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Abstract 

The two-phase drift flux model is extensively used in multiphase flow applications. In this study, we focus on 

possible numerical schemes for solving the drift flux model. Due to the complexity of the primitive equations and 

empirical parameters, it is challenging to achieve stability of the numerical scheme used for the drift flux model. 

The high resolution second order central scheme, the high resolution second order central-upwind scheme, and 

the high resolution third order and fifth order weighted essentially non-oscillatory schemes (WENO) were 

successfully implemented for the drift flux model. The schemes were tested with the shock tube discontinuity 

problem. The central-upwind-WENO scheme was developed and applied to the drift flux model. In the central-

upwind-WENO scheme, the cell interface values were taken from the WENO reconstruction, and the monotone 

flux is calculated from the central-upwind flux. The central-upwind-WENO scheme can achieve higher order 

accuracy than the central-upwind scheme by using the same stencils which are used for the central-upwind 

scheme. The central-upwind-WENO scheme gives more accurate results than the central scheme, central-upwind 

scheme and the WENO scheme. Especially at the rarefaction and shock wave fronts, the central-upwind-WENO 

scheme gives sharper gradients compared to the other schemes. Instead of a limiter function, the central-upwind-

WENO scheme uses a smoothness indicator. All the schemes used in the study are suitable for two-phase drift 

flux model simulation.        

 

1. Introduction 

Two-phase models are important in the oil and gas 

production process and in well drilling operation due 

to the multiphase properties of the fluid. The two-

fluid model and the mixture model have been used 

for over two decades in the oil and gas industry. The 

two-fluid model treats each phase with a set of 

conservation equations [1]. The phase interaction 

appears as source terms in the conservation 

equations in the two-fluid model. The number of 

transport equations can be reduced by correlating the 

relative velocity between the phases, the slip 

velocity, with the flow variables [2] . The drift-flux 

model can be derived by adding together the 

momentum equations from both phases in the two-

fluid model [3]. The drift-flux model consists of two 

mass conservation equations and a mixture 

momentum equation. The drift flux model uses a 

single momentum equation; therefore, it might give 

weak results for the phasic velocities compared to 

the two-fluid model. The drift flux model requires a 

number of empirical parameters. Those are the 

drawback of the drift flux model.  

          

2. The two-phase 1-D drift flux model 

Equations 1 and 2 give the mass balance for the 

liquid and gas phases, respectively. A single 

momentum equation for the liquid and gas mixture 

in Equation 3 gives the momentum balance for the 

mixture,   
𝜕(𝜌𝑙𝛼𝑙)

𝜕𝑡
+

𝜕(𝜌𝑙𝛼𝑙𝑣𝑙)

𝜕𝑥
= 0,     (1) 

𝜕(𝜌𝑔𝛼𝑔)

𝜕𝑡
+

𝜕(𝜌𝑔𝛼𝑔𝑣𝑔)

𝜕𝑥
= 0,     (2)    

𝜕(𝜌𝑙𝛼𝑙𝑣𝑙+𝜌𝑔𝛼𝑔𝑣𝑔)

𝜕𝑡
+

𝜕(𝜌𝑙𝛼𝑙𝑣𝑙
2+𝜌𝑔𝛼𝑔𝑣𝑔

2+𝑝)

𝜕𝑥
= 0.   (3) 

Here, subscripts 𝑙 and 𝑔 denote the liquid and gas 

phases, 𝜌 is the density, 𝛼 is the phase volume 

fraction, 𝑣 is the velocity. In this study, we have not 

considered source terms. The drift-flux model 

assumes that the phases are mechanically at 

equilibrium, such that gas and liquid phases have 

same pressure, 𝑝(𝑥, 𝑡) = 𝑝𝑙(𝑥, 𝑡) = 𝑝𝑔(𝑥, 𝑡). The 

speed of sound is comparatively larger than the fluid 

velocity, therefore the fluids are assumed to be 

weakly compressible [4]. However, the phases are 

compressible, in other words, the densities of the 

phases change with time and space. The system is 

assumed to be isothermal; hence, the energy 

equation is neglected. The phases are immiscible, 

and there is no phase transfer between them. The 

pipe cross sectional area is assumed to be constant. 

There is set of closure laws related to the two-phase 

drift-flux model. There is no empty space and the 

total volume fraction is unity,  

𝛼𝑙 + 𝛼𝑔 = 1.     (4) 

The closure law for the liquid density is a function 

of pressure,  
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𝜌𝑙 =  𝜌𝑙,0 +
1

𝑐𝑙
2 (𝑝 − 𝑝𝑙,0),    (5) 

where 𝜌𝑙,0 = 1000 kg/m3 and 𝑝𝑙,0 = 1 bar are 

constants related to a reference point, 𝑐𝑙 = 1000 m/s 

is the sound velocity in the liquid phase. The closure 

law for the gas density as a function of pressure is  

𝜌𝑔 =
1

𝑐𝑔
2 𝑝,     (6) 

where 𝑐𝑔 = 316 m/s is the sound velocity in the gas 

phase. The slip velocity is the relative velocity 

between the phases, and can be defined as a function 

of flow variables, 𝑣𝑔  −  𝑣𝑙  =  𝛷(𝛼𝑔, 𝑝, 𝑣𝑔) [2]. The 

gas velocity can be presented in term of mixture 

velocity, 𝑣𝑚 =  𝛼𝑙𝑣𝑙 + 𝛼𝑔𝑣𝑔, and gas drift velocity, 

𝑣𝑑,  

 𝑣𝑔 = 𝑘𝑣𝑚 + 𝑣𝑑.    (7) 

Here, 𝑘 is the profile parameter (or distribution 

parameter); it describes the velocity and 

concentration profile, and is varying from 1.0 to 1.5 

in a cylindrical pipe flow [3]. For simplicity, we 

assume 𝑘 =  1.2; this implies that the ratio of 

maximum to the average flow velocity is 

approximately equal to 1.2. The drift velocity is 

0.216 [5]. Here, we denote Equations 4, 5, 6, and 7 

by the primitive equations. 

Equation 1, 2, and 3 can be presented in compact 

vector form with the conservative variables,  

 
𝜕𝐔

𝜕𝑡
+

𝜕𝐅(𝐔)

𝜕𝑥
= 0.    (8) 

Here, 𝐔 is the conservative variable vector, and 

𝐅(𝐔) is the flux vector function. 

𝐔 = (

𝛼𝑙𝜌𝑙

𝛼𝑔𝜌𝑔

𝛼𝑙𝜌𝑙𝑣𝑙 + 𝛼𝑔𝜌𝑔𝑣𝑔

) = (

𝑢1

𝑢2

𝑢3

),  (9) 

𝐅(𝐔) = (

𝛼𝑙𝜌𝑙𝑣𝑙

𝛼𝑔𝜌𝑔𝑣𝑔

𝛼𝑙𝜌𝑙𝑣𝑙
2 + 𝛼𝑔𝜌𝑔𝑣𝑔

2 + 𝑝
) =

(

𝑢1𝑣𝑙

𝑢2𝑣𝑔

𝑢1𝑣𝑙
2 + 𝑢1𝑣𝑔

2 + 𝑝
),   (10) 

while, 𝑢1, 𝑢2 and 𝑢3 are conservative variables. Due 

to the non-linearity of the drift flux model and the 

closure laws, it is difficult to express explicit 

conservative formulas for 𝑣𝑙  , 𝑣𝑔 and 𝑝 in the flux 

vector function. It is possible to express the 𝑣𝑙  , 𝑣𝑔 

and 𝑝 in terms of conservative variables. By 

embedding the closure laws in Equations 5 and 6 in 

4, a quadratic equation can be found expressing the 

pressure 𝑝(𝑢1, 𝑢2) with conservative variables, 

𝑝2 + (−𝑝0 + 𝑐𝑙
2𝜌𝑙0 − 𝑐𝑙

2𝑢1 − 𝑐𝑔
2𝑢2)𝑝 + (𝑐𝑔

2𝑝0 −

𝑐𝑙
2𝑐𝑔

2𝜌𝑙0)𝑢2 = 0.   (11) 

Equation 11 gives two real values for the pressure; 

however, Equation-12 is the physically realistic root,  

𝑝(𝑢1, 𝑢2, 𝑢3) = 0.5 (−(−𝑝0 + 𝑐𝑙
2𝜌𝑙0 − 𝑐𝑙

2𝑢1 −

𝑐𝑔
2𝑢2) +

√(−𝑝0 + 𝑐𝑙
2𝜌𝑙0 − 𝑐𝑙

2𝑢1 − 𝑐𝑔
2𝑢2)

2
− 4(𝑐𝑔

2𝑝0 − 𝑐𝑙
2𝑐𝑔

2𝜌𝑙0)𝑢2)

.     (12) 

The velocities can be derived by embedding 

conservative variables in Equation-7, 

𝑣𝑙(𝑢1, 𝑢2, 𝑢3) =
(1−𝑘𝛼𝑔)𝑢3−𝑣𝑑𝑢2

(1−𝑘𝛼𝑔)𝑢1+𝑘𝛼𝑙𝑢2
,   (13) 

𝑣𝑔(𝑢1, 𝑢2, 𝑢3) =
𝑘𝛼𝑙𝑢3+𝑣𝑑𝑢1

(1−𝑘𝛼𝑔)𝑢1+𝑘𝛼𝑙𝑢2
.   (14) 

The fluids are assumed to be compressible. Because 

oil and gas reservoir pressure is comparatively large, 

the wells are deep, and pressure is varying along the 

well. Fluid densities are functions of pressure such 

as 𝜌𝑙 = 𝜌𝑙(𝑢1, 𝑢2) and 𝜌𝑔 = 𝜌𝑔(𝑢1, 𝑢2). The 

compact conservative form of the drift flux model, 

after discretization, can be presented without source 

terms, 
𝑑𝐔

𝑑𝑡
= 𝐋(𝐔),    (15) 

Here, 𝐋(𝐔) is the discretization of the spatial 

operator,  

𝐋(𝐔) = −
1

∆𝑥
(𝐅(𝐔)

𝑖+
1

2

− 𝐅(𝐔)
𝑖−

1

2

).  (16) 

In most applications, the challenge is to discretize 

the cell interface flux function, 𝐅(𝐔)
𝑖±

1

2

, accurately. 

The flux function is the most important part of semi-

discretization for partial differential equations. 

Monotonicity of the numerical flux, 𝐅(𝐔)
𝑖+

1

2

=

𝐅 (𝐔
𝑖+

1

2

+ , 𝐔
𝑖+

1

2

− ), can be achieved by using 

monotonocity preserving schemes such as Godunov 

flux, Engquist-Osher flux, Lax-Friedrichs flux [6]. 

The positive and negative fluxes should be Lipschitz 

continuous functions, and should be consistent with 

the physical flux. Here, 𝐅 (𝐔
𝑖+

1

2

+ , 𝐔
𝑖+

1

2

− ) is non-

decreasing in the first argument and nonincreasing 

in the second argument. For the lower order 

reconstructions, there can be a big difference 

between results obtained by different monotone 

fluxes. The order of the reconstruction polynomial 

higher than two helps to achieve less smearing effect 

at the discontinuities [7]. The problem is that most 

of the high order monotone schemes move to first 

order at a discontinuity. 

 

3. Time integration for the semi-discrete schemes   

 

Time integration is applied to the Equation-15. The 

TVD Runge-Kutta method is used to preserve the 

total variation diminishing (TVD) properties under 

the CFL condition [8]. A fourth order TVD Runge-

Kutta scheme for time iterations is [9] 

 𝐔(1) = 𝐔(0) +
1

2
∆𝑡𝐋(𝐔),   (17) 

𝐔(2) =
1

2
𝐔(0) +

1

2
𝐔(1) −

1

4
∆𝑡𝐋(𝐔(0)) +

1

2
∆𝑡𝐋(𝐔(1)),    (18) 
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𝐔(3) =
1

9
𝐔(0) +

2

9
𝐔(1) +

2

3
𝐔(2) −

1

9
∆𝑡𝐋(𝐔(0)) −

1

3
∆𝑡𝐋(𝐔(1)) + ∆𝑡𝐋(𝐔(2)),   (19) 

𝐔(4) =
1

3
𝐔(1) +

1

3
𝐔(2) +

1

3
𝐔(3) +

1

6
∆𝑡𝐋(𝐔(1)) +

1

6
∆𝑡𝐋(𝐔(3)).     (20) 

Here, 𝐔(0) is related to time step 𝑛, 𝐔(4) is related to 

the time step 𝑛 + 1. High order TVD Runge-Kutta 

methods can be found in [9]. Under the CFL 

restriction, the time step can be defined as, 

∆𝑡 ≤ 𝑐
∆𝑥

max{𝜆𝑖} ∀𝑖
,    (21) 

Here 𝑐 is the CFL number, 𝜆 is the eigenvalues of 

the Jacobian of the hyperbolic system.  

      

4. High-resolution second order central scheme 

for the drift flux model 

The piecewise polynomials are functions of cell 

averages. For the third order central schemes, they 

couple with a piecewise quadratic approximation, 

such as the essentially non-oscillatory (ENO) 

reconstruction [10]. The integral values are 

approximated by the midpoint rule. The mid-point 

values are predicted by Taylor expansion. For more 

details, see [11], [12]. The cell interface values are 

𝐔
𝑖+

1

2

𝑛,+ = 𝐔𝑖+1
𝑛 −

∆𝑥

2
(𝐔𝑥)𝑖+1

𝑛 ,   (22) 

𝐔
𝑖+

1

2

𝑛,− = 𝐔𝑖
𝑛 +

∆𝑥

2
(𝐔𝑥)𝑖

𝑛.    (23) 

Here, the spatial derivatives, 𝐔𝑥, are reconstructed 

from the cell averages. A scalar total variation 

diminishing (TVD) property is achieved from a 

limiter function. The family of MINMOD-like 

limiters are used to calculate the numerical 

derivative,  

(𝐔𝑥)𝑖
𝑛 = MINMOD (𝜃

𝐔𝑖
𝑛−𝐔𝑖−1

𝑛

∆𝑥
, 𝜃

𝐔𝑖+1
𝑛 −𝐔𝑖

𝑛

∆𝑥
), (24) 

where, 1 ≤ θ ≤ 2 is the limiter parameter; for more 

details about the limiter functions, refer [13], [14]. It 

can be shown that for large θ values, a highly 

oscillatory solution is found, while for small θ 

values, a highly diffusive solution is found. In this 

study, we use the 𝜃 = 1 for simplicity.  The 

multivariable MINMOD function is defined as 

MINMOD(𝑧1, 𝑧2, … ) =

{

min𝑖{𝑧𝑖},             if 𝑧𝑖 > 0,       ∀𝑖,

max𝑖{𝑧𝑖},            if 𝑧𝑖 < 0,       ∀𝑖,

0,                  otherwise.                  

  (25) 

The central scheme’s numerical viscosity coefficient 

is  
∆𝑡

∆𝑥
𝑎𝑖+1/2 which is less than the numerical 

viscosity of the Lax-Friedrichs scheme, 

corresponding to the Courant-Friedrichs-Lewy 

(CFL) condition. There can be an accumulation of 

numerical dissipation, 𝒪 (
(∆𝑥)2𝑟 

∆𝑡
); this is one of the 

disadvantages of the central scheme [15]. The cell 

interface flux is calculated with the modified-Lax-

Friedrichs scheme [12],  

𝐅(𝐔)
𝑖+

1

2

𝑛 =
1

2
(𝐅 (𝐔

𝑖+
1

2

𝑛,−) + 𝐅 (𝐔
𝑖+

1

2

𝑛,+)) +

1

2
𝑎

𝑖+
1

2

𝑛 (𝐔
𝑖+

1

2

𝑛,− − 𝐔
𝑖+

1

2

𝑛,+).   (26) 

Here, 𝑎 is the one-sided local speed. In the original 

Lax-Friedrichs scheme, 𝑎 is set as ∆𝑡/∆𝑥. In this 

approach, 𝑎 is calculated from the maximum 

eigenvalue of the Jacobian matrix, 

𝑎
𝑖+

1

2

𝑛 = max {max {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , max {𝜆 (𝐔
𝑖+

1

2

𝑛,+)} , 0}.

     (27) 

The eigenvalues of the drift flux model are 

𝜆 = {𝑣𝑙 + 𝑐𝑚, 𝑣𝑔, 𝑣𝑙 − 𝑐𝑚}.  (28) 

The eigenvalues are derived with the assumption of 

having an incompressible liquid phase [16]. Here, 

𝑐𝑚 is the sound velocity in the mixture of gas and 

liquid. Based on the assumption of incompressible 

liquid and no slip for each phase, assuming 𝛼𝑔𝜌𝑔 ≪

𝛼𝑙𝜌𝑙 and 0 < 𝛼𝑔 < 1, the mixture sound velocity 

can be presented as [1], [17], 

𝑐𝑚 = √
𝑝

𝛼𝑔𝜌𝑙(1−𝑘𝛼𝑔)
.    (29) 

Here we introduce the stencils for the central scheme 

in a form similar to that of ENO schemes. To 

calculate the cell interface function, the second order 

central scheme uses one stencil from one side, 

because the MINMOD limiter function selects a 

single stencil from a side. 

 

5. Second order central-upwind scheme for the 

drift flux model 

As an improvement of the high-resolution central 

scheme, the central-upwind scheme was developed 

by Kurganov et al. [15]. The scheme is a semi-

discrete scheme, Godunov-type central scheme 

since it is based on integration over the Riemann fan. 

The upwind nature of the scheme is adapted by 

measuring the one-sided local speeds which present 

the directions of wave propagation. The one-sided 

propagation speeds are the largest and smallest 

eigenvalues of the Jacobian matrix at the cell 

interface. The central-upwind scheme is a Godunov-

type central scheme because the evolution employs 

the integration over the Riemann solver, and it does 

not require a Riemann solver and a characteristic 

decomposition. Equation 22 and 23 calculate the cell 

interface values, 𝐔
𝑖+

1

2

𝑛,±
, with the MINMOD limiter 

function. Compared with the high-resolution central 

scheme, the high-resolution central-upwind scheme 

only differs is the cell interface flux calculation. 

Specifically, the central-upwind scheme consists of 

negative and positive direction one-sided local 

speeds at the cell interface. These are called the 

discontinuities propagation speeds. The 

discontinuities propagation speeds in right and left 

sides are 
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𝑎
𝑖+

1

2

𝑛,+ = max {max {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , max {𝜆 (𝐔
𝑖+

1

2

𝑛,+)} , 0},

     (30) 

𝑎
𝑖+

1

2

𝑛,− = min {min {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , min {𝜆 (𝐔
𝑖+

1

2

𝑛,+)} , 0}.

     (31) 

The central-upwind scheme bounds the Riemann fan 

by (𝑎
𝑖+

1

2

𝑛,+ − 𝑎
𝑖+

1

2

𝑛,−) ∆𝑡 [15]. The numerical flux of the 

high resolution central-upwind scheme is  

𝐅(𝐔)
𝑖+

1

2

𝑛 =
𝑎

𝑖+
1
2

𝑛,+
𝐅(𝐔

𝑖+
1
2

𝑛,−
)−𝑎

𝑖+
1
2

𝑛,−
𝐅(𝐔

𝑖+
1
2

𝑛,+
)

𝑎
𝑖+

1
2

𝑛,+
−𝑎

𝑖+
1
2

𝑛,− +

𝑎
𝑖+

1
2

𝑛,+
𝑎

𝑖+
1
2

𝑛,−

𝑎
𝑖+

1
2

𝑛,+−𝑎
𝑖+

1
2

𝑛,− (𝐔
𝑖+

1

2

𝑛,+ − 𝐔
𝑖+

1

2

𝑛,−).   (32) 

The numerical flux, 𝐅(𝐔)
𝑖+

1

2

𝑛  , is independent of ∆𝑡, 

therefore the numerical viscosity is independent of 

𝒪 (
1 

∆𝑡
) in both the central and the central-upwind 

schemes. This is an advantage for using these two 

schemes for steady state calculations. The order of 

the scheme is second order.  

 

6. WENO scheme for the drift flux model 

Harten et al. [10] made the fundamental step for 

developing the ENO scheme. The ENO scheme uses 

a non-linear adaptive procedure to select the 

smoothest stencil where it can avoid the crossing 

discontinuities as much as possible [7]. ENO 

schemes map the cell averages in the stencil to the 

value of cell interface where there exists constant 

values. As the first step of the ENO scheme, a 

polynomial reconstruction is used to approximate 

the cell averages. If the degree of the interpolation 

polynomial function is 𝑟, then the order of the ENO 

scheme becomes 𝑟. The weighted ENO (WENO) 

scheme can be generated from the same stencil node 

in the ENO scheme with higher order accuracy. Liu 

et al. [6] developed the WENO scheme and it is 

further developed by Jiang and Shu [19]. The 

WENO scheme uses a convex combination of all the 

candidate stencils instead of just one used in the 

ENO scheme. Therefore, the WENO scheme can 

achieve higher order accuracy, 2𝑟 − 1, by using the 

same ENO stencils.  

        

6.1. Fifth order WENO scheme for the drift flux 

model 

Parallel to the third order ENO scheme, the fifth 

order WENO scheme uses a convex combination of 

the all three stencils [20].  

The third order ENO approach is used to calculate 

the cell interface variable related to each stencil. The 

negative direction cell interface with related to the 

stencils 𝑠0, 𝑠1, and 𝑠2 are 

𝐔
𝑖+

1

2

−,0 =
1

3
𝐔𝑖−2 −

7

6
𝐔𝑖−1 +

11

6
𝐔𝑖,  (33) 

𝐔
𝑖+

1

2

−,1 = −
1

6
𝐔𝑖−1 +

5

6
𝐔𝑖 +

1

3
𝐔𝑖+1,   (34) 

𝐔
𝑖+

1

2

−,2 =
1

3
𝐔𝑖 +

5

6
𝐔𝑖+1 −

1

6
𝐔𝑖+2.  (35) 

The positive direction cell interface with related to 

the stencils 𝑠0, 𝑠1, and 𝑠2 are 

𝐔
𝑖+

1

2

+,0 =
11

6
𝐔𝑖+1 −

7

6
𝐔𝑖+2 +

1

3
𝐔𝑖+3,  (36) 

𝐔
𝑖+

1

2

+,1 =
1

3
𝐔𝑖 +

5

6
𝐔𝑖+1 −

1

6
𝐔𝑖+2,   (37) 

𝐔
𝑖+

1

2

+,2 = −
1

6
𝐔𝑖−1 +

5

6
𝐔𝑖 +

1

3
𝐔𝑖+1.   (38) 

Here we have skipped the superscript 𝑛 in time. The 

cell averages are used to calculate the cell interface 

value 𝐔
𝑖+

1

2

±
in each stencil. Here we only present the 

left side stencils approach. The convex combination 

of the left biased stencils of the ENO approach gives 

the WENO approach, at the cell interface 𝑖 +
1

2
, 

𝐔
𝑖+

1

2

− = 𝜔0𝐔
𝑖+

1

2

−,0 + 𝜔1𝐔
𝑖+

1

2

−,1 + 𝜔2𝐔
𝑖+

1

2

−,2
.  (39) 

The weight functions are 

𝜔0 =
𝛼0

𝛼0+𝛼1+𝛼2
,    (40) 

𝜔1 =
𝛼1

𝛼0+𝛼1+𝛼2
,    (41) 

𝜔2 =
𝛼2

𝛼0+𝛼1+𝛼2
,    (42) 

Here, 𝜔0 + 𝜔1 + 𝜔2 = 1, and  

𝛼0 =
1/10

(𝜖+𝛽0)2,    (43) 

𝛼1 =
6/10

(𝜖+𝛽1)2,    (44) 

𝛼2 =
3/10

(𝜖+𝛽2)2.     (45) 

𝜖 = 10−6 is used to avoid division by zero𝛽 is the 

smoothness indicator. The smoothness indicator is 

defined based on undivided differences [20]. The 

smoothness indicator consists of a (𝑟 − 1)-th order 

accurate polynomial functions, 

 

𝛽0 =
13

12
(𝐔𝑖−2 − 2𝐔𝑖−1 + 𝐔𝑖)2 +

1

4
(𝐔𝑖−2 −

4𝐔𝑖−1 + 3𝐔𝑖)2,    (46) 

𝛽1 =
13

12
(𝐔𝑖−1 − 2𝐔𝑖 + 𝐔𝑖+1)2 +

1

4
(𝐔𝑖−1 − 𝐔𝑖+1)2,

     (47) 

𝛽2 =
13

12
(𝐔𝑖 − 2𝐔𝑖+1 + 𝐔𝑖+2)2 +

1

4
(3𝐔𝑖 − 4𝐔𝑖+1 +

𝐔𝑖+2)2.     (48) 

By symmetry, the 𝐔
𝑖+

1

2

+  values can be calculated. 

Here we choose the local Lax-Friedrichs flux to 

calculate the monotone flux in the WENO scheme. 

The local Lax-Friedrichs flux is 

 𝐅(𝐔)
𝑖+

1

2

𝑛 = 𝐅 (
𝐔

𝑖+
1
2

𝑛,−
+𝐔

𝑖+
1
2

𝑛,+

2
) −

1

2
𝑎

𝑖+
1

2

𝑛 (𝐔
𝑖+

1

2

𝑛,− − 𝐔
𝑖+

1

2

𝑛,+),

     (49) 

where 𝑎
𝑖+

1

2

𝑛   is 

𝑎
𝑖+

1

2

𝑛 = max {max {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , max {𝜆 (𝐔
𝑖+

1

2

𝑛,+)}}.

     (50) 
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6.2. Third order WENO scheme for the drift flux 

model 

The third order WENO scheme is developed from 

the second-order ENO scheme. Parallel to the fifth 

order WENO scheme, the third order WENO 

scheme has two stencils in each side. Here we briefly 

explain the third order WENO scheme, one can 

compare the fifth order WENO scheme parallelly. 

The cell interface values for the stencil 𝑠0 and 𝑠1 

respectively are  

𝐔
𝑖+

1

2

−,0 = −
1

2
𝐔𝑖−1 +

3

2
𝐔𝑖,    (51) 

𝐔
𝑖+

1

2

−,1 =
1

2
𝐔𝑖 +

1

2
𝐔𝑖+1.   (52) 

The negative cell interface value is  

𝐔
𝑖+

1

2

− = 𝜔0𝐔
𝑖+

1

2

−,0 + 𝜔1𝐔
𝑖+

1

2

−,1
.   (53) 

The weight functions are  

𝜔0 =
𝛼0

𝛼0+𝛼1
,    (54) 

𝜔1 =
𝛼1

𝛼0+𝛼1
,    (55) 

where,  

𝛼0 =
1

(𝜖+𝛽0)2,    (56) 

𝛼1 =
1

(𝜖+𝛽1)2,    (57) 

and,  

𝛽0 = (𝐔𝑖−1 − 𝐔𝑖)
2,   (58) 

𝛽1 = (𝐔𝑖 − 𝐔𝑖+1)2.   (59) 

The right side (positive direction) functions can be 

found by symmetry to the cell interface 𝑖 +
1

2
. 

 

7. Proposing a high resolution central-upwind-

WENO scheme for the drift flux model    

 

Here we use the above mentioned central scheme, 

the central-upwind scheme, and the WENO scheme 

for development of a central-upwind-WENO 

scheme. The main idea of the central-upwind-

WENO scheme is to calculate the numerical flux 

from the central-upwind flux, and the cell interface 

values are calculated from the WENO 

reconstruction. The objective is to adapt the central-

upwind nature in WENO scheme which can produce 

more accurate and stable results. The order of the 

scheme is decided by the polynomial interpolation 

used to calculate the cell interface flux. 

 

7.1. Development of high resolution fifth order 

central-upwind-WENO scheme for the drift flux 

model    

The cell interface flux is calculated with the central-

upwind flux. Here we rewrite Equation 32 which 

gives the central-upwind flux, 

𝐅(𝐔)
𝑖+

1

2

𝑛 =
𝑎

𝑖+
1
2

𝑛,+
𝐅(𝐔

𝑖+
1
2

𝑛,−
)−𝑎

𝑖+
1
2

𝑛,−
𝐅(𝐔

𝑖+
1
2

𝑛,+
)

𝑎
𝑖+

1
2

𝑛,+
−𝑎

𝑖+
1
2

𝑛,− +

𝑎
𝑖+

1
2

𝑛,+
𝑎

𝑖+
1
2

𝑛,−

𝑎
𝑖+

1
2

𝑛,+−𝑎
𝑖+

1
2

𝑛,− (𝐔
𝑖+

1

2

𝑛,+ − 𝐔
𝑖+

1

2

𝑛,−).   (60) 

The one-sided local speeds in Equation 60 can be 

calculated from the largest and smallest eigenvalues 

of the system. Here we rewrite the Equations 25 and 

26 form of the central-upwind scheme:     

𝑎
𝑖+

1

2

𝑛,+ = max {max {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , max {𝜆 (𝐔
𝑖+

1

2

𝑛,+)} , 0},

     (61) 

𝑎
𝑖+

1

2

𝑛,− = min {min {𝜆 (𝐔
𝑖+

1

2

𝑛,−)} , min {𝜆 (𝐔
𝑖+

1

2

𝑛,+)} , 0}.

     (62) 

The cell interface values 𝐔
𝑖+

1

2

𝑛,±
 can be calculated from 

the fifth order WENO reconstruction. Here, we 

rewrite Equation 39, which gives the negative 

direction cell interface value,   

𝐔
𝑖+

1

2

− = 𝜔0𝐔
𝑖+

1

2

−,0 + 𝜔1𝐔
𝑖+

1

2

−,1 + 𝜔2𝐔
𝑖+

1

2

−,2
.  (63) 

The weight functions can be calculated from 

Equations 40 to 48. The fifth order central-upwind-

WENO scheme is developed from the central-

upwind flux and the fifth order WENO 

reconstruction for the cell interface values. Once we 

know the cell interface flux, it is possible to calculate 

flux gradients.  

  

7.2. Development of high resolution third order 

central-upwind-WENO scheme for the drift flux 

model   

Like the fifth order central-upwind-WENO scheme, 

the third order central-upwind-WENO scheme can 

be developed. The numerical flux function is 

calculated from the Equations 60 to 62. The cell 

interface values can be calculated from Equations 51 

to 59.  

8. Results  

The shock tube problem is a benchmark case for 

testing the capability of numerical schemes in pipe 

flow. Evje and Flåtten [1] used the following initial 

conditions for a discontinuity in a pipe flow, see 

Figure 1. Here, subscript 𝐿 is left side and subscript 

𝑅 is right side.  

  
Figure 1. Initial condition of the shock tube 

problem-1 in the pipe flow  

The initial gas velocity, 𝑣𝑔, can be calculated as, 

𝑣𝑔 =  (𝑘𝑣𝑙𝛼𝑙  + 𝑣𝑑)/(1 −  𝑘𝛼𝑙). For the test case, 

we assume that the diameter of the pipe is 0.1 m, the 

length of the pipe is 100 m, the step length is ∆x = 

0.5 m. The initial discontinuity is at x = 50 m when 

t = 0 s. The friction force and gravity force terms are 

neglected for the numerical test, and 𝑘 =  1.07 and 

𝑣𝑑  =  0.216 m/s. The test problem is purely a 

convection dominated flow; this initial condition 

generates discontinuities for all three conservative 

variables. The fifth order WENO scheme with fine 

mesh is used as the reference solution; we used 2.5 
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times more cells in the fluid domain compared to the 

other schemes. The fifth order WENO scheme gives 

accurate results compared with [16]. Figure 2 shows 

the shock tube problem result comparison between 

the central-upwind-WENO scheme and the central 

scheme. The results are shown after 1 s of simulation 

for pressure, gas velocity, liquid velocity, and liquid 

volume fraction. The central-upwind-WENO 

scheme gives a better solution than the central 

scheme, especially at the square wave in the 

solution. The second order central scheme is more 

diffusive compared to the other schemes used in this 

study. Figure 3 shows the shock tube result 

comparison between the third order central-upwind-

WENO scheme vs. the second order central-upwind 

scheme. Compared to the central scheme, the 

central-upwind scheme gives more accurate results. 

However, the central-upwind-WENO scheme gives 

even higher accuracy than the central-upwind 

scheme. Figure 4 shows the shock tube problem 

result after 1s of simulation for the third order 

central-upwind-WENO scheme vs. the third order 

WENO scheme. The third order WENO scheme 

gives more accurate results than the central scheme 

and the central-upwind scheme. However, the third 

order central-upwind-WENO scheme gives more 

accurate results than the third order WENO scheme.  

The third order central-upwind-WENO scheme 

gives sharper gradient for rarefaction waves and 

shock wave fronts compared to the third order 

WENO scheme, the second order central scheme, 

and the second order central-upwind scheme. In 

other words, the third-order central-upwind-WENO 

gives the highest accuracy.   

 
(a) 

 
(b) 

 

Figure 2. Shock tube problem results comparison 

after 1 s simulation between the third order high-

resolution central-upwind-WENO scheme vs. the 

second order high-resolution central scheme. The 

fifth order WENO scheme with a fine mesh is used 

as the reference: (a)Pressure, (b)Gas velocity.    

 
(a) 

 
(b) 

 

Figure 3. Shock tube problem results comparison 

after 1 s simulation between the third order high-

resolution central-upwind-WENO scheme vs. the 

second order high-resolution central-upwind 

scheme. The fifth order WENO scheme with a fine 

mesh result is used as the reference: (a)Pressure, 

(b)Gas velocity.  

 
(a) 

 
(b) 

Figure 4. Shock tube problem results comparison 

after 1 s simulation between the third order high-

resolution central-upwind-WENO scheme vs. the 

third order high-resolution WENO scheme. The fifth 

order WENO scheme with a fine mesh result is used 

as the reference: (a)Pressure, (b)Gas velocity.     

 

Table 1 shows the computational speed comparison 

for the schemes. The simulations have conducted for 

the shock tube problem up to 1s, and all the schemes 

have used same coarse mesh which has 200 cells. 

The CPU times presented in the table are averages 

of five simulation runs for each case. The third order 

WENO scheme is the fastest scheme, it has higher 
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accuracy than the second order central scheme and 

second order central-upwind scheme. Compared to 

the third order WENO scheme, the central-upwind 

scheme is a slower scheme. The MINMOD limiter 

function has logical “if” closure structures, or 

equivalent mathematical formulae, which are not 

very efficient. The WENO scheme solves algebraic 

equations with weight functions. Therefore, the 

central and the central-upwind second order 

schemes are slower than the third order WENO 

scheme. However, all the schemes are in same speed 

range, this is no big differences. One can argue that 

fifth order WENO scheme has comparatively high 

speed for the coarse mesh. However, the fifth order 

WENO scheme gives higher oscillatory results for 

the coarse mesh than the third order WENO 

schemes, see Figure 5. The fifth order WENO 

scheme is very accurate and less oscillatory for finer 

mesh. The fifth order central-upwind-WENO 

scheme is more accurate than the fifth order WENO 

scheme. However, the fifth order WENO scheme 

and the fifth order central-upwind-WENO scheme 

produce more oscillatory results than their third 

order schemes.    

Table 1: Computational time comparison: 

Computation time was calculated for 1s simulations. 

All the schemes were used same coarse mesh, 200 

cells 

Scheme CPU Time (s) 

Third order central-upwind-

WENO 

0.90 

Fifth order WENO 0.95 

Third order WENO 0.80 

Second order central  0.88 

Second order central-upwind  0.92 

 

 
Figure 5. Coarse mesh simulation of the fifth order 

WENO scheme and the third order WENO scheme: 

The mesh has 200 cells. The results show liquid 

velocity for the shock tube problem 

 

9. Concluding remarks  

  

In this study, we considered possible numerical 

schemes for the two-phase drift flux model. The drift 

flux model is typically used in well-drilling and oil-

gas production process in the petroleum industry. 

The high resolution second order central scheme, the 

high resolution second order central-upwind scheme 

and the third order and fifth order WENO schemes 

were used for numerical simulations. The stencil 

selection procedure and numerical discretization 

procedure were explained in detailed for each 

scheme. We developed the high resolution third 

order and fifth order central-upwind-WENO scheme 

for the drift flux model. The main idea of the central-

upwind-WENO scheme is to calculate the numerical 

flux from the central-upwind flux, and the cell 

interface values are calculated from the WENO 

reconstruction. This method helps to achieve higher 

order of the scheme with minimum number of 

stencils. The developed central-upwind-WENO 

scheme produces more accurate results than the 

central scheme, the central-upwind scheme, and the 

WENO scheme. All the schemes used in the study 

are suitable for the drift-flux model simulation. The 

source term effect, especially friction and gravity, 

will be discussed in future publications.  
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