYZ values. The 

percentage error reported by the authors for CCT prediction 

is ±9.54%. The light source in the scene was a tubular 

daylight device. The radiance daylight simulation tool was 

used to get X, Y, Z pixel values from the HDR image.  

Authors of literature [16] proposed a novel model that can 

predict dynamic variations of CRI and CCT due to system 

power variations of phosphor-coated white LED systems. 

Electrical, optical, spectral, thermal, device-specific 

parameters were extracted from steady-state tests only. The 

authors claimed that the model could be used during steady-

state and dynamic situations. The current article proposes a 

machine learning-based approach to predict the actual CCT 

influencing the scene with the help of Xrite ColorChecker 

chart pixel data. 

II. PROPOSED HYPOTHESIS 

This study explores the possibility of establishing a relation 

between the pixel data of the ColorChecker chart image and 

the CCT of light in the scene and proposes a machine 

learning-based model to predict the CCT influencing a given 

location. 

The hypothesis statement is as follows: 'When the white 

balance of a digital camera is manually fixed, and an image 

of the ColorChecker chart is captured, the color difference of 

the spectrally neutral patches of the chart that result after 

shifting the pixel values to D50 white point can be used to 

predict the actual CCT of the surrounding light'. 

Once the white balance value is fixed in the camera, say to 

10000 K, the camera's image processor considers the 

surrounding light condition as cool white (with CCT 10000 

K). The processor then compensates by adding a yellow tint 

to produce an image of the scene under neutral white 

conditions. For example, if the actual lighting condition of 

the scene is warm white, say 3200 K, and the image of the 

scene is captured with a white balance setting as 10000 K, a 

considerable yellow tint appears in the resulting image. The 

image seems warmer than seen by the eye. This condition is 

due to the additional yellow tint compensation made by the 

camera image processor to make the image scene appear 

neutral. The compensation done by the camera for 

neutralizing the image is assumed to be directly proportional 

to the difference between the actual CCT of the scene and the 

set white balance in the camera. This process is not desired 

by a photographer whose aim is usually to capture a scene as 

seen by the human eyes. In the proposed technique, the color 

difference caused by the white balance setting in the resulting 

image from the actual scene is desired for analysis purposes. 

The CIE L*, a*, b* values of patches of x-rite 

ColorChecker chart classic manufactured before and after 

November 2014 are made available by the manufacturer.[17] 

These standard reference values are noted by illuminating the 

chart with a D50 illuminant, that is, standard lighting 

condition with a CCT value of 5003 K. The reference L*, a*, 

b* values of the six neutral patches used during 

experimentation is given in Table 1. 

TABLE 1. Reference CIE L*, a*, b* values using illuminant D50 2-degree 
observer (for charts manufactured before November 2014) 

Color 

patch 
L* a* b* 

White 96.539 -0.425 1.186 

Neutral 8 81.257 -0.638 -0.335 

Neutral 6.5 66.766 -0.734 -0.504 

Neutral 5 50.867 -0.153 -0.27 

Neutral 3.5 35.656 -0.421 -1.231 

Black 20.461 0.079 -0.973 

 

To compute the color difference, it is necessary that 

reference and measured L*, a*, b* values should have the 

same white point.[18] Hence, during the experimentation, 

measured L*, a*, b* value under a lighting condition is 

transformed to L*, a*, b* value with D50 white point. 

The experimental setup to test the proposed hypothesis, 

model development to relate color difference values with 

actual CCT, and results obtained are discussed in the 

following sections. 
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III. EXPERIMENTAL SETUP 

The ColorChecker chart is exposed to a wide range of CCT 

values from warm white to cool white lighting conditions in 

the experimentation. For every lighting condition, the image 

of the ColorChecker chart is captured using a DSLR camera, 

and the actual CCT value is measured using calibrated 

Asensetek lighting passport spectrometer. The actual values 

of CCT measured from the standard meter and the extracted 

RGB values of the spectrally neutral targets in the 

ColorChecker chart are used to develop a supervised 

learning-based neural network model for predicting CCT. 

The workflow of the data building process is shown in Fig. 1. 

 

FIGURE 1. Workflow for developing the model 

A. SURROUNDING CONDITIONS 

For gathering data for the proposed model, a dark room is 

used to ensure consistent lighting conditions. Experimenting 

in the darkroom nullifies the influence of wall surfaces and 

objects on the ColorChecker chart. Also, the ColorChecker 

chart is illuminated only by the desired sources for the 

research. 

In the setup, four commercially available LED battens are 

used. The technical details of the fixture are shown in Table 

2.  

 

 

 

 

 

 

TABLE 2. Light source specification 

Product Smart LED batten 

Input voltage and power 240 V, 50 Hz; 20 W 

Nominal lumens 1880 lm 

CCT Cool white to warm white 

Light control Dimmable via android app 

or voice assistants 

With the help of the android app, the CCT of the four 

lamps can be changed in steps of 1% simultaneously, from 

2800 K to 5800 K, providing 110 unique CCT lighting 

conditions. The LED fixture's spectral power distribution 

(SPD) when set to cool white and warm white conditions is 

shown in Fig. 2. The app also facilitated the fixture's remote 

operation, thereby avoiding the possible error due to light 

reflection from users' clothing. Care is also taken to provide a 

constant voltage supply to the lighting fixtures. 

 
(a) 

 
(b) 

FIGURE 2. (a) SPD of the fixture with cool white light output and 0% 
dimming (b) SPD of fixture with cool white light output and 0% dimming 

The light fixtures are vertically mounted to throw light on 

the ColorChecker chart positioned 1.5 meters away. The 

ColorChecker chart (passport) is clamped to cardboard 

positioned vertically. The calibrated spectrometer is mounted 

above the chart to capture the true CCT due to the light 

fixtures, as shown in Fig. 3. The spectrometer is also 

triggered to capture accurate data remotely through spectrum 
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genius mobile application. The isometric view of the light 

fixture set up with the camera is as shown in Fig. 4. 

 

FIGURE 3. Positioning of ColorChecker chart and spectrometer 

 

FIGURE 4. Isometric view of the light fixture arrangement 

 

The camera is positioned behind the lighting fixture to 

avoid glare on the camera lens. The image of the 

ColorChecker chart is captured by placing it in front of the 

lighting fixture. 

B. CAMERA SETUP 

The camera used for the experiment is a full-frame Nikon 

D750 with a 50 mm Nikkor F/1.8D AF prime lens. In 

addition to standard white balance settings like auto, cloudy, 

shade, the user can manually set the color temperature value 

of the scene in the camera. The motive behind using a prime 

lens is to reduce the possibility of vignetting and distortions 

due to the series of glasses found in telephoto lenses. Table 3 

shows camera settings made during data collection. 

TABLE 3. Additional camera settings for data collection 

ISO 100 

Shooting mode Aperture priority mode 

Aperture value f/3.2 

Active D-Lighting OFF 

Remote control mode ON 

Color space sRGB 

Picture control Neutral 

ISO 100 camera sensor sensitivity leads to less digital 

noise in the resulting image. The sensor is correctly exposed 

(exposure compensation is zero) using aperture priority 

mode. Since the chart surface is parallel to the image sensor, 

the aperture of f/3.2 ensures the correct focus of the 

ColorChecker chart patches in the image. Post-processing 

settings like 'active D-lighting' and 'picture control' are 

minimized. The camera is mounted on a tripod. The center of 

the lens and ColorChecker chart are in the same line. The 

camera flash is kept OFF, and the shutter button is remotely 

triggered using a wireless remote. 

C. IMAGE DATA EXTRACTION AND MODEL 
DEVELOPMENT 

The proposed model should work in any lighting conditions 

caused by different types of light sources (LED, 

incandescent, fluorescent). Four models are developed using 

images captured with white balance as 5000 K, 6500 K, 8000 

K, and 10000 K. For each white balance setting, around 110 

images are analyzed. The white balance value that gives the 

best performing model has to be fixed as the white balance 

setting during the deployment of the proposed setup. In 

sections D, E, and F, the procedure followed to extract data 

from images, the statistical significance analysis, and model 

development are discussed. 

D. DATA EXTRACTION FROM IMAGES 

Data extraction from images is a laborious process without 

proper image processing tools. The steps to obtain the 

CIEDE2000 color difference value for each of the neutral 

patches of the ColorChecker chart are shown in Fig. 5. 

 

FIGURE 5. Stages to calculate the color difference of a neutral color 
patch 

 

An application is developed using MATLAB App 

Designer to simplify data collection and tabulation. Fig. 6 

shows the opening page of the application when the user 

chooses an image to analyze using the 'Browse Image' 

button. 
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FIGURE 6. Opening page of the developed GUI 

 

The application is used in the following steps: 

Step 1: Browse and select the image to be analyzed  

Once the user chooses the image to analyze using the 

'Browse Image' button, camera aperture, shutter speed, ISO 

settings used to capture the scene, and the file name are 

displayed at the bottom of the application screen to facilitate 

the user. The EXIF data of the image file using image 

processing toolbox commands is used for this purpose. The 

user can also enter the true CCT and CRI values noted from 

the calibrated sensor during the capture of the scene. 

Step 2: Color checker chart identification 

The user must manually specify the 'registration points' of the 

ColorChecker chart, as shown in Fig. 7. This is done by 

moving the four blue points (labeled as 1. Black point, 2. 

White point, 3. Brown point, and 4. Bluish-green point) to 

their marker position available in the chart. Once this is done, 

the 'Marker points updated' button must be pressed. 

 

 

FIGURE 7. Specifying the ColorChecker chart registration points 

 

On the press of the 'Marker points updated' button in the 

designed app, the following operations occur: 

1) All the patches of the ColorChecker chart are identified, 

and RGB pixel values of the patches are measured. This 

step of chart recognition can be verified, as shown in 

Fig. 8. 

2) Color differences based on the CIEDE2000 formula and 

CIE94 formula are computed and tabulated 

 

FIGURE 8. Identification of ColorChecker chart 

 

The above steps occur due to 'ColorChecker' (function of 

MATLAB available since 2020b version), 'measureColor' 

(measures RGB values from the chart patches), 'rgb2lab' (to 

covert RGB color space to LAB with D50 as white point), 

'imcolordiff' (to calculate color difference with CIEDE2000 

formula). Depending upon the manufactured date of the 

ColorChecker chart (before/after November 2014), the 

reference values used in the 'measureColor' function are to be 

modified. 

Step 3: Data saving 

After step 2, the application user interface appears, as shown 

in Fig. 9. 
 

 

To keep track of number of images analysed 

To export data to an excel file 

 
 
FIGURE 9. User interface after the chart is analyzed 

 

'Export Data' button is enabled to export the following data to 

an excel file: 

• RBG pixel values of ColorChecker chart patches 

• LAB values of ColorChecker chart patches 

• Image file name and camera exposure settings 

• CIEDE2000 color difference value of all the 

ColorChecker chart patches 

• True CCT and CRI value 
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The excel file can be accessed from the 'current folder' set in 

MATLAB. After the data is exported, the user can continue 

to analyze another image. A tracker is maintained to inform 

the user about the number of image files analyzed. 

E. STATISTICAL ANALYSIS OF THE DATA 

The data of color difference measured for six neutral patches 

and actual CCT condition of the scene is recorded and 

tabulated for each white balance setting on the camera (5000 

K, 6500 K, 8000 K, and 10000 K). Statistical tests are carried 

out to check if a statistical correlation between the tabulated 

color difference values of the neutral patches and the actual 

CCT value of the scene exists.   

Table 4 shows the outcome of Pearson's correlation test for 

the color difference vs. actual CCT data collected 

corresponding to a white balance setting of 10000 K.  A 

negative 'r' value close to 1 indicates good inverse relation 

between the two variables supporting the possibility of a 

mathematical model for predicting the CCT of the scene. 

In addition to the correlation test, z-score values were used 

to detect outliers. Measurement with z-score above and 

below 2.56 and -2.56, respectively, are considered outliers. 

F. TRAINING A BAYESIAN NEURAL NETWORK 

The CIE2000 color difference data of the six neutral patches 

populated is used for training the Bayesian neural network. 

Four neural network models corresponding to 5000 K, 6500 

K, 8000 K, and 10000 K white balance settings are 

developed. The network structure is as shown in Fig. 10. 

75% of the data is used for training, and the remaining 25% 

is used for testing purposes. 

 

 

FIGURE 10. Bayesian neural network model structure 

TABLE 1. Statistical analysis of the correlation between neutral patches 
and actual CCT value using Pearson's coefficient 

 

 

 

 

IV. RESULTS AND DISCUSSION 

This section discusses the results obtained from the Bayesian 

neural network-based model for four different manual white 

balance settings in the camera. 

Fig. 11-14 shows the error histograms, training, and testing 

regression plots for four different white balance settings in 

the camera, i.e., 5000 K, 6500 K, 8000 K, and 10000 K. 

Table 5 provides the Mean Square Error (MSE) of the CCT 

prediction models during training and testing. When the 

white balance is set to 5000 K, it is observed that the model 

is overfitting for the training data hence leading to poor 

generalization. At 6500 K white balance setting in the 

camera, the performance improves. But for cases with actual 

CCT values close to 6500 K, the model prediction errors lead 

to poor testing MSE. 

It must be noted that most of the artificial light sources 

operate in the 2500 K to 6500 K range. The model's 

prediction performance with a white balance setting in the 

camera at 8000 K and 10000 K is very encouraging.  

The model's mean square error (MSE) with a white 

balance of 8000 K is better than 10000 K. But prediction 

instances near-zero error line is more from the model 

developed with 10000 K white balance. Also, MSE from the 

10000 K white balance model testing samples suggests 

superior performance than the other model in question. 

TABLE 5. Mean Square Error (MSE) of the CCT prediction models during 
training and testing 

Camera 

white 

balance 

setting 

(ºK) 

Training data Testing data 

Sample 

Size 
MSE 

Sample 

Size 
MSE 

5000 85 78.02 30 38350.97 

6500 84 993.53 30 2463.88 

8000 75 125.38 20 119.63 

10000 86 273.58 23 137.56 

 

 

 

 

 

Statistical 

parameter 

Neutral patches of the ColorChecker chart 

White Neutral 8 Neutral 6.5 Neutral 5 Neutral 3.5 Black 

r -0.9428 -0.9817 -0.9969 -0.9888 -0.9899 -0.9942 

N 120 120 120 120 120 120 

t-statistic 30.71 55.95 138.12 72.05 75.82 100.45 

DF 118 118 118 118 118 118 

p-value 4.11E-58 8.41E-87 2.51E-132 2.15E-99 5.98E-102 3.80E-116 
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FIGURE 11. BNN based ML model performance at 5000 K camera white 
balance setting (a) Error Histogram (b) Regression for training data (c) 
Regression for test data 

 

FIGURE 12. BNN based ML model performance at 6500 K camera white 
balance setting (a) Error Histogram (b) Regression for training data (c) 
Regression for test data 

 

FIGURE 13. BNN based ML model performance at 8000 K camera white 
balance setting (a) Error Histogram (b) Regression for training data (c) 
Regression for test data 

 

FIGURE 14. BNN based ML model performance at 10000 K camera white 
balance setting (a) Error Histogram (b) Regression for training data (c) 
Regression for test data 
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The spectral power distribution of traditional light sources 

like incandescent bulbs and fluorescent lamps significantly 

differs from LED light sources. The model has a scope of 

bias since it was developed from an LED smart batten 

measurement data. This problem is addressed with additional 

light measurements using traditional sources and a different 

LED fixture in the darkroom, whose SPDs are shown in Fig. 

15. The 10000 K white balance-based model is re-trained 

with these additional measurements. These added 

measurements ensured a versatile model for CCT prediction. 
 

 

(a) 

 

(b) 

 

(c) 
 

(d) 
 

 
FIGURE 15. SPD of the (a) incandescent bulb (b) fluorescent lamp, (c) & 
(d) LED fixture when operated at cool white and warm white light output, 
respectively, used to re-train the 10000 K white balance-based model 

 

The robustness of the model is evaluated in two ways. 

One, by creating lighting scenes with LED lamps operating 

at different CCT values in a given scene. The model’s 

performance is tabulated in Table 6. Two, measurements 

were carried out under different light sources and light levels. 

The results are shown in Table 7. The ColorChecker chart 

images were taken with the camera's white balance setting set 

to 10000 K.  

 
TABLE 6. CCT prediction via Bayesian neural network (BNN) in mixed 
lighting condition with camera white balance set at 10000 K 

 

The proposed model gave steady performance even during 

dimming conditions, as shown in Table 7.  

TABLE 7. CCT prediction with different light sources and lighting levels 

Light 

source 

Lighting 

level 

(lux) 

Actual 

CCT 

(ºK) 

Predicted 

CCT 

(ºK) 

|% 

Error| 

Sunlight 18868 4017 3858 3.96 

90 3347 3452 3.14 

Incandescent 

bulb 

837 2634 2672 1.44 

263 2623 2725 3.89 

Fluorescent 

tube light 

400 5783 6005 3.84 

63 5885 6104 3.72 

New LED 

fixture 

131 5342 5515 3.24 

419 3474 2510 1.04 

126 2895 2909 0.48 

V. CONCLUSION 

A novel technique to predict the correlated color temperature 

in a scene due to the lighting condition of the surrounding 

using the camera as the sole sensor is proposed in this paper. 

Macbeth ColorChecker chart is placed in the scene, and the 

image is captured using a DSLR camera. The pixel data of 

the six spectrally neutral patches of the ColorChecker chart is 

used to compute color difference based on the CIEDE2000 

formula. The bayesian neural network-based model predicts 

the CCT value using the color difference values of six neutral 

patches as inputs.  

The authors would like to emphasize that the white 

balance setting in the camera plays a crucial role when the 

image is used for photometric analysis. The resulting pixel 

values of the image due to incorrect white balance set 

automatically or manually will lead to erroneous 

measurements. For the proposed model, it is experimentally 

found that color difference values obtained with white 

balance setting in the camera as 10000 K provided the best fit 

than that of 5000 K, 6500 K, and 8000 K. The correlated 

color temperature prediction error is less than 5%, with a 

white balance setting of 10000 K. The prediction error was 

within the limit even when the scene was illuminated with 

different CCT values sources. The model's performance is 

consistent for a wide range of illuminance levels. With the 

Lamp 1 (ºK) Lamp 2 (ºK) Lamp 3 (ºK) 
Lamp 4 

(ºK) 

Actual effective 

CCT (ºK) 

Predicted effective 

CCT (ºK) 
| % Error | 

~2800 ~2800 ~5700 ~5700 4033 4061 0.69 

~4200 ~4200 ~5700 ~5700 4790 4793 0.06 

~5000 ~5000 ~5700 ~5700 5323 5336 0.24 

~2800 ~3500 ~4200 ~5000 3667 3697 0.82 

~2800 ~4200 ~4200 ~5700 3992 4040 1.20 

~5700 ~5000 ~4200 ~3500 4274 4283 0.21 

~5700 ~5700 ~3500 ~3500 4275 4494 0.44 

~3500 ~5700 ~5700 ~3500 4552 4533 0.42 

~5000 ~3500 ~3500 ~5700 4023 4064 1.02 
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help of computation tools, the discussed technique requires 

only a single scene image with a ColorChecker chart. The 

proposed technique successfully addresses the challenge of 

CCT measurement in a complex lighting scene.  

 A DSLR camera with a fixed focal length lens (prime 

lens) is employed during the study. The authors believe that 

the proposed technique can be carried out using calibrated 

mobile phone cameras, thereby reducing the overall cost of 

the system. The accuracy of the model can be further 

improved with more measurements and re-training. Reducing 

the complexity of the model by decreasing the number of 

inputs to the neural network can be explored. The RAW 

image information might further enhance data quality. 

REFERENCES 
[1] R. Soler and E. Voss, "Biologically Relevant Lighting: 

An Industry Perspective," Frontiers in Neuroscience, 

vol. 15, 2021, doi: 10.3389/fnins.2021.637221. 
[2] C. Papatsimpa and J. P. Linnartz, "Personalized office 

lighting for circadian health and improved sleep," 

Sensors (Switzerland), vol. 20, no. 16, 2020, doi: 

10.3390/s20164569. 
[3] M. C. Giménez et al., "Patient room lighting influences 

on sleep, appraisal and mood in hospitalized people," 

Journal of Sleep Research, vol. 26, no. 2, 2017, doi: 
10.1111/jsr.12470. 

[4] Y. Zhang, Y. Gao, Y. He, Y. Shi, and K. Liang, 
"Research on the Color Temperature & White Balance 

for Multimedia Sensor," in Procedia Computer Science, 

2017, vol. 107, pp. 878–884. doi: 
10.1016/j.procs.2017.03.187. 

[5] R. M. Poling and H. Cai, "Calculating luminous flux 

radiated to a camera lens via high dynamic range 

photogrammetry," Lighting Research and Technology, 

vol. 53, no. 2, 2021, doi: 10.1177/1477153520921442. 

[6] S. I. Yun and K. S. Kim, "Sky Luminance measurements 
using CCD camera and comparisons with calculation 

models for predicting indoor illuminance," 

Sustainability (Switzerland), vol. 10, no. 5, 2018, doi: 
10.3390/su10051556. 

[7] A. Zatari, G. Dodds, K. McMenemy, and R. Robinson, 

"Glare, luminance, and illuminance measurements of 
road lighting using vehicle mounted CCD cameras," 

LEUKOS - Journal of Illuminating Engineering Society 

of North America, vol. 1, no. 2, 2004, doi: 
10.1582/LEUKOS.2004.01.02.005. 

[8] M. N. Inanici, "Evaluation of high dynamic range 

photography as a luminance data acquisition system," 
Lighting Research and Technology, vol. 38, no. 2, 2006, 

doi: 10.1191/1365782806li164oa. 

[9] H. Cai, "Luminance gradient for evaluating lighting," 

Lighting Research and Technology, vol. 48, no. 2, 2016, 

doi: 10.1177/1477153513512501. 

[10] T. S. Sudheer Kumar, C. P. Kurian, K. Shama, and K. R. 
Shailesh, "High Dynamic Imaging for Photometry and 

Graphic Arts Evaluation," Journal of The Institution of 

Engineers (India): Series B, vol. 99, no. 4, 2018, doi: 
10.1007/s40031-018-0327-7. 

[11] ISO and CIE, “Colorimetry -- Part 6: CIEDE2000 

colour-difference formula,” ISO/CIE 11664-6:2014(E) 
(ISO/CIE, 2014), 2014. 

[12] M. R. Luo, G. Cui, and B. Rigg, "The development of 

the CIE 2000 colour-difference formula: CIEDE2000," 
Color Research and Application, vol. 26, no. 5, 2001, 

doi: 10.1002/col.1049. 

[13] xrite.com and pentone.com, "Complete Guide to Color 
Management," 2009. 

https://xritephoto.com/documents/literature/EN/L11-

144_CompleteGuideToColorManagement_EN.pdf 

[14] J. S. B. Valencia, F. E. L. Giraldo, and J. F. V. Bonilla, 
"Calibration method for Correlated Color Temperature 

(CCT) measurement using RGB color sensors," 2013. 

doi: 10.1109/STSIVA.2013.6644921. 
[15] S. Jain, L. Fernandes, C. Regnier, and V. Garg, 

"Circadian lighting in a space daylit by a tubular 

daylight device," in IOP Conference Series: Earth and 
Environmental Science, 2019, vol. 238, no. 1. doi: 

10.1088/1755-1315/238/1/012030. 

[16] H. Chen and S. Y. Hui, "Dynamic prediction of 
correlated color temperature and color rendering index 

of phosphor-coated white light-emitting diodes," IEEE 

Transactions on Industrial Electronics, vol. 61, no. 2, 
2014, doi: 10.1109/TIE.2013.2251736. 

[17] "Colorimetric values for ColorChecker Family of 

Targets," Jan. 22, 2010. 
https://xritephoto.com/ph_product_overview.aspx?ID=8

20&Action=support&SupportID=5159 

[18] A. Gilchrist and J. Nobbs, "Colorimetry, theory," in 
Encyclopedia of Spectroscopy and Spectrometry, 2016. 

doi: 10.1016/B978-0-12-803224-4.00124-2. 

VEDAVYASA KAMATH received his M. Tech. 

degree in Energy Management, Lighting & 
Auditing from the Manipal Academy of Higher 

Education, Manipal, Karnataka, India in 2013. He 

is currently a faculty and research scholar at 
Manipal Institute of Technology, MAHE, 

Manipal, India. His research interests include 

lighting science, machine learning, building 
automation. 

He has ten years of teaching experience. He is a 

life member of the professional body, Indian Society of Lighting 
Engineers. 

 

CIJI PEARL KURIAN (SM' -13) was born in 

India in 1964. She received the B. Tech in 

Electrical & Electronics Engineering from 
Calicut University, Kerala in 1986, M.Tech in 

Lighting Science and engineering from 

Mangalore University, Karnataka in 1994, and a 
Ph.D. degree in Electrical engineering from 

Manipal University, Manipal, India, in 2007.  

Since 1987 she has been teaching with the 
Electrical and Electronics Engineering 

Department, Manipal Institute of Technology, 

Manipal, A constituent institution of Manipal Academy of Higher 
Education, India. Her research interests include lighting controls- 

technology and applications. She is the editor of the Manipal Journal of 

Science and Technology (MJST). 
Dr. Kurian is a Fellow of the Institution of Engineers India and a life 

member of professional bodies. Indian Society of Lighting Engineers, 

Indian Society for Technical Education, Systems Society of India.  
 

 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3177195, IEEE Access

 

VOLUME XX, 2017 9 

SUPRABHA PADIYAR U. received her M. 

Tech. degree in Power Electronics, Drives & 

Control from the Manipal Academy of Higher 

Education, Manipal, Karnataka, India in 2014. 
She is currently faculty at Manipal Institute of 

Technology, MAHE, Manipal, India, and a 

research scholar at National Institute of 
Technology, Suratkal, Karnataka, India. Her 

research interests include power electronics, 

drives, electric vehicles, battery management 
systems. 

 

 

 

 


