
UC Berkeley
Building Efficiency and Sustainability in the Tropics
(SinBerBEST)

Title
Development of Building Automation and Control Systems

Permalink
https://escholarship.org/uc/item/30g8h7mq

Journal
IEEE Design & Test of Computers, 29(4)

ISSN
0740-7475

Authors
Yang, Yang
Zhu, Qi
Maasoumy, Mehdi
et al.

Publication Date
2012-08-01

DOI
10.1109/MDT.2012.2201130

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/30g8h7mq
https://escholarship.org/uc/item/30g8h7mq#author
https://escholarship.org
http://www.cdlib.org/

Development of
Building Automation
and Control Systems
Yang Yang, Qi Zhu, Mehdi Maasoumy, and

Alberto Sangiovanni-Vincentelli

University of California

h THE BUILDING STOCK in the United States

accounts for 39% of total energy consumption and

68% of electricity consumption. Limits on carbon

emissions are driving new regulations that will

require buildings to be energy efficient according

to standards that are likely to be more stringent than

the ASHRAE 90.1. The design of low energy green

buildingsVzero energy in the ideal caseVis very

challenging. There are examples of zero energy

buildings today, however, they are the results of

ad-hoc designs that are not easy to generalize.

The design methodology used today for large

buildings is top-down. Different subsystems are

designed in isolation by domain experts following

design documents flown down after the bid process.

This methodology is not suitable for low energy

buildings that require interaction among architects,

mechanical engineers and control engineers. Con-

sider for instance adopting low energy solutions

such as natural ventilation and active facade. In this

case, architectural design

(e.g., building orientation),

the design of the mechani-

cal equipments of the

HVAC system and the de-

sign of the control algo-

rithms cannot be done in

isolation. In this new con-

text, the design of the build-

ing automation system

(including the embedded processors, the networks

supporting the building operations, and the software

running on them) is nontrivial. Control algorithms

become multi-input, multi-output, hybrid, and pre-

dictive, as opposed to single-input single-output

controllers coordinated by simple switching condi-

tions as of today. Moreover, several subsystems such

as HVAC, lighting, fire and security, and vertical

transportation will interact through the network to

allow information sharing.

To address these challenges, we propose a design

flow for building automation systems that focuses on

two main aspectsVheterogeneity and automation.

The flow bridges the gap between a desirable design

entry pointVat a high abstraction level using model-

based design tools such as Simulink [4] and

Modelica [3]Vand the available back-end tools.

The flow enables the integration of heterogeneous

input models from different high-level languages,

allowing the interaction between domain experts. It

also automatically optimizes the implementation of

the control algorithms on a distributed platform by

selecting computation and communication re-

sources, and by performing software synthesis while

Editors’ notes:
This article addresses the challenge of realizing the building automation and
control system using a distributed network of embedded computers. A
specification methodology and design space exploration framework are
proposed to raise the level of abstraction at which building control systems
are designed, to reduce design effort, and to lower implementation cost.

VYuvraj Agarwal, University of California, and
Anand Raghunathan, Purdue University

Digital Object Identifier 10.1109/MDT.2012.2201130

Date of publication: 24 May 2012; date of current version:

05 October 2012.

meeting the specification and reducing the commu-

nication load.

BAC design flow
The proposed design flow consists of a front-end

and a back-end, as shown in Figure 1. The front-end

is used to model the system including the control

algorithms and the behavior of the environment.

The back-end includes a set of tools that, given the

specification of the control algorithms and a set of

available resources, automatically refines the speci-

fication into an optimal distributed implementation.

The front-end and the back-end exchange models

using an intermediate format (IF). The introduction

of this intermediate layer is essential for the integ-

ration of heterogeneous inputs, the leverage of back-

end tools, and automatic design space exploration.

It enables building a design flow that is general with

respect to the user input (e.g., Simulink and

Modelica), and to the output implementation code

(e.g., C and EIKON [2]). Using an IF, pieces of the

input specification expressed in different languages

can be composed. This feature will hopefully foster

collaboration among experts in different disciplines

by allowing them exchange models and evaluate

designs taking into account the interactions with

other subsystems. IF also allows targeting of multiple

implementation platforms. Building control system

vendors usually provide architecture-specific lan-

guages for programming their platforms, along with

tool chains for simulation, analysis, debugging, and

code generation. These tools can be leveraged by

translating the IF into vendor specific languages. We

define a denotational IF based on the Metropolis

Meta Model semantics [9] which can be further

translated into an executable model in the METRO-

POLISII framework and simulated.

In Step 1 of our design flow, input models are

translated into the IF representation. As a proof of

concept, we developed a translator based on the

Figure 1. Design flow for building automation and control systems.

ANother Tool for Language Recognition (ANTLR)

framework [1] to automatically translate Modelica

models into IF. The translation process may become

very involved given the expressiveness of model-

based languages. Our approach for dealing with the

complexity of this step is to define a library of pri-

mitives at the intermediate level to capture a large

class of building control algorithms. This library is

then mirrored by equivalent libraries defined in the

source languages to facilitate translation.

In Step 2, the back-end automatically maps the

functional model described in the IF to the archi-

tectural model that captures the implementation

platform. The part of the functional model to be

mapped is a control algorithm. The architecture

platform captures computation resources (e.g., ter-

minal control units, embedded processors, and

workstations), communication resources (e.g.,

wired buses and wireless links), sensors (e.g., tem-

perature sensors and CCTV video cameras) and ac-

tuators (e.g., valves and switches). During mapping,

the functional model in IF is abstracted into the

composition of functional tasks and messages. The

architecture platform is described in the form of a

library of available architectural components that

are characterized by their functionality, cost, perfor-

mance, etc. The mapping problem is cast into an

optimization problem of finding the best mapping

from the tasks and messages in the functional model

to the components in the architectural model, with

respect to a set of objective functions and design

constraints (including physical constraints).

Step 3 of the design flow conducts software syn-

thesis starting from the mapped design. The synthe-

sis process includes code generation for individual

processors in the distributed system, and communi-

cation interface synthesis for process communica-

tion. During code generation, we translate the

functional tasks mapped onto each processor to

either generic C code or vendor specific languages.

As a demonstration, we developed a translator for

translating IF into the EIKON language based on

ANTLR. The synthesis of communication interfaces

is essential to ensure the correctness of the system

when the architecture platform does not directly

support the semantics of the functional model. For

instance, a synchronous Simulink model is not na-

turally supported by an asynchronous architecture

that is common in building control systems. Our

approach includes two main aspects: interface

synthesis to guarantee stream equivalence on dis-

tributed embedded systems while reducing com-

munication load, and timing constraints to preserve

the semantics with consideration of the interaction

with physical environment.

Details of the three steps are introduced as follows.

Translation into intermediate format
In Step 1 of the proposed design flow, models

capturing the specification of the control algorithms

and of the environment are translated into an IF,

which is defined based on the Metropolis Meta

Model semantics and the nomenclature introduced

in [9] to facilitate mapping and code generation. In

particular, processes (also called actors) are the

basic entities for specification. They are categorized

into continuous processes and discrete processes.

Each process is defined by a set of parameters, ports

and equations. Parameters are set for configuring the

process. Ports constitute the communication inter-

face of the process and can be either input or output

port. Equations capture the behavior of the process

in the form of an input–output function. Multiple

processes may be connected through channels to

form a netlist at the higher level and eventually build

the entire system. During execution, the equations in

the processes are executed according to an order

determined by an equation manager (EM) that is lo-

cal to the process. The set of processes in the system

is scheduled by an equation resolve manager (ERM).

The translation process may be done manually or

through automatic translators. We developed a trans-

lator for Modelica based on the ANTLR framework, a

parser generator that uses LLð�Þ parsing. We chose

ANTLR because it provides comprehensive support

and consistent syntax for specifying lexers, parsers and

tree walkers, and supports generating code in com-

mon languages such as C, Java, Ada, and Objective-C.

As shown in Figure 2, we define theModelica grammar

and the associated actions for IF generation in ANTLR.

Based on such definition, ANTLR will generate a lexer,

a parser, and tree walkers for parsing the Modelica

language (currently without full support of inheritance

and algorithm) and generating IF.

To enable fast translations, we define a domain

specific IF library for HVAC control systems in build-

ings, and we export the library to different speci-

fication languages. We reviewed 71 HVAC-related

component models in the GPL language from

Johnson Controls, 70 in Automated Logic EIKON

language, 42 in Honeywell Spyder, and 59 in the

HVAC library defined by the Lawrence Berkeley Na-

tional Laboratory. Based on this information, we

defined a set of basic components used in HVAC

control systems and the corresponding processes in

the IF, including mathematical and logic functions,

signal processing functions, time functions, and

psychrometric functions. More details of the library,

including an example of the PID (proportional-

integral-derivative) component are presented in [11].

The IF first generated by ANTLR is denotational.

We may further translate it to an executable IF for

simulation-based model validation and exploration.

In particular, we choose the METROPOLISII frame-

work [5] for modeling and simulating the execut-

able IF, since its semantics also derives from the

Metropolis Meta Model and it provides strong sup-

port on modeling heterogeneous systems. The trans-

lation from denotational IF to METROPOLISII model

is straightforward because of the similarity of their

semantics. Processes in IF are translated to com-

ponents in METROPOLISII, with equations translated

to constraints. The ERM and EMs in IF are translated

to constraint solvers and schedulers, which govern

the resolution and scheduling of constraints in a

three-phase execution semantics. Below is a code

snippet of the PID component described as an

executable IF in METROPOLISII.

M2_COMPONENT(PID) {

m2_porthi_nb_var_readi setPointPort;
m2_porthi_nb_var_readi procVarPort;
m2_porthi_nb_var_writei outPort;
double Kp, Ki, Kd, Kc, upper, lower;

double err, sum, out, outDiff;

.

intg� intg1; // m2_equation type

deri� deri1; // m2_equation type

void exec() {

setPoint¼ setPointPort�>read_var();
procVar ¼ procVarPort�>read_var();
err ¼ setPoint � procVar;

sum ¼ Kp � err
þ Ki � intg1�>calculate(step, err)

þ Kd � deri1�>calculate(step, err)

þ Kc � outDiff;
// update output

if (sum > upper)

.

outDiff ¼ out � sum;

outPort�>write_var(out);
}

};

Design space exploration
in mapping

In Step 2 of the design flow,

mapping is conducted to ex-

plore the design space, includ-

ing the selection of computation

resources, the allocation of con-

trol functions onto processors,

and the synthesis of commu-

nication network. Note that

traditionally, the mapping step

focuses on bridging a given

functional model and a given

architectural model. In this

work, we extend its scope to

include the exploration of the

computation and communica-

tion resources in the architec-

ture platform. We propose a

mapping flow as shown in

Figure 3. The inputs include a

functional model that is derivedFigure 2. ANTLR-based Modelica to IF translation.

48

from the IF, an architecture plat-

form that captures the resources

for realizing the functional spec-

ification, and a set of design

constraints and objectives.

The functional model repre-

sented in IF includes processes

and channels. Through automa-

tic extraction based on ANTLR,

processes and channels are ab-

stracted to tasks and messages,

by hiding their internal imple-

mentation while computing

cost and performance metrics

of interest. Formally, the func-

tional model is represented as a

directed graph F ¼ fT ;Mg,
where T is the set of tasks and

M is the set of messages that are

communicated between tasks.

The architecture platform is

defined as a library of archi-

t ec tura l components A ¼
fAk ¼ ðPk; LkÞ : Pk � P; Lk � Lg,
where a component Ak is the

composition of a set of basic

computation components Pk

through a set of basic communication components

Lk. The set P contains all available basic computa-

tion components such as sensors, actuators and

processors. Similarly, the set L contains all basic

communication components such as wired or wire-

less communication links, routers, and repeaters.

Note that P and L may contain virtual components,

which are place holders that can be refined to real

components in later design stages.

Conceptually, there are three steps in our map-

ping flow. In the first step, a set of computation

components PS is selected from the architecture

platform and connected by virtual communication

components LS . This constitutes an architectural

model AS onto which the functional model can be

mapped. In the second step, the tasks in the func-

tional model are allocated to the computation com-

ponents in the architectural model, and if needed,

the priorities of the tasks are assigned. The messages

are temporarily allocated to the virtual communica-

tion components. The output is the mapped model

GC ¼ ðVC ; ECÞ, where VC denotes the computation

components with tasks allocated onto them and EC

denotes the message-allocated virtual communica-

tion components. Finally, in the third step, the virtual

communication components are synthesized to a

communication network, in which the communica-

tion between two computation components may

flow through multiple links, routers and repeaters,

and each link may be shared across multiple end-to-

end communications. The output GI is the eventual

implementation of the functional model on the ar-

chitecture platform.

The mapping flow above is genericVwhen spe-

cific design requirements and platforms are given,

each of the three steps in the flow can be formulated

accordingly and solved by customized algorithms.

In our work, we target a typical building design case:

given the functional model F , the architecture plat-

form A, and a set of design constraints including

building floorplan, candidate locations of sensors,

actuators, embedded processors and routers, end-

to-end latency deadlines on selected paths, utiliza-

tion, and memory constraints on embedded

processors, we explore the design space that consists

of the selection of computation components,

Figure 3. Mapping flow.

49

allocation of tasks to embedded processors, assign-

ment of task priorities, and communication net-

work, to minimize the system cost, which includes

the prices of the components and the installation

cost. For this specific problem, we combine the first

and second step in the mapping flow to explore the

design space in an integrated mixed integer linear

programming (MILP) formulation, and then perform

communication network synthesis using the Com-

munication Synthesis Infrastructure (COSI) tool [8].

Details of the MILP formulation and COSI synthesis

are presented in [11].

Software synthesis
Step 3 in our design flow is software synthesis,

which includes code generation for individual func-

tional tasks and the synthesis of communication in-

terfaces between tasks.

Code generation translates the processes (corre-

sponding to functional tasks) in IF representation to

code in target languages. Based on the allocation

result from mapping, the target language may be

generic C code or vendor specific representation for

the mapped embedded processor. Translating into

vendor specific languages enables leveraging ven-

dor tools for analysis, debugging and simulation. As

a proof of concept, we developed a translator in

ANTLR for translating IF to EIKON, a language for

modeling BAC systems developed by Automated

Logic. Similarly as shown in Figure 2, we define the IF

grammar in ANTLR, along with the associated ac-

tions for EIKON generation. ANTLR then generates a

translator that includes a lexer, a parser and tree

walkers. The lexer and parser parse the designs

described in IF to an abstract syntax tree (AST), from

which the tree walkers generate the target EIKON

description. EIKON provides a library of microblocks

(control functions) for developing various control

sequences. A process will be translated into the mi-

croblock that implements the same functionality. In

the case that a process does not have corresponding

microblock in the EIKON library, the translator imple-

ments its functionality in OCL (Operator’s Control

Language) defined in EIKON. OCL provides a num-

ber of mathematical and logical functions in the

syntax. For the set of equations in a process, the

translator constructs an OCL block by mapping

the equations to a set of functions provided in OCL.

Communication interface synthesis preserves the

semantics of the input functional model when the

architecture platform does not directly support it. A

typical case in BAC is that the functional model is

synchronous, which eases the design by orthogonal-

izing functionality and timing, while the architecture

platform is distributed and asynchronous. To address

this problem, we propose an approach by extending

the work from [10] and [6]. In [10], a semantic pre-

servation method is used to implement synchronous

functional models on a Loosely Time Triggered Ar-

chitecture (LTTA), where the computation compo-

nents are triggered periodically by local clocks that

are not synchronized but deviate from each other by

bounded drift and jitter. This method guarantees the

data value stream on any communication link in

LTTA is the same as in the synchronous model, based

on the transformation through an intermediate layer

called Finite FIFO Platform (FFP). An FFP model

consists of a set of sequential processes commu-

nicating via bounded FIFO queues. The key to gua-

rantee stream equivalence is to enforce that a

process skips a round when any of its input queues

is empty or any of its output queues is full.

In the building automation domain, the architec-

tures typically follow the same LTTA paradigm,

where periodic sampling from the sensors and

discrete-time control are common for applications

such as HVAC. Therefore, we leverage the approach

from [10] in our communication interface synthesis,

and extend it in two aspectsVone is to reduce the

communication load in original approach by remov-

ing redundant data transferring for Triggered Syn-

chronous Block Diagrams (SBDs), the other is to

guarantee the stream equivalence in open systems

(i.e., taking into account the physical environment)

by enforcing additional timing constraints.

The first extension focuses on optimizing com-

munication for Triggered SBDs. At the heart of many

synchronous languages such as Simulink, SBDs are

usually chosen as the model of computation. The

fundamental component in an SBD is a block that

can be modeled as a state machine with inputs and

outputs à la Mealy. Outputs of blocks are connected

to inputs of other blocks to form a diagram. Pro-

vided the diagram has no cyclic dependencies, all

blocks ‘‘fire’’ in a certain order within a synchronous

step, so that the external outputs of the diagram

are computed by propagating the external inputs

throughout the diagram. Triggered SBDs are an ex-

tension of SBDs where the firing of a block may be

controlled by a Boolean signal called a trigger. At a

50

given synchronous step, if the trigger is true, the

block fires normally; otherwise, the block stutters,

for example, keeps its local state and local outputs

unchanged until the next step. Triggered SBDs are

useful for modeling multirate systems, where differ-

ent parts of the system operate at different time

scales. The triggering patterns need not be periodic.

A trigger signal for one block may be produced by

another block or an external input of the diagram.

A special case of Triggered SBDs is Timed SBDs,

where triggering patterns are known statically (‘‘at

compile time’’).

The semantic preservation problem studied in

[10] applies to ‘‘pure’’ SBDs, where all blocks fire at

every synchronous step. Its method can be applied

to Triggered SBDs through a trigger elimination pro-

cedure that transforms triggers into standard inputs,

however this often results in unnecessary communi-

cation overhead: a block always reads input mes-

sages and sends output messages even when its

trigger is false. In our work, we eliminate this over-

head from two directions: first, a process does not

send messages to its successor processes that are

not triggered; second, a process which is not trig-

gered need not send a full data message to its suc-

cessor processes, but only a flag indicating that the

data are the same as in the previous step. To achieve

these optimizations while still preserving behavior

equivalence, ‘‘backward’’ signals are added to trans-

mit the trigger information of a reader to its writers,

and each process is restructured into multiple stages

to avoid potential deadlock caused by the addi-

tional ‘‘backward’’ signals. This method is especially

critical in systems where communication is expen-

sive, for example, in wireless applications where the

channel capacity is limited, or where energy savings

are essential. Details of this approach, communica-

tion saving analysis, formal proof of its correctness,

and further optimization for Timed SBDs as a special

case are presented in [12].

For the second extension, we observed that the

assumption that every process (or task after mapped

to LTTA) can freely skip a round does not hold if

we want to preserve stream equivalence in open

systems. Specifically, the sensing tasks in the BAC

systems periodically sample inputs from the

constantly-changing physical environment. Skip-

ping a round on these tasks means the ‘‘old’’ envi-

ronment inputs will be overwritten by the ‘‘new’’

inputs, and the data stream is no longer equivalent

to the synchronous model. To preserve the synchro-

nous specification, we propose a set of timing con-

straints on task periods and the drifts of local clocks,

as shown in [11].

Case study
We conducted a case study on a room temper-

ature control system example to illustrate our design

flow. The functional model captures a two-level con-

trol algorithm as shown in Figure 4. The higher level

linear-quadratic regulator (LQR) controller deter-

mines the set points for lower level PID controllers.

The LQR coordinates among multiple rooms (three

rooms in the example) to optimize the total energy

consumption while maintain a certain comfort level.

The PIDs track the set points and interact with the

physical environment. The inputs to the plant model

include the air mass flow into each thermal zone,

Figure 4. Room temperature control system.

51

and the outputs are the temperature of each thermal

zone and the temperature of walls. More details on

the model and control can be found in [7]. As de-

sign input, the controller (including PIDs and LQR)

is modeled in Simulink, while the plant is modeled

in Modelica.

In the first step of our design flow, the heteroge-

neous input model is translated into a uniformed IF

representation, as shown in Figure 5. The Simulink

controller model is translated into IF manually, with

one-to-one correspondence between the compo-

nents in Simulink and the processes in the IF repre-

sentation. The resulted IF includes one LQR process

and three PID processes. The Modelica plant model

is translated into IF through the automatic ANTLR-

based translator. Basic models (classes) in Modelica

are translated into corresponding processes in IF,

with their equations translated to IF equations.

In order to validate the accuracy of our IF trans-

lation, we further translate the denotational IF to an

executable model in the METROPOLISII framework

as in Figure 5, and compare the simulation in

METROPOLISII versus the simulation of original

input model. For the simulation of original

heterogeneous input model,

first the Modelica plant model

is imported into Simulink

through the Dymola-Simulink

interface (Dymola is a model-

ing and simulation environ-

ment for Modelica language).

In this case, the entire plant is

imported into Simulink as a

DymolaBlock, which wraps an

S-function MEX block that

contains the C-code generated

by Dymola for the Modelica

model.

T h e c o m p a r i s o n o f

METROPOLISII simulation ver-

sus the heterogeneous input

model is shown in Figure 6

and Table 1. Figure 6 shows

Figure 5. IF translation for room temperature control system.

Figure 6. Comparison of heterogeneous input model in Simulink/Modelica
and IF model in METROPOLISII.

52

the temperature of Room 1 from the simulation of

two models over an entire day. The other rooms have

similar plots. Table 1 summarizes the average and

maximum temperature differences for all three

rooms. Overall, the simulation results of two models

are close, which shows the accuracy of our IF

translation. We believe the remaining differences

are caused by the difference in implementing ODE

solvers.

In the second step of the design flow, mapping is

conducted to explore the design space, as ex-

plained in design space exploration in mapping.

To test the scalability of the algorithm, we extended

the number of rooms from 3 to more than 40 (with

61 thermal zones), while keeping the same struc-

ture. The building floorplan and physical constraints

are obtained from a real office building. The

architecture platform is characterized by a library

of computational components including sensors,

actuators and processors, and a communication

library including ARCNET daisy chain buses and

routers. The details of the mapping and the cost of

the final solution are shown in [11]. The result

demonstrates the importance of optimizing both

computation and communication of the system.

In the third step of the design flow, we choose

LabVIEW from National Instruments (NI) as the tar-

get platform, and generate code in NI’s G language,

for which both simulation and C code generation

are provided by LabVIEW (we did not choose

EIKON for this input model because it does not pro-

vide direct support on the matrix operations in

LQR). One interesting aspect is

that the code generation from

Simulink to IF and then from IF

to LabVIEW may be conducted

at different levels of abstraction.

In [11], a PID-level translation

and a lower-level translation

(with smaller components in-

side PID as processes) are

demonstrated. The comparison

between the two shows that the

lower-level translation can im-

prove the translation accuracy

by 101 to 103 times, at the ex-

pense of more complexity.

In addition, we conducted

experiments to demonstrate the

ideas of communication inter-

face synthesis. In [11], we focus on the timing

constraints for semantic preservation. We model a

mapped distributed system in LabVIEW with the

synthesized communication interfaces, then com-

pare it through simulation to the synchronous

functional specification in LabVIEW (obtained

from IF translation). The detailed experimental

results in [11] demonstrate that the two models

produce the same results when all the timing

constraints we set are satisfied. When we reduce

the task periods to intentionally violate some of the

timing constraints, we start observing the differences

between two models, which confirms the impor-

tance of those constraints in our communication

interface synthesis.

In another set of experiments, we focus on opti-

mizing communication for Triggered SBDs. To study

the average case, we use TGFF to generate random

directed acyclic graphs, with number of nodes rang-

ing from 100 to 1000 (each node corresponds to a

SBD block). We randomly pick some of the links

between nodes as trigger links, and assign a proba-

bility of not being triggered to every block that has a

trigger. The experiment results in Figure 7 show the

Table 1 Comparison of all room temperatures between simulink/

modelica model and IF model.

Figure 7. Savings from communication optimization for triggered SBDs.

July/August 2012 53

communication saving percentages (w.r.t. original

communication load) for those Triggered SBDs

when the average probability of blocks not being

triggered ranges from 0.1 to 0.5. We analyzed four

communication protocolsVCAN bus, ZigBee, Wi-Fi,

and TTP/C, which have different message overheads

and maximum data payloads. The communication

saving achieved by our method increases approxi-

mately linearly w.r.t. the probability of blocks not

being triggered, and could be very substantial when

that probability is high.

In this paper, we proposed a design flow for BAC

systems that enables integrating heterogeneous

input models, conducts automatic design space ex-

ploration, and performs software synthesis on distri-

buted platforms while guaranteeing correctness and

reducing communication load. We believe these

capabilities can enable the building designers to

better adopt model-based design methodologies,

and facilitate them to improve design productivity,

optimize system performance, and reduce cost.

In the future, we plan to extend the design flow to

codesign the building control algorithms and the

architectural platform. We believe the characteris-

tics of the architectural platform are important for

optimizing the control algorithms. We would like to

extend the design space exploration to include

more physical aspects such as occupancy, and con-

sider wireless platforms. We would also like to apply

our design methodology to codesign multiple sub-

systems such as HVAC and lighting to achieve better

overall system. Because it is likely that different sub-

systems employ heterogeneous models in terms of

semantics and languages, the unified IF represen-

tation provided in our design flow will be particu-

larly important to facilitate the integration of those

models. h

h References
[1] ANTLR. [Online]. Available: http://www.antlr.org/.

[2] EIKON-LogicBuilder for WebCTRL. [Online]. Available:

http://www. automatedlogic.com.

[3] Modelica. [Online]. Available: http://www.modelica.org.

[4] Simulink. [Online]. Available: http://www.mathworks.

com.

[5] F. Balarin, M. D’Angelo, A. Davare et al.

‘‘Platform-based design and frameworks: Metropolis

and Metro II,’’ in Model-Based Design for Embedded

Systems, G. Nicolescu and P. J. Mosterman, Eds.

Boca Raton, FL: CRC, 2009.

[6] M. Di Natale, A. Benveniste, P. Caspi et al. ‘‘Applying

LTTA to guarantee flow of data requirements

in distributed systems using controller area networks,’’

in Proc. Design, Autom. Test Eur. Workshop D

ependable Softw. Syst., 2008.

[7] M. Maasoumy, A. Pinto, and A. Sangiovanni-Vincenteli,

‘‘Model-based hierarchical optimal control design for

HVAC systems,’’ in Proc. 2011 ASME Dynam. Syst.

Contr. Conf. (DSCC), 2011.

[8] A. Pinto, L. P. Carloni, and

A. L. Sangiovanni-Vincentelli, ‘‘COSI: A framework

for the design of interconnection networks,’’ IEEE

Design Test Comput., vol. 25, no. 5, May 2008.

[9] A. Pinto, A. L. Sangiovanni-Vincentelli,

L. P. Carloni et al. ‘‘Interchange formats for hybrid

systems: Review and proposal,’’ in Proc. 8th Int.

Workshop Hybrid Syst. Computation and Contr.,

2005, pp. 526–541.

[10] S. Tripakis, C. Pinello, A. Benveniste et al.

‘‘Implementing synchronous models on loosely

time triggered architectures,’’ IEEE Trans. Comput.,

vol. 57, no. 10, pp. 1300–1314, Oct. 2008.

[11] Y. Yang, A. Pinto, A. Sangiovanni-Vincentelli, and

Q. Zhu, ‘‘A design flow for building automation and

control systems,’’ in Proc. IEEE 2010 31st Real-Time

Syst. Symp. (RTSS), Dec. 3–30, 2010, pp. 105–116.

[12] Y. Yang, S. Tripakis, and A. L. Sangiovanni-Vincentelli,

‘‘Efficient distribution of triggered synchronous block

diagrams, EECS Dept., Univ. California, Berkeley,

Tech. Rep. UCB/EECS-2011-115, Oct. 2011.

Yang Yang is a PhD candidate at the EECS De-
partment of the University of California at Berkeley.
Her research interests include computer-aided de-
sign, real-time distributed embedded systems, and
embedded software. Yang has an MS degree in
Electrical Engineering and Computer Science from
the University of California at Berkeley. She is a
Student Member of IEEE.

Qi Zhu is an Assistant Professor at the EE Depart-
ment of the University of California at Riverside. His
research interests include design methodologies for
distributed embedded systems, cyberphysical sys-
tems, and computer-aided design for circuits. Zhu
has a PhD degree in Electrical Engineering and
Computer Science from the University of California at
Berkeley. He is a Member of IEEE and ACM.

54

Mehdi Maasoumy is a PhD candidate at the Me-
chanical Engineering Department at the University of
California at Berkeley. His research interests include
modeling and optimal control of linear, nonlinear and
hybrid systems, and energy efficient building control
systems. Maasoumy has a Master’s degree from the
University of California at Berkeley in mechanical
engineering. He is a Student Member of IEEE and
ASME.

Alberto Sangiovanni-Vincentelli is Buttner
Chair of the EECS Department at the University
of California at Berkeley. He is also Synopsys Co-

founder, and a Member of the GM Science and
Technology Board, the UTC Technology Advisory
Council, the Italian Institute of Technology Exec-
Committee, and NAE. He is a recipient the Kaufman
Award for ‘‘pioneering contributions to EDA’’ and
the IEEE/RSE Maxwell Medal ‘‘for groundbreaking
contributions with exceptional impact on develop-
ment of electronics.’’

h Direct questions and comments about this article
to Yang Yang, EECS Department, University of
California, Berkeley, CA 94720; yangyang@eecs.
berkeley.edu.

