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Abstract. Noting that the number of gluons in the hadron wave function is discrete, and their 
formation in the chain of small x evolution occurs over discrete rapidity intervals of Ay N l/as, 
we formulate the discrete version of the Balitsky-Kovchegov evolution equation and show that its 
.solution behaves chaotically in the phenomenologically interesting kinematic region. 
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EVOLUTION AS A DISCRETE PROCESS 

The color field of an ultra-relativistic hadron is a quasi-classical non-Abelian 
Weizsacker-Williams field [1, 21. It emerges when the occupation number of the 
bremsstrahlung gluons emitted at a given impact parameter exceeds unity and eventu- 
ally saturates at N l/a,. It has been argued that in a big nucleus, such that asA1/3 >> 1, 
and not very high energies the mean-field treatment is a reasonable approximation to 
the evolution equations. 

As a result of broken scale symmetry of QCD there exist the dimensional scale A 
which is the infrared cutoff on the gluon's momenta. An introduction of an infrared 
cutoff A on the momentum of the emitted gluons amounts to imposing the boundary 
condition. This is equivalent to the quantization of the gluon modes in a box of size L N 

A-' , in which case the spectrum of the emitted gluons and their number become discrete. 
The formation of a gluon occurs over a rapidity interval of Ay N l/a,. Therefore, 
the evolution in rapidity can be considered as a discrete quantum process, where each 
subsequent step occurs when Ay a, N 1 [3]. 

Assuming that Aya, is a certain number for all steps in evolution process neglects 
a stochastic nature of quantum evolution. Full treatment of the discrete BK equation 
requires taking these effects into account. However, unfortunately BK equation is known 
to resist all attempts of analytical solution, and our hope at present is to develop a 
meaningful approximation. Thus, we suggest an approximation in which the gluons are 
emitted over a fixed "time" defined by &,Ay = C with C = 1. To justify this assumption, 
let us note that BFKL takes into account only fast gluons, i.e. those with C N 1. It is 
beyond the leading logarithmic (LL) approximation to take into account slow gluons. 
Moreover, it is known that an account of NLL corrections effectively leads to imposing 
a rapidity veto [4] on the emission of gluons with close rapidities, which restricts 
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FIGURE 1. Discrete BK equation,at w = 2.8. Different lines from left to right correspond to n = 
1,4,7,10 (black, red, green, blue). 

production of gluons with small C (this is due to an effective repulsion between the 
emitted gluons induced at the NLL level). Therefore C is bounded from below by a 
number close to one. On the other hand the probability that no gluon is emitted when C 
becomes larger than one is very small if we choose the high density initial condition, 
such as the one given by the McLerran-Venugopalan model[l]. Therefore, C takes 
random values around 1, but the effective dispersion can be expected quite small, 

DISCRETE EVOLUTION EQUATION 

Equation which describes the gluon evolution in the high parton density regime of QCD 
is the Balitsky-Kovchegov equation [5, 61. This equation is formulated for the forward 
scattering amplitude of a color dipole of transverse momentum & and rapidity y to scatter 
of a big nucleus at impact parameter b. Assumption that the dispersion of the dipole 
transverse momenta with y is a slow process one can develop a diffusion approximation 
to the BK equation. This approximation is meaningful in the saturation region. The 
discrete version of BK equation takes the form (see also [7]) 

(1) 

where we introduced the discrete variable y1 to enumerate emitted gluons and ~(70) = 

41n2 w - 1. It is convenient to re-scale the scattering amplitude (pn = x(yo)& so that 
the corresponding continuous amplitude is normalized to &(&,y) 5 1: 

&+l(k,Y) = (1 + X(YO))%(k,Y) - jWk ,Y )  7 

$n+l = a $ n  - (w - 1)@L (2) 

Numerical solution to the discrete BK equation is shown in Figures 1-4. 
Let us now consider how does the evolution proceeds for various values of w. In Fig. 1 

the case of 1 < w < 3 is shown. In that case, for any k there is one stable fixed point at 
$ J ~  = 1 and one unstable fixed point at $n = 0. The fixed points are determined from the 
condition &+I = &. 

In Fig. 2 we consider the case 3 < w < 3.442.. .. The point $n = 1 ceases to be 
unstable. Instead two new stable points appear. These can be determined from the 



FIGURE 2. Discrete BK equation at w = 3.1. Different lines from left to right correspond to n = 

1,4,7,10 (black, red, green, blue). 

FIGURE 3. Discrete BK equation at w = 3.495. Different lines from left to right correspond to 
n = 1,4,7,10 (black, red, green, blue). 

condition &+2 = (pn. The described multiplication of stable points is called in general 
bifurcation. In our particular case it is referred to as the period doubling scenario. 

When 3.442... < o < 3.56 ... there are four new fixed points, see Fig. 3. It is 
important to emphasize that at n + 00 the value of settles to a given set of fixed points 
(specified by the value of w )  independently of the initial condition. In other words, 
at very high energies the scattering amplitude in the saturation regime kT < Qs(n) is 
independent of the initial condition. 

ONSET OF CHAOS 

The period doubling proceeds at increasingly smaller increments of o until the accu- 
mulation point UF = 3.569.. . known also as the Feingenbaum’s number. At this point 
there is no more universal limiting behavior at large n. Instead small change in the initial 
condition leads to large change in the final state. The onset of this chaotic behavior can 
be observed in Fig. 4. Note now that at first, WBFKL = 1 + 41n2 = 3.77 > o~ and at 
second, OBFKL is the absolute minimum of the function 1 + ~ ( y ) .  Thus, we conclude 
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FIGURE 4. Discrete BK equation at w = 3.77. Different lines from left to right correspond to a = 

1,4,7,10 (black, red, green, blue). 

that the evolution of the scattering amplitude at high energies in the saturation region 
may be chaotic. At the same time, it is evident from Figs. 1 4  that the high kT tail of 
the scattering amplitude which describes the perturbative regime is not affected by the 
peculiar behavior of the discrete equation. 

By averaging over all events one can define the mean value of the scattering amplitude. 
However, this procedure hides a lot of interesting physics. The most obvious example 
of this is diffraction, which measures the strength of fluctuations in the inelastic cross 
section. Figs. 1 4  imply that diffraction is a significant part of the total inelastic cross 
section at very high energies, and is universal (independent of the properties of the 
target). 

The model used in this letter is admittedly oversimplified: we neglected the diffusion 
in transverse momentum, stochasticity of gluon emission and the dynamical fluctuations 
beyond the mean field approximation. Nevertheless, we hope that at least some of the 
features of discrete quantum evolution at small x willsurvive a more realistic treatment. 
The chaotic features of small x evolution open a new intriguing prospective on the studies 
of hadron and nuclear interactions at high energies. 
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